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Abstract
Effects of linear plasma response currents on non-axisymmetric magnetic field perturbations from the I-coil used
for edge localized mode mitigation in DIII-D tokamak are analysed with the help of a kinetic plasma response
model developed for cylindrical geometry. It is shown that these currents eliminate the ergodization of the magnetic
field in the core plasma and reduce the size of the ergodic layer at the edge. A simple balance model is proposed
which qualitatively reproduces the evolution of the plasma parameters in the pedestal region with the onset of the
perturbation. It is suggested that the experimentally observed density pump-out effect in the long mean free path
regime is the result of a combined action of ion orbit losses and magnetic field ergodization at the edge.

PACS numbers: 52.25.Dg, 52.25.Fi, 52.25.Gi, 52.25.Mq, 52.25.Xz, 52.35.Kt, 52.35.Py, 52.35.Qz, 52.55.Fa, 52.65.Ff,
52.65.Tt, 52.65.Vv

1. Introduction

A method of edge localized mode (ELM) control using non-
axisymmetric external magnetic field perturbations has been
proposed and successfully tested in DIII-D [1–6]. Namely,
some suppression of ELMs in high collisionality regimes has
been reported in [2] and [3], suppression and full elimination
of ELMs in low collisionality regimes have been reported in [4]
and [5] and, in particular, for ITER similar plasma shape it has
been reported in [6].

An important issue using this method is to have minimal
influence of these perturbations on the transport in the
core plasma. So far, theoretical studies of magnetic field
ergodization [1, 7, 8] and heat transport [1, 8, 9] in such
ergodized fields in DIII-D have used a vacuum perturbation
field. Those calculations show that the magnetic field topology
should be strongly affected by the perturbations [1, 7, 8]. In
particular, splitting of heat and particle deposition profiles
observed experimentally has been shown to be qualitatively

consistent with magnetic footprints produced by splitting
of the separatrix in the presence of the non-axisymmetric
perturbations [7] and with the modelled 3D-temperature
distribution outside the separatrix [8, 9]. At the same time,
the modelling of heat transport using the Monte Carlo fluid
code E3D [10] performed in [8] and [9] shows a significant
effect of the perturbations on plasma temperature both in the
pedestal region and deep in the core plasma. However, in
the experiments the core plasma appears not to be affected by
the perturbations. A possible explanation can be shielding of
magnetic field perturbations by plasma response currents.

In this study this shielding effect, as well as the effect
of the perturbation field on plasma rotation and other plasma
parameter profiles is estimated with the help of the linear
perturbation magnetic field model taking into account the
plasma response currents in the kinetic approximation [11]
which has been developed for cylindrical geometry. A
particular experiment, DIII-D shot 126006, using the I-coil
with even parity and current value 3.9 kA, is analysed using
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the experimental equilibrium and plasma parameter profiles
measured when the current in the C-coil is set on. In parallel
to calculations with the help of the kinetic model [11], a
comparison is made with analytical results of the linear drift-
MHD model [12]. In addition, the applicability of linear
and quasilinear approximations to the pertinent experiment is
discussed.

The structure of the paper is as follows. In section 2
coupling of the cylindrical model with the realistic equilibrium
magnetic field computed with the kinetic EFIT code [13, 14]
and I-coil perturbation magnetic field provided by the TRIP3D
code [1] is described, and results of the perturbation field
penetration modelling and a comparison with the results of
the reduced MHD model [12] are presented. Results of the
field line tracing in vacuum and in the presence of plasma
response currents are also presented in this section. In section 3
quasilinear effects of the perturbation on plasma rotation and
plasma parameter profiles are studied and the role of nonlinear
effects is estimated. In section 4 the implications of the field
line tracing results for the transport in the pedestal region are
discussed. In section 5 the results are summarized.

2. Perturbation field in the presence of linear plasma
response currents

For modelling, the magnetic field is presented in the following
form [15]:

B = B0 + δB = ∇ϕ × ∇ψpol + ∇(ψtor + Ãϑ) × ∇ϑ, (1)

where ψtor and ψpol are toroidal and poloidal magnetic fluxes
(divided by 2π ) of the unperturbed magnetic field B0, ϕ is the
azimuth (toroidal) angle of cylindrical coordinates (R, ϕ, Z)

and ϑ is the poloidal angle like variable of the flux coordinates
(ψtor, ϑ, ϕ). Vector potential Ãϑ of the perturbation field δB
is represented by a Fourier series in these flux variables,

Ãϑ = 2 Re
∞∑

n=1

∞∑
m=−∞

Aϑ;m,n(ψtor)e
imϑ+inϕ. (2)

Details of numerical computation of flux variables and
complex Fourier amplitudes in the vacuum case, Aϑ;m,n =
A

(vac)
ϑ;m,n, are presented in appendices A and B. In the presence

of plasma response currents, Fourier amplitudes are expressed
through the amplitudes in vacuum and the ‘form factors’ Tm,n

as follows:

Aϑ;m,n(ψtor) = A
(vac)
ϑ;m,n(ψtor)Tm,n(ψtor). (3)

2.1. Estimations with the help of a cylindrical model

For an estimation of form factors Tm,n, the model of an
inhomogeneous periodic plasma cylinder with rotational
transform of the unperturbed magnetic field, Bϑ

0 = Bz
0/

(qRaxis), is introduced where the radial coordinate is related
to the toroidal flux by r = √

2ψtor/Baxis, the z-coordinate is
related to the toroidal angle by z = ϕRaxis and the azimuth ϑ

is identified as the poloidal angle. Here Baxis = B0ϕ/Raxis is
the unperturbed magnetic field value at the magnetic axis R =
Raxis (see also appendix A). Profiles of the safety factor, q(r),
plasma density, ne(r), electron and ion temperature, Te(r)

and Ti(r), respectively, and of the toroidal rotation velocity,
V z

(i) = RaxisV
ϕ

(i), correspond to DIII-D shot 126006. Given
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Figure 1. Profiles of plasma density, temperature and toroidal
velocity (counted in the direction of plasma current) versus the
normalized toroidal flux s = ψtor/ψ
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Figure 2. Safety factor and parallel equilibrium current density
versus the normalized toroidal flux s.

these profiles, the profile of the toroidal magnetic field, Bz
0(r),

is obtained from the equilibrium equation for the cylinder, the
profile of the parallel plasma current density, j0‖(r), follows
from q(r) and the profile of the equilibrium radial electric field
is computed assuming zero poloidal plasma rotation velocity,
V ϑ

(i) = 0. All these profiles are smoothly extended outside
the separatrix. The resulting profiles are shown in figures 1–3
as functions of radius r and of the normalized toroidal flux
s = ψtor/ψ

(a)
tor = (r/a)2, where ψ

(a)
tor is the toroidal flux value at

the separatrix and a is the separatrix radius. It should be noted
that the directions of plasma current and toroidal magnetic
field were opposite in the discharge 126006. Therefore, the
coordinate system where q > 0 used here is left handed
(resonant poloidal and toroidal wave numbers have opposite
signs too). In order to avoid ambiguity, the directions of various
velocities are explicitly related in the plots to the directions of
parallel plasma current or poloidal magnetic field.

Outside the separatrix, plasma is assumed to be
surrounded by the sheet current (‘antenna’) at r = rA and
a perfectly conducting wall at r = rW > rA. Thus, ignoring
poloidal coupling of Fourier modes, form factors are estimated
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Figure 3. Perpendicular equilibrium electron, Ve⊥ = Ve∗ + VE, and
ion, Vi⊥ = Vi∗ + VE, fluid velocities and electric drift velocity VE

versus the normalized toroidal flux s. Velocities are counted in the
direction of the poloidal magnetic field.

with the help of the cylindrical model as follows:

Tm,n(ψtor) = B
(plas)
r (r)

B
(vac)
r (r)

, (4)

where B
(plas)
r and B(vac)

r are the radial components of a single
harmonic, ∝ exp(imϑ+ikzz), of the perturbation magnetic field
computed with plasma and in vacuum, respectively.

