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The bounce averaged poloidal drift velocity of trapped particles in stellarators is an important
quantity in the framework of optimization of stellarators because it allows us to analyze the
possibility for closure of contours of the second adiabatic invariant and therefore for improvement
of �-particle confinement in such a device. Here, a method is presented to compute such a drift
velocity directly in real space coordinates through integration along magnetic field lines. This has
the advantage that one is not limited to the usage of magnetic coordinates and can use the magnetic
field produced by coil currents and more importantly also results of three-dimensional
magnetohydrodynamic finite beta equilibrium codes, such as PIES �A. H. Reiman and H. S.
Greenside, J. Comput. Phys. 75, 423 �1988�� and HINT �Y. Suzuki et al., Nucl. Fusion 46, L19
�2006��. © 2008 American Institute of Physics. �DOI: 10.1063/1.2912456�

I. INTRODUCTION

Theoretical and numerical studies of charged particle
losses are important for assessment of general confinement
properties of stellarator devices.1 In the long-mean-free-path
regime which is characteristic of thermonuclear plasma ap-
plications, the particle confinement in stellarators �collision-
less confinement� is mainly determined by confinement of
trapped particle orbits. Those particles can be trapped within
one magnetic field ripple as well as within several neighbor-
ing magnetic field ripples. Here two types of drift motion are
important: �i� the missing �axi-�symmetry in stellarators
causes the �B-drift of particle orbits which describes the
radial drift across magnetic surfaces, and �ii� the poloidal
motion of particle orbits. A detailed study of these effects
allows one to obtain appropriate criteria for improving the
particle confinement which require less computer resources
than codes for direct computations of guiding center drift
equations �e.g., Monte Carlo codes for computation of colli-
sionless �-particle confinement�.

It is well known, that a sufficiently large poloidal drift
velocity of trapped particles promotes the formation of po-
loidally closed contours of the second adiabatic invariant,
J� = �v�ds. This, in turn, leads to an essential decrease of
trapped particle losses, in particular, �-particle losses �see,
e.g., Ref. 2�; and vice versa trapped particles with a small
poloidal drift can create poloidally unclosed contours of J�

and the presence of such particles is undesirable. Recently, in
Ref. 3 the possibility of a numerical analysis of the bounce-
averaged poloidal drift of trapped particles has been studied
in stellarator magnetic fields given in magnetic coordinates.
In the present work, an analogous study is carried out for
stellarator magnetic fields given in real-space coordinates.
Using this approach, the trapped particle motion can be ana-
lyzed for magnetic fields produced directly by electrical cur-
rents in the coils of the device as well as for magnetic fields
calculated in real space coordinates by three-dimensional

magnetohydrodynamic �MHD� finite beta equilibrium codes
such as PIES

4 and HINT.5

The paper is organized as follows: Sec. II describes the
derivation of formulas for the velocity of the bounce-
averaged poloidal drift of trapped particles based on integra-
tion along magnetic field lines in a given magnetic field. In
particular, these formulas contain gradients of integrals of
differential equations of field lines. The computation of these
gradients is discussed in Sec. III. In Sec. IV some additional
questions related to the application of the obtained formulas
are discussed. In particular, flux surface averaged quantities
which characterize the poloidal drift of trapped particles are
obtained. As examples, results for three stellarator real-space
magnetic configurations are presented in Sec. V, namely, for
the Compact Helical System6 �CHS� heliotron/torsatron con-
figuration, for the Uragan-2M7 �U-2M� torsatron, and for the
Wendelstein 7-X1 �W7-X� Helias-type configuration. Some
conclusions are presented in Sec. VI.

II. BASIC EQUATIONS

Here, a Clebsch representation of the magnetic field B,
B=�����0, is used where � labels a regular or island
magnetic surface and �0 is in general a multivalued function
of coordinates which labels a given field line on a magnetic
surface. As the third coordinate, � is used which is counted
along the magnetic field line. In addition, the equations for
particle motion �3.41� of Ref. 8 are used which had been
applied in Ref. 8 to the derivation of the second adiabatic
invariant. In �� ,�0 ,�� notation these equations are given as

d�

dt
=

cv�

eB�g
� �

��0
�mv�h�� −

�

��
�mv�h�0

�	 , �1�

d�0

dt
=

cv�

eB�g
� �

��
�mv�h�� −

�

��
�mv�h��	 , �2�

PHYSICS OF PLASMAS 15, 052501 �2008�

1070-664X/2008/15�5�/052501/13/$23.00 © 2008 American Institute of Physics15, 052501-1

Downloaded 14 May 2008 to 129.27.161.98. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1063/1.2912456
http://dx.doi.org/10.1063/1.2912456


d�

dt

 v�h�, �3�

where �g=1 / ������0 ·���, h�=h�0 =0, h�=1 / �B�g�, h�,
h�0, and h� are the contravariant components of the unit vec-
tor h=B /B, h�, h�0

, and h� are the covariant components of
this vector.

