
Data Analysis
Version 7

MATLAB®

The Language of Technical Computing

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information
508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Data Analysis
© COPYRIGHT 2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks
or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

September 2005 Online only New for MATLAB 7.1 (Release 14SP3)

Contents
1
Fundamentals of Data Analysis

Introduction . 1-2
MATLAB Data Analysis Functions . 1-2
Vector vs. Matrix Function Arguments 1-3
MATLAB Tools for Data Analysis . 1-3
Related Products . 1-3

Importing and Exporting Data . 1-5

Plotting Data . 1-6
Example — Loading and Plotting Data 1-6

Handling Missing Data . 1-9
Representing Missing Data Values . 1-9
Calculations with NaNs . 1-9
Removing NaNs from the Data . 1-10
Interpolating Missing Data . 1-11

Removing Outliers . 1-13

Descriptive Statistics . 1-15
Descriptive Statistics at the Command Line 1-15
Using the Data Statistics Tool . 1-17

Covariance and Correlation Coefficients 1-22
Covariance . 1-22
Correlation Coefficients . 1-23

Finite Differences . 1-24

Difference Equations and Filtering . 1-25
Filter Function . 1-25
Example 1 — Moving Average . 1-26
Example 2 — Discrete Filter . 1-27
i

Detrending Data . 1-30

Fourier Analysis and the Fast Fourier Transform (FFT) . 1-31
Function Summary . 1-31
Calculating the FFT . 1-32
Magnitude and Phase of Transformed Data 1-36
FFT Length vs. Performance . 1-38

2
Data Fitting Using Linear Regression

Introduction . 2-2
When to Use the Curve Fitting Toolbox 2-2
Residuals and the Goodness of Fit . 2-3

Using the Basic Fitting Tool . 2-4
What Is the Basic Fitting GUI? . 2-4
Sorting Large Data Sets to Improve Performance 2-5
Basic Fitting Options . 2-5
Example — Using the MATLAB Basic Fitting Tool 2-9

Data Fitting at the Command Line . 2-17
Polynomial Model . 2-17
Linear Model with Nonpolynomial Terms 2-19
Multiple Regression . 2-21

Example — Fitting Data at the Command Line 2-23
Loading the Data . 2-23
Generating a Polynomial Fit . 2-23
Making Nonlinear Models Linear . 2-26
Confidence Bounds . 2-27
ii

3
Analyzing Time Series from the Command Line

Introduction . 3-2

Creating timeseries Objects . 3-3
Observation vs. Data Sample . 3-3
Double vs. Date-String Time Vectors . 3-4
timeseries Constructor Syntax . 3-4
Properties of a timeseries Object . 3-5

timeseries Functions . 3-11
General timeseries Functions . 3-12
Data and Time Manipulation . 3-12
Events . 3-14
Arithmetic Operations . 3-15
Statistical Functions . 3-15

Creating Time-Series Collection Objects 3-17
tscollection Constructor Syntax . 3-17
Properties of tscollection Objects . 3-19

tscollection Functions . 3-20
General tscollection Functions . 3-20
Data and Time Manipulation . 3-20

Example — Analyzing Time-Series Data at the
Command Line . 3-22

About the Example Data . 3-22
Creating timeseries Objects . 3-23
Modifying Time-Series Units and Interpolation Method 3-25
Defining Events . 3-26
Creating a Time-Series Collection . 3-26
Resampling the tscollection . 3-27
Adding a Data Sample to the Tscollection 3-27
Handling Missing Data . 3-28
Removing a Time Series from the Collection 3-28
Changing a Numerical Time Vector to Date Strings 3-28
Plotting tscollection Members . 3-29
iii

iv Contents
4
Using the Time Series Tools GUI

Introduction . 4-2
Starting Time Series Tools . 4-2
Time Series Tools Window . 4-3
Workflow in Time Series Tools . 4-4
Time-Series Analysis Operations . 4-5
Plots in Time Series Tools . 4-6
Customizing Plot Line and Marker Styles 4-7
Automatic M-Code Generation . 4-7
Getting Help . 4-7

Importing Data into Time Series Tools 4-9
Types of Data Sources . 4-9
Observation vs. Data Sample . 4-10
How to Import Data . 4-10
Changes to the Data During Import . 4-11
Handling Missing Data . 4-12
Importing Multivariate Data . 4-12

Editing Data, Time, Attributes, and Events 4-15

Working with Time Plots . 4-17
Creating a Time Plot . 4-17
Time Plot Tools . 4-19
Data Analysis from a Time Plot . 4-19
Scaling the Time Plot Graphically . 4-20
Scaling the Time Plot in the Property Editor 4-22

Selecting Time-Series Data . 4-25
Selecting Data by Using Rules . 4-26
Selecting Data Graphically . 4-27

Working with a Histogram . 4-29
Creating a Histogram . 4-29
Modifying the Histogram in the Property Editor 4-29
Select a Range of Data Values . 4-31

Working with a Spectral Plot . 4-33
Creating a Periodogram . 4-33
Modifying the Periodogram in the Property Editor 4-34
How to Filter the Data in a Frequency Range 4-38

Working with a Correlogram . 4-39
What Is Plotted in the Correlogram . 4-39
Creating a Correlogram . 4-40
Modifying the Correlogram in the Property Editor 4-40

Comparing Time Series . 4-43
Creating an XY Plot . 4-43
Creating a Cross-Correlation Plot . 4-44

Example — Analyzing Time-Series Data with
Time Series Tools . 4-47

Loading Data into the MATLAB Workspace 4-47
Starting Time Series Tools . 4-47
Importing Data into Time Series Tools 4-47
Creating a Time Plot . 4-50
Resampling Time Series on a New Time Vector 4-55
Comparing Data on an XY Plot . 4-57

Index
v

vi Contents

1

Fundamentals of Data
Analysis

MATLAB® provides functions and tools to support basic data analysis, including plotting, descriptive
statistics, correlation, interpolation, filtering, and Fourier analysis.

