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Fast magnetic reconnection of Petschek-type including moving shock waves and discontinuities in
a compressible plasma is studied. Magnetic flux tubes of finite size are reconnected by a localized
dissipative electric field pulse. This process generates nonlinear perturbations propagating along the
initial current surface. The linear wave problem in the outer regions is solved analytically in terms
of the reconnection induced sources which move in different directions and with different speeds
along the surface. The time-coordinate representation of the solution is given in form of convolution
integrals over the reconnection initializing electric field. As an example, reconnection of flux tubes
in a sheared magnetic field geometry is analyzed2@4 American Institute of Physics.
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I. INTRODUCTION a surface from both sides, that surface has to broaden into a
BL in order to make space for mass conservation. Inside this
Magnetic field line reconnection is a fundamental BL, the plasma is accelerated such that the inertia balances
plasma process which is important in numerous cases such gs% tangential magnetic stresses of the reconnected flux
the solar wind interaction with planetary magnetospherestubes. The analysis shows that in order to satisfy all conser-
the energy release in solar flares, transport processes in fuation laws of ideal MHD across the BL, two shock waves
sion devices, etc. The “fast” reconnection model originally (large amplitude wavesand three discontinuitiedarge am-
proposed by Petschklconsiders the global evolution of plitude Alfven and entropy wav@sare necessary. Each re-
magnetic flux tubes which have been locally reconnecte¢onnected magnetic field line suffers a kink across these
across an initially magnetically closed current carrying surdarge amplitude waves, i.e., current surfaces, and such kinks
face. In terms of ideal magnetohydrodynami®iD) thisis  are known to move with the local de Hoffmann—Teller ve-
described as a broken tangential discontinuity: a local dissitocity. Formally this process can be described by the decay
pative electric field tangential to the surface leads to a of a current surface disturbed by reconnection into a system
“breaking” and “reconnection” of magnetic flux tubes. The of large amplitude MHD waves and this process is known as
tangential electric field itself is then transported over the surRiemannian problefin the literature.
face by large amplitude MHD waves. This leads to an effec-  Recent hybrid simulations of reconnection layeeseal
tive nonlinear release of energy stored within the current structure which is similar to the MHD model, but, in addi-
surface. More specifically, the surface breaks into a thirtion, show also specific kinetic effects such as ion beams,
boundary laye(BL) which collects plasma from the adjgcent pressure anisotropy, and dissipation of collisionless charac-
reconnected flux tubes and accelerates this plasma torAlfveter. Kinetic and Hall MHD simulations which have been in-
speed velocities. tensively carried out during the last yea?s!? emphasizes
Reconnection in nature is often observed as a timethe importance of Hall effects inside the diffusion region.
dependent process of patchy character. To explain these fe@ihe central part of this region turned out to extend over a
tures, the existing analytical solutions for either steady statgery small scale of the order of inertial electron length. Some
reconnection in a compressible plasnm time-dependent evidence of such a diffusion region with Hall effect signa-
reconnection in an incompressible pladniave to be ex- tures have been reported recently for a subsolar magneto-
tended to cover such an unsteady and patchy behavior. In thgause crossing’
present paper, the solution of time varying reconnection ina In the present study, the shape as well as the spatial
compressible plasma obtained earlier for plane georhtsy  localization of the reconnection electric field is assunaed
extended to the more general geometry where skewed fielgsiori and from this the plasma flow and magnetic field in
are reconnected at an X-line of finite length. A magnetic fluxthe outer, ideal region is computed. In reality, the outer re-
tube which has been reconnected across an ideal current sgion should be studied together with the nonideal region si-
face invalidates the conservation laws for a tangential dismultaneously. For some very simple cases attempts have
continuity and, in addition, there will appear magnetic flux asbeen made to relate the reconnection electric field to dissipa-
well as mass flux normal to the surface. If plasma flows intation by matching the inner, diffusive solution to the outer,
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ideal solutior* Simulations of the resistive MHD equations gB