The poloidal motion of trapped particles is characterized
by the increment of �0, ��0, during one bounce period. A
peculiarity of the coordinates �� ,�0 ,�� is that in toroidal
geometry ��0 is not single valued. This makes problems in
the case of simultaneous calculations for a variety of trapped
particles distributed along the magnetic field line. To avoid
these problems, a further transition is performed from �0 to a
variable � connected with �0 by the relationship

� = �0 + �� , �4�

with �=���� and �� being single valued quantities. Actu-
ally, this change is analogous to the case of transition from
nonperiodic magnetic coordinates to periodic ones in Ref. 9.
The quantity � is a linear function of the rotational transform
of magnetic field lines, �–. To ensure a single valued charac-
teristic of ��, conditions for � can be found in the following
way. From Eq. �4�, one finds

��0 = �� − ��� − ����� , �5�

where prime denotes the derivative with respect to �. The
scalar product of Eq. �5� and �� gives

��0 · �� = �� · �� − ��� · �� − �������2. �6�

Since ��� ·��−��� ·��� / ����2 is finite, �� can be found
from Eq. �6� as

�� = − lim
�→	

1

�

��0 · ��

����2
. �7�

For a magnetic field given in real-space coordinates the com-
putation of �� and ��0 in Eq. �7� and in the following
expressions is performed using the technique described in
the next section. It should be noted that for real-space repre-
sentations of B the variable � is only counted in the poloidal
direction but its period differs in general from 2
.

From the relation between � and �0, Eq. �4� one can
derive

d�

dt
=

d�0

dt
+ �

d�

dt
+ ���

d�

dt
. �8�

Substituting Eqs. �1�–�3� into Eq. �8� and integrating with
respect to t one finds

�� = ��� −
c

e
� � �

��
�mv�h�� − ���

�

��0
�mv�h��	d�

+
c

e
� �

��
�mv�h��d� − ��

c

e
� �

�

��
�mv�h�0

�d� .

�9�

Taking the integrals in Eq. �9� over an interval of � corre-
sponding to one bounce period, �b, and noting that for this
interval ��=0 one obtains

��̂ = −
c

e
 � �

��
�mv�h�� − ���

�

��0
�mv�h��	d�

+ ��
c

e
 mv�h�0

d� . �10�

The covariant components of h can be given in the form

h� = h · e� = h · ���0 � ����g ,

h�0
= h · e�0

= h · ��� � ����g , �11�

h� = h · e� = B/B� = 1/h�,

using the contravariant basis set

e� = �g���0 � ��� ,

e�0
= �g��� � ��� , �12�

e� = �g��� � ��0� ,

by which the infinitesimal distance, dr,

dr = e�d� + e�0
d�0 + e�d� , �13�

is determined.
From

��v�h�� =
��v�h��

��
�� +

��v�h��
��0

��0 +
��v�h��

��
�� �14�

and Eq. �12�, one finds

e� · ��v�h�� =
��v�h��

��
, e�0

· ��v�h�� =
��v�h��

��0
, �15�

and

�

��
�v�h�� − ���

�

��0
�v�h��

= �e� − ���e�0
� · ��v�h��

= �g��v�B/B�� � ���0 + ������ · �� . �16�

Note that the last formula actually represents the ��v�h�� /��
derivative calculated in �� ,� ,�� coordinates. Substituting
Eq. �16� into Eq. �10� and taking into account that
v��r ,w ,J��=��v2−J�B, v2=2�w−e� /m, J�=v�

2 /B, �
= �1 and �v� =−�2e� /m+J��B� / �2v��, after some trans-

formation one obtains ��̂ in the form

��̂ = ��̂�B + ��̂E + ��̂v�
, �17�

with

��̂�B =
mc

e
 d�

B�

�v�
2 + �1/2�J�B�

v�

�B

��
, �18�

��̂E = c� B

v�

d�

B� = c��b, �19�
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��̂v�
=

mc

e
 d�

B� v������� � h� · ��

− �2
�B

��
−

B

B�

�B�

��
�	 , �20�

where

�B

��
=

1

B��B � ���0 + ������ · �� , �21�

�B�

��
=

1

B��B� � ���0 + ������ · �� , �22�

and ��0+����� is a single valued quantity in the case of ��
defined by Eq. �7�. The equality d� /B�=ds /B has been used
in Eq. �19� with s being the length along the magnetic field
line.