Introduction (p. 1-2) Overview of MATLAB data analysis

Importing and Exporting Data (p. 1-5) Overview of importing data into the MATLAB
environment and exporting information from the
MATLAB workspace

Plotting Data (p. 1-6) Brief description of MATLAB plotting tools, including an
example illustrating how to load and plot a matrix from a
.dat file and create a time plot of the data

Handling Missing Data (p. 1-9) Representing missing data by using NaN (or
Not-a-Number) values; removing or interpolating missing
data

Removing Outliers (p. 1-13) Identifying and removing from a data set values that
appear to be inconsistent with the rest of the data

Descriptive Statistics (p. 1-15) MATLAB functions for calculating the minimum and
maximum data values, mean, median, standard
deviation, mode, and variance; using the Data Statistics
Tool GUI to add statistics to a data plot

Covariance and Correlation Coefficients
(p. 1-22)

Calculating covariance or correlation coefficients

Finite Differences (p. 1-24) Computing finite differences

Difference Equations and Filtering
(p. 1-25)

Smoothing and shaping the data

Detrending Data (p. 1-30) Removing a mean value or a best-fit line from the data

Fourier Analysis and the Fast Fourier
Transform (FFT) (p. 1-31)

Performing Fourier analysis to gain insight into periodic
signals

1 Fundamentals of Data Analysis

1-2
Introduction
MATLAB® provides a number of functions for data analysis applications to
compute descriptive statistics and correlation coefficients, interpolate and
filter data, and perform Fourier analysis. You can also use the MATLAB Data
Statistics tool to calculate and display descriptive statistics on a plot.

If you want to analyze time-series data, MATLAB provides the timeseries and
tscollection objects that are specifically designed for handling time-indexed
data. For more information about the time-series command-line API, see
Chapter 3, “Analyzing Time Series from the Command Line.” Alternatively,
you can use the Time Series Tools graphical user interface to facilitate
time-series analysis and even generate M-code automatically. For more
information, see Chapter 4, “Using the Time Series Tools GUI.”

MATLAB Data Analysis Functions
The basic MATLAB data analysis and statistics functions are located in the
matlabroot/toolbox/matlab/datafun directory. To obtain detailed
information about a function, use the syntax

help functionname

at the command line.

Note You can create your own data-analysis functions and add them as
M-files to the matlabroot/toolbox/matlab/datafun directory. For more
information, see the MATLAB Programming documentation.

Time-series and time-series collection functions are located in
matlabroot/toolbox/matlab/timeseries and
matlabroot/toolbox/matlab/tscollection, respectively. To obtain detailed
information about a function, type

help timeseries/functioname

or

help tscollection/functioname

at the command line.

Introduction
Vector vs. Matrix Function Arguments
Whereas some functions support only vector inputs, others accept matrices.

When your data set is a vector, it does not matter whether the vector is oriented
in row or column direction.

When your data set contains multiple columns (i.e., is a matrix), the data
analysis and statistics results are calculated independently for each column.
This means, for example, that if you apply max to a matrix, the result is a row
vector containing the maximum data values for each column.

MATLAB Tools for Data Analysis
Four MATLAB tools provide a graphical user interface to facilitate common
data analysis tasks. The following table contains a brief description of each
tool, as well as a reference to the relevant documentation where you can learn
more.

Related Products
The table below lists the toolboxes that extend the basic data analysis and
statistics functionality in MATLAB for specialized applications. For the latest

Tools for Data Analysis

Tool Description More Information

Plotting Graphing workspace
variables and editing plot
properties

MATLAB Graphics
documentation

Data
Statistics

Calculating and displaying
descriptive statistics for a
data set

“Using the Data Statistics
Tool” on page 1-17

Basic
Fitting

Basic data fitting with
polynomial and spline
models, and generating plots
of fitted data and residuals

“Using the Basic Fitting
Tool” on page 2-4

Time
Series

Plotting and analyzing
time-indexed data

Chapter 4, “Using the Time
Series Tools GUI”
1-3

1 Fundamentals of Data Analysis

1-4
information about these and other MathWorks products, point your Web
browser to

www.mathworks.com

Products That Extend MATLAB Data Analysis

Product Description

Bioinformatics Toolbox Read, analyze, and visualize genomic, proteomic, and
microarray data

Curve Fitting Toolbox Perform model fitting and analysis

Financial Time Series Toolbox Analyze and manage financial time-series data

Financial Toolbox Analyze financial data and develop financial algorithms

Image Processing Toolbox Perform image processing, analysis, and algorithm
development

Model-Based Calibration
Toolbox

Calibrate complex powertrain systems

Neural Network Toolbox Design and simulate neural networks

Signal Processing Toolbox Perform signal processing, analysis, and algorithm
development

Spline Toolbox Create and manipulate spline approximation models of
data

Statistics Toolbox Apply statistical algorithms and probability models

System Identification Toolbox Create linear dynamic models from measured input-output
data

Wavelet Toolbox Analyze and synthesize signals and images using wavelet
techniques

Importing and Exporting Data
Importing and Exporting Data
MATLAB provides a number of ways to import data from files or the clipboard
into the workspace. For more information about importing various data
formats, such as text, binary, or a standard format (such as HDF), see the
MATLAB Programming documentation.

The easiest way to import data into MATLAB is to use the MATLAB Import
Wizard. The Import Wizard processes your data source and recognizes data
delimiters, as well as row or column headers, and extracts these headers.

When working with time-series data, you might want to use the Time Series
Tools GUI to import the data. The Import Wizard in Time Series Tools
facilitates assigning a time vector to the data during import. For more
information, see “Importing Data into Time Series Tools” on page 4-9.

When you have finished analyzing your data, you might have created new
variables. You can export the variables you created or updated during analysis
to a variety of formats. For more information about exporting data from the
MATLAB workspace, see the MATLAB Programming documentation.
1-5

1 Fundamentals of Data Analysis

1-6
Plotting Data
After you import your data into MATLAB, it is a good idea to plot the data so
that you can explore its features. If your data is a function of time, you can
create a simple time plot with time as the independent variable on the x-axis.

An exploratory plot of your data enables you to identify discontinuities and
potential outliers, as well as the regions of interest.

For more information about MATLAB plotting tools, see the MATLAB
Graphics documentation.

To learn more about plotting time-series data in Time Series Tools, see Chapter
4, “Using the Time Series Tools GUI.”

Example — Loading and Plotting Data
This example illustrates how to load and plot data from a DAT file:

• “Loading the Data” on page 1-6

• “Plotting the Data” on page 1-7

Loading the Data
Import the data by using the load command:

load count.dat

This creates the 24-by-3 matrix called count in the MATLAB workspace.