In order to show that radial positions of the antenna and of
the wall do not influence Tm,n if plasma pressure and current
density are small in the region r > rp containing the antenna,
rp < rA, the following ideal MHD equation for the ‘outer’
solution of the tearing mode theory [16] is considered,

d

dr

r

k2

dBr

dr
− rBr

(
1 − d

dr

1

rk2
+ Fp

)
= 4πr

ickϑ

j (A)
z , (5)

Fp = r

k · B0

[
d

dr

1

rk2

4π

c
(k × j0)r

+
2

r2k2

(
kzB

′
0z +

4πk2
z

k · B0

dp0

dr

)]
, (6)

where k = ezkz + eϑkϑ , kz = n/R, kϑ = m/r , j0
and p0 are equilibrium plasma current and pressure and
j (A)
z = IAδ(r − rA) is the z-component of the antenna current.

Solutions for the homogeneous equation (5) regular at the
cylinder axis in vacuum case, Fp = 0, and with plasma are
denoted with uint and w, respectively. The solution, which
satisfies boundary conditions at the wall in the vacuum case, is
denoted with uext. In the region r > rp where Fp can be ignored
w can be presented as w = αuint + uext where α = constant .
The solution of the inhomogeneous equation (5) in the region
r < rA is

Br(r) = 4π ik2(rA)rAIAuext(rA)w(r)

cm(w′(rA)uext(rA) − w(rA)u′
ext(rA))

. (7)

Replacing here for the vacuum case w and w′ with uint

and u′
int, respectively, form factor (4) is obtained as

Tm,n = w(r)

αuint(r)
. (8)

If a resonant magnetic surface, q(r) = m/n, is present in
plasma, the ideal MHD equation (5) is not sufficient in the
resonance layer. In this layer, a 4th or higher order equation
has to be solved which, in addition to the ‘fast mode’ described
by (5), also describes ‘slow’, short scale, evanescent modes
which correspond to shear Alfven and ion Bernstein modes.
However, additional solutions associated with slow modes
and subject to the boundary conditions rapidly decrease with
the distance from the resonance surface so that outside the
resonance layer w is the only important solution regular at the
magnetic axis.

It should be noted that self-consistent equilibrium in
cylindrical geometry leads to peculiarities of parallel current
near the separatrix where q formally diverges. A true q

profile is used only up to q ≈ 5.5 and extended further
outside assuming the parallel equilibrium current density to
be finite and exponentially decaying outside the separatrix.
The equilibrium results in a negative parallel current density
j0‖ around the separatrix (see figure 2). This circumstance,
however, does not have a significant influence on the results.
If the equilibrium current density is fully ignored in the
unperturbed distribution function, the resulting perturbation
fields change by 50% or less which is significantly smaller than
the effect of plasma response currents on those fields as shown
below. Another circumstance which adds to the uncertainty at
the edge is coupling of poloidal modes which becomes strong
there but is fully omitted in straight cylinder or slab models.
Therefore, the results should be considered as an estimate valid
by order of magnitude.

2.2. Kinetic plasma response model

Form factor (4) can be estimated by various plasma response
models for the straight cylinder as well as slab models [12, 17–
21]. Here, the kinetic linear plasma response model of [11] is
applied for this purpose. In this model, Maxwell equations,

∇ × Ẽ = iω

c
B̃, ∇ × B̃ = − iω

c
Ẽ +

4π

c
j̃, (9)

are solved in cylindrical geometry retaining the Maxwell
current and using a plasma response current j̃ computed in
the kinetic approximation with the help of a Hamiltonian
formalism taking into account collisions by means of a Krook
term. For a single spatial harmonic, Ẽi, j̃

i ∝ exp(imϑϑ+ikzz),
where the notation for the poloidal wave number is changed
to mϑ , the contra-variant components of the perturbed current
density of a single particle species contributing to j̃ in (9) is
written through a differential conductivity operator as follows:

j̃ k
(N)(r, ϑ, z) = 1

r

N∑
n,n′=0

(−1)n
∂n

∂rn

×
(

r σ kl
(n,n′)(r, k)

∂n′

∂rn′ Ẽl(r, ϑ, z)

)
, (10)
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where Ẽl are the co-variant components of the electric field,

σ kl
(n,n′)(r, k)

= 2π ie2

rω

∞∑
mφ=−∞

∫ ∞ sgn(e)

0
dJ⊥

∫ ∞

−∞
du‖

∫ ∞

0
dr0δ(r − rg)

×∂(pϑ, pz)

∂(r0, u‖)
(ak

α(n))∗m (al
β(n′))m

1

m · Ω − ω − iν

α

×
(

(ω − m · Ω)
∂f0

∂Jβ

+ 
βm · ∂f0

∂J

)
, (11)

(ak
α(n))m = 1

2πn!

∫ π

−π

dφ e−imφφ(ρr)n

×
(

∂xk
g

∂θα

N−n∑
l=0

1

l!
(ik · ρ)l +

∂ρk

∂θα

N−n−1∑
l=0

1

l!
(ik · ρ)l

)
,

and where the second sum is zero if N − n < 1. Here,
the canonical angles and actions are θ = (φ, ϑ, z) and
J = (J⊥, pϑ, pz) where φ is the gyrophase, J⊥ ≈ m0v

2
⊥/(2ωc)

is the perpendicular adiabatic invariant, m0 is the particle
mass, ωc is the cyclotron frequency, m = (mφ, mϑ, kz)

where mφ is a cyclotron harmonic number, ν is the collision
frequency and k · ρ = mϑρϑ + kzρ

z. The Larmor radius,
ρ, is defined expressing particle coordinates xi via canonical
variables as xi = xi

g + ρi , where xi
g are the guiding centre

coordinates independent of φ and the gyro-average of ρi is
zero. Integration variables r0 and u‖ are defined through the
co-variant components of the generalized momentum as

pϑ,z = pϑ,z(r0, u‖)

=
(
m0h(r0)u‖+

e

c
A0(r0)+

m0 c

B0(r0)
h(r0) × ∇�0(r0)

)
ϑ,z,

(12)

where h = B0/B0 and B0 = ∇ × A0, and canonical
frequencies are Ω = (ωc, h

ϑu‖ + vϑ
E , hzu‖ + vz

E) where vi
E

are the contra-variant components of the electric drift velocity.
The unperturbed distribution function is used in the form of an
inhomogeneous drifting Maxwellian

f0 = n0(r0)

(2πm0T0(r0))3/2

× exp

(
− ωc(r0)J⊥

T0(r0)
− m0(u‖ − V‖(r0))

2

2T0(r0)

)
, (13)

where the parameters n0, T0 and V‖ for each species differ
only by first order Larmor radius corrections from the
equilibrium density, temperature and parallel fluid velocity
of the respective species. All these parameters and also the
equilibrium electrostatic potential �0 are fully defined by the
experimentally measured profiles shown in figure 1, the profile
of the safety factor q(r) and the reference magnetic field
value Baxis.

The stiff set of Maxwell equations (9) is solved
numerically using the re-orthonormalization procedure. Since
even for a Larmor radius expansion of order N = 1 used here
for both the electrons and the ions, an explicit expression for
the plasma response current is rather complex, the FORTRAN
subroutines for the conductivity operator have been directly
generated by the symbolic processor package MAPLE [22].
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Figure 4. Form factor modules |Tm,n| versus the normalized toroidal
flux s for n = 3. Poloidal wave numbers m are given above the
respective curves.