Every trapped particle is trapped within a certain seg-
ment of the magnetic field line limited by the turning points
sj

min and sj
max, where j is numbering the segments along the

magnetic field line. With this definition one can express the
bounce time �b,j as

�b,j = 
�j�

d�

B�

B

v�

= 
�j�

ds

v�

= 2�
sj
min

sj
max ds

�v��
. �23�

According to the equalities

v� = −
�

�J�

�2v�
3

3B
�,

1

v�

= −
2

B

�v�

�J�

, �24�

v�
2 + �1/2�J�B

v�

= −
�

�J�

� 1

B
v��v2 +

1

3
v�

2�	 , �25�

expressions �18�, �20�, and �23� can be presented as

��̂�B = −
mc

e

�Gj

�J�

, �26�

��̂v�
= −

mc

e

�Vj

�J�

, �27�

�b,j = − 2
�Ij

�J�

, Ij = 2�
sj
min

sj
max ds

B
�v�� , �28�

with

Gj = 2�
sj
min

sj
max ds

B2

�B

��
�v���v2 +

1

3
v�

2� , �29�

Vj =
4

3
�

sj
min

sj
max ds

B2 �v��3������ � h� · ��

− �2
�B

��
−

B

B�

�B�

��
�	 . �30�

In contrast to Eqs. �18� and �20� in Eqs. �29� and �30�, inte-
gration over � is transformed to integration over s in the
same way as in Eq. �23�.

Now introducing the definition

d�

dt
=

��̂

�b
, �31�

as well as the new pitch-angle variable b� connected with J�

as

b� = v2/�J�B0� , �32�

where B0 is some reference magnetic field, one finally ob-
tains

d�

dt
=

v2B0

2�c0
� �Ĝj/�b�

� Î j/�b�
+

2

3

�V̂j/�b�

� Î j/�b�
+

2e

mv2�	 , �33�

where �c0=eB0 / �mc� and

Ĝj =
1

3
�

sj
min

sj
max ds

B
�1 −

B

B0b�
�4

B0

B
−

1

b�
� 1

B0

�B

��
, �34�

V̂j = �
sj
min

sj
max ds

B2�1 −
B

B0b�
�3/2������ � h� · ��

− �2
�B

��
−

B

B�

�B�

��
�	 . �35�

With this, in Eq. �31� �b is used in a form obtained from Eq.
�28�,

�b,j =
4B0b�2

v

� Î j

�b�
, Î j = �

sj
min

sj
max ds

B
�1 −

B

B0b�
. �36�

The velocity of the bounce averaged poloidal drift can be
found now from Eq. �13� �d�=0, d�=0�, Eqs. �31� and �33�
as

v̂�,i = �e�0,i�
d�

dt
, �37�

where i is numbering the local minima of B along the mag-
netic field line and e�0,i is e�0

at the corresponding local
minimum of B for s=smin,i.

Here, still an arbitrary representation of the magnetic
field can be used. In particular, Eqs. �33�–�35� are also valid
for magnetic fields given in Boozer magnetic coordinates. In

this case � represents the rotational transform �– and V̂j �Eq.
�35�� can be calculated using the equality

����� � h� · �� − �2
�B

��
−

B

B�

�B�

��
� = − B

F� + �–I�

F + �–I
,

�38�

where cF��� /2 and cI��� /2 are the poloidal �external with
respect to the magnetic surface� and toroidal electric cur-
rents, respectively. With this, corresponding results of Ref. 3
can be obtained �Eq. �56� of Ref. 3 has a misprint: 1 /B
before �B /�� should be replaced by 1 /B0�.

Further on, the real-space representation of the magnetic
field is used. The coordinate � is chosen to be the geometri-
cal toroidal angle and cylindrical coordinates �, �, and z are
used. In this case, Eqs. �33�–�35� are valid for d� /dt calcu-
lations. In accordance with Eqs. �21� and �22� �B /�� and
�B� /�� now mean the following operations:
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�B

��
=

1

B�
� ��0

��
+ ���

��

��
� �B

�z
−

1

B�
� ��0

�z
+ ���

��

�z
� �B

��
,

�39�

�B�

��
=

1

B�
� ��0

��
+ ���

��

��
� �B�

�z

−
1

B�
� ��0

�z
+ ���

��

�z
� �B�

��
, �40�

with B�=B� /� in the right-hand side of Eq. �40�, and B�

being the physical � component of B in cylindrical coordi-
nates. The quantity v̂� is calculated using Eq. �37� where

�e�0,i� =
1

B�

�� ��

��
�2

+ � ��

�z
�2

�s = smin,i� , �41�

which has been obtained from Eq. �12�.