For more information about this data set, see “About the Example Data” on
page 3-22.

Note By MATLAB convention, each row of a matrix is an observation, and
each column is a variable.

Plotting Data
You can get the size of the data matrix by

[n,p] = size(count)
n =
 24
p =
 3

where n represents the number of rows, and p represents the number of
columns.

Create a time vector, t, of integers from 1 to n:

t = 1:n;

Note For more information about working with time-indexed data, see
“Example — Analyzing Time-Series Data at the Command Line” on page 3-22.

Plotting the Data
Use the following commands to plot the data versus time and to annotate the
plot:

set(0,'defaultaxeslinestyleorder','-|--|-.')
set(0,'defaultaxescolororder',[0 0 0])
plot(t,count), legend('Location 1','Location 2','Location 3',2)
xlabel('Time'), ylabel('Vehicle Count'), grid on
1-7

1 Fundamentals of Data Analysis

1-8
The resulting plot shows the traffic counts at three locations over a 24-hour
period.

0 5 10 15 20 25
0

50

100

150

200

250

300

Time

V
eh

ic
le

 C
ou

nt

Location 1
Location 2
Location 3

Handling Missing Data
Handling Missing Data
The correct handling of missing data is a difficult problem in data analysis and
often depends on your specific situation. Based on the context of your data, you
must decide whether it is appropriate to exclude missing data from analysis or
to replace the missing values, using a method such as interpolation.

This section contains the following topics:

• “Representing Missing Data Values” on page 1-9

• “Calculations with NaNs” on page 1-9

• “Removing NaNs from the Data” on page 1-10

• “Interpolating Missing Data” on page 1-11

Representing Missing Data Values
In MATLAB, missing or unavailable data values are represented by the special
value NaN, which stands for Not-a-Number.

The IEEE floating-point arithmetic convention defines NaN as the result of an
undefined operation, such as 0/0. However, NaN values are also convenient for
calling out missing data.

Calculations with NaNs
When you perform calculations on a MATLAB variable that contains NaNs, the
NaN values are propagated to the final result.

For example, consider a matrix containing the 3-by-3 magic square with its
center element set to NaN:

a = magic(3); a(2,2) = NaN

a =
 8 1 6
 3 NaN 7
 4 9 2

Compute a sum for each column in the matrix:

sum(a)

1-9

1 Fundamentals of Data Analysis

1-1
ans =
 15 NaN 15

Note that the sum of the elements in the middle column is a NaN value because
that column contains a NaN.

If you do not want to have NaNs in your final results, you must remove these
values from your data. For more information, see “Removing NaNs from the
Data” on page 1-10.

Note When you are working with time-series data in Time Series Tools, NaNs
are ignored in calculations. When you are working with time-series objects at
the command line, NaNs are ignored in calculations by default unless you
modify the TreatNaNasMissing property. For more information, see
“Properties of a timeseries Object” on page 3-5.

Removing NaNs from the Data
You can use isnan to remove NaNs from the data, as described in the following
table.

Code Description

i = find(~isnan(x));
x = x(i)

Find the indices of elements in a vector
that are not NaNs. Keep only the non-NaN
elements.

x = x(~isnan(x)); Remove NaNs from a vector x.

x(isnan(x)) = []; Remove NaNs from a vector x
(alternative method).

X(any(isnan(X),2),:) =
[];

Remove any rows containing NaNs from a
matrix X.
0

Handling Missing Data
Note You must use the function isnan to find NaNs because, by IEEE
arithmetic convention, the logical comparison NaN == NaN always produces 0
(i.e., it never evaluates to true). Therefore, you cannot use x(x==NaN) = [] to
remove NaNs from your data.

If you frequently need to remove NaNs, you might want to write a short M-file
function that you can call:

function X = excise(X)
X(any(isnan(X),2),:) = [];

The following command computes the correlation coefficients of X after all rows
containing NaNs are removed:

C = corrcoef(excise(X));

For more information about correlation coefficients, see “Correlation
Coefficients” on page 1-23.

Interpolating Missing Data
You can use MATLAB interpolation to find intermediate points in your data.
The simplest function for performing interpolation is the 1-D interpolation
function interp1.

By default, the interpolation method is 'linear', which fits a straight line
between a pair of existing data points to calculate the desired, nonexistent
value. Other methods, which you can specify as arguments in the interp1
function, include

• 'nearest' — Nearest neighbor interpolation

• 'linear' — Linear interpolation

• 'spline' — Piecewise cubic spline interpolation

• 'pchip' or 'cubic' — Shape-preserving piecewise cubic interpolation

• 'v5cubic' — The cubic interpolation from MATLAB 5, which does not
'extrapolate' and uses 'spline' when X is not equally spaced

When you are working with timeseries and tscollection objects, only the
linear and the zero-order hold ('zoh') interpolation methods are available. The
1-11

1 Fundamentals of Data Analysis

1-1
zero-order hold method “holds” the last existing data value constant until the
next existing data value.

For more information about interp1, see the MATLAB documentation or type

help interp1

at the command line.
2

Removing Outliers
Removing Outliers
When you visually examine a data plot, you might find that some points appear
to be dramatically different from the rest of the data. In some cases, it is
reasonable to consider such points outliers, or data values that have a low
likelihood of being consistent with the rest of the data.

Removing an outlier has a greater effect on the standard deviation than on the
mean of the data, because the standard deviation depends on the squares of the
deviations. Deleting one such point will lead to a smaller standard deviation,
and this might result in making other points appear as outliers! You should be
cautious about changing data unless you are confident that you understand the
source of the problem you want to correct.

Note When working with time-series objects, you can use the Time Series
Tools GUI to remove outliers. For more information about selecting outliers by
defining logical rules, see “Selecting Time-Series Data” on page 4-25.

The following example illustrates how to remove outliers from a data set. In
this case, an outlier is defined to be a value that is at least three standard
deviations away from the mean.

