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Fast magnetic reconnection of Petschek-type including moving shock waves and discontinuities in
a compressible plasma is studied. Magnetic flux tubes of finite size are reconnected by a localized
dissipative electric field pulse. This process generates nonlinear perturbations propagating along the
initial current surface. The linear wave problem in the outer regions is solved analytically in terms
of the reconnection induced sources which move in different directions and with different speeds
along the surface. The time-coordinate representation of the solution is given in form of convolution
integrals over the reconnection initializing electric field. As an example, reconnection of flux tubes
in a sheared magnetic field geometry is analyzed. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1630055#

I. INTRODUCTION

Magnetic field line reconnection is a fundamental
plasma process which is important in numerous cases such as
the solar wind interaction with planetary magnetospheres,
the energy release in solar flares, transport processes in fu-
sion devices, etc. The ‘‘fast’’ reconnection model originally
proposed by Petschek1 considers the global evolution of
magnetic flux tubes which have been locally reconnected
across an initially magnetically closed current carrying sur-
face. In terms of ideal magnetohydrodynamics~MHD! this is
described as a broken tangential discontinuity: a local dissi-
pative electric field2–4 tangential to the surface leads to a
‘‘breaking’’ and ‘‘reconnection’’ of magnetic flux tubes. The
tangential electric field itself is then transported over the sur-
face by large amplitude MHD waves. This leads to an effec-
tive nonlinear release of energy stored within the current
surface. More specifically, the surface breaks into a thin
boundary layer~BL! which collects plasma from the adjacent
reconnected flux tubes and accelerates this plasma to Alfve´n
speed velocities.

Reconnection in nature is often observed as a time-
dependent process of patchy character. To explain these fea-
tures, the existing analytical solutions for either steady state
reconnection in a compressible plasma5 or time-dependent
reconnection in an incompressible plasma6 have to be ex-
tended to cover such an unsteady and patchy behavior. In the
present paper, the solution of time varying reconnection in a
compressible plasma obtained earlier for plane geometry7,8 is
extended to the more general geometry where skewed fields
are reconnected at an X-line of finite length. A magnetic flux
tube which has been reconnected across an ideal current sur-
face invalidates the conservation laws for a tangential dis-
continuity and, in addition, there will appear magnetic flux as
well as mass flux normal to the surface. If plasma flows into

a surface from both sides, that surface has to broaden into a
BL in order to make space for mass conservation. Inside this
BL, the plasma is accelerated such that the inertia balances
the tangential magnetic stresses of the reconnected flux
tubes. The analysis shows that in order to satisfy all conser-
vation laws of ideal MHD across the BL, two shock waves
~large amplitude waves! and three discontinuities~large am-
plitude Alfvén and entropy waves! are necessary. Each re-
connected magnetic field line suffers a kink across these
large amplitude waves, i.e., current surfaces, and such kinks
are known to move with the local de Hoffmann–Teller ve-
locity. Formally this process can be described by the decay
of a current surface disturbed by reconnection into a system
of large amplitude MHD waves and this process is known as
Riemannian problem5 in the literature.

Recent hybrid simulations of reconnection layers9 reveal
a structure which is similar to the MHD model, but, in addi-
tion, show also specific kinetic effects such as ion beams,
pressure anisotropy, and dissipation of collisionless charac-
ter. Kinetic and Hall MHD simulations which have been in-
tensively carried out during the last years,10–12 emphasizes
the importance of Hall effects inside the diffusion region.
The central part of this region turned out to extend over a
very small scale of the order of inertial electron length. Some
evidence of such a diffusion region with Hall effect signa-
tures have been reported recently for a subsolar magneto-
pause crossing.13

In the present study, the shape as well as the spatial
localization of the reconnection electric field is assumeda
priori and from this the plasma flow and magnetic field in
the outer, ideal region is computed. In reality, the outer re-
gion should be studied together with the nonideal region si-
multaneously. For some very simple cases attempts have
been made to relate the reconnection electric field to dissipa-
tion by matching the inner, diffusive solution to the outer,
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ideal solution.4 Simulations of the resistive MHD equations
show that the Petschek configuration is observed only for a
spatially localized plasma resistivity. In contrast, in the case
of a spatially constant plasma resistivity the Sweet–Parker
configuration is more likely to apply. Also, kinetic simula-
tions show that the spatial structure of the reconnection elec-
tric field is sensitive to the mechanism which breaks mag-
netic field lines. The present results show how the the
parameters in the outer, ideal region depend on the reconnec-
tion electric field prescribed along some straight idealized
finite reconnection line within a constant, infinitely thin cur-
rent layer.

