
Proceedings of ITC/ISHW2007

Computations of neoclassical transport in stellarators using
a δ f method with reduced variance ∗

Klaus ALLMAIER1), Sergei V. KASILOV1,2), Winfried KERNBICHLER1), Georg O. LEITOLD1),
Viktor V. NEMOV1,2)
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An improved δ f Monte Carlo method for the computation of neoclassical transport coefficients in stellarators
is presented. Compared to the standard δ f method without filtering, the computing time needed for the same
statistical error decreases by a factor proportional to the mean free path to the power 3/2.
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A standard δ f Monte Carlo method for the computa-
tion of neoclassical transport coefficients [1] assumes so-
lution of the linearized drift-kinetic equation taking into
account the source term in the equation for test parti-
cle weights which evolve with time. This method has a
good convergence for tokamaks where the variance in all
transport coefficients including bootstrap coefficient has no
strong dependence on plasma collisionality. However, in
stellarators, the variance in the bootstrap coefficient in-
creases for this method as a square of the mean free path
due to the accumulation of large random contributions to
the test particle weights which occur in the phase space re-
gion occupied by trapped particles. In Ref. [2] a method
has been presented which is a combination of the standard
Monte Carlo method with a method employing constant
particle weights and re-discretizations of the test particle
distribution in phase space. There, this method has been
tested in confinement regimes with negligible radial elec-
tric field. Below this method is described in more detail for
general confinement regimes.

Mono-energetic transport coefficients are determined
by the steady state solution of the linearized drift kinetic
equation for the normalized perturbation of the distribution
function f̂ (marker)

LD f̂ ≡
(
∂

∂t
+ Vg · ∇ − LC

)
f̂ = ψ̇ ≡ Vg · ∇ψ, (1)

where LC , Vg, and ψ̇ are Lorentz collision operator, drift
velocity and its co-variant ψ-component, respectively, and
velocity space variables are total energy and perpendicular
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adiabatic invariant. Here, ψ is a flux surface label, and a
marker is defined through the local Maxwellian distribu-
tion function fM and the total distribution function f via
f = fM − f̂∂ fM/∂ψ. The mono-energetic radial diffu-
sion coefficient and the normalized bootstrap coefficient,
respectively, are given by

Dmono = −
1

〈|∇ψ|〉2

〈
1
2

1∫
−1

dλ f̂ ψ̇
〉
, (2)

λbb = −
3

ρLB0 〈|∇ψ|〉

〈
1
2

1∫
−1

dλ f̂λB
〉
, (3)

where λ = v‖/v is the pitch parameter, ρL is the Larmor
radius in the reference magnetic field B0, B is the mag-
netic field module and 〈. . .〉 denotes the average over the
volume between neighboring flux surfaces. The quan-
tity λbb is linked to the equilibrium (bootstrap) current
density j‖ and gradient of the pressure p by λbb =

−
〈

j‖B
〉

(c 〈|∇ψ|〉 dp/dψ)−1. In the following Dmono is nor-
malized by the plateau diffusion coefficient Dplateau =

πvρ2
L(8
√

2ιR)−1 where ι and R are the rotational transform
and major radius, respectively.

In order to introduce the Monte Carlo operator it is
convenient to re-write (1) in the integral form using a
Green’s function G defined by

LD G(t, z, z0) = 0 (4)

G(0, z, z0) = (g(z0))−1/2 δ(z − z0), (5)

where z = (ϑ, ϕ, λ) and g is a metric determinant of flux
coordinates (ψ, ϑ, ϕ). This Green’s function is normalized
to 1, ∫

d3z (g(z))1/2 G(t, z, z0) = 1. (6)
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Thus, a formal solution to Eq. (1) is

f̂ (t, z) =

∫
d3z0 (g(z0))1/2

G(t − t0, z, z0) f̂ (t0, z0)

+

t∫
t0

dt′G(t − t′, z, z0)ψ̇(z0)

 (7)

If a steady state solution is looked for, f̂ (t, z) =
f̂ (z), Eq. (7) becomes an integral equation for F(z) =
(g(z))1/2 f̂ (z) given below also in the operator form,

F(z) =
∫

d3z0K(z, z0)F(z0) + Q(z) ≡ KF + Q, (8)

where K(z, z0) = (g(z))1/2 G(∆t, z, z0), ∆t is the integration
time step and

Q(z) =

∫
d3z0 (g(z)g(z0))1/2

∆t∫
0

dt′G(t′, z, z0)ψ̇(z0)

≈ (g(z))1/2 ψ̇(z)∆t. (9)

Introducing the Monte Carlo operator, Z(∆t, z0), being the
random position of a test particle starting at z0 after a sin-
gle time step modeled in a standard way [4] by the random
change of λ in accordance with LC and integration of par-
ticle drift equations, the kernel of the integral equation is
given by an expectation value K(z, z0) = δ (z − Z(∆t, z0)).