III. CALCULATION OF �� AND ��0

For a toroidal magnetic field available in real-space co-
ordinates, calculation of �� can be done with the help of
equations �see, e.g., Refs. 10 and 11�

dPi

ds
= −

1

B

�Bj

��i Pj , �42�

where Bj are the contravariant components of B in real space
coordinates �i, whereas Pj =�� /�� j are the covariant compo-
nents of P���. From Ref. 10, it follows that Eq. �42� is a
consequence of the equality B ·��=0. Since B ·��0=0,
analogous equations,

dQi

ds
= −

1

B

�Bj

��i Qj , �43�

can be used for calculating the covariant vector Q���0

�Qj =��0 /�� j�.
In this approach, the functions � and �0 represent inte-

grals of the differential equations of the magnetic field line.
It is well known that in an arbitrary toroidal magnetic field
one can always find two independent integrals of the equa-
tions of the magnetic field lines �see, e.g., Ref. 12�. In the
case of the existence of magnetic surfaces �regular or island
surfaces� one of these integrals can be found as a single
valued integral, �, namely, the magnetic surface function.
Another one �which is represented by �0 in our case� is not
single valued and ��0 increases continuously along the mag-
netic field line �in the case of d�–/d��0 where �– is the rota-
tional transform�.

In general, there exists an infinite number of integrals of
the magnetic field line equations. Every such integral is a
linear combination of the above mentioned two independent
integrals. So, there are many not single valued integrals and
only the � integral is single valued in case of existing mag-
netic surfaces.

Equation �42� �as well as Eq. �43�� together with the
equations of the magnetic field line are valid for calculating
the gradient of any integral of the magnetic field line equa-
tions. The quantity �� is obtained by an appropriate choice

of the starting value of ��, ��st, which is the normal to the
magnetic surface in the starting point of the integration. The
quantity ��0 can be obtained with the help of the same dif-
ferential equations but the starting value of ��0 should be
different from the starting value of ��. According to the
Clebsch representation of B it can be presented, e.g., as
��0st= �B���st� / ���st�2.

Note that if the magnetic surface does not exist �e.g.,
stochastic regions, destroyed magnetic surfaces�, then � also
turns out to be one of the not single valued integrals and ��
increases continuously along the magnetic field line.

IV. NORMALIZED VELOCITY OF THE POLOIDAL
DRIFT, ASSESSMENT OF J¸ CONTOURS,
AND FLUX SURFACE AVERAGED QUANTITIES

To analyze the computational results it is convenient to
present the quantity v̂� in a normalized form. The value of v̂�

for a deeply trapped particle near the magnetic axis of an l
=2 stellarator with a large aspect ratio is used for the nor-
malization. With such a normalization, the value of v̂� is
determined as

v̂� =
v2

�c0

�h

r
v̂�,norm, �44�

where r is the average radius of the magnetic surface and �h

is the helical ripple of the magnetic field. According to Ref.
13, for a stellarator with a large aspect ratio v̂� is determined
as

v̂� =
1

2
l
v�

2 �h

�cr
�2E��2�

K��2�
− 1	 , �45�

with K��2� and E��2� being the complete elliptic integrals of
the first and the second kind, respectively, ��2

=v�0
2 / �2�hv2��. So, for the l=2 conventional stellarator

v̂�,l2,norm is determined as

v̂�,l2,norm =
2E��2�
K��2�

− 1. �46�

In the general case it follows from Eqs. �44�, �37�, and �33�
that

v̂�,norm =
1

2

r

�h
B0�e�0,i� � � �Ĝj/�b�

� Î j/�b�
+

2

3

�V̂j/�b�

� Î j/�b�
+

2e

mv2�� .