(As a check for this fully implicit approach, the results of
the ideal MHD equation (5) are accurately reproduced by the
code in the absence of or away from the resonance surface.)
The computations for the static perturbations in DIII-D are
performed in a frame of reference moving along the Z-axis
so that perturbation frequency ω is finite in this frame. In
the non-relativistic limit, the magnetic field and the co-variant
components of the force (torques) acting on the α-species from
the single harmonic of the perturbation field

T
(EM)

(α)ϑ = mϑ

ω
Pα, T

(EM)

(α)ϕ = n

ω
Pα, (14)

are independent of the frame of reference. The absorbed power

Pα = 1

2
Re

∫
d3rẼ∗

k j̃
k
(N), (15)

where j̃ k
(N) is the α-species current density (10), scales linearly

with ω when changing the reference frame.
As one can see, in contrast to the reduced MHD

theory [12,17,18,20], plasma neutrality and incompressibility
are not enforced in the kinetic model, and the model should
properly recover the compressible MHD results [23]. At
the same time, any anomalous shear viscosity is not taken
into account. Therefore, various regimes with large viscosity
effects presented in [12] are missing in the present model.

The radial profiles of the form factor modules |Tm,n(ψtor)|
resulting from the kinetic model are shown in figure 4 for
the I-coil main toroidal mode n = 3. The resonant modes
with mϑ = m � −4 are reduced by more than one order
of magnitude at corresponding rational flux surfaces, m +
nq(ψ

(res)
tor ) = 0. The non-resonant modes −3 � m � −1

show a similar trend as the resonant ones due to the properties
of the ideal MHD response (in the absence of plasma rotation
this response is described by equation (5)). In figure 5
the values of the form factor modules at the corresponding
resonance surfaces |T (res)

m,n | = |Tm,n(ψ
(res)
tor )| are shown versus

sres = ψ
(res)
tor /ψ

(a)
tor and compared with the results of the drift-

MHD theory of [12]. The latter results are given by equation (9)
of [12] as |T (res)

m,n | = |�(t)/�(t)| with substitution of local

4
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plasma parameters and wave numbers and putting the viscosity
coefficient to 104 cm2 s−1. The results agree for most of the
resonant modes except for those in the regions with high
perpendicular equilibrium electron fluid velocity where the
mode frequency in the rest frame of the electrons exceeds the
electron–ion collision frequency (see figure 6). One should
note that the curve in figure 5 corresponding to drift MHD
theory actually consists of a few curves which correspond
to relevant regimes of [12]. Values of |T (res)

m,n | for the ‘first
semicollisional’ regime which dominates here, as well as other
observed regimes do not depend on the viscosity explicitly. It
should also be noted that both models agree well in predicting

the small screening of the magnetic field perturbations at
the very edge of the plasma due to the increasing shear and
resistivity when approaching the separatrix.

2.3. Relation between the electron and ion torque

For further analysis, it is interesting to estimate how the torque
from the perturbation is distributed between electrons and ions.
A simple estimate can be obtained using the cold resistive
MHD model where the linearized equation for the perturbed
fluid velocity (ignoring the negligible unperturbed parallel
velocity) is

− i(ω′ + iνα)Ṽα + ωcα × Ṽα = eα

mα

Ẽ
′
. (16)

Here ω′ = ω − k · VE = ω − ωE is the perturbation frequency
in the frame of reference where the equilibrium electric field is
zero (which is also the rest frame of α species), VE is the electric
drift velocity, ωcα = eαB0(mαc)−1 is the cyclotron frequency,
eα and mα are α-species charge and mass, respectively, and
Ẽ

′
is the electric field perturbation in the rest frame of α

species. The collision frequency να is put for electrons to
the electron–ion collision frequency, νe = νei, and for ions
it models the viscosity effect, νi = µ⊥δ−2, where µ⊥ is
the (generally anomalous) perpendicular viscosity coefficient
and δ is the resonance layer width. Integrating over the
volume work of the electric field on the response current,
(eα/2) Re [Ẽ

∗ · (n0αṼα + ñαVE)], one obtains for the total
power absorbed by α-species

Pα,cold = ω

ω′
ω2

pα

8π
Re i

∫
d3r

( |Ẽ′
‖|2

ω′ + iνα

+
(ω′ + iνα)|Ẽ′

⊥|2
(ω′ + iνα)2 − ω2

cα

+
iẼ

′∗
⊥ × Ẽ

′
⊥ · ωcα

(ω′ + iνα)2 − ω2
cα

)
, (17)

where ωpα = (4πn0αe2
α/mα)1/2 is the plasma frequency of

the α-species. The perturbation frequency in the laboratory
frame ω is intendedly kept finite because it cancels in the
expressions for the torque (14). When obtaining (17), the
electric drift velocity VE was assumed constant within the
resonance layer where the main power absorption takes place.
For electrons, only the largest first term (absorption due to
the parallel conductivity) should be retained while for ions
this term is always smaller than the corresponding term for
electrons and should be ignored. The last (Hall) term should
also be ignored for ions because it is small when compared
with the second term. It can be seen that the resulting
Pi,cold ∼ ∫

d3rn0imiνiṼis
2 is the work of the viscous force on

the perturbed ion velocity Ṽi = c|̃E′
⊥|/B0. Thus, one obtains

Pe,cold ∼ Sδ
ωω2

peνei|Ẽ′
‖|2

ω′(ω′2 + ν2
ei)

, Pi,cold ∼ Sδ
ωω2

piνi|Ẽ′
⊥|2

ω′ω2
ci

,

(18)

where S is the magnetic surface area. The electric
field components can be estimated as components of the
electrostatic field, |Ẽ′

‖|/|Ẽ
′
⊥| ∼ k‖δ, expanding k‖ = k · h

around rres being the resonant surface radius, k‖ ≈ k′
‖δ where

k′
‖ = dk‖/dr = sBkz/rres and sB = (rres/q)dq/drres is the

shear parameter. One can do this for the so-called ‘constant psi’

5



Nucl. Fusion 48 (2008) 024005 M.F. Heyn et al

regimes which include most of the regimes in [12] except visco-
inertial and inertial regimes. In the ‘constant psi’ regimes, the
inductive parallel electric field (the only one present at the
resonant surface where k‖ = 0) is approximately constant in
the resonant layer and is balanced by the rapidly changing
with radius parallel electrostatic field only outside the layer.
Therefore, the total Ẽ′

‖ can be estimated as the electrostatic
field at distance δ from the resonant surface. It can be seen
from figures 6 and 3 that ωe ∼ ωE ∼ ωi ∼ νei. In this case
one obtains from (14) and (18)

(
T

(EM)

(e)ϕ

T
(EM)

(i)ϕ

)
cold

= Pe,cold

Pi,cold
∼ miω

2
ci|Ẽ′

‖|2
meνeiνi|Ẽ′

⊥|2
∼

(
δ

δVR

)6

, (19)

where δVR = rresτ
1/3
H τ

−1/6
R τ

−1/6
V is the resonance layer width

for the visco-resistive regime [12, 19].