%% Import the sample data
load count.dat;

%% Calculate the mean and the standard deviation
mu = mean(count)
sigma = std(count)

MATLAB displays

mu =
32.0000 46.5417 65.5833

sigma =
25.3703 41.4057 68.0281
1-13

1 Fundamentals of Data Analysis

1-1
The number of outliers in each column of the count matrix is obtained with the
following commands:

[n,p] = size(count)
outliers = abs(count - mu(ones(n, 1),:)) > 3*sigma(ones(n, 1),:);
nout = sum(outliers) % Calculate the number of outliers in each

% column

MATLAB displays

nout =
 1 0 0

There is one outlier in the first column. To remove the entire row of data
containing the outlier, type

count(any(outliers,2),:) = [];
4

Descriptive Statistics
Descriptive Statistics
MATLAB enables you to calculate the following descriptive statistics for your
data:

• Maximum value

• Mean

• Median

• Minimum value

• Mode

• Standard deviation

• Variance

When your data set contains multiple columns, the descriptive statistics are
calculated independently for each column.

This section contains the following topics:

• “Descriptive Statistics at the Command Line” on page 1-15

• “Using the Data Statistics Tool” on page 1-17

Descriptive Statistics at the Command Line
You can use the following MATLAB functions to calculate the descriptive
statistics for your data.

Statistics Function Summary

Function Description

max Maximum value

mean Average or mean value

median Median value

min Smallest value

mode Most frequent value
1-15

1 Fundamentals of Data Analysis

1-1
The following examples illustrate how to apply MATLAB functions to calculate
descriptive statistics:

• “Example 1 — Maximum, Minimum, and Standard Deviation” on page 1-16

• “Example 2 — Subtracting the Mean” on page 1-17

Example 1 — Maximum, Minimum, and Standard Deviation
The following example illustrates how to work with MATLAB statistics
functions on a 24-by-3 matrix called count. For more information about this
data, see “About the Example Data” on page 3-22.

load count.dat % Import the sample data
mx = max(count)
mu = mean(count)
sigma = std(count)

MATLAB responds with

mx =
 114 145 257

mu =
 32.0000 46.5417 65.5833

sigma =
 25.3703 41.4057 68.0281

You can locate the minimum and maximum data values in each matrix column
by using a second output parameter indx, which outputs the index of a row. For
example,

[mx,indx] = min(count)

std Standard deviation

var Variance of a vector (a measure of the spread or dispersion
of the vector values)

Statistics Function Summary (Continued)

Function Description
6

Descriptive Statistics
produces the following results:

mx =
 7 9 7

indx =
 2 23 24

Here, the output variable mx is a row vector that contains the maximum value
in each of the three data columns. The variable indx contains the row indices
in each column that correspond to the maximum values.

To find the minimum value in the entire count matrix, you can reshape this
24-by-3 matrix into a 72-by-1 column vector by using the syntax count(:).
Therefore, to find the smallest value in the entire count data set, you can use

min(count(:))

which produces

ans =
 7

Example 2 — Subtracting the Mean
You can subtract the mean from each column of the data by using the following
syntax:

[n,p] = size(count) % Get the size of the count matrix
e = ones(n,1) % Define a vector of ones
x = count - e*mu % Subtract the mean from each matrix element

Using the Data Statistics Tool
The MATLAB Data Statistics tool consists of a graphical user interface (GUI)
that enables you to calculate and plot descriptive statistics along with the data.

Note The Data Statistics GUI is only available for 2-D plots.

In addition to the quantities listed in “Descriptive Statistics” on page 1-15, the
Data Statistics tool calculates the range. The range is the interval between the
1-17

1 Fundamentals of Data Analysis

1-1
lowest value and the highest value in the data set. You cannot display the
range on a plot.

This section contains the following topics:

• “Example — Calculating and Plotting Statistics” on page 1-18

• “Formatting Plots of Data Statistics” on page 1-19

• “Viewing Statistics for Multiple Data Sets” on page 1-20

• “Saving Statistics to the MATLAB Workspace” on page 1-21

Example — Calculating and Plotting Statistics

1 Plot your data. For example, use these commands to plot the historical
population data from the United States census.

load census
plot(cdate,pop,'+')

2 In the figure window, select Tools > Data Statistics.

The Data Statistics tool calculates descriptive statistics for the X-data and
the Y-data on the plot, and displays the results in the Data Statistics dialog.

Select the statistic you want to plot by
clicking in its check box.
8

Descriptive Statistics
3 In the Data Statistics dialog, select the check box for each statistic you want
to display on the plot.

For example, to plot the mean of the population (Y-data), select the check
box for the Y mean. The plot legend is updated to include each statistic
measure you display on the plot. For example, y mean.

Formatting Plots of Data Statistics
The Data Statistics tool uses colors and line styles to distinguish statistics from
the data on the plot. You can customize these plot properties.

Note Do not edit plot properties of data statistics until you finish adding
them to the plot. If you add or remove statistics after editing plot properties,
your changes will be lost.

To modify plot properties, enable plot editing and double-click the
corresponding statistic on the plot. This opens the Property Editor, where you
can modify the line object used to represent the statistic.

Plot of the mean of
the population data.

The Data Statistics
tool adds a legend
automatically.
1-19

1 Fundamentals of Data Analysis

1-2
Alternatively, enable plot editing, right-click the statistic on the plot, and select
an option from the shortcut menu. For example, you can modify the line width,
line style, or color.

Viewing Statistics for Multiple Data Sets
The Data Statistics tool calculates basic statistics for every 2-D plot in a graph
but displays the statistics for only one data set at time.

To view the statistics for a particular data set, select it from the Statistics for
list, as shown below.

The Statistics for list includes all the data sets you plotted on the graph,
identified by a default or a user-defined tag. Default tag names are generated
as follows: data1 to identify the first plot, data2 to identify the second plot, and
so on.

Lists the data sets on which the
statistics have been calculated
0

Descriptive Statistics
Saving Statistics to the MATLAB Workspace
To save the statistics generated by the Data Statistics tool to the MATLAB
workspace, follow this procedure.

Note When your plot contains multiple data sets, you must repeat this
procedure for each data set.

1 Click the Save to Workspace button.

2 In the Save Statistics to Workspace dialog, specify the sets of statistics you
want to save (X-data and Y-data). Enter the corresponding variable names.

The Data Statistics tool saves each set of statistics to a structure. For example,
when you select to save the X-data statistics for the census data in the variable
census_dates, the resulting structure looks like this:

census_dates =

 min: 1790
 max: 1990
 mean: 1890
 median: 1890
 std: 62.0484
 range: 200

Specify the set of statistics
you want to save.