�47�

A numerical analysis of v̂� Eq. �44�, as well as of the
radial bounce-averaged trapped particle drift van allows for a
convenient assessment of J� contours in the vicinity of a
magnetic surface under consideration. This is realized by an
assessment of the angle �J�

between the J� contour and the
magnetic surface cross section. In accordance with Refs. 3
and 14,

van,i =
��

�b���i�
=

v2

2�c0

1

���i�
�gj/�b�

� Î j/�b�
, �48�

where
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gj =
1

3
�

sj
min

sj
max ds

B
�1 −

B

B0b�
�4

B0

B
−

1

b�
�����kG, �49�

kG is the geodesic curvature of the magnetic field line, and
��i is �� at the ith local minimum of B along the magnetic
field line. Using Eqs. �37�, �33�, and �48� one obtains

�J�
= arctan

van,i

v̂�,i

, �c =
2



�J�

, �50�

with

van,i

v̂�,i

=
1

���i�
�gj/�b�

� Î j/�b�

� �B0�e�0,i�� �Ĝj/�b�

� Î j/�b�
+

2

3

�V̂j/�b�

� Î j/�b�
+

2e

mv2��	−1

.

�51�

In the calculations, ��c� can be realized within the limits
�0,1�. For ��c � =1 the J� contour is perpendicular to the mag-
netic surface and most probably such a contour is not closed.
For small ��c� the angle between the J� contour and the mag-
netic surface is small and one can expect that the correspond-
ing J� contour is closed and is closely tied to the magnetic
surface.

Equations �37�, �33�, and �50� characterize the poloidal
drift in every local minimum of B. Now these equations are
employed to obtain flux surface averaged quantities which
characterize in total the poloidal drift as well as combined
poloidal and radial drifts. These quantities denoted further as
�wp and �c correspond to integral effects for v̂�

2 and �c
2 ob-

tained by an appropriate average of v̂�
2 and �c

2 over a mag-
netic surface and over pitch angles. Averaging over a mag-
netic surface is performed by the rule

�A� = lim
L→	

��
0

L ds

B �−1�
0

L

ds
A

B
. �52�

In fact such a rule corresponds to averaging over a thin layer
between neighboring magnetic surfaces.11

Integrating the quantities v̂�
2 and �c

2 over the phase-space
volume and averaging over a magnetic surface using the rule
�52� gives

F
wp
* = �� v̂�

2fd�w,J�
� , �53�

F
c
* = �� �c

2fd�w,J�
� , �54�

where f = f�w ,�� is the distribution of trapped particles and
d�w,J�

is the phase space volume element

d�w,J�
= �

�=�1


B

mv�

dJ�dw =
2
B

m�v��
dJ�dw . �55�

From Eqs. �53�–�55� it follows

F
wp
* =��

e

	

dw�
J�min

J�max

dJ�

2
B

m�v��
f v̂�

2� , �56�

F
c
* =��

e

	

dw�
J�min

J�max

dJ�

2
B

m�v��
f�c

2� , �57�

with J�min=v2 /Bmax
abs and J�max=v2 /B.

Equations �56� and �57� are further modified for the de-
scription of collisionless �-particle confinement. Here, the
influence of an ambipolar radial electric field is neglected
because of the large �-particle energy. Under such a condi-
tion, after substituting Eqs. �37�, �33�, and �50� into Eqs. �56�
and �57�, changing the order of integration over J� and s,
and changing the integration over J� to an integration over
b� with the help of Eq. �32�, one obtains the following ex-
pressions:

F
wp
* =

�2

m

1

R0
2�c0

2 �wp�
e

	

dwv5f , �58�

F
c
* =

8�2

m
�c�

e

	

dwvf , �59�

with �wp and �c being defined as

�wp =

R0

2

�2
lim

Ls→	
��

0

Ls ds

B �−1

B0
2��e�0

��2

� �
Bmin

abs /B0

Bmax
abs /B0

db��
j=1

jmax � �Ĝ
j
*

�b�
�2� � Î j

�b�
�−1

�60�

and

�c =



2�2
lim

Ls→	
��

0

Ls ds

B �−1

� �
Bmin

abs /B0

Bmax
abs /B0

db��
j=1

jmax

�cj
2 � Î j

�b�
.