The solution of (8) by direct iterations can be pre-
sented as an expectation value of an integral along the
stochastic orbit,

F =

∞∑
k=0

K kQ = C0

∞∑
k=0

w0 δ (z − zk), (10)

zk = Z(∆t, zk−1), w0 = ψ̇(z0)∆t,

where C0 =
∫

d3z (g(z))1/2 and the random starting point
z0 is chosen with the probability density δ (z − z0) =
C−1

0 (g(z))1/2. The averages (2) and (3) are given by ex-
pectation values as

Dmono = −
1

〈|∇ψ|〉2

∞∑
k=0

w0ψ̇(zk), (11)

λbb = −
3

ρLB0 〈|∇ψ|〉

∞∑
k=0

w0λkB(zk). (12)

When k∆t exceeds a few collision times, the correlation
between zk and w0 is lost and, therefore, such terms in (11)
tend to zero, e.g. w0ψ̇(zk) → w0 ψ̇(zk) = 0 because the
expectation value w0 = C−1

0 ∆t
∫

d3z (g(z))1/2 ψ̇(z) = 0 due
to Liouville’s theorem. Thus, a finite sum over k is suffi-
cient in (11). The method of constant test particle weights
described by (11) and (12) has rather low variance in com-
putations of Dmono, however, for λbb variance has a very
unfavorable scaling with collisionality. Indeed, only the
orbits originating in the boundary layer in velocity space of
the width ∆λ ∼ (Lc/lc)1/2 where Lc = 2πR/ι and lc = vτc

are the connection length and mean free path, respectively,
contribute to λbb. In addition, the contribution of a parti-
cle from the boundary layer is ∆λ times smaller than of a
normal passing particle because of a higher trapping proba-
bility. Therefore, the variance in λbb scales for this method
as (lc/Lc)2 in the long mean free path regime.

It should be noted that distribution of test particles af-
ter each step remains to be the equilibrium distribution,
δ (z − zk) = C−1

0 (g(z))1/2.
Therefore w0λk− jB(zk− j) = w jλkB(zk) where w j =

ψ̇(z j)∆t, and

∞∑
k=0

w0λkB(zk) = lim
k→∞

WkλkB(zk) (13)

= lim
K→∞

1
K

K∑
k=0

WkλkB(zk), (14)

Wk =

k∑
j=0

w j. (15)

The procedure in (13) corresponds to a standard δ f
method [1] where the test particle weight Wk is an integral
of ψ̇ along a stochastic orbit. In a tokamak, the variance in
λbb does not scale with the collisionality, and the required
CPU time for this method scales linearly with lc/Lc. How-
ever, in stellarators variance in λbb again recovers the scal-
ing (lc/Lc)2 because due to the non-zero bounce-averaged
drift of trapped particles large contributions to Wk are ac-
quired, which scale as ψ̇τc and which become weakly cor-
related with the values of λk after detrapping of test parti-
cles. To overcome this problem, in Ref. [5] trapped parti-
cles with large Wk are replaced with particles with Wk = 0
(large weights are filtered out) which formally introduces
some bias in the result.