For reconnection withBn /B0!1 (Bn the magnetic field
component normal to the surface!, i.e., a sufficiently small
dissipative electric field, there are a number of simplifica-
tions which allow for analytical progress. First of all, in the
case of homogeneous initial conditions above and below the
current surface, the de Hoffmann–Teller velocities are con-
stant in lowest order with respect toBn /B0 . Therefore, the
solution of the corresponding Riemannian problem to some
extent does not dependent on the actual normal component
of the magnetic field which causes the decay. Therefore, a
part of the problem can be solved solely in terms of these de
Hoffmann–Teller velocities.5

The perturbations in form of shocks and discontinuities
moving within the BL act as sources for the perturbations in
the surrounding medium. The solution in these outer regions
is found from the solution of the linearized compressible
ideal MHD set of equations supplemented with the appropri-
ate boundary conditions, in particular, total pressure balance
as well as mass and magnetic flux conservation at the loca-
tion of the initial current surface (z50).

In the present paper it is shown how to construct explic-
itly the outer solution of time varying reconnection of mag-
netic flux tubes in a compressible plasma. Results for recon-
nection in skewed magnetic field structures are presented in
order to illustrate the method. The solution of the Riemann-
ian problem had been published earlier5 and some, for the
present study necessary, details are collected in the
Appendix.

II. THE LINEAR PERTURBATIONS IN THE OUTER
REGIONS

Once magnetic flux had been reconnected locally along
some idealized line within a current surface, the big scale
evolutions of the process can be described in the framework
of ideal magnetohydrodynamics~MHD!,14

]r

]t
1div~rv!50, ~1!

]~rv!

]t
1divFrvv1p I2

1

4p S BB2
B2

2
I D G50, ~2!

]

]t S 1

2
rv21re1

B2

8p D
1divFrvS v2

2
1e1

p

r D1
1

4p
B3~v3B!G50, ~3!

]B

]t
1div~Bv2vB!50. ~4!

Herer is the mass density,v is the plasma velocity,B is the
magnetic field,p is the isotropic pressure,e5 @1/(g21)#
3(p/r) is the internal energy,g is the polytropic exponent,
and I is the unit diadic. The electric fieldE is related to
velocity and magnetic field via the ideal Ohm’s law, i.e.,E
1 (1/c) v3B50.

When the ideal MHD equations are linearized with re-
spect to the constant backgroundr (0), v(0), B(0), all first
order MHD quantities can be derived from a displacement
vectorj(t,x),7
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where P(1)5p(1)1B(0)
•B(1)/(4p) is the first order total

pressure~thermal plus magnetic! andu25vA
21cs

2 is the sum
of the squares of zero order values of Alfve´n speedvA and
zero order sound speedcs .

In order to solve the initial-value problem, it is conve-
nient to perform Laplace transformation with respect to time
t and Fourier transformation with respect to the coordinates
x,y, the plane of the current surface,
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wherep.0 andk5(kx ,ky)PR2. The x and y components
of the displacement vectorĵ(p,k,z) are expressed through
the z-component of the displacement vectorz(p,k,z),
namely,
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Laplace–Fourier transformation of thez-component of the
momentum equation~2! leads to an ordinary differential
equation forz,
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where
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In the common analysis of surface waves without reconnec-
tion, this equation is solved for the upperz and the lowerz̃
half space separately and the solutions are matched atz50
such that

z~p,k,z!uz505 z̃~p,k,z!uz50 , ~16!