Assign a name to the
variable.
1-21

1 Fundamentals of Data Analysis

1-2
Covariance and Correlation Coefficients
MATLAB provides the following two functions for computing covariance and
correlation coefficients.

Covariance
cov calculates the covariance matrix. For the special case when a vector is the
argument, cov returns the variance.

The covariance matrix has the following properties:

• diag(cov(X)) is a vector of variances for each column, which represent a
measure of the spread or dispersion of the values in a column.

• sqrt(diag(cov(X))) is a vector of standard deviations.

• The off-diagonal elements of the covariance matrix represent the covariance
between the individual data columns.

For an m-by-n matrix, the covariance matrix is n-by-n. For example, consider
the sample data in count.dat, which contains a 24-by-3 matrix. The covariance
matrix for this data, calculated by cov(count), has the following form:

Covariance and Correlation Coefficient Function Summary

Function Description

cov Covariance matrix

corrcoef Correlation coefficient matrix, representing the normalized
measure of linear relationship strength between variables

 σ11
2 σ12

2 σ13
2

 σ21
2 σ22

2 σ23
2

 σ31
2 σ32

2 σ33
2

 σij
2 σji

2=
2

Covariance and Correlation Coefficients
Here, is the covariance between column i and column j of the data.
Because the count matrix contains three columns, the covariance matrix is
3-by-3.

Correlation Coefficients
corrcoef produces a matrix of correlation coefficients for a data matrix where
each column represents a variable. The correlation coefficients are a
normalized measure of the strength of the linear relationship between two
variables and range between -1 and 1, where

• -1 means that one column of data has a negative linear relationship to
another column of data.

• 0 means there is no linear relationship between the data columns.

• 1 means that there is a positive linear relationship between the data
columns.

For an m-by-n matrix, the correlation coefficient matrix has size n-by-n. The
arrangement of the elements in the correlation coefficient matrix corresponds
to the location of the elements in the covariance matrix, described above.

For the data in count.dat, type

corrcoef(count)

to produce the following 3-by-3 correlation coefficient matrix:

ans =
 1.0000 0.9331 0.9599
 0.9331 1.0000 0.9553
 0.9599 0.9553 1.0000

The fact that the results are close to 1 indicates that there is a strong linear
relationship (correlation) between the pairs of data columns in the count
matrix.

σij
2

1-23

1 Fundamentals of Data Analysis

1-2
Finite Differences
MATLAB provides three functions for finite difference calculations.

The diff function computes the difference between successive elements in a
numeric vector. That is, diff(X) is [X(2)-X(1) X(3)-X(2)...
X(n)-X(n-1)].

For a vector A,

A = [9 -2 3 0 1 5 4];
diff(A)

ans =
 -11 5 -3 1 4 -1

Besides computing the first difference, you can use diff to determine certain
characteristics of vectors. For example, you can use diff to determine whether
the vector values are monotonically increasing or decreasing, or whether a
vector has equally spaced elements.

The following table provides examples for using diff with a vector x.

Function Description

del2 Discrete Laplacian of a matrix

diff Differences between successive elements of a vector;
numerical partial derivatives of a vector

gradient Numerical partial derivatives of a matrix

Test Description

any(diff(x)==0) Tests whether there are any repeated
elements in X

all(diff(x)>0) Tests whether the values are monotonically
increasing

all(diff(diff(x))==0) Tests for equally spaced vector elements
4

Difference Equations and Filtering
Difference Equations and Filtering
MATLAB provides functions for working with difference equations and filters
to shape the variations in the raw data. These functions operate on vectors.
Filtering is useful when you want to smooth out local fluctuations in the data
or remove specific periodic trends. For practical filtering applications, the
Signal Processing Toolbox provides numerous functions for designing and
analyzing filters.

For signal processing and data analysis, you use vectors to hold sampled data
signals, or sequences. For multiinput systems, each row of a matrix
corresponds to a data sample such that each input is a column in the matrix.

This section contains the following topics:

• “Filter Function” on page 1-25

• “Example 1 — Moving Average” on page 1-26

• “Example 2 — Discrete Filter” on page 1-27

Filter Function
The function

y = filter(b,a,x)

creates filtered data y by processing the data in vector x with the filter
described by vectors a and b.

The filter function is a general tapped delay-line filter, described by the
difference equation

Here, n is the index of the current sample, na is the order of the polynomial
described by vector a, and nb is the order of the polynomial described by vector
b. The output y(n) is a linear combination of current and previous inputs, x(n)
x(n-1)..., and previous outputs, y(n-1) y(n-2)....

a 1()y n() b 1()x n() b 2()x n 1–() … b nb()x n nb– 1+()+ + +=

a 2()y n 1–()– …– a na()y n na– 1+()–
1-25

1 Fundamentals of Data Analysis

1-2
Example 1 — Moving Average
The process for smoothing the data in count.dat with a moving average filter
to see the average traffic flow over a 4-hour window — covering the current
hour and the previous three hours — can be represented by the difference
equation

The corresponding vectors are

a = 1;
b = [1/4 1/4 1/4 1/4];

Note Enter the format command format rat to display and enter data using
the rational format.

Executing the command

load count.dat

creates the matrix count in the workspace.

Extract the first column of counts and assign it to the vector x:

x = count(:,1);

The 4-hour moving average of the data is calculated by using

y = filter(b,a,x);

Compare the original data and the smoothed data with an overlaid plot of the
two curves:

t = 1:length(x);
plot(t,x,'-.',t,y,'-'), grid on
legend('Original Data','Smoothed Data',2)

y n() 1
4
---x n() 1

4
---x n 1–() 1

4
---x n 2–() 1

4
---x n 3–()+ + +=
6

Difference Equations and Filtering
The filtered data represented by the solid line is the 4-hour moving average of
the count data. The original data is represented by the dashed line.

Example 2 — Discrete Filter
You use the discrete filter to shape the data by applying a transfer function to
the input signal.

Depending on your objectives, the transfer function you choose might alter both
the amplitude and the phase of the variations in the data at different
frequencies to produce either a smoother or a rougher output.