show that the Petschek configuration is observed only for g +div(Bv—vB)=0. 4

spatially localized plasma resistivity. In contrast, in the case

of a spatially constant plasma resistivity the Sweet—Parkelerep is the mass density, is the plasma velocityB is the

configuration is more likely to apply. Also, kinetic simula- magnetic field,p is the isotropic pressuree=[1/(y—1)]

tions show that the spatial structure of the reconnection elecX(p/p) is the internal energyy is the polytropic exponent,

tric field is sensitive to the mechanism which breaks magand | is the unit diadic. The electric fiele is related to

netic field lines. The present results show how the thevelocity and magnetic field via the ideal Ohm’s law, i.E.,

parameters in the outer, ideal region depend on the reconneg- (1/c) vXB=0.

tion electric field prescribed along some straight idealized When the ideal MHD equations are linearized with re-

finite reconnection line within a constant, infinitely thin cur- spect to the constant backgroupé, v(9, B, all first

rent layer. order MHD quantities can be derived from a displacement
For reconnection witlB,,/By<1 (B, the magnetic field vector &(t,x),’

component normal to the surface.e., a sufficiently small

dissipative electric field, there are a number of simplifica- ) d ©)
tions which allow for analytical progress. First of all, in the V= ﬁJ“V -V ®)
case of homogeneous initial conditions above and below the
current surface, the de Hoffmann—Teller velocities are con- B=B©).y£ BOY. £ ©®)
stant in lowest order with respect &, /B,. Therefore, the '
solution of the corresponding Riemannian problem to some ) ©)
extent does not dependent on the actual normal component P "= P V-§ @)
of the magnetic field which causes the decay. Therefore, a
part of the problem can be solved solely in terms of these de  p®M=c2p®), (8)
Hoffmann—Teller velocities.

The perturbations in form of shocks and discontinuities p(l)— —p(o)[uzv-§+(VA'V)VA'§], 9)

moving within the BL act as sources for the perturbations in

the surrounding medium. The solution in these outer regionwhere PH=p® 1+ B©).BM/(47) is the first order total

is found from the solution of the linearized compressiblepressurgthermal plus magneti@ndu?=uv3+cZ is the sum

ideal MHD set of equations supplemented with the appropriof the squares of zero order values of Alfvepeedv, and

ate boundary conditions, in particular, total pressure balancgero order sound speedq.

as well as mass and magnetic flux conservation at the loca- In order to solve the initial-value problem, it is conve-

tion of the initial current surfacez&0). nient to perform Laplace transformation with respect to time
In the present paper it is shown how to construct explict and Fourier transformation with respect to the coordinates

itly the outer solution of time varying reconnection of mag- X,Y, the plane of the current surface,

netic flux tubes in a compressible plasma. Results for recon-

nection in skewed magnetic field structures are presented in - — 4 (0. y_,p+ijv(®., (10)

order to illustrate the method. The solution of the Riemann-

ian problem had been published eafliend some, for the

present study necessary, details are collected in the V—(ik,didz), (1)
Appendix. wherep>0 andk= (ky,k,) € R?. Thex andy components
of the displacement vectd(p,k,z) are expressed through
Il. THE LINEAR PERTURBATIONS IN THE OUTER the z-component of the displacement vectd(p,k,2),
REGIONS namely,
Once magnetic flux had been reconnected locally alon L d¢
some idealizgd line within a current surface, the bié]/ scal:‘a:J &= K{pz[uzk_(k'VA)VA]Hk'VA)ZCgk}d_z’ (12
evolutions of the process can be described in the framework
of ideal magnetohydrodynami¢mHD),** A=p*+u?k®p?+ (k-vp)2cik?, (13
p . Laplace—Fourier transformation of ttrecomponent of the
E+d|v(pv)=0, 1) momentum equation2) leads to an ordinary differential
equation for,
M+div pvv+pl—i(BB—B—2I”=0 (2 9L
o am\ 2 2~ (pKIC=0, (14
Il 2
E(zpv tpet g where

2

v++p+1B>< XB
Zep 4 (vxB)

, P uik’p?+ (k-va)?c2k?
=0, () O 212 cAkvp)?