P(1)~p,k,z!uz505 P̃(1)~p,k,z!uz50 , ~17!

i.e., a unique surface with total pressure balance across it.
In the particular case of reconnection considered in the

present analysis,z and z̃ have to be different and thus define
a thin boundary layer instead of a single perturbed surface.
Total pressure balance in first order will still hold across such
a BL. The inner structure of the BL is determined by the
reconnection electric field in combination with the initial cur-
rent, i.e., the change in the tangential magnetic field compo-
nents. The connection betweenz and z̃ is given in the Ap-
pendix. The general solution which vanishes at infinity and
satisfies first order total pressure balance atz50 is

z~p,k,z!5
L̃e2qz

L1L̃
Q~p,k!, z.0, ~18!
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Leq̃z

L1L̃
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Here,
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q~p,k!
, ~20!

and L̃(p,k) is of the same form but evaluated for the lower
half-spacez,0. The functionQ(p,k)[z(p,k,0)2 z̃(p,k,0)
is finite because there are reconnected flux tubes present. The
function is obtained from the solution of the boundary layer
analysis as shown in the Appendix.

After the solution had been transformed back from
frequency-wave number into time-coordinate space, one can
construct fromz(t,x,y,z) all MHD variables including the
horizontal elongation of all discontinuities. In the general
case, three integrations are needed. On the other hand, the
source term consists of elementary functions of the form

FS t2
x

wx
,y2
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wx
xD , ~21!

and is, therefore, essentially 2D. In that case, the integrations
with respect tokx andky can be converted analytically into
convolution integrals in time-coordinate space with the help
of the 3D generalized Cagniard–deHoop method. This
method was originally developed for 2D elastic wave propa-
gation in seismology.15

Because the problem is linear, it is sufficient to find the
contribution to the displacement vector from one such func-
tion, sayzF . The Laplace–Fourier transform of the shifted
F function ~21! for x.0 is
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The functionzF(p,x,y,z) can be written as a double integral
in the form
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where the reality of the functionzF(p,x,y,z), i.e., zF(p,
2kx ,2ky ,z)5zF* (p,kx ,ky ,z), had been used to convert the
ky integration. The essential point of the method is to intro-
duce a new set of variables (kx ,ky)→(s,a),

kx5p sa, aP~2`,`!, ~24!

ky5p s, sP~0,̀ !. ~25!

The volume elementdkxdky is transformed intop2s dads
and the integral~23! becomes
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Here, m5avAx1vAy . In the integral ~26!, the function
F(p,sp) can be replaced byE* (p,sp) using
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F~p,sp!5
1

p
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, ~29!

which follows directly from~A25! and thus
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The electric fieldE* (t,y) is specified by

E* ~ t,y!5
1

p

a

a21y2 E1~ t !, ~32!

wherea.0 is constant andE1(t) is a causal function of time
only, i.e., E1(t)[0 for t,0. The general case can be ob-
tained from this form as explained further below. The Fourier
transform of the spatial part of the electric field is

FH 1

p
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and one can includee2auspu into the exponential factor in the
integral ~30!,
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where, similar to the 2D case,7 the functiont(s,a) is

t~s,a!5as1zq~s,a!2 is~ax1y!. ~35!

At this point one can recognize the advantage of the new
variabless and a. The only p-dependent function is now
E1(p) and there is also ap as a coefficient in the exponent.
Therefore, if the contour can be analytically deformed in the
complex s-plane in such a way thatt(s,a) becomes real
along the whole path of integration, the shift theorem of
Laplace transformationL21$e2ptE1(p)%5E1(t2t) can be
applied and immediately gives the time-coordinate represen-
tation of thez-component of the displacement vector,
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with C such that t(s,a) is real for 0<s<smax and
smax(a,t,x,y,z), the final point of integration, is defined
through causality,
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~37!

For x.0 and z.0, the right half-plane of the complexs
plane has to be taken such that there are no contributions to
the integral from the arc at infinity when closing the contour
to the reals-axis and applying Cauchy’s theorem.

If the contributions to the source originating from all
discontinuities atx.0 and alsox,0 are taken into account,
the time-coordinate representation of the displacement vector
becomes
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Here superscript~1! refers to values forx.0 and super-
script ~2! refers to values forx,0 and the details are given
in the Appendix.

On the imaginarys-axis there are 12 branch points as
well as 16 poles originating fromQE and 2–4 poles origi-
nating fromL1L̃ dependent on the initial parameter values.
The branch cuts are chosen in the half-space Re(s),0 ~see
Fig. 1!. Once the endpointsmax had been determined, the
integration contour froms50 to s5smax in the first quadrant
of the complexs-plane can again be suitably deformed if
necessary. There are no contribution fromsmax to infinity
becauseE1(t)[0 for t<0. From the numerical point of view
it is more advantageous to perform the integration along a
suitable contour where on one handt(s,a) will be complex
but on the other hand one can stay away from branch points
and singularities, e.g., an arc connecting the origin withsmax.
For this procedure, the functionE1(t) must have an analyti-
cal continuation into the complex plane.