Taking the z-transform of the difference equation

results in the following transfer function:

where Y(z) is the z-transform of the filtered output y(n). The coefficients b and
a are unchanged by the z-transform.

0 5 10 15 20 25
0

20

40

60

80

100

120

Original Data
Smoothed Data

a 1()y n() b 1()x n() b 2()x n 1–() … b nb()x n nb– 1+()+ + +=

a 2()y n 1–()– …– a na()y n na– 1+()–

Y z() H z 1–()X z() b 1() b 2()z 1– … b nb()z nb– 1++ + +

a 1() a 2()z 1– … a na()z na– 1++ + +
--X z()= =
1-27

1 Fundamentals of Data Analysis

1-2
In digital signal processing (DSP), it is customary to write transfer functions
as rational expressions in and to order the numerator and denominator
terms in ascending powers of .

Consider the following transfer function:

You will apply this transfer function to the data in count.dat.

1 Load the matrix count into the workspace:

load count.dat;

2 Extract the first column and assign it to X:

x = count(:,1);

3 Enter the coefficients of the denominator ordered in ascending powers of
to represent :

a = [1 0.2];

4 Enter the coefficients of the numerator to represent :

b = [2 3];

5 Call the filter function:

y = filter(b,a,x)

6 Compare the original data and the shaped data with an overlaid plot of the
two curves:

t = 1:length(x);
plot(t,x,'-.',t,y,'-'), grid on

z 1–

z 1–

H z 1–() b z 1–()

a z 1–()
---------------- 2 3z 1–+

1 0.2z 1–+
--------------------------= =

z 1–

1 0.2z 1–+

2 3z 1–+
8

Difference Equations and Filtering
legend('Original Data','Shaped Data',2)

This filter primarily modified the amplitude of the original data.
1-29

1 Fundamentals of Data Analysis

1-3
Detrending Data
detrend removes a constant or linear trend from your data. If your data
contains several data columns, each data column is detrended separately.

You decide whether it makes sense to remove trend effects in the data based on
the objectives of your analysis.

For example, you might want to detrend data when analyzing

• Local fluctuations in the data, rather than focusing on systematic variations
in the mean.

• Evolution of a time series in time, as described by the autocorrelation
function. For more information, see “Correlation Coefficients” on page 1-23.
0

Fourier Analysis and the Fast Fourier Transform (FFT)
Fourier Analysis and the Fast Fourier Transform (FFT)
Fourier analysis is extremely useful for data analysis, as it breaks down a
signal into constituent sinusoids of different frequencies. For sampled vector
data, Fourier analysis is performed using the discrete Fourier transform
(DFT).

The fast Fourier transform (FFT) is an efficient algorithm for computing the
DFT of a sequence; it is not a separate transform. It is particularly useful in
areas such as signal and image processing, filtering, convolution, frequency
analysis, and power spectrum estimation.

This section contains the following topics:

• “Function Summary” on page 1-31

• “Calculating the FFT” on page 1-32

• “Magnitude and Phase of Transformed Data” on page 1-36

• “FFT Length vs. Performance” on page 1-38

Function Summary
MATLAB provides a collection of functions for computing and working with
Fourier transforms.

FFT Function Summary

Function Description

abs Absolute value and complex magnitude

angle Phase angle

cplxpair Sort numbers into complex conjugate pairs

fft One-dimensional discrete Fourier transform

fft2 Two-dimensional discrete Fourier transform

fftn N-dimensional discrete Fourier transform

fftshift Shift DC component of discrete Fourier transform to center
of spectrum
1-31

1 Fundamentals of Data Analysis

1-3
Calculating the FFT
Consider an input sequence x with length N input sequence. The FFT is given
by the vector X of length N.

fft (vector X) and ifft (vector x) implement the following relationships,
respectively:

Note Because the first element of a MATLAB vector has an index 1, the
summations in the above equations are from 1 to N. These produce results
that are identical to the traditional Fourier equations with summations from
0 to N-1.

If x(n) is real, you can rewrite the above equation in terms of a summation of
sine and cosine functions with real coefficients:

ifft Inverse one-dimensional discrete Fourier transform

ifft2 Inverse two-dimensional discrete Fourier transform

nextpow2 Next higher power of two

ifftn Inverse N-dimensional discrete Fourier transform

unwrap Unwrap phase angle in radians

FFT Function Summary (Continued)

Function Description

X k() x n()e
j2π k 1–() n 1–

N
-------------⎝ ⎠
⎛ ⎞ 1 k N≤ ≤–

n 1=

N

∑=

x n() 1
N
---- X k()e

j2π k 1–() n 1–
N

-------------⎝ ⎠
⎛ ⎞ 1 n N≤ ≤

k 1=

N

∑=
2

Fourier Analysis and the Fast Fourier Transform (FFT)
where

Example — Calculating the FFT of a Column Vector
Consider the following column vector:

x = [4 3 7 -9 1 0 0 0]' ;

The FFT of x is found by using

y = fft(x)

which results in

y =
6.0000
11.4853 - 2.7574i
-2.0000 -12.0000i
-5.4853 +11.2426i
18.0000
-5.4853 -11.2426i
-2.0000 +12.0000i
11.4853 + 2.7574i

Notice that although the sequence x is real, y is complex. The first component
of the transformed data is the constant contribution and the fifth element
corresponds to the Nyquist frequency. The last three values of y correspond to
negative frequencies and, for the real sequence x, they are complex conjugates
of three components in the first half of y.

Example — Using FFT to Calculate Sunspot Periodicity
Suppose you want to analyze the variations in sunspot activity over the last
300 years. This example illustrates the cyclical nature of sunspot activity,
which reaches a maximum about every 11 years.

Astronomers have tabulated a quantity called the Wolfer number for almost
300 years. This quantity measures both the number and the size of sunspots.

x n() 1
N
---- a k() 2π k 1–() n 1–()

N
---⎝ ⎠
⎛ ⎞cos b k() 2π k 1–() n 1–()

N
---⎝ ⎠
⎛ ⎞sin+

k 1=

N

∑=

a k() X k()(), b k()real X k()(), 1 n N≤ ≤imag–= =
1-33

1 Fundamentals of Data Analysis

1-3
Load and plot the sunspot data:

load sunspot.dat
year = sunspot(:,1);
wolfer = sunspot(:,2);
plot(year,wolfer)
title('Sunspot Data')

Now take the FFT of the sunspot data:

Y = fft(wolfer);

The result of this transform is the complex vector Y. The magnitude of Y
squared is called the estimated power spectrum. A plot of the estimated power
spectrum versus frequency is called a periodogram.