τH = 1

sBkzvA
, τR = 4πn0ee2r2

res

meνeic2
, τV = r2

res

µ⊥
(20)

are the Alfven, resistive and viscous times, respectively,
and vA = B0(4πn0imi)

−1/2 is the Alfven velocity. For
finite electron temperatures, the electron pressure effect
can be important [20] which limits the electron absorption
region to k‖vT e < (ωEνei)

1/2 which has a width
δe ∼ (ωEνei)

1/2(vT e|k′
‖|)−1 where vT e = (Te/me)

1/2. Since
ωE ∼ νei, collisional electron damping is of the order
of collisionless Landau damping which can be calculated
from [11]

Pe ≈ π2 Sm2
eω

rres

∫ ∞

0
dr0r0

∫ ∞

−∞
du‖

∫ 0

−∞
dJ⊥

|ωce|
Te

×fe0δ(k‖u‖ + ωE − ω)|Hm|2

×
[
ω − ωe +

k⊥T ′
e

meωce

(
5

2
− ωceJ⊥

Te
− meu

2
‖

2Te

)]
, (21)

where |Hm| ≈ |eeu‖Ẽ′
‖/ωE|, ωe = ωE + ω∗e is stationary

perturbation frequency in the electron rest frame and
T ′

e = dTe/dr0. The parallel fluid velocity V‖ in expression (13)
for the equilibrium distribution function fe0 has a negligible
effect and, therefore, is ignored there. Assuming that Ẽ′

‖ as
well as other functions of radius except k‖ stay constant in the
absorption region one obtains (see also [24])

Pe ≈ Sωω2
pe|Ẽ′

‖|2√
32πvT e|k′

‖|ω2
E

×
(

ω − ωe +
k⊥T ′

e

2meωce

)
∼ δe

δ

(
νei

ωE

)1/2

Pe,cold, (22)

where the expression in the parentheses has been estimated
as ωE. Finally, replacing in (19) Pe,cold with the smallest of
Pe,cold and Pe given by (22), the relation between electron and
ion torque is obtained as

T
(EM)

(e)ϕ

T
(EM)

(i)ϕ

∼
(

δ

δVR

)6

min

(
1,

νei

vT e|k′
‖|δ

)
. (23)

As one can see in figure 7 the torque acting on electrons
appears to be very small compared with the torque acting
on ions if one estimates the width of the resonance layer
δ from the drift-MHD theory (table 1 of [12]) using the
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Figure 7. Ratio of electron torque to ion torque estimated according
to equation (23) for the layer width δ given by the MHD theory
(curve 1) and putting δ = ρLi (curve 2). The ratio δ/ρLi is also
shown.
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Figure 8. Real (——) and imaginary (- - - -) parts of the perturbed
ion velocity component Ṽi⊥ = (eini0)

−1 j̃i · h × ∇r for the mode
m = −5, n = 3 where j̃i is the response current of ions (10).

the same anomalous viscosity coefficient as in section 2.2,
µ⊥ = 104 cm2 s−1. It should be noted, however, that drift-
MHD values of δ appear to be roughly ten times smaller
than ion Larmor radius, ρLi = vTi/ωci (see figure 7), which
invalidates the fluid approach. This feature of MHD theory
in the case of finite ion temperature has been pointed out,
in particular in [25]. Computations with the kinetic model
show that the actual layer width, in particular the radial
scale of the largest component of the perturbed ion velocity
Ṽi⊥ = Ṽi⊥ · h ×∇r , does not shrink below ρLi ≈ 0.45 cm (see
figure 8). The same radial scale is also seen for the parallel
plasma response current density (see figure 13). An estimation
of the torque ratio (23) with δ = ρLi shows that the electron
torque is by an order of magnitude larger than the ion torque
(see figure 7). Since also ion Landau damping and parallel ion
viscosity contribute to the absorption of energy by ions, the
values of ion and electron torque computed directly using the
kinetic model are compared in section 3.1.

6



Nucl. Fusion 48 (2008) 024005 M.F. Heyn et al

Figure 9. Poincaré plots for the vacuum perturbation magnetic field model in real space (above) and magnetic (below) coordinates. The
right figures present details of the region near the unperturbed separatrix with a higher density of the traced field lines. In magnetic
coordinates, also the safety factor q and analytical island widths corresponding to equation (25) are shown versus s = ψtor/ψ

(a)
tor .

2.4. Effect of plasma response on the magnetic field
configuration

Results of field line tracing for the perturbation field in vacuum
and in the presence of plasma response currents are presented
in figures 9 and 10 in real space and flux coordinates. In flux
coordinates, island widths are also plotted which are obtained
from the field line equations

dψtor

dϕ
= Bψtor

Bϕ
= −∂Ãϑ

∂ϕ

(
1 +

∂Ãϑ

∂ψtor

)−1

,

dϑ

dϕ
= Bϑ

Bϕ
= ι

(
1 +

∂Ãϑ

∂ψtor

)−1

, (24)

where ι(ψtor) = 1/q(ψtor) = dψpol(ψtor)/dψtor is the
rotational transform angle, for the case where only one
harmonic is present in the perturbation vector potential (2)
and, therefore, the field line equations (24) have an integral

ψtor +
m

n
ψpol(ψtor) + 2|Aϑ;m,n(ψtor)| cos(mϑ + nϕ

+ arg(Aϑ;m,n(ψtor))) = const. (25)

Invariant (25) follows immediately from the Hamiltonian form
of equations (24),

dψpol

dϑ
= −∂Ãϑ

∂ϕ
,

dϕ

dϑ
= q +

∂Ãϑ

∂ψpol
. (26)

Contours of this quantity give the flux surfaces including the
island flux surfaces corresponding to (m, n) resonance. The
maximum width of island separatrix (island width) is computed
from (25) numerically. In the particular case where |Aϑ;m,n|
dependence on radius can be ignored, |dAϑ;m,n/dψtor| � 1
and |d2Aϑ;m,n/dψ2

tor| � |dι/dψtor|, one obtains for the island
width

�ψtor ≈ 4|ι(ψ(res)
tor )Aϑ;m,n(ψ

(res)
tor )|1/2

∣∣∣∣dι(ψ
(res)
tor )

dψ
(res)
tor

∣∣∣∣
−1/2

, (27)

where ψ
(res)
tor is the toroidal flux at the resonant surface,

dψpol(ψ
(res)
tor )/dψ

(res)
tor = ι(ψ

(res)
tor ) = −n/m.

It can be seen from the figures that the effect of the
perturbation field on the magnetic field configuration in the
core plasma is negligibly small (island widths are reduced by a
factor of 10 or more) for most of the modes except the m = −7,
n = 3 mode which is almost locked to the electron fluid.
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Figure 10. Poincaré plot in magnetic coordinates for the perturbation magnetic field model with plasma response. See figure 9 for the
notation. The right figure is a zoom of the region with the ergodic layer near the unperturbed separatrix.

In the zoom, figure 10, one can see that ergodicity appears
starting from s = 0.97 where an open ergodic field region is
formed. This remaining ergodic layer is rather robust because
screening of the perturbation field by plasma response currents
decreases near the separatrix (see section 2.2) and because of
the stronger island overlapping caused by an increase in the
shear there.