The representation~38! has a simple physical meaning.
The integration with respect tos accounts for the contribu-
tion from a particular point on the reconnection line marked
by a, whereas the integration with respect toa sums up the
contributions from all points on the reconnection line. Once
the displacement vector~38! has been obtained, all other
MHD quantities can be found from~5! to ~9!.

III. RESULTS AND DISCUSSION

To model a pulse of reconnection one has to specify the
dependence of the reconnection rate~32! as a function of
time, e.g., as shown in Fig. 2,

E* ~ t,y!512t2e24t
a

p~a21y2!
~40!

with maximal reconnection rateEmax* 50.2. As a function of
y, the electric field has a maximum at the origin and then
decreases withy. Hence, the constanta in ~40! represents an
effective lengthLX of the reconnection line.

For this type of electric field, the 3D results for the case
of purely antiparallel reconnected fields should exactly agree
with the 2D results of Ref. 7 in the limit of an infinite long
reconnection line. As can be observed in Fig. 3, the 3D sepa-
ratrix and the distribution of the total pressure really tend to
their 2D values and fora550 there is coincide within 0.1%
accuracy. The same behavior is observed for the other MHD
quantities which are not explicitly shown in the figure. This
comparison demonstrates that the 3D method from the pre-
vious section gives the correct limit values.

It is interesting that the total pressure distributions cor-
responding toa50.5 anda550 differ significantly whereas
the separatrices do not change much for the whole rangea
50.5– 50. This is due to the fact that the position of the
separatrix is mainly defined by the reconnected flux, on the
other hand, the distribution of the total pressure depends also
on the 3D structure itself.

The 3D effects become really striking when considering
reconnection of skewed magnetic fields. The initial param-
eters of the current surface~tangential discontinuity! and the
corresponding solution of the Riemannian problem are pre-
sented in Table I. In this table, the magnetic field is normal-
ized to Bx

(0) , the density to r (0), the velocity to VA

5Bx
(0)/A4pr (0), the pressure to (Bx

(0))2/8p.
Within the time-dependent model of reconnection it is

possible to distinguish different phases of the process in
terms of a pulsating reconnection rate. During the active
phase~the time period when magnetic field lines are recon-
nected along the X-line, 0,t,2 in our case! and in the
nearest vicinity of the reconnection line time dependent re-
connection is very similar to the steady-state Petschek model
even for the case of skewed magnetic fields. Thus, for very
small periods in a very localized region, one can expect be-

FIG. 1. Sketch of some integration contoursC for severala values in the
complexs-plane. Along these contourst(s,a) is actually real. On the solid
part 0<t<t, on the dashed partt.t. The endpoints of integration are
marked by asterisks. Shown are also branch points~crosses! and poles~dots!
on the imaginary axis. Branch cuts are put in the left half plane. The inte-
gration along the real axis is converted by applying Cauchy’s theorem with
an integration in the complexs plane alongC.

FIG. 2. The time and space variation of the model reconnection electric field
E* (t,y) ~top! and the corresponding reconnected flux functionF(t,y) ~bot-
tom!.
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havior similar to classical stationary reconnection. However,
most of the time when active reconnection has already
stopped, thin boundary layer structures are formed which
propagate along the current surface. During this passive
phase (t.2) the whole MHD structure is essentially three-
dimensional and it looks quite different when compared to
the stationary Petschek process~Fig. 4!.

For the case of skewed fields all shocks and discontinui-
ties launched by reconnection move not only with different
de Hoffmann–Teller velocities but also they move in differ-
ent directions. As a result, the BL regions which consist of
accelerated and heated plasma are highly elongated with pro-
gressively increasing distance between all discontinuities.
This can be clearly seen in Fig. 5 where the cross section of
the BL region is shown.

Each discontinuity produces disturbances in the outer re-
gions corresponding to the poles of the source term~39!. In
addition, surface waves connected with the poles ofL1L̃ in
Eq. ~39! must be present. Although the whole structure looks
complicated, it is still possible to identify the basic features
of skewed field reconnection.