1700 1750 1800 1850 1900 1950 2000
0

20

40

60

80

100

120

140

160

180

200
Sunspot Data
4

Fourier Analysis and the Fast Fourier Transform (FFT)
Remove the first component of Y, which is simply the sum of the data, and plot
the results:

N = length(Y);
Y(1) = [];
power = abs(Y(1:N/2)).^2;
nyquist = 1/2;
freq = (1:N/2)/(N/2)*nyquist;
plot(freq,power), grid on
xlabel('cycles/year')
title('Periodogram')

The scale in cycles/year is somewhat inconvenient. You can plot in years/cycle
and estimate what one cycle is. For convenience, plot the power versus period
(where period = 1./freq) from 0 to 40 years/cycle:

period = 1./freq;
plot(period,power), axis([0 40 0 2e7]), grid on
ylabel('Power')
xlabel('Period(Years/Cycle)')

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

7

cycles/year

Periodogram
1-35

1 Fundamentals of Data Analysis

1-3
In order to determine the cycle more precisely,

[mp,index] = max(power);
period(index)

ans =
 11.0769

This plot confirms the cyclical nature of sunspot activity, which reaches a
maximum about every 11 years.

Magnitude and Phase of Transformed Data
Important information about a transformed sequence includes its magnitude
and phase. The MATLAB functions abs and angle calculate this information.

To try this, create a time vector t, and use this vector to create a sequence x
consisting of two sinusoids at different frequencies:

t = 0:1/100:10-1/100;
x = sin(2*pi*15*t) + sin(2*pi*40*t);

Now use the fft function to compute the DFT of the sequence. The code below
calculates the magnitude and phase of the transformed sequence. It uses the

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

7

Period(Years/Cycle)

P
ow

er
6

Fourier Analysis and the Fast Fourier Transform (FFT)
abs function to obtain the magnitude of the data, the angle function to obtain
the phase information, and unwrap to remove phase jumps greater than pi to
their 2*pi complement:

y = fft(x);
m = abs(y);
p = unwrap(angle(y));

Now create a frequency vector for the x-axis and plot the magnitude and phase:

f = (0:length(y)-1)'*100/length(y);
subplot(2,1,1), plot(f,m),
ylabel('Abs. Magnitude'), grid on
subplot(2,1,2), plot(f,p*180/pi)
ylabel('Phase [Degrees]'), grid on
xlabel('Frequency [Hertz]')

The magnitude plot is perfectly symmetrical about the Nyquist frequency of 50
hertz. The useful information in the signal is found in the range 0 to 50 hertz.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

A
bs

. M
ag

ni
tu

de

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

2

2.5
x 10

4

P
ha

se
 [D

eg
re

es
]

Frequency [Hertz]
1-37

1 Fundamentals of Data Analysis

1-3
FFT Length vs. Performance
The execution time for the fft depends on the length of the transform.

You can add a second argument to fft to specify a number of points n for the
transform:

y = fft(x,n)

With this syntax, fft pads x with zeros if it is shorter than n, or truncates it if
it is longer than n. If you do not specify n, fft defaults to the length of the input
sequence. fft is fastest for powers of two. It is almost as fast for lengths that
have only small prime factors. It is typically several times slower for lengths
that are prime or have large prime factors.

The inverse FFT function ifft also accepts a transform length argument.
8

2

Data Fitting Using Linear
Regression

MATLAB enables you to apply linear regression to model the relationship between dependent and
independent variables by using the MATLAB Basic Fitting tool, or by working at the MATLAB
command line.

Introduction (p. 2-2) Overview of MATLAB data fitting; brief description of the
Curve Fitting Toolbox, which extends the MATLAB
functionality

Using the Basic Fitting Tool (p. 2-4) Describes the Basic Fitting tool GUI for fitting
polynomial and spline models, generating plots of fitted
data and residuals, and saving fit information to the
workspace; example illustrates how to work with the
Basic Fitting tool

Data Fitting at the Command Line
(p. 2-17)

Fitting polynomials, more general linear models, and
multiple regression models by using MATLAB functions;
generating plots of fitted data and residuals

Example — Fitting Data at the Command
Line (p. 2-23)

Illustrates how to use MATLAB functions to fit
polynomials, generate plots of fitted data and residuals,
and calculate confidence bounds

2 Data Fitting Using Linear Regression

2-2
Introduction
MATLAB enables you to perform basic data fitting by using linear regression
to model your data. A model is a relationship between independent and
dependent variables.

To model your data, you can either use the MATLAB Basic Fitting tool or issue
commands in the MATLAB Command Window.

You can use MATLAB to fit nonlinear data if you first transform it in a variable
that makes the model linear.

In this chapter, you learn how to

• Generate a simple fit

• Plot the fit on top of the data

• Evaluate the goodness of fit by examining a plot of the residuals

For an example of fitting data by using the Basic Fitting tool, see “Example —
Using the MATLAB Basic Fitting Tool” on page 2-9. For a demonstration of
data fitting from the MATLAB Command Window, see “Example — Fitting
Data at the Command Line” on page 2-23.

When to Use the Curve Fitting Toolbox
For advanced curve-fitting capabilities, use the Curve Fitting Toolbox, which
extends the basic MATLAB functionality by enabling

• Nonlinear parametric fitting, including standard linear least squares,
nonlinear least squares, weighted least squares, constrained least squares,
and robust fitting procedures

• Nonparametric fitting

• Built-in statistics for determining the goodness of fit

• GUI that facilitates data sectioning and smoothing

• Extrapolation, differentiation, and integration

• Saving fit results in various formats, including M-files, binary files, and
workspace variables

Introduction
Residuals and the Goodness of Fit
The residuals are defined as the difference between the observed values of the
dependent variable and the values of the dependent variable that are predicted
by the model. When you fit a good model to your data, the residuals
approximate random errors.

When MATLAB calculates fit parameters, it minimizes the sum of the squares
of the residuals — a least-squares fit.