3. Estimation of quasilinear and nonlinear effects

3.1. Quasilinear evolution

In the quasilinear approximation, the perturbation field
modifies the equilibrium profiles of poloidal and toroidal
plasma velocity as well as the profiles of plasma density
and electron temperature. The way to estimate the change
of plasma velocity and the effect of such a change on the
penetration threshold is well known (see [12, 18–20]). In the
long mean free path regime, the perturbation field interacts
mainly with electrons (see section 2.3) which results in a
(mainly perpendicular) quasilinear force acting on electrons
due to the poloidal and toroidal momentum transfer from the
perturbation field. Such a force cannot be compensated by a
small perpendicular electron viscosity and cause F × B radial
drift of electrons which, in turn, leads to plasma polarization
and modification of the equilibrium electric field. The Lorentz
force due to this additional radial drift velocity balances
the quasilinear force acting on electrons. The resulting
acceleration of the E × B rotation looks like an acceleration of
plasma ions directly by the quasilinear force. This acceleration
continues until the change of the toroidal viscous force acting
on ions modifies the radial ion flux so that it matches the
electron flux and polarization stops. Finally, in a steady state,
this additional ambipolar convective flux must be balanced by a
change in the anomalous diffusion flux in expense of a reduced
density gradient. Usually, only the effect of the quasilinear
force on the rotation is considered [12, 18–20]. However, the
modification of plasma density and electron temperature can
also be important at the very edge and in the case of mode
locking because these modifications change the local electron
(and ion) diamagnetic rotation velocity which is of the same

importance for the screening effect as E × B plasma rotation.
In order to estimate these effects, the toroidal momentum
balance equation in the presence of quasilinear forces acting
on electrons and ions from the perturbation field is re-derived
in this section for general tokamak geometry in order to retain
also the quasilinear particle fluxes which are an intermediate
result of this derivation. For simplicity momentum sources
which determine the rotation velocity in the absence of the
perturbation field, in particular, the NBI momentum source,
are omitted in this equation. These sources do not enter
equation (37) which determines the rotation velocity change
due to the perturbation field being of interest here.

Flux surface average (average over the volume between
neighbouring flux surfaces) of the co-variant toroidal
component of the α-species momentum equation can be cast
to the following form (compare, e.g. with [26]):

mαnα

∂

∂t
〈gϕϕV

ϕ

(α)〉 = eα

c

√
gBϑ(〈�r

(α)〉 − �
(NEO)

(α) − �
(A)

(α) )

+ 〈F (V)

(α)ϕ〉 + 〈F (EM)

(α)ϕ 〉, (28)

where mα , eα , nα , V
ϕ

(α) and 〈�r
(α)〉 = 〈Γ(α) · ∇r〉 are α-species

mass, charge, density, contra-variant component of the toroidal
fluid velocity and flux surface averaged particle flux density,
respectively, �

(A)

(α) , 〈F (V)

(α)ϕ〉 and 〈F (EM)

(α)ϕ 〉 denote prescribed
flux surface averaged anomalous particle flux density, co-
variant toroidal components of the viscous force density and
force density from the I-coil perturbation field (they have the
dimension of torque density), respectively, and

�
(NEO)

(e) = −�
(NEO)

(i) ≡ − c√
gBϑee

〈eeneEϕ + R(ei)
ϕ 〉 (29)

is the neoclassical particle flux density which is automatically
ambipolar due to the charge neutrality, eini + eene = 0,
and R(ie)

ϕ = −R(ei)
ϕ . Here R(ei)

ϕ and Eϕ are the co-variant
components of the electron–ion friction force and of the
inductive electric field, respectively. The toroidal co-variant
component of the metric tensor, gϕϕ = R2, and metric
determinant g entering (28) and (29) correspond to flux
variables (r, ϑ, ϕ) which differ from variables of section 2
by the re-defined flux surface label r = r(ψtor) which has
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a dimension of radius and is fixed by the condition [27]
〈|∇r|〉 = 1. With this definition, the total particle flux is a
product of averaged flux density 〈�r

(α)〉 and flux surface area

S =
∫ 2π

0
dϑ

∫ 2π

0
dϕ

√
g. (30)

In order not to overload the notation subscript ‘0’ is omitted
in this section on the unperturbed quantities such as nα , B i

and Ei.
For electrons, ignoring the small inertia term (lhs of (28)),

electron flux density is readily obtained as

〈�r
(e)〉 = �

(NEO)

(e) + �
(A)

(e) − c√
gBϑee

〈F (EM)

(e)ϕ 〉. (31)

Time derivative of Gauss’s law and continuity equations link
particle fluxes with the unperturbed radial electric field by

〈grr〉∂Er

∂t
= −4π(ei〈�r

(i)〉 + ee〈�r
(e)〉), (32)

where grr = |∇r|2 and it has been used that the equilibrium
electrostatic potential is close to a constant on the flux surface
so that Er is also a constant there. Assuming that the poloidal
ion velocity is zero due to the damping of poloidal rotation by
the parallel viscosity (gyro-relaxation effect)

V ϑ
(i) = Vi‖

Bϑ

B
− cBϕ√

gB2

(
Er − 1

eini

∂pi

∂r

)
= 0, (33)

where pi is the ion pressure, the toroidal contra-variant velocity
(toroidal angular frequency) is linked directly to the radial
electric field and ion pressure gradient,

V
ϕ

(i) = Vi‖
Bϕ

B
+

cBϑ√
gB2

(
Er − 1

eini

∂pi

∂r

)

= c√
gBϑ

(
Er − 1

eini

∂pi

∂r

)
. (34)

Due to (B4) V
ϕ

(i) is constant on the flux surface (plasma rotates
within the flux surface as a solid body). An equation for
time evolution of this quantity is obtained eliminating the
electric field in (32) with the help of (34) and substituting there
electron and ion flux densities using (31) and (28) for α = i,
respectively,(

1 +
v2

A

c2

〈grr〉g(Bϑ)2

〈gϕϕ〉B2

)
mini〈gϕϕ〉∂V

ϕ

(i)

∂t
= 〈F (V)

(i)ϕ〉 + 〈F (EM)

(e)ϕ 〉

+ 〈F (EM)

(i)ϕ 〉 − 1

c

√
gBϑ(ei�

(A)

(i) + ee�
(A)

(e) ), (35)

where vA = B/
√

4πnimi is the Alfven velocity. Assuming
that in the absence of the perturbation radial polarization
current due anomalous non-ambipolar fluxes as well as other
momentum sources which were omitted here for simplicity are
balanced by the (anomalous) viscous force which has a form
similar to the collisional viscous force

〈F (V)

(i)ϕ〉 = 〈F (V)

(i)ϕ (V
ϕ

(i))〉 = 1

S

∂

∂r

(
Sminiµ

(ϕ)〈gϕϕ〉∂V
ϕ

(i)

∂r

)
,

(36)

such that the toroidal viscosity coefficient (momentum
diffusion coefficient) µ(ϕ) is independent of V

ϕ

(i), for the change

in toroidal velocity due to the perturbation field, �V
ϕ

(i), one
obtains the ordinary differential equation

〈F (V)

(i)ϕ (�V
ϕ

(i))〉 + 〈F (EM)

(e)ϕ 〉 + 〈F (EM)

(i)ϕ 〉 = 0. (37)

Using the boundary conditions

∂�V
ϕ

(i)

∂r

∣∣∣∣
r=0

= �V
ϕ

(i)|r=a = 0, (38)

where a is the plasma radius, and the fact that the quasilinear
force in the case of a single perturbation mode is localized
around r = rres in the narrow region |r−rres| < �r integration
of a steady state equation (37) gives [12, 19]

�V
ϕ

(i)(rres) ≈ T (EM)
ϕ

∫ a

rres

dr

Sminiµ(ϕ)〈gϕϕ〉 , (39)

where

T (EM)
ϕ = T

(EM)

(e)ϕ + T
(EM)

(i)ϕ , T
(EM)

(α)ϕ =
∫ a

0
drS〈F (EM)

(α)ϕ 〉

=
∫

V

d3r
〈
F

(EM)

(α) ϕ

〉
(40)

is the toroidal torque. Using S ≈ 4π2rRaxis, 〈gϕϕ〉 ≈ R2
axis

one obtains an estimate

�V
ϕ

(i)(rres) ∼ T (EM)
ϕ (a − rres)