+div| pv (19
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In the common analysis of surface waves without reconnec- X w, w,®(p,ky)
tion, this equation is solved for the upp&and the lower Etfxy[q)( w, YW H = HTiwk . 50
X p+iw
half space separately and the solutions are matchee- at (22
such that
5 The function{4(p,X,Y,z) can be written as a double integral
{(p.k,2)|,=0=¢(p,K,2)[ =0, (16)  in the form
P(l)(p,k,Z)|Z:O:P(l)(p,k,Z)|Z:0, (17) §q,(p,x,y,z)
i.e., a unique surface with total pressure balance across it. L e aztitketky) w,d(p,k,)
In the particular case of reconnection considered in the (ZW)ZJ dk f dky +T p+iw-k
present analysis; andZ have to be different and thus define
a thin boundary layer instead of a single perturbed surface. 2 e{ - o T e 9ztilkectkyy)
Total pressure balance in first order will still hold across such = j dk f dk,————
a BL. The inner structure of the BL is determined by the (2m)? L+L
reconnection electric field in combination with the initial cur-
rent, i.e., the change in the tangential magnetic field compo- w,®(p,ky) ]
) 2 X——— (23)
nents. The connection betweérand ¢ is given in the Ap- p+iw-k

pendix. The general solution which vanishes at infinity and

satisfies first order total pressure balance=a0 is ) ) .
where the reality of the functiod(p,X,y,2), i.e., {&(p,

Teuz —ky, —ky,2)={5(p.ky Ky ,2), had been used to convert the
{(p,k,2)= —Q(p,k), z>0, (18 k, integration. The essential point of the method is to intro-
L+L duce a new set of variable&k,)—(s,a),
~ e
{(p,k,2)=———Q(p,k), z<O0. (19 k«=psa, ae(—=»,°), (24)
+L
Here' ky:p S, SE(O,W). (25)
P2+ (Kevy)? . o
L(p,k)=—p@O— " (200 The volume elementik,dk, is transformed intg“s dads

q(p,k) and the integra(23) becomes

andt(p,k) is of the same form but evaluated for the lower
half-spacez< 0. The functionQ(p,k)=¢(p,k,0)—Z(p.k,0) Lo(P,X,Y,2)=

is finite because there are reconnected flux tubes present. The (2
function is obtained from the solution of the boundary layer
analysis as shown in the Appendix.

2 © ©
Rej daJ’ ds p’s
71')2 — o 0

L(s,a)ePlzdsa)~is(ax+y)]

After the solution h_ad b_een trans_formed back from L(s,@)+1L(s,a)
frequency-wave number into time-coordinate space, one can
construct from{(t,x,y,z) all MHD variables including the 1 w,d(p,ps)
horizontal elongation of all discontinuities. In the general X— : ) (26)

case, three integrations are needed. On the other hand, the P [1His(aw,twy)]

source term consists of elementary functions of the form

with
oft- Sy 21
YW @Y L(s.)= —po(1+5%?)

and is, therefore, essentially 2D. In that case, the integrations u +C252,u2
with respect tok, andk, can be converted analytically into 55 5 ENVE (27)
convolution integrals in time-coordinate space with the help LHu?s*(1+a?) +cf(1+a®)s’u
of the 3D generalized Cagniard—deHoop method. This
method was originally developed for 2D elastic wave propa- 1+ u?s?(1+ a?) +c3(1+ a?)s* u?

ation in seismology: 2(s,a)= . 28
g oy’ 9%(s,a) Tt (29)