�61�

Here, R0 is the major radius of the torus and Bmin
abs and Bmax

abs

are the absolute minimum and maximum of B within a suf-
ficiently large interval �0,Ls�, respectively. The index j num-
bers the field line intervals �sj

min,sj
max� where b�−B /B0�0

for a given J� and w. The derivative �Ĝ
j
* /�b� in Eq. �60� has

the meaning

�Ĝ
j
*

�b�
=

�Ĝj

�b�
+

2

3

�V̂j

�b�
. �62�

It is of interest to obtain the maximum of the parameter
�c, �cm, for the hypothetically most unfavorable conditions
corresponding to ��c,j � =1 for all trapped particles. In such a
case, it is convenient to perform the integration over J� be-
fore the integration over s in Eq. �57� for �c

2=1. As a result
one obtains

F
cm
* =

4


m
��1 −

B

Bmax
abs ��

e

	

dwvf . �63�

From Eqs. �63� and �59�, it follows that
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�cm =



2�2
��1 −

B

Bmax
abs � . �64�

Note that Eq. �63� gives in fact the phase volume occupied
by trapped particles averaged with the weight f using the rule
�52�. For the model of a classical stellarator with a suffi-
ciently large aspect ratio

�cm
cl = ��h, �wp

cl 
 �l�hR0/r�2��h. �65�

Such an estimation of �wp
cl can be obtained using Eq. �45�.

As in Ref. 3, a monoenergetic distribution function,

f = n
m3/2

4�2
�E − e
��w − E� , �66�

is used for calculation of the integrals over w. With this one
obtains

�
e

	

dwvf =
mn

4

, �

e

	

dwv5f =
mn

4

v4, �67�

with v2=2�E−e� /m. With such a definition, Eqs. �58� and
�59� result in the final form,

F
wp
* =

�2

4

�wp

v2�L
2

R0
2 n , �68�

F
c
* =

2�2



�cn , �69�

with �L=v /�c0 being the characteristic Larmor radius.
The parameters �wp and �c �Eqs. �60� and �61�� which

characterize confinement properties of a magnetic configura-
tion can be computed efficiently in a field line tracing code.

In conclusion of this section some remarks are necessary.
�i� When computing �wp instead of �e�0,i� an averaged value
��e�0

� � is used. This is in contrast to the computation of �c

where �e�0,i� is used. The choice of ��e�0
� � in the computation

of �wp gives a higher weight to d� /dt compared to v̂�. �ii� It
follows from explanation after Eq. �51� that values of ��c�
close to unity are more unfavorable for the confinement
properties of a magnetic configuration. To manifest more
strongly the role of larger values of ��c� in �c, the quantities
�c,j

2 are used in Eqs. �57� and �61� �instead of ��c,j��. �iii� In
the case of particles being trapped within several neighbor-
ing magnetic ripples, �e�0,i� is taken from the most deep ripple
within the jth segment of the field line. �iv� When comparing
the role of �wp and �c in an optimization problem one should
bear in mind the following. In principle, an increase of �wp

and a decrease of �c correspond to an optimization proce-
dure. At the same time, in such a procedure it is important to
recognize the presence of trapped particles with a small po-
loidal drift velocity. Those are the most unfavorable ones
with respect to confinement properties of a device. However,
the role of such particles can be hidden in �wp because of the
presence of trapped particles with large poloidal drift veloci-
ties. In contrast, �c is most sensitive to the existence of
trapped particles with small poloidal drift. So, although both
parameters, �wp and �c, are of interest, an analysis of the
parameter �c is most important for an optimization problem.

V. COMPUTATIONAL RESULTS

The possibilities of the proposed technique are further
demonstrated by its application to four stellarator-type mag-
netic configurations. These configurations are �i� the standard
vacuum CHS configuration, �ii� the drift-orbit optimized �in-
ward shifted� CHS6 configuration, �iii� a vacuum configura-
tion of U-2M,7 as well as �iv� a W7-X1 configuration with
finite beta, �
2%, where an equilibrium computed by the
HINT2

5 code is used. In the following numerical computa-
tions the radial electric field is assumed to be zero, �=0.
This is fully justified, because the radial electric field has a
negligible effect on �-particle confinement.

The CHS configuration is characteristic for a small as-
pect ratio, Ap �Ap=R /a�, l=2 heliotron-torsatron device. It is
characterized by Ap
5, np=8, and 0.3��–�1.0. In contrast
to the standard CHS configuration, the drift-orbit-optimized
CHS configuration is an inward shifted configuration. Its
properties are rather close to those for �-optimization.16 The
U-2M device is an l=2 torsatron with Ap
8, np=4 with an
additional toroidal magnetic field. The W7-X stellarator is an
optimized stellarator utilizing modular coils and is now un-
der construction at Greifswald, Germany.

