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Fast and accurate computations of transport coefficients, bootstrap current and the general-

ized Spitzer function in stellarators is an important problem for stellarator optimization, gen-

eration of neoclassical data bases, and modelling of the current drive. In this report a new

field line integration method for these purposes is presented. For the computation, the distri-

bution function f can be linearized,f = f0(ψ,v)+ δ f (ψ,s,v,λ ), and expanded over energy

as follows,
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whereL(n)
m are Laguerre polynomials. In regimes with small poloidal drift, the linearized drift

kinetic equation (DKE) can be written as,
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with the pitch-angle scattering operator
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and the integral part of the linearized collision operator
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where for the expansion overλ the Legendre polynomialsPℓ are used. Here,ψ is a flux surface

label,s is the distance counted along the m.f.l.,λ = v‖/v is pitch,σ is a sign ofv‖, η = (1−
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λ 2)/B̂ is a normalized perpendicular invariant (magnetic moment),B̂ = B/B0 is the magnetic

field module normalized to some reference magnetic fieldB0, κ = 4/lc with lc being the mean

free path,vT andωc are thermal velocity and cyclotron frequency, respectively. The quantities

νmm′, Imm′, Dmm′ anda(i)
m are matrix elements independent of plasma parameters, whereas the

quantitiesAi are the driving forces defined as,
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The source termsqσ
I with drivesI = G,E by gradient and by parallel electric field, respectively,

are defined as
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andkG being the geodesic curvature. As a result of computations one obtains radial particle

and heat flux densities and the bootstrap current as,
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whereb(i)
m are, again, numerical coefficients independent of problem parameters. All quantities

< · · · > are flux surface averages which are computed as field line averages using
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Putting the driving forcesA2 = A3 = 0, one can compute normalized diffusion and bootstrap

coefficients,
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respectively. To regain the Lorentz model, one has to putm = m′ = 0, ν00 = 1 andDmm′ =

I ℓ
mm′ = 0, a(1)

0 = 1, b(1)
0 = 1/4 andb(3)

0 = 3/8.

The set of coupled equations (2) is used by the field line tracing code NEO-2 introduced

in [1] for the Lorentz collision model. For this purpose, equations (2) are discretized on an

adaptive grid ofη-values and the resulting set of coupled ordinary differential equations is

solved. For benchmarking purposes, also a Monte Carlo technique, which belongs to the group
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of δ f -methods [2], is used. The Monte Carlo method itself is restricted to the use of the Lorentz

collision model. Within this method, the solution of the linearized DKE, which can be formally

written as
∂δ f
∂ t

+V i ∂δ f
∂zi −LCδ f = Q, (10)

wherez is a set of phase space variableszi , V i is a phase space drift motion velocity,LC is a

Lorentz collision operator andQ is a source term, is approximated by the following expectation

value
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wδ (z− zk), wδ (z− z0) = J(z)Q(z)∆t. (11)

Herezk are positions of a test particle afterk integration steps of the stochastic orbit,J(z) is a

phase space Jacobian,∆t is an integration time step andw is a test particle weight. Last equa-

tion (11) definesw via the source term. Note that contribution of largek to the infinite sum

in (11) becomes exponentially small due to the relaxation by collisions and parallel motion,

and, therefore, the stochastic orbits need to be followed only few collision times. For the reduc-

tion of variance, the method of antithetic variates has been used. Namely, taking the starting

pointsz0 evenly distributed over the flux surface and pitchλ one can use the symmetry of the

source term (6) overλ . For this, a pair of particles with equal weights and oppositeλ values is

always generated and the same series of random numbers is used for both test particles when

modelling the pitch angle scattering.

In Figs. 1 and 2 the result of computations of the perturbed distribution function by NEO-2

is shown for a relatively low collisionality case. One can see that this distribution function in

a stellarator is rapidly varying with pitch which usually causes convergence problems in DKE

solvers. In Figs. 3 and 4 the results of NEO-2 for a tokamak case are compared with the Monte

Carlo method (red markers) and the asymptotical long mean free path theory (black). Green

curves show the results of NEO-2 for the full collision operator and blue curves for the Lorentz

model. One can see that this theory gives a good estimate of the bootstrap current in a relatively

wide range of collisionalities. This is also the case for the normalized diffusion coefficient in

stellarators (Fig. 5). In stellarators, typically, the computation of the bootstrap coefficient is

more complicated and the asymptotic value is only reached at extremely low collisionalities

(Fig. 6).
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Fig. 1: Asymmetric part of the distribu-

tion function (gradient drive) for a Toka-

mak with 2πR/lc = 2 · 10−3 at different

poloidal positions (red: high field; black:

top; blue: low field).

Fig. 2: Asymmetric part of the distribution

function (gradient drive) for W7-AS with

2πR/lc = 1·10−4.
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Fig. 3: Normalized diffusion coefficient

for a Tokamak.
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Fig. 4: Bootstrap coefficient for a Toka-

mak.
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Fig. 5: Normalized diffusion coefficient

for W7-AS; red - asymptotic value.

Fig. 6: Bootstrap coefficient for W7-AS;

red - asymptotic value.
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