Because the problem is linear, it is sufficient to find the
contribution to the displacement vector from one such func-
tion, say{q . The Laplace—Fourier transform of the shifted Here, u=avatuvay. In the integral (26), the function
@ function (21) for x>0 is ®(p,sp) can be replaced bE* (p,sp) using
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1 E*(p,sp) 7(s,a)=as+zq(s,a)—is(ax+y). (35
P(p,sp)= p B,/c+isE,’ (29
At this point one can recognize the advantage of the new
which follows directly from(A25) and thus variabless and a. The only p-dependent function is now
E.(p) and there is also p as a coefficient in the exponent.
1 o o Therefore, if the contour can be analytically deformed in the
{o(P,Xy,2)= 2—772Re _md“ o dss complex s-plane in such a way that(s,a) becomes real
along the whole path of integration, the shift theorem of
T (s,a)ePlzas.a)=is(ax+y)] Laplace transformatiort " *{e P"E,(p)}=E,(t— 7) can be
: — applied and immediately gives the time-coordinate represen-
L(s,a)+L(s,a) tation of thez-component of the displacement vector,
* ~
X Qu(s,@)E*(p.Sp), (30 L [(s.)
W Lop(t,X,Y,2)= FRef daf dss——
— X ™ — ¢ L(s,a)+L(s,a
Qu(S. @)= 5 Te isE [ 1+ is(aw, )] (3Y) (@) +L(s,a)
XQa(s,a)Ey(t—17(s,a)), (36)
The electric fieldE* (t,y) is specified by
a with C such that 7(s,«) is real for Oss<s, and
E*(ty)= Ta 212 E1(D), (32 Smad@t:Xy,2), the final point of integration, is defined

through causality,

wherea>0 is constant an(t) is a causal function of time B )
only, i.e., E4(t)=0 for t<0. The general case can be ob-  7(Smax @) =aSmaxt ZU(Smax, @) ~I1Smal aX+y) = ;
tained from this form as explained further below. The Fourier (37)

transform of the spatial part of the electric field is For x>0 andz>0, the right half-plane of the complex

1 a
A= =g akl=galspl (33
{77 a‘ty to the reals-axis and applying Cauchy’s theorem.
If the contributions to the source originating from all

and one can include™ 27 into the exponential factor in the discontinuities ak>0 and alsax<0 are taken into account,

integral (30), becomes

§¢(p,x,y,z)=iRefw dafxds S’E(S—N’[) 1 0 E(S,a)
27T2 - L(S,a)+t(s,a) g(taxiyaz)zz_ﬂ-zRef_mdaJ‘CdSS

Ls.a)+L(s.a)
—p7(s,a)
X Qo(s,a)Eq(p)eP ; (34 X Qe(s,a)E (t—1(s,a)), (38

where, similar to the 2D casethe functionz(s, @) is where

Ouis.) c c Wy c c Wy
(S, @)= ; - , , + , - : ,
By, TiSCE), Boxt+isCEy,) 1+is(awa,+wa) |[By+iscEy, Bj+iscE,| 1+is(awg,+ws,)

c Wi, . c c Wy
~ s ot | ot ~ . o~ = .~ s ot o
B+ |scElz B, tiscE,,| 1Tis(aWs,+Wsy)) | By, +iscE,, B +iscE),|1Tis(aWa,+Wy)

c Wy c c Wg,
Bt |scElZ Boxtis CEgy) 1+is(aWp,+Wp,) [ BytisCE,, By +iscEy,| 1+is(awg,+wsg,)

c Ws, c c Wiy
is cE,,| 1tis(aWs,+Wsy) | By, +iscE,, By, +iscEy,| 1tis(aWy,+Wsy)

(39

{ HiscE, §5X+
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0 0.05 0.1
Re(s)

FIG. 1. Sketch of some integration contoudtgor severala values in the
complexs-plane. Along these contourgs, «) is actually real. On the solid
part O<7<t, on the dashed part>t. The endpoints of integration are
marked by asterisks. Shown are also branch péantssesand polegdots

on the imaginary axis. Branch cuts are put in the left half plane. The inte-
gration along the real axis is converted by applying Cauchy’s theorem with
an integration in the complex plane alongC.