Computations of B for CHS and W7-X are performed in
the same way as in Refs. 15 and 17, where a study of the
effective ripple had been carried out. For the B computation
of U-2M the code of Ref. 18 is used. Here, the influence of
current-feeds and detachable joints of the helical winding is
neglected. For CHS and U-2M B is computed using the
Biot–Savart law based on the data base for helical windings
and additional coils of the devices. The HINT2 output for B
presented in real-space coordinates �� ,� ,z� is used for the
calculations of W7-X. This output is given on a three-
dimensional set of discrete mesh points. Between these
points the B components are computed using three-
dimensional cubic splines.

For any magnetic surface to be analyzed, the value ��
has to be computed as a first step of the computation of the
poloidal motion of trapped particles. To illustrate the compu-
tation of ��, Fig. 1 shows the behavior of ��0 ·�� / �� ����2�
�see Eq. �7�� along the magnetic field line for one of the
magnetic surfaces of the CHS standard configuration. It can
be clearly seen how this quantity is oscillating with decreas-
ing amplitude and how it approaches the final value of ��.
The plot covers 125 field periods each computed with 1280
integration steps.

Once �� has been computed, v�,norm Eq. �47� and �c Eq.
�50� can be calculated with the help of the relevant expres-
sions from Sec. II. The computational results for the four
magnetic configurations described above are presented in
Figs. 2–5. Every figure shows results for one appropriate
magnetic surface of the pertinent configuration. At the top of
every figure a plot of the distribution of B /B0 along the mag-
netic field line is shown. The local minima of B are marked
in accordance with their numbering along the magnetic field
line. The mean radius of the magnetic surface is indicated on
the plot. Below the B /B0 plot the corresponding results for
v�,norm and �c are presented as functions of the pitch � for a
number of local minima of B. The � parameter is defined as
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�=v�0 /v�0, where v�0 is v� at a local minimum of B and

v�0=�J�B0. The curves are marked in accordance with the
numbers of the minima of B in the distribution of B /B0 along
the magnetic field line.

The results for the standard configuration of CHS are
presented in Fig. 2. It can be seen from the figure that
minima exist �e.g., number 25� where the functional behavior
of v�,norm is close to the behavior of an ideal l=2 heliotron-
torsatron for which v�,norm approaches unity at �
0, see Eq.
�46�. For magnetic field ripples being located towards the
absolute minimum the pertinent curves are shifted to higher
values and also show the influence of trapping within more
than one field period at higher values of �. For ripples ap-
proaching the absolute maximum the curves are shifted to
lower values and therefore start crossing zero at smaller val-
ues. For those values of � where v�,norm=0, ��c� is close to
unity indicating contours of J� which are not closed poloi-
dally.

Analogous results for a magnetic surface of the drift-
orbit-optimized CHS configuration are shown in Fig. 3
where the distribution of B /B0 along the magnetic field line
shows the characteristic look of �-optimization �full
�-optimization would mean that all minima have exactly the
same value�. One can also see that the fraction of trapped
particles with v� values close to zero �and ��c� close to unity�
is much smaller than that for the standard configuration
which is a clear result of the optimization.

Figure 4 presents the computational results for U-2M for
device parameters of practical interest where the magnetic
configuration is well centered with respect to the vacuum
chamber and the rotational transform, �–, is larger than 1/3
near the magnetic axis and smaller than 1/2 at the outer sur-
faces �k�=0.31, see in Refs. 20 and 21�. Here, a magnetic
surface rather close to the vacuum chamber is chosen as an
example. The presence of additional toroidal field coils is a
peculiarity of the U-2M device. These coils cause additional
local ripples in the distribution of B along the magnetic field
line and an increased number of local minima of B around
the torus as it can be seen from the B /B0 distribution in Fig.
4. For a rather big fraction of trapped particles one finds ��c�
values close to unity which clearly shows the unfavorable
situation of the well centered magnetic configuration �see
Ref. 20� which could also be improved by an inward shift of
the configuration.

In Fig. 5, computational results for a magnetic surface of

W7-X not far from the plasma boundary are presented. One
can see that these results correlate well with the analogous
results obtained in Ref. 19 for the magnetic field given in
magnetic coordinates. It can also be seen in Fig. 5 that ��c�
values exist close to unity for a rather big fraction of minima
of B but the � intervals corresponding to such values of ��c�
are smaller than for U-2M indicating that a smaller number
of trapped particles in each minimum is affected.

Many plots in Figs. 2–5 show curves with rather abrupt
changes in v�,norm and �c with increasing �. These sharp
changes are connected with transitions from particles being
trapped within one magnetic field ripple to particles being
trapped within two or more ripples.