4π2aR3
axismini(rres)µ(ϕ)

. (41)

The value of T (EM)
ϕ for a single mode can be estimated from

figure 11 where the total toroidal torque and the torque on
ions is shown for the mode m = −7, n = 3 as a function of
Ve⊥ = Ve∗ −Vi∗ + rV

ϕ

(i)q
−1 where Ve∗ and Vi∗ are electron and

ion diamagnetic velocities, respectively. This dependence has
been obtained by scaling the original V

ϕ

(i) shown in figure 1
by the factor changing between 0 and 2. Here Ve⊥ and
V

ϕ

(i) are counted in the directions of poloidal magnetic field
and toroidal current, respectively. For low toroidal rotation
velocities Ve⊥ < 0 due to Ve∗ < 0 and, therefore, torque
is positive, i.e. it leads to toroidal spin up. Estimating the
torque away from the resonant peak as T (EM)

ϕ ∼ 105 dyn cm
and µ(ϕ) ∼ 104 cm2 s−1 one obtains for the spin up from a
single mode Raxis�V

ϕ

(i) ∼ 105 cm s−1. Comparing figure 5
with figure 3 one can see that for all resonant modes except
for m = −5 and m = −6 Ve⊥ < 0 and, therefore, all these
modes lead to a toroidal spin up. Thus, total spin up is a
few km s−1. This estimate strongly depends, however, on the
value of toroidal viscosity, µ(ϕ), which is not a well-determined
quantity. It should be noted that the change in the rotation
velocity is very small, about two orders of magnitude smaller
than rotation velocity on the axis (see figure 1). Roughly this
agrees with the value of the torque from the NBI which is about
8 × 107 dyn cm.

It should be noted that due to the nonlinear dependence of
the torque on �V

ϕ

(i) (see figure 11) equation (39) is nonlinear
and has several roots which describe either the state where the
islands ‘slip’ through the plasma and perturbation is strongly
screened by plasma response currents, or the ‘locked’ state
where the screening is strongly reduced [12, 19, 20]. In the
reduced MHD theory one of the locked states is achieved if
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Figure 11. Total toroidal torque (left) and torque on ions (right) for the mode m = −7, n = 3 versus perpendicular equilibrium electron
fluid velocity, Ve⊥. Torque is counted in the direction of plasma current. The variation of Ve⊥ from −9.9 × 105 cm s−1 to 8.4 × 105 cm s−1 is
obtained using the toroidal velocity as an input, V z

(i), equal to the experimental value times the scaling factor which changes from 0 to 2. The
dashed vertical line corresponds to the experimental value (scaling parameter 1).

Ve⊥ ≈ 0. It can be seen from figures 5 and 11 that a locked
state is observed only for the mode m = −7, n = 3 (and other
modes with the same helicity and different n). It is remarkable
that the ‘resonant’ value of Ve⊥ where the torque passes
through zero and which is actually realized in the experiment
is different from Ve⊥ = 0. This follows directly from kinetic
theory [11]. Since the value of the torque in the vicinity of the
‘resonance’ is more than an order of magnitude higher than
elsewhere (which is the result of increased field amplitude due
to better penetration near the ‘resonance’), locking of this mode
prevents further spin up.

Besides the rotation change, modification of density
profiles occurs if an essential amount of the torque is applied
to electrons (see equation (31)). Actually torque on ions is
two orders of magnitude smaller than torque on electrons (see
figure 11). This modification is negligible if the additional
flux due to the torque is small compared with the anomalous
particle flux which for the estimates is assumed in the form
�

(A)

(e) = −D⊥∂ne/∂r . Thus, the effect of the perturbation field
on the density profile can be ignored if

�
(EM)

(e)

�
(A)

(e)

=
c
〈
F

(EM)

(e) ϕ

〉
√

gBϑeeD⊥

(
∂ne

∂r

)−1

∼ qT (EM)
ϕ

4π2r2Raxis�rmiωciD⊥

(
∂ne

∂r

)−1

� 1. (42)

It is convenient to express the ratio (42) through the toroidal
velocity change (39),

�
(EM)
e

�A
e

∼ rres�V
ϕ

(i)

vTi

ρLi

�r

µ(ϕ)

D⊥

qR2
axis

r2
res

rres

a − rres

×
(

rres

ni

∂ni

∂rres

)−1

� 1, (43)

where vTi = √
Ti/mi and ρLi = vTi/ωci are ion thermal

velocity and Larmor radius, respectively, and �r is the width
of the resonance layer. It can be seen that for µ(ϕ) ∼ D⊥
condition (43) is usually well fulfilled in the core plasma.

It should be noted that the estimate of the local torque
density 〈F (EM)

(e)ϕ 〉 ∼ T (EM)
ϕ /(4π2Raxisrres�r) used in (42) can

be used if this quantity has predominantly a definite sign in
the resonance layer. This is not the case for the locked mode
m = −7, n = 3 which can be seen in figure 12 where the
radial profile of the local torque density computed directly by
the Maxwell solver as

〈F (EM)

(α)ϕ 〉 =
〈
(eαñαẼ +

1

c
j̃α × B̃) · ∂r

∂ϕ

〉
(44)

is shown for the ‘slipping’ mode m = −5, n = 3 and for
the pertinent locked mode. In fact, 〈F (EM)

(α)ϕ 〉 is three orders of
magnitude higher for the locked mode than for the slipping
mode which is the consequence of better penetration and
quadratic dependence of this quantity on the perturbation field
amplitude. Estimating D⊥ = 104 cm2 s−1 one obtains from
the first equality in (42) that �

(EM)

(e) /�
(A)

(e) ∼ 2 > 1 for the
locked mode. Thus, the electron pressure profile must be
affected by the perturbation field. As shown in [24,28], in the
case of negligible finite Larmor radius effects which is well
fulfilled for the electrons, the expression for the particle flux
�

(EM)

(e) in the collisionless limit coincides with the expression
for particle flux in the ergodic magnetic field [29]. Therefore,
the expected consequence of perturbation induced transport is
the elimination of electron pressure gradient in the resonance
layer. If perturbation induced ion flux would also be large,
the ion pressure gradient would be eliminated too, leading to
complete locking of plasma rotation in the resonance layer.
However, as one can see from figure 12, torque on ions is
about 40 times smaller than torque on electrons and, therefore,
it produces a radial ion flux which is smaller than anomalous.
As a result, locking of the m = −7, n = 3 mode does not lead
to zero rotation at the q = 7/3 rational surface.

3.2. Nonlinear effects

Nonlinear effects can be ignored if the island width is small
compared with the width of the parallel current [30]. In
this case, the re-distribution of the parallel current over the
perturbed flux surfaces (including island flux surfaces) does
not significantly change the radial profile of the parallel
current density given by linear theory. This comparison
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Figure 12. Toroidal torque density, 〈F (EM)
ϕ 〉, for electrons (——) and ions (- - - -) for the ‘slipping’ mode m = −5, n = 3 (left) and for

‘locked’ mode m = −7, n = 3 (right). The vertical line indicates the position of resonant surface.
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Figure 13. Real (——) and imaginary (- - - -) parts of the Fourier amplitude of the parallel plasma response current, j‖, for m = −5, n = 3
(left) and for m = −7, n = 3 (right) (in the vacuum, Aϑ;m,n is purely real). The thick horizontal lines indicate the positions of islands.

is shown in figure 13. One can see that even for the
‘slipping’ mode these widths are of the same order, and, strictly
speaking linear theory is violated. However, this violation
is weak, and therefore the results of the present analysis
should be valid by order of magnitude. For the locked mode
violation is much stronger. If the island opens nonlinearly,
then Tm,n ≈ −2m/(r�′) which is very close to unity for
tearing stable modes [18] (here �′ is a tearing mode stability
index [16]).