Here superscript+) refers to values fox>0 and super- FIG.2. The time and space variation of the model reconnection electric field
script(—) refers to values for<0 and the details are given E* (t y) (top) and the corresponding reconnected flux functioft,y) (bot-
in the Appendix. fom
On the imaginarys-axis there are 12 branch points as
well as 16 poles originating fro®g and 2—4 poles origi-
nating fromL +L dependent on the initial parameter values.
The branch cuts are chosen in the half-spaces)Re) (see
Fig. 1). Once the endpoins,,,, had been determined, the
integration contour frons=0 to s= S5 iN the first quadrant
of the complexs-plane can again be suitably deformed if
necessary. There are no contribution framp,, to infinity
becausd=,(t)=0 fort<0. From the numerical point of view

For this type of electric field, the 3D results for the case
of purely antiparallel reconnected fields should exactly agree
with the 2D results of Ref. 7 in the limit of an infinite long
reconnection line. As can be observed in Fig. 3, the 3D sepa-
ratrix and the distribution of the total pressure really tend to
their 2D values and foa=50 there is coincide within 0.1%
accuracy. The same behavior is observed for the other MHD
guantmes which are not explicitly shown in the figure. This

it is more advantageous to perform the integration along
suitable contour where on one hang, ) will be complex comparison demonstrates that the 3D method from the pre-
ious section gives the correct limit values.

but on the other hand one can stay away from branch point% L
y y P It is interesting that the total pressure distributions cor-

and singularities, e.g., an arc connecting the origin sjth.. . _ = . —
For this procedure, the functidg,(t) must have an analyti- :ﬁspondlngt t.ca—%.S an?a; 50 differ sr:gfnlflcl?sntlthlr\ereas
cal continuation info the complex plane. —0.5-50. This is due to the fact that the postion of the
The representatiof88) has a simple physical meaning. _ ~"~ >~ . .
P lo68) Imple pnys! g separatrix is mainly defined by the reconnected flux, on the

The integration with respect t® accounts for the contribu- L
tion from a particular point on the reconnection line markedother hand, the dlstrl_bunon of the total pressure depends also
on the 3D structure itself.

by a, whereas the integration with respectdaums up the The 3D effects become really striking when considering

contributions from all points on the reconnection line. Oncereconnection of skewed maanetic fields. The initial baram-
the displacement vectof38) has been obtained, all other eters of the current surfacﬁtar? ential discbntinuil)yand ?he
MHD quantities can be found fror®) to (9). . ) gen )
corresponding solution of the Riemannian problem are pre-
IIl. RESULTS AND DISCUSSION _sented in '(I;)a}ble [. In this _table, tPo? magnetic f|§ld is normal-
_ . ized to By, the density top'”’, the velocity to Va
To model a pulse of reconnection one has to specify the=B(0)/ /47, the pressure toR%)%/8.

dependence of the reconnection ré82) as a function of Within the time-dependent model of reconnection it is
time, e.g., as shown in Fig. 2, possible to distinguish different phases of the process in
a terms of a pulsating reconnection rate. During the active
E*(t,y)=122e‘4tm (40)  phase(the time period when magnetic field lines are recon-

nected along the X-line, €t<2 in our casg and in the

with maximal reconnection ratéy. =0.2. As a function of nearest vicinity of the reconnection line time dependent re-
y, the electric field has a maximum at the origin and thenconnection is very similar to the steady-state Petschek model
decreases witly. Hence, the constaatin (40) represents an even for the case of skewed magnetic fields. Thus, for very
effective lengthLy of the reconnection line. small periods in a very localized region, one can expect be-
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—0% 2j5 5l 715 10
X

FIG. 3. Comparison of 2D resulfpointy from Ref. 7 and 3D results from
the present paper for the separatrix locatioop) and the total pressure
distribution (bottom). Solid lines correspond to a long reconnection line
(a=50) and dashed lines to a short reconnection lae Q.5).