First of all, one has to find the location of the BL region.
The Alfvén discontinuities above and below the current sur-
face propagate with different Alfve´n velocitiesvA , ṽA , and
in the course of timet, they displace to the positionsvAt,
ṽAt. Also, the magnetic field between those discontinuities

FIG. 3. Comparison of 2D results~points! from Ref. 7 and 3D results from
the present paper for the separatrix location~top! and the total pressure
distribution ~bottom!. Solid lines correspond to a long reconnection line
(a550) and dashed lines to a short reconnection line (a50.5).

FIG. 4. Reconnection of skewed magnetic fields at timet54. The separatrix
surfaces are shown in the top panel. The arrows indicate the direction of the
magnetic field above and below the current surface. The corresponding
boundary layer structure inside the separatrix surfaces is shown in detail in
Fig. 5. The distribution of the total pressure~middle panel! and the plasma
density~bottom panel! are shown forz50.

TABLE I. Plasma parameters in the different regions and the corresponding
de Hoffmann–Teller velocities forx.0. For x,0, the quantitiesBx , vx ,
andwx change its sign.

Region Bx By vx vy r p

0 outer 1.0 1.5 0.0 0.0 1.0 4.875
1 AS 20.701 1.661 1.701 20.161 1.0 4.875
2 SC 20.698 1.654 1.697 20.152 1.003 4.902

2̃ CS̃ 20.698 1.654 1.697 20.152 1.193 4.902

1̃ S̃Ã 20.973 2.303 1.228 0.960 0.7 1.875

0̃ outer 22.0 1.5 0.0 0.0 0.7 1.875

Wave wx wy

A 1.0 1.5
S 1.177 1.080
C 1.697 20.152

S̃ 2.039 20.961

Ã 2.390 21.793
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inside the BL region is directed along the vectorvA2 ṽA ~Fig.
4!. The cross section of the BL region through its center in
the direction ofvA2 ṽA is shown in Fig. 5. The single dis-
continuities can be observed.

Each discontinuity looks similar to a hill on top of the
current surface. The behavior of the MHD perturbations in
the outer regions is similar to that found for a moving object
such as a wing in pure hydrodynamics. As can be seen from
Fig. 4, the density and the total pressure are increased in the
front of of moving discontinuities and decreased in the wake.

Any enhancement of the total pressure in the front re-
gion must be compensated by a corresponding increase in
total pressure in the lower half space. To establish pressure
balance, the upper hill is pushed downward which results in
the permanent generation of surface waves. This can be seen
in Fig. 5.

The scale of the MHD disturbances in the surrounding
medium depends on the reconnected flux as well as the size
and direction of the reconnected fields. The level of the dis-
turbances in the outer regions strongly depends on the angle
between the reconnected fields. In fact, the BL region col-
lects all plasma from the reconnected flux tubes bounded by
separatrices. Therefore, the amount of mass, energy and mo-
mentum of heated and accelerated plasma inside the BL re-
gion linearly increases with time. On the contrary, the recon-
nected flux during the passive phase is not changed any
more. Hence, the more the shocks above and below the cur-
rent surface separate and the more elongated the BL structure
is, the less pronounced are the signatures in the outer
regions.

IV. CONCLUSIONS

A new analytical solution of three-dimensional time de-
pendent reconnection in compressible plasma with moving
shocks is presented. In this model it is assumed that all dis-
sipative processes responsible for reconnection are localized

in an idealized reconnection line of effective finite length and
can be taken into account by specifying a time and space
varying reconnection rate.

Such an electric field launches a series of large ampli-
tude nonlinear MHD waves which redistribute the initial cur-
rent and form a structured BL region with accelerated and
heated plasma inside. In this way, magnetic energy is effec-
tively converted into kinetic and internal energy of the
plasma.

The moving slow shocks and Alfve´n discontinuities ex-
cite disturbances in the surrounding media. Solutions for a
space and time varying reconnection rate are obtained which
include coupling of all types of MHD waves~MHD discon-
tinuities and linear slow, fast and Alfve´n waves! under the
pressure balance condition.