It should be noted that elimination of electron pressure
gradient due to the quasilinear effects discussed in section 3.1
has not been modelled here. If the electron pressure gradient
is absent in the resonance layer, the largest parallel electron
response currents which are driven by the Lorentz force from
the perturbation field, F̃L‖ = (eeVe × B̃/c)‖ = −eeVe⊥B̃r/c

will be reduced to the level where the perturbation magnetic
field is described by the vacuum model which is close to the
result of the nonlinear theory.

4. Effect of the perturbation field on the pedestal
region

As follows from the results of section 2.4, ergodization of
the magnetic field is limited by plasma response currents to
a relatively narrow region around separatrix, s > 0.97, where,

in turn, the perturbation field reaches almost the vacuum value.
It is interesting to consider now the consequences of this result
for plasma density and temperature in the pedestal region.
Experimental density and temperature profiles in this region
show the following features when the perturbation field is
set on:

• The density gradient is almost unchanged by the
perturbation field, the profile shifts down as a whole.
Changes of the shape can be seen only at the very edge
(s > 0.97).

• The electron temperature is flat and ends with a large
gradient region at the last 2–3 cm. With the perturbation
it becomes even more flat, the region of large gradient
shrinks to about 1 cm (gradient increases).

• The ion temperature increases as a whole with the
perturbation field.

• Change of profiles when varying the perturbation
amplitude by factor of the order one is small.

• Strong density and temperature changes occur in the long
mean free path regime.

Most of these features can be explained by the change
of boundary condition for the density at the pre-separatrix
region which is affected by the ergodization. For this
purpose, assuming that particle and electron heat transport
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Figure 14. Electron density and temperature resulting from
equations (45) before (- - - -) and after (——) reduction of the
density at the separatrix. The same D⊥ constant over the radius is
assumed in both cases.

are completely anomalous, the following model equations are
considered:
∂

∂r
S�e = 0, �e = −D⊥

∂ne

∂r
,

∂

∂r
SQe = 0, Qe = −3

2
D⊥

(
Te

∂ne

∂r
+ ne

∂Te

∂r

)
, (45)

where �e = 〈�r
(e)〉 and Qe are the particle and energy flux

density, respectively. These equations follow, in particular,
from equations (4), (6), (61) and (62) of [31] for the
electrostatic turbulence with small parallel wave numbers

�k⊥
vTek‖

∂ω

∂k⊥
� 1, (46)

where �k⊥ and vTe = √
Te/me are the perpendicular spectral

width and electron thermal velocity, respectively, in the case
of small curvature drift effects. Thus, one can formally put
k‖ = ωDα = 0 in equations (61) of the pertinent reference.
Ignoring for simplicity viscous tensor, collisional heat flux
and equilibrium radial electric field, after the re-notation
equations (45) are obtained. If a zero boundary condition is
prescribed for the temperature at the separatrix, Te(a) = 0,
equations (45) link temperature and density profiles through a
simple relation

Te(r) = 2Qe

3�e

(
1 − ne(a)

ne(r)

)
, (47)

where Qe/�e ratio is independent of the radius. According
to equations (45), the density profile does not change shape
and moves as a whole if the boundary condition for the density
at the separatrix, ne(a), changes. At the same time, electron
temperature increases and steepens with the reduction of ne(a)

(see figure 14). Increase and steepening of the temperature
profile with density decrease is due to the reduction of the
conductive heat flux fraction (linear in temperature gradient)
as compared with the convective heat flux fraction (linear
in temperature) which tends to form a constant temperature
profile.

As shown in [32], the increase in ion temperature is due to
the fact that the anomalous diffusion coefficient is smaller than

the neoclassical heat diffusion coefficient. Since neoclassical
heat diffusion coefficient scales linearly with density, ion
temperature increases due to the density decrease.

Thus, the reasons for the density pump-out in the whole
pedestal should be looked for in the narrow ergodized pre-
separatrix region or outside the separatrix. This can be
increased screening of neutrals due to the ergodization, or
the effect of the perturbation field on the ion orbit losses.
In the second case, without the perturbation field, orbit
losses are minimized by the equilibrium radial electric field
which develops due to relatively small mobility of electrons.
Ergodization releases electrons and, therefore, changes the
radial electric field which does not prevent ion orbit losses
anymore. The mechanism connected with ion orbit losses
should be more pronounced in the long mean free path regime
where, in fact, major changes of the profiles are observed.
It should have a property of ‘saturation’ with increasing
perturbation amplitude because as long as ergodization has
completely destroyed the ambipolar electric field preventing
the ion orbit losses, particle flux from this region becomes
fully determined by the ion orbit loss mechanism which is
independent of the ergodicity level.

5. Summary

In this work, with the help of the linear kinetic model
for the straight periodic inhomogeneous cylinder combined
with 3D vacuum magnetic field data, the effect of plasma
response currents on the non-axisymmetric magnetic field
perturbations from the I-coil used for ELM mitigation in DIII-
D has been studied for the particular experiment, shot 126006.
It has been shown that a large perpendicular equilibrium
electron fluid velocity leads to a significant (by two and more
orders of magnitude) reduction of the perturbation field in
the core plasma due to the screening of this field near the
resonant magnetic surfaces. Both the toroidal plasma rotation
and the diamagnetic drift of electrons and ions contribute
a similar amount to this velocity. In addition, the non-
resonant plasma response leads to a relatively small (of the
order one) attenuation of the perturbation field harmonics with
negative poloidal wave numbers m and to some amplification
of harmonics with positive m which are never resonant. It has
been shown that in addition to the modification of the toroidal
rotation velocity quasilinear effects lead also to modification
of plasma density and electron temperature around resonant
magnetic surfaces. However, all these effects appear to be
small for the case considered here. In particular, the predicted
change of the toroidal plasma rotation velocity by a few km s−1

is two orders of magnitude smaller than the velocity of plasma
rotation due to the NBI injection. An estimation of nonlinear
effects shows that these effects approach the order of one
and, therefore, the results of the present linear analysis are
marginally valid. It has been observed that the kinetic model
stays in approximate agreement with the reduced MHD model
except in regions with fast perpendicular electron rotation.
This is a remarkable fact because for plasma parameters used
here, MHD theory predicts that the resonant layer width is more
than by an order of magnitude smaller than the ion Larmor
radius and, therefore, MHD theory is formally invalid.
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In contrast to the vacuum magnetic field model which
predicts full destruction of the magnetic field configuration
in the outer half of plasma volume it has been observed that
plasma response currents significantly reduce the effect of the
perturbation field on the magnetic configuration. In particular,
the effect of the perturbation field on the magnetic surfaces
in the core plasma is almost absent and an ergodic layer is
formed only at the edge, for s = ψtor/ψ

(a)
tor > 0.97, where

ψtor is the toroidal flux. The model predicts a toroidal plasma
spin up (spin up of the ion component) which, in turn, leads to
a simultaneous slowing down of the electron component and
ends up with mode locking at the q = 7/3 rational surface. A
simple balance model for the pedestal region, which assumes
that the ergodization effect in the narrow pre-separatrix layer
s > 0.97 leads to a reduction of the plasma density in this
layer, qualitatively reproduces the experimental behaviour of
plasma parameters in the pedestal region with the onset of
the perturbation coil current. A possible reason for such a
density reduction is the combined effect of ion orbit losses and
magnetic field ergodization.