s 10

havior similar t_O classical Stat!onary reconngctlon. HOWeVerFIG. 4. Reconnection of skewed magnetic fields at timd. The separatrix
most of the time when active reconnection has alread¥urfaces are shown in the top panel. The arrows indicate the direction of the
stopped, thin boundary layer structures are formed whiclmagnetic field above and below the current surface. The corresponding
propagate along the current surface. During this passivg(_)undary Iay_er §tru_cture inside the separatr_ix surfaces is shown in detail in
. . Fig. 5. The distribution of the total pressumiddle panel and the plasma
phase {>2) the whole MHD structure is essentially three- density(bottom panélare shown foz=0
dimensional and it looks quite different when compared to
the stationary Petschek procd§dg. 4).
For the case of skewed fields all shocks and discontinui-
ties launched by reconnection move not only with different
TABLE I. Plasma parameters in the different regions and the correspondingle Hoffmann—Teller velocities but also they move in differ-
de Hoffmann—Teller velocities fox>0. Forx<0, the quantities,, vx,  ent directions. As a result, the BL regions which consist of
andw, change its sign. ' ] .
accelerated and heated plasma are highly elongated with pro-
Region B, B, Uy vy p p gressively increasing distance between all discontinuities.
This can be clearly seen in Fig. 5 where the cross section of

0 outer 1.0 15 0.0 0.0 1.0 4.875 o

1AS ~0701 1661 1701 -0161 10 4875 the BLregion is shown.

2SC —-0.698 1.654 1.697 —0.152 1.003  4.902 Each discontinuity produces disturbances in the outer re-

3CS —0.698 1654 1.697 -0.152 1.193 4.902  gions corresponding to the poles of the source t38). In

1%A —0978 2303 1228 0960 07 1.875  addition, surface waves connected with the polek of in

Oouter —20 15 00 00 07 1875 Eq.(39) must be present. Although the whole structure looks

Wave w, w, complicated, it is still possible to identify the basic features
of skewed field reconnection.

A 1.0 1.5 First of all, one has to find the location of the BL region.

S 1.177 1.080 L L

c 1697 —0152 The Alfven discontinuities above and below the current sur-

3 2039 —0.961 face propagate with different Alfvevelocitiesv,, V,, and

A 2390 —1.793 in the course of timd, they displace to the positionst,

Vat. Also, the magnetic field between those discontinuities
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0.06 ' " y in an idealized reconnection line of effective finite length and
can be taken into account by specifying a time and space
varying reconnection rate.

Such an electric field launches a series of large ampli-
tude nonlinear MHD waves which redistribute the initial cur-
rent and form a structured BL region with accelerated and
heated plasma inside. In this way, magnetic energy is effec-
tively converted into kinetic and internal energy of the
plasma.

The moving slow shocks and Alfwediscontinuities ex-
cite disturbances in the surrounding media. Solutions for a
“ ) ) ) space and time varying reconnection rate are obtained which
&n -5 0 5 10 include coupling of all types of MHD wavedHD discon-
tinuities and linear slow, fast and Alfmewave$ under the
FIG. 5. The evolution of the nonlinear waves initiated by an electric field pressure balance condition.
pulse is_shoyvn in across section of th(_a bpundary layer region corrgqunding The solution presented above is based on a particular
tq the dlr_ectlon of the internal magnetlc flqﬂcbntral part of dashed line in choice ofy-dependence of the reconnection rate. This can be
Fig. 4). Displayed are the separatrix, the Alfvevave @A), the slow shocks . . . . ; L. .
(S), and the contact discontinuityCy. easily generalized, i.e., if one writes the electric field with the

help of the delta functio®(y—y') as

0.031

-0.05f

oo

- . - E*(t,y)=f dy’ s(y—y")E*(ty"), (41
inside the BL region is directed along the vectgr-V, (Fig. —o0

4). The cross section of the BL region through its center inthe solution can be constructed from the liraits0 of the

the ghregﬂon 0lva—Va is shown in Fig. 5. The single dis- solution above and, therefore, the general solution is
continuities can be observed.