The solution presented above is based on a particular
choice ofy-dependence of the reconnection rate. This can be
easily generalized, i.e., if one writes the electric field with the
help of the delta functiond(y2y8) as

E* ~ t,y!5E
2`

`

dy8 d~y2y8!E* ~ t,y8!, ~41!

the solution can be constructed from the limita→0 of the
solution above and, therefore, the general solution is

z~ t,x,y,z!5
1

2p2
ReE

2`

`

daE
2`

`

dy8E
C
ds s

3
L̃~s,a!

L~s,a!1L̃~s,a!
QE~s,a!

3E* ~ t2t~s,a,x,y2y8,z!,y8!, ~42!

t~s,a,x,y,z!5zq~s,a!2 is~ax1y!. ~43!

One should note that in this representation also the endpoint
smax of the s integration implicitly defined byt(smax,a,x,y
2y8,z)5t depends ony8. The effects of changing they de-
pendence of the reconnection electric field will be studied in
more detail in a future investigation.

The linear part of the problem for the disturbances in the
outer regions is equivalent to the evolution of linear pertur-
bations in two half spaces with different anisotropic multi-
mode wave properties coupled by total pressure balance at
the interface. Therefore, the presented method can also be
applied to analogous surface wave problems in plasma phys-
ics or seismology whenever the source is essentially 2D.
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APPENDIX: THE RIEMANNIAN PROBLEM

In this appendix a short summary of the solution of the
Riemannian problem is given. A tangential discontinuity is
assumed to separate the two half spacesz.0 with MHD
state vectorU(0)5(v(0),B(0),r (0),p(0)) and z,0 with Ũ(0)

5( ṽ(0),B̃(0),r̃ (0),p̃(0)). It has been shown earlier5,7 that the
tangential discontinuity disturbed by reconnection decays
into a set of large-amplitude Alfve´n (A) waves, slow shock
(S) or rarefaction (R) waves separated by a contact (C)
discontinuity in the center. In the present paper only cases
with moderate asymmetry are considered when no rarefac-
tion waves are present. Hence, the set of possible disconti-
nuities will beASCS̃Ã.

The solution of the Riemannian problem is defined by
the vector

h[sgn~mBn!~ ṽ02v0!1 ṽA01vA0 , ~A1!

wherem[r(vn2D) is the mass flux through the disconti-
nuity andD is the speed of the discontinuity. The magnetic
field B1 downstream of the Alfve´n discontinuities is parallel
to the vectorh, i.e.,

b15
h

ihi . ~A2!

The MHD quantities in regionAS are

B15b1B0 , ~A3!

v15v01sgn~mBn!~b1vA02vA0!, ~A4!

r15r0 , ~A5!

p15p0 , ~A6!

S m

Bn
D

A

56A r

4p
, ~A7!

wA[v2
1

r S m

Bn
D

A

B. ~A8!

Here wA is the de Hoffmann–Teller velocity of the Alfve´n
discontinuity. Similar formulas are valid for the regionÃS̃.

To find the MHD quantities in the regionSCS̃it is con-
venient to use as a key parameter the change in magnetic
strength across the slow shockh5B2 /B0 , and h̃5B̃2 /B̃0 .
Since the magnetic field is continuous across the contact dis-
continuity, one can writehB05h̃B̃0 . Then, the parameterh
can be calculated from

ihi5vA0G~h!1 ṽA0G~ h̃ !, ~A9!

where the functionG is defined as

G~h!512A~12h!S 12F 12h2

2b1~g21!~12h!
Gh D ,

~A10!

with b5cs
2/vA0

2 andg the polytropic index. Note that across
the slow shock the magnetic strength decreases, henceh
,1 and h̃,1. After h had been found, the MHD values
downstream of the slow shock are

B25b1hB0 , ~A11!

v25v02sgn~mBn!@vA02b1vA0G~h!#, ~A12!

r2

r0
511

12h2

2b1~g21!~12h!
, ~A13!

p25p01
B0

2

8p
~12h2!, ~A14!

S m

Bn
D

S

56
1

A4pA h21

h

r2
2

1

r1

, ~A15!

wS[v2
1

r S m

Bn
D

S

B. ~A16!

The local horizontal elongation of the shocks will be of
first order inBn /B0 , say,

z5 f ~ t,x,y!, ~A17!

and, therefore, normal vectorn and shock speedD are

n5~2 f x ,2 f y,1!, D5 f t , ~A18!

sinceA11 f x
21 f y

2'1 in lowest order. Therefore, mass flux
and normal magnetic field are

m5r~vn2D !5rS 2v0
•¹ f 1

]z

]t
1v0

•¹z2
] f

]t D ,

~A19!