The present results should be considered as a preliminary
estimate for the following reasons. Although the linear
approximation used here is shown to be marginally valid,
poloidal mode coupling effects have been completely ignored
in the present model. Near the separatrix these effects are
of order one because the metric tensor of flux variables is
essentially dependent on the poloidal angle there. Therefore,
the results for the pedestal region should be viewed as an
order of magnitude estimate only. In addition, the poloidal
rotation velocity has been set to zero in this modelling. This
approximation is good for the core plasma, but at the edge it can
overestimate the perpendicular electron fluid velocity roughly
by factor of 2 which also leads to a certain overestimation
of the screening effect. However, this overestimation is not
expected to change the order of magnitude of the results for the
perturbation field amplitude. Thus, this study can be viewed as
a first estimate of important effects, while for the more reliable
results a proper two dimensional modelling of the perturbation
magnetic field is required.
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Appendix A. Divergence-free representation of
equilibrium and vacuum perturbation magnetic
field in cylindrical coordinates

The unperturbed magnetic field is given in the divergence-free
form

B0 = ∇A0ϕ × ∇ϕ + B0ϕ∇ϕ, (A1)

where B0ϕ is the co-variant toroidal magnetic field component
(constant in the low pressure approximation) and A0ϕ = −ψpol

is the co-variant toroidal component of the vector potential.
Here ψpol = ψpol(R, Z) is the poloidal magnetic flux divided
by 2π which is provided by the equilibrium code EFIT [13,14]
on the 2D rectangular grid in cylindrical coordinates (R, ϕ, Z)

and is reconstructed by bi-cubic spline interpolation.
Perturbation magnetic field in vacuum is provided by

the TRIP3D code [1] in the form of physical components,
δB̂i, on an equidistant 3D grid in cylindrical coordinates. If
these components are reconstructed by direct interpolation,
∇ · δB = 0 condition is satisfied only up to the interpolation
accuracy which may lead to the appearance of attractors
and numerical diffusion in the Poincaré mapping. For the
divergence-free representation which satisfies this condition
up to computer accuracy magnetic field is represented via
vector potentials. Separating the axisymmetric part of the
perturbation field, δB̄, as follows:

δB i(R, ϕ, Z) = δB̃ i(R, ϕ, Z) + δB̄ i(R, Z), (A2)

where components δB̃ i(R, ϕ, Z) have zero average over ϕ, this
part is presented as

δB̄ = ∇ × (Āϕ(R, Z)∇ϕ) + δB̄ϕ∇ϕ, (A3)

where δB̄ϕ = const and

Āϕ(R, Z) =
∫ R

Rmin

dR′R′δB̄Z(R′, Z). (A4)

Here, δB̄Z(R′, Z) is the Z-component of the field averaged
over the toroidal angle and Rmin is the inner boundary of the
data box. The non-axisymmetric part of the field is represented
using the gauge Ãϕ = 0 as follows:

δB̃ = ∇ ×
∞∑

n=−∞
einϕ(AR,n(R, Z)∇R + AZ,n(R, Z)∇Z),

(A5)

where axisymmetric components of vector potential Ã are zero,
AR,0 = AZ,0 = 0. The remaining Fourier amplitudes are
obtained from Fourier amplitudes of the physical components
of the magnetic field

AR,n(R, Z) = i

n
RδB̂Z,n(R, Z),

AZ,n(R, Z) = −i

n
RδB̂R,n(R, Z).

(A6)

Since functions expanded in Fourier series are real, fn = f ∗
n ,

only half of the series is used in (A5)

f (ϕ) =
∞∑

n=−∞
fneinϕ = 2Re

∞∑
n=1

fneinϕ. (A7)

The Fourier amplitudes of the physical magnetic field
components δB̂R,n, δB̂Z,n as well as averaged components
δB̄Z = δB̂Z,0 and δB̄ϕ = RδB̂ϕ,0(R, Z), respectively,
are obtained using the approximate formulas for the Fourier
transform of a periodic function f (ϕ) given on an equidistant
grid (ϕ0, ϕ1, . . . , ϕK) where ϕK = 2πk/K as follows:

fn = 1

K

K∑
k=1

f

(
2πk

K

)
exp

(
− 2π ikn

K

)
. (A8)
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Appendix B. Conversion to flux coordinates by
integration along the field lines

Flux coordinates (ψtor, ϑ, ϕ) are generated by integration of
the unperturbed field line equations in cylindrical variables

dR

dϕ
= BR

0

B
ϕ

0

,
dZ

dϕ
= BZ

0

B
ϕ

0

. (B1)

Denoting the solution which corresponds to the field line
starting at the point (Rb, 0, Zb) with Ru(Rb, Zb; ϕ) and
Zu(Rb, Zb; ϕ), choosing Zb = Zaxis as the coordinate of the
magnetic axis, and generating a set of these solutions for the
grid of Rb values (so that Rb serves as a flux surface label),
one obtains for the toroidal flux �tor = 2πψtor = �tor(Rb)

�tor(Rb) =
∫ 2πq

0
dϕBR

0 (Ru(Rb, Zaxisϕ), Zu(Rb, Zaxisϕ))

× Ru(Rb, Zaxis; ϕ)Zu(Rb, Zaxis; ϕ), (B2)

where the safety factor q = q(Rb) is expressed through the
period �ϕ of functions Ru and Zu over the field line parameter
ϕ as follows, q = �ϕ/(2π). Since in flux variables poloidal
and toroidal angles satisfy on the field line the condition
qϑ − ϕ = const, relations between cylindrical coordinates
(R, Z) and flux coordinates (ψtor, ϑ) are given by

R = Ru(Rb(ψtor), Zaxis; q(ψtor)ϑ),

Z = Zu(Rb(ψtor), Zaxis; q(ψtor)ϑ).
(B3)

Since the metric determinant of flux variables satisfies

√
gBϕ = q

√
gBϑ = 1, (B4)

the equilibrium magnetic field (A1) can also be presented as

B0 = ∇ϕ × ∇ψpol + ∇ψtor × ∇ϑ. (B5)

According to equations (A1) and (A2), the axisymmetric part
of the perturbation field provides small corrections to A0ϕ

and B0ϕ . The non-axisymmetric part of δB takes in the flux
variables in the following form:

δB̃ = ∇Ãψtor × ∇ψtor + ∇Ãϑ × ∇ϑ. (B6)

Component Ãψtor does not modify the magnetic field topology
because this small term can be iteratively absorbed into
the flux function. (Formally, Ãϑ can also be included
in ψtor; however, this would destroy the property of ψpol

to be a function of ψtor alone and, therefore, destroy the
simple topology of the unperturbed magnetic field [15].)
Thus, both, the symmetric part of the perturbation field and
vector potential component Ãψtor can be ignored for small
perturbation fields. Comparisons of Poincaré plots computed
for the vacuum perturbation field model with and without
these correction terms show a negligible difference in the
results. Therefore, these terms have been omitted in the further
analysis.

Fourier amplitudes of the perturbed vector potential
component Ãϑ are obtained during the field line integration

as follows:

Aϑ;m,n(ψtor)

= 1

2πq

∫ 2πq

0
dϕAϑ;n(R(Rb, Zaxis;ϕ),Z(Rb, Zaxis;ϕ))e−imϕ/q,

(B7)

where

Aϑ;n(R, Z)=AR,n

∂R

∂ϑ
+ AZ,n

∂Z

∂ϑ
= q

B
ϕ

0

(BR
0 AR,n + BZ

0 AZ,n)

(B8)

and cylindrical components of vector potential are given
by (A6).

Field line tracing for the complete field B = B0 + δB
is finally performed in cylindrical variables, respectively,
transforming the amplitudes Aϑ;n modified by plasma response
back to cylindrical variables.
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