Each discontinuity looks similar to a hill on top of the 1 o =
current surface. The behavior of the MHD perturbations in ~ {(t.X,y,2)= —zRef daf dy de s
. . . ) 2 —o —o c
the outer regions is similar to that found for a moving object
such as a wing in pure hydrodynamics. As can be seen from

Fig. 4, the density and the total pressure are increased in the xl'(s—’f)QE(s,a)
front of of moving discontinuities and decreased in the wake. L(s,a)+L(s,a)
Any enhancement of the total pressure in the front re-
gion must be compensated by a corresponding increase in XE*(t—17(s,a,x,y—y",2),y’), (42
total pressure in the lower half space. To establish pressure (S, @,%,y,2) = 20(S, @) — is(ax+y). 43)

balance, the upper hill is pushed downward which results in
the permanent generation of surface waves. This can be se€mne should note that in this representation also the endpoint
in Fig. 5. Smax Of the s integration implicitly defined byr(Smayx,a.Xy
The scale of the MHD disturbances in the surrounding—Yy’,z2)=t depends ory’. The effects of changing the de-
medium depends on the reconnected flux as well as the sizeendence of the reconnection electric field will be studied in
and direction of the reconnected fields. The level of the disimore detail in a future investigation.
turbances in the outer regions strongly depends on the angle The linear part of the problem for the disturbances in the
between the reconnected fields. In fact, the BL region colouter regions is equivalent to the evolution of linear pertur-
lects all plasma from the reconnected flux tubes bounded blations in two half spaces with different anisotropic multi-
separatrices. Therefore, the amount of mass, energy and maode wave properties coupled by total pressure balance at
mentum of heated and accelerated plasma inside the BL réhe interface. Therefore, the presented method can also be
gion linearly increases with time. On the contrary, the reconapplied to analogous surface wave problems in plasma phys-
nected flux during the passive phase is not changed angs or seismology whenever the source is essentially 2D.
more. Hence, the more the shocks above and below the cur-
rent surface separate and the more elongated the BL structure
is, .the less pronounced are the signatures in the OUteﬂCKNOWLEDGMENTS
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tent of the publication is the sole responsibility of its Ihl[=0v A0G(7) +T agG(7), (A9)
publishers and does not necessarily represent the views of
the Commission or its services. where the functiorG is defined as
-
APPENDIX: THE RIEMANNIAN PROBLEM o=l N A=\ =)
(A10

In this appendix a short summary of the solution of the
Riemannian problem is given. A tangential discontinuity iswith 8=c2/v4, and y the polytropic index. Note that across
assumed to separate the two half spaze® with MHD  the slow shock the magnetic strength decreases, hence
state vectorU©@ = (v(® B p© p©) and z<0 with U@ <1 and%<1. After » had been found, the MHD values
= (V9 BO 5 p©) . It has been shown earlfet that the downstream of the slow shock are

tangential discontinuity disturbed by reconnection decays B,=b,7B (A11)
into a set of large-amplitude Alfve(A) waves, slow shock 2 mEo
(S) or rarefaction R) waves separated by a contac@)( Vo= Vo— SN MB,)[Vao— D10 a0 (7)1, (A12)
discontinuity in the center. In the present paper only cases
with moderate asymmetry are considered when no rarefac- p, 1-7?
tion waves are present. Hence, the set of possible disconti- —=1+ ’ (A13)
— ’ Po 2B+ (y=1)(1-n)
nuities will be ASC.
The solution of the Riemannian problem is defined by BS 5
the vector P2=Pot %(1_ 7, (A14)
h=sgnmB,)(Vo—Vo) +Vao+ Vao, (A1) m 1 n—1
—| == (Al15)
wherem=p(v,—D) is the mass flux through the disconti- Vam
nuity andD is the speed of the discontinuity. The magnetic P2 P1
field B, downstream of the Alfve discontinuities is parallel 1/m
to the vectorh, i.e., We=V— _<_) B. (A16)
p Bn S
h
bi=m. (A2) The local horizontal elongation of the shocks will be of
I first order inB,, /By, say,
The MHD quantities in regioi\S are z=1f(t,x,y), (A7)
B;=b;By, (A3)  and, therefore, normal vectorand shock speeD are
n=(—-f,,—f,1), D=f, Al18
V1=Vo+sgnmB,) (b1 a0—Vao), (A4) (=ho =ty D ‘ (A18)
since \/1+fX2+fy2%1 in lowest order. Therefore, mass flux
P1=Po, (A5)  and normal magnetic field are
= J of
P1=Po, (A6) m=p(vn—D)=p(—vo-Vf+a—f+v°-V§—E),
m P (A19)
=] == Vi (A7)
Bn/ A 4 B,=(—B%.Vf+B°.V¢). (A20)
1/m Then the Wala relation at the Alfva discontinuity(A8) and
Wp=V— —(B—) B (A8)  at the slow shockA16) lead to the equation
N A