Bn5~2B0
•¹ f 1B0

•¹z!. ~A20!

Then the Wale´n relation at the Alfve´n discontinuity~A8! and
at the slow shock~A16! lead to the equation

S ]

]t
1w(0)

•¹ D ~ f 2z!50, ~A21!

with a solution

f ~ t,x,y!5z~ t,x,y!1FS t2
x

wx
(0) ,y2

wy
(0)

wx
(0) xD , ~A22!

where the velocity w had been defined above. The
y-component of the electric field within any discontinuity in
its rest frame is
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E* ~ t,x,y!ª
1

c
~~v2Dn!3B!•~n3ex!

5
Bx

(0)

c
~vn2D !2

Bn

c
~vx

(0)2Dnx!

'
Bx

(0)

c
~vn2D !2

Bn

c
vx

(0)

5
Bx

(0)

c

]F

]t S t2
x

wx
(0) ,y2

wy
(0)

wx
(0) xD

1Ez
(0) ]F

]y S t2
x

wx
(0) ,y2

wy
(0)

wx
(0) xD , ~A23!

if the expressions~A19!–~A20! for Bn andvn–D are used.
Here,

Ez
(0)5

1

c
~vy

(0)Bx
(0)2vx

(0)By
(0)!. ~A24!

All discontinuities cross the reconnection line atx50 and,
therefore, the functionF(t,y) is defined through the electric
field along the reconnection line in its rest frame by evaluat-
ing ~A23! at x50,

Bx
(0)

c

]F

]t
~ t,y!1Ez

(0) ]F

]y
~ t,y!5E* ~ t,y!. ~A25!

The solution of~A25! is

F~ t,y!5
c

Bx
(0) E

0

t

dt E* F t,y2
cEz

(0)

Bx
(0) ~ t2t!G . ~A26!

The functionf (t,x,y) describes the shape of the discontinui-
ties and therefore it must be the same if~A22! is evaluated at
the different sides of the discontinuities. These conditions
give the connections between thez-components of the dis-
placement vectorz in the different regions

z01F0~wA
(0)!5z11F1~wA

(0)!, ~A!, ~A27!

z11F1~wS
(0)!5z21F2~wS

(0)!, ~S!, ~A28!

z25 z̃2 , ~C!, ~A29!

z̃21F̃2~w̃S
(0)!5 z̃11F̃1~w̃S

(0)!, ~S̃!, ~A30!

z̃11F̃1~w̃A
(0)!5 z̃01F̃0~w̃A

(0)!, ~Ã!, ~A31!

with

F i~wj
(0)![F i S t2

x

wjx
(0) ,y2

wjy
(0)

wjx
(0) xD , ~A32!

evaluated with~A26! in region i , and j 5A, S, Ã, or S̃.
Therefore, the source termQ(t,x,y)5z0(t,x,y)2 z̃0(t,x,y)
in ~19! is

Q~ t,x,y!5F1~wA
(0)!2F0~wA

(0)!1F2~wS
(0)!2F1~wS

(0)!

1F̃1~w̃S
(0)!2F̃2~w̃S

(0)!1F̃0~w̃A
(0)!2F̃1~w̃A

(0)!

~A33!
which follows from the summation of~A27!–~A31!. The de
Hoffmann–Teller velocitiesw(0) are different for thex.0
andx,0 half-spaces because the waves propagate in oppo-
site direction away from the reconnection line. Hence, the
Laplace–Fourier transform has to be done separately forx
.0 andx,0 which doubles the number of terms in~A33!.
Note, that a minus sign has to be taken in the Laplace–
Fourier transform of the shiftedF function ~22! for x,0,

LtFxyH FS t2
x

wx
,y2

wy

wx
xD J 52

wxF~p,ky!

p1 iw"k
, x,0.

~A34!

If each of the F(p,ky) functions is replaced by
E* (p,ky) using the Laplace–Fourier transform of Eq.~A25!,
the representation~39! for QE(s,a) is found.
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