Finally, for all four configurations in Fig. 6 radial pro-
files are presented for �wp, �c and �cm calculated with the
help of expressions �60�, �61�, and �64� from Sec. IV. Of
course, for all configurations �c is essentially smaller than
�cm. It follows from the presented plots that in major parts of
the confinement regions, �c for the inward shifted CHS con-
figuration is essentially smaller than for the standard CHS
configuration whereas �wp for these configurations does not
differ strongly. This demonstrates the larger sensitiveness of
the parameter �c than �wp to improvement �or worsening� of
the confinement properties of stellarator devices. For W7-X,
U-2M and the standard CHS configuration �c is of the same
order in magnitude in the central part of the magnetic con-
figurations, although for W7-X it is slightly smaller. For the
comparison in Fig. 6 analogous results are presented �curves
QI� also for the quasi-isodynamical �QI� configuration22 op-
timized with respect to collisionless particle confinement
with subsequent optimization towards poloidal closure of the
J� contours. The computations for QI are performed in mag-
netic coordinates. Here, results are shown for the second QI
configuration in Ref. 3 where d� /dt has been analyzed for
the magnetic surface with r /a=0.718. It follows from the
comparison that �cm for the QI configuration has the highest
value because the fraction of trapped particles in this con-
figuration is the largest. Nevertheless, �c for a major part of
the confinement region for this configuration is essentially
smaller than for the other configurations. This correlates with
the optimization properties of this configuration. There exist
a gap to the best real space configuration analyzed here �in-
ward shifted CHS� where the closure of J� contours was not
a design criterion. The parameter �wp correlates well with
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FIG. 1. Determination of �� for the standard configu-
ration of CHS for a magnetic surface with a moderate
distance from the magnetic axis; n is the number of
integration steps along the field line with 1280 steps per
magnetic field period.
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formula �65� since �h is larger for CHS and QI than for
U-2M and W7-X.

Overall one can see that the different choices and/or op-
timization strategies reflect themselves in the quite different

functional dependence of v�,norm and �c. This limited survey
of configurations clearly shows the beneficial effect of in-
ward shift ��-optimization� also on v�,norm and �c and not
only on �eff.
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FIG. 2. �Color� Computational results
for a magnetic surface of the standard
CHS vacuum configuration: �top� dis-
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1280 steps per magnetic field period;
�middle� v�,norm as a function of pitch-
angle � for local minima of B as indi-
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VI. CONCLUSION

This paper presents an approach to compute the bounce
averaged poloidal drift velocity of trapped particles which
are valid for particles being trapped within one magnetic
field ripple as well as for particles being trapped within sev-
eral neighboring ripples. The obtained formulas can be

evaluated using a field line following code. The method is
not restricted to magnetic coordinates and can directly use
stellarator fields given in real-space coordinates without prior
transformation to magnetic coordinates. This opens the way
for direct usage of output from the equilibrium code HINT2

which is demonstrated in one of the examples. Technically,
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one of the key points of the approach is a transformation in
real-space coordinates of the multivalued poloidal variable
which enters into the Clebsch representation of the magnetic
field to a new poloidal variable with a single valued gradient
of this quantity. This allows for simultaneous computations
for a variety of trapped particles distributed along the mag-

netic field line which makes the numerical computation very
efficient.

Among appropriate criteria for improving particle con-
finement in stellarators, an important role belongs to the clo-
sure of contours of J� �see, e.g., Ref. 2�. Combining studies
of the radial drift as well as the poloidal drift one can con-
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veniently assess the character of J� contours in the neighbor-
hood of a magnetic surface. Small values of the parameters
�J� or �c given in formula �50� indicate poloidally closed
contours of J� which are closely tied to the magnetic surface,
whereas ��c� values close to unity definitely indicate the pres-
ence of unclosed contours of J�.

With the help of equations for poloidal motion and the
quantity �c, the flux surface averaged parameters �wp and �c

�Eqs. �60� and �61�� are obtained. Both these parameters are
calculated using a field line tracing code and can be used as
additional targets for stellarator optimization.

To illustrate the approach, computations for four stellar-
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ator configurations with quite different results are shown. In
one of the examples, the drift-orbit optimized CHS configu-
ration �inward shifted configuration�, one can see the benefi-
cial effect of �-optimization on the bounce averaged poloidal
drift velocity and the pertinent closure of contours of J�.

The theoretical as well as the numerical approach pre-
sented here very well complement the effective ripple as tar-
get quantity for optimization by putting more significance to
fast particle confinement which is not covered well by the
effective ripple.
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