J
(E+W(0).V>(f_g):o, (A21)
Herew, is the de Hoffmann—Teller velocity of the Alfne
discontinuity. Similar formulas are valid for the regids.
To find the MHD quantities in the regioBCSit is con-
venient to use as a key parameter the change in magnetic f(t,x,y)={(t,x,y)+®
strength across the slow shogk=B,/B,, and%=B,/B,.
Since the magnetic field is continuous across the contact disvhere the velocityw had been defined above. The

continuity, one can writeyB,=%B,. Then, the parametey  y-component of the electric field within any discontinuity in
can be calculated from its rest frame is

with a solution
X e
I
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1 with
E*(t,x,y)==((v—=Dn)XB)-(nxe,)
c (0)
(0)y — X Wiy
B Bn o Oi(w;)=d; t= oY~ o (A32)
=—(a=D)=—(”=Dny I I
. evaluated with(A26) in regioni, andj=A, S, A, or S.
_ BY )(vn—D)— ﬁv(o) Therefore, the source ter@(t,x,y) = Zo(t,X,y) — {o(t,X,y)
c c * in (19) is
BO s X w(® (0) (0) (0) (0)
_Bs E(t__@,y_ —?w) Qtx,y) =B 1 (WE) — Do (WD) + D, (W) — by (W)
c w( wi . . . -
. O + B (W)~ Bo(WEY) + Do(W) — P o (W)
X
O [+_ _
+E; 7y (t WO Y% WO x), (A23) (A33)

which follows from the summation qA27)—(A31). The de
if the expression$A19)—(A20) for B, andv,~D are used. Hoffmann—Teller velocitiesv(® are different for thex>0
Here, andx<0 half-spaces because the waves propagate in oppo-
site direction away from the reconnection line. Hence, the
1 Laplace—Fourier transform has to be done separately for
E§0)=E(U§O)B§O)—vﬁo)By))- (A24) >0 andx<0 which doubles the number of terms (A33).
Note, that a minus sign has to be taken in the Laplace—
All discontinuities cross the reconnection linexat0 and,  Fourier transform of the shifted function (22) for x<0,
therefore, the functiod(t,y) is defined through the electric

field along the reconnection line in its rest frame by evaluat- X W w, @ (p,ky)
- LiFyy| @ Yy |t = - BEPEy 0
ing (A23) atx=0, t/xy t_VTX'y_W_XX =T Tpriwk x<0.
(A34)
B 9o P , ,
—(t,y) +EO—(t,y)=E*(t,y). (A25) If each of the ®(p,k,) functions is replaced by
c dt ay E*(p,k,) using the Laplace—Fourier transform of E425),
The solution of(A25) is the representatiofB89) for Qg(s,«) is found.

c [t ce® . : _ _
d(t.y)= E* _ t— ] A2 H. E. Petschek, ilAAS-NASA Symposium of the Physics of Solar Flares,
(ty) waj fodT Yy BX@ (t=7) (A26) NASA-SP 50edited by W. N. Hes¢National Aeronautics and Space Ad-
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