For a formally “unbiased” method it is convenient to
split the source in (8) into “passing” and “trapped” sources
Qp = χQ and Qt = Q − Qp using

χ =
1
2

(
1 + tanh

(
(λ − λt−p)/∆λ

))
, (16)

where λt−p is a trapped-passing boundary, and solve the
problem with each source independently. Results for trans-
port coefficients for these two sources are added up at
the end. The problem with Qp is solved with the stan-
dard method (13) because accumulation of large weights is
avoided there. For the problem with Qt the formal solution
to (8) is presented as F = FM + ∆FM where FM satisfies
an equation which differs from (8) only by a source term,

FM = KFM + QM , (17)

where

QM =
1
M

M−1∑
k=0

K kQ, (18)

∆FM =

M−1∑
k=0

(
1 −

k + 1
M

)
K kQ. (19)
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In order to derive (17) the original equation (8) is presented
as

F =

m−1∑
k=0

K kQ +KmF, (20)

where m is an arbitrary natural number. Averaging the r.h.s.
of (20) over 1 ≤ m ≤ M yields

F = ∆FM +
1
M

M−1∑
m=0

KmQ +
M∑

m=1

KmF

 (21)

Denoting the last term in (21) with FM and substituting
there F in the form of the series (10) one obtains

FM ≡
1
M

M−1∑
m=0

KmQ +
M∑

m=1

KmF

 (22)

=

∞∑
k=0

K kQM , (23)

which is a series solution to Eq. (17).
Equation (17) describes one iteration of the solution

procedure. Given the source term Q such iteration provides
QM which is used as a source term Q for the next iteration.
Within an iteration, each of the test particles performs M−1
steps, and the quantity QM is computed by scoring weights
on the 3D grid (except the first iteration). The contribu-
tion of the iteration to the distribution function, ∆FM , is
formally used in the averages (2) and (3) so that they are
computed directly in analogy to (11) and (12). For the first
iteration with Q being the original source (9) the algorithm
with alternating weights (15) is used. After the first itera-
tion these test particle weights are divided by M so that test
particles represent the discretized distribution QM used as
a source within the second iteration. Starting from this sec-
ond iteration, an algorithm with fixed test particle weights
(and scoring QM on the grid) is used. After the second it-
eration, the module of test particle weight is fixed. Due to
annihilation of the weights on the grid and fixed module
of the weight, the number of test particles needed for sam-
pling the source term from the grid is decreasing with itera-
tions and iterations are stopped when this number is below
one, (see Fig. 1). The number of steps M for a single iter-
ation is chosen to be much smaller than collision time and
large enough in order to fill the grid using a limited number
of test particles. Since source terms generated in this way
are small in the passing and boundary region, particles are
generated there with smaller weights and particles which
enter the boundary layer from the trapped side are split in
such a way that the number of test particles in the passing
and trapped regions is of the same order. As a result, vari-
ance of this method is reduced to the scaling lc/Lc. In ad-
dition, due to the decay of test particle number with itera-
tions, the CPU time is also reduced and scales as (lc/Lc)3/2

for a given accuracy (see Fig. 2) which is much better than
the scaling (lc/Lc)3 of the standard δ f method without a fil-
ter. Results of testing of the method for a few toroidal de-
vices stay in good agreement with results of NEO-2, a field
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Fig. 1 Bootstrap coefficient λbb (green) and logarithm of the
number of simulation particles (red) plotted over the
number of iterations.
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Fig. 2 CPU-time multiplied with the variance of the bootstrap
coefficient σ2 plotted over the collisionality parameter
(red). The green line shows the scaling (lc/Lc)3/2.

line tracing code which computes transport coefficients in
arbitrary collisionality regimes [3], as shown in Figs. 3-6.
Benchmarking of the results from computations with finite
radial electric fields with other methods has been started,
first results can be found in Ref. [6].
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Fig. 3 Normalized diffusion coefficient Dmono/Dplateau for LHD
with R=375cm vs. collisionality parameter Lc/lc at half
plasma radius computed by NEO-MC (blue) and NEO-2
(red) for Er/v/B = 0 (circles), 3 · 10−5 (stars), 1 · 10−4

(squares), 3 · 10−4 (diamonds), 1 · 10−3 (triangles)
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Fig. 4 Normalized bootstrap coefficient λbb for LHD with
R=375cm vs. collisionality parameter Lc/lc at half
plasma radius. Markers and colors are the same as in
Fig. 3
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Fig. 5 Normalized diffusion coefficient Dmono/Dplateau for W7-X
standard configuration vs. collisionality parameter Lc/lc

at half plasma radius. Markers and colors are the same as
in Fig. 3
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Fig. 6 Normalized bootstrap coefficient λbb for W7-X standard
configuration vs. collisionality parameter Lc/lc at half
plasma radius. Markers and colors are the same as in
Fig. 3