You can gain insight into the “goodness” of a fit by visually examining a plot of
the residuals: residuals behaving randomly suggest that the model fits the data
well, and residuals displaying a pattern indicate a poor fit.

Note that the “goodness” of a fit must be determined in the context of your data.
For example, if your goal of fitting the data is to extract coefficients that have
a physical meaning, then it is important that your model reflect the physics of
the data. In this case, understanding what your data represents and how it was
measured is just as important as evaluating the goodness of fit.
2-3

2 Data Fitting Using Linear Regression

2-4
Using the Basic Fitting Tool
This section contains the following topics:

• “What Is the Basic Fitting GUI?” on page 2-4

• “Sorting Large Data Sets to Improve Performance” on page 2-5

• “Basic Fitting Options” on page 2-5

• “Example — Using the MATLAB Basic Fitting Tool” on page 2-9

What Is the Basic Fitting GUI?
The MATLAB Basic Fitting tool consists of a graphical user interface (GUI)
that enables you to quickly perform the following curve-fitting tasks in the
MATLAB environment:

• Model the data using a spline interpolant, a shape-preserving interpolant, or
a polynomial (up to tenth degree)

• Plot one or more fits overlaying the data and the residuals

• Get parameter values and goodness-of-fit indicators (the norm of the
residuals)

• Interpolate or extrapolate data by using the data model

• Save the fit and evaluated results to the MATLAB workspace

Note The Basic Fitting GUI is only available for 2-D plots.

Using the Basic Fitting Tool
Sorting Large Data Sets to Improve Performance
If your data set is large and the values are not sorted in ascending order, it
might take some time to fit your data. This can occur because the Basic Fitting
tool sorts the values first. In some cases, you can speed up the fitting process
by presorting the data before you open the Basic Fitting tool.

For example, use the following syntax at the command line to create sorted
vectors, x_sorted and y_sorted, from the original data vectors x and y:

[x_sorted, i] = sort(x);
y_sorted = y(i);

Basic Fitting Options
You open the Basic Fitting tool from a MATLAB figure window where you
plotted the data by selecting Tools > Basic Fitting.

The Basic Fitting GUI, shown below, contains the following categories of
options:

• “Select Data” on page 2-6 — Enable you to select the data that you want to
fit from a list of data sets currently plotted in the figure window

• “Plot Fits” on page 2-7 — Enable adding one or more fits to the plot,
displaying equations, and calculating and plotting residuals

• “Numerical Results” on page 2-8 — Display the parameters for a specific fit

• “Find Y = f(X)” on page 2-8 — Interpolate or extrapolate ordinate values by
using the selected fit

Note To expand the Basic Fitting dialog to display all options, click the
button in the lower right corner.
2-5

2 Data Fitting Using Linear Regression

2-6
Select Data
From the list, select the data you want to fit from a list of data sets you plotted
in the figure window.

You can only fit one data set at a time. However, you can generate and display
multiple fits for a selected data set. Use the Property Editor to edit the name
of a data set.

Center and Scale X Data
Select this check box when MATLAB displays the following warning message:

Polynomial is badly conditioned. Removing repeated data points or
centering and scaling may improve results.

This warning is displayed when the X (independent data) values are large and
the degree of the selected polynomial is high enough to generate numbers with
dramatically different orders of magnitude in the Vandermonde matrix, which
is constructed during the fitting procedure to compute estimates of the

Using the Basic Fitting Tool
polynomial parameters. Because one column of the Vandermonde matrix
always contains 1’s, and because powers of large X values can be orders of
magnitude larger than 1, the precision of the parameter estimates suffers.

To improve the precision of the computed parameters, the columns of the
Vandermonde matrix can be brought to the same order of magnitude by
centering the X data at zero mean and scaling the data to a unit standard
deviation:

NewXData=(XData-mean(XData))./std(XData)

Plot Fits
This pane contains options for adding one or more fits to the plot, displaying
equations, and calculating and plotting residuals.

• Check to display fits on figure — Select to display one or more fits in the
figure window for the selected data set:

- spline interpolant — Uses the spline function

- shape-preserving interpolant — Uses the pchip function

- linear, quadratic, cubic, 4th,..., 10th degree polynomial — Uses the
polyfit function

Note Use the lowest degree polynomial that gives a good fit. When fitting N
points, if you select a polynomial of degree higher than (N-1), the system
becomes underdetermined, and the extraneous coefficients are set to 0 during
the calculation.

• Show equations — Select this check box to display the fit equation on the
plot.

Significant digits — Select the number of significant digits for the
coefficients of the displayed equation.

• Plot residuals — Select to plot residuals, where each residual is the
difference between an ordinate data value and a corresponding fit value at a
specific abscissa value.

Select the type of residual plot: Bar plot, Scatter plot, or Line plot.
2-7

2 Data Fitting Using Linear Regression

2-8
Select where to plot the residuals:

- Subplot — Plot residuals in the same figure window as the data

- Separate figure — Plot residuals in a new figure window

Note When you use subplots to plot several data sets, you can only plot
residuals in a separate window.

- Show norm of residuals — Select this check box to display the norm of
the residuals, calculated by using the norm function, norm(V,2), where V is
the vector of residuals. The higher the degree of the polynomial, the lower
the norm. A smaller norm indicates a better fit than a larger one.

Numerical Results
This pane displays the numerical results of a specific fit. It is not necessary to
display this fit on the figure (by selecting it in the Plot Fits pane) in order to
view the numerical results of the fit.

• Fit — Select the type of fit for which you want to display the numerical
results. If the selected fit is not currently displayed in the figure window,
select the corresponding check box in the Plot fits pane. When you first open
the Numerical Results pane, the results of the last fit you selected in Plot
fits are displayed.

• Save to workspace — Click to open the dialog where you specify how to save
the fit parameters and norm of the residuals to workspace variables.

Find Y = f(X)
In this pane, you can interpolate or extrapolate ordinate values by using the
selected Fit.

• Enter value(s) — Enter one or more X values (or specify a valid MATLAB
expression) at which you want to evaluate the ordinate value f(X) by using
the selected Fit. For example, you can specify X as 1:2:10 or [10 15]. Then
click Evaluate.

• Save to workspace — Available only after you evaluate interpolated or
extrapolated points using the fit. Click to open the dialog where you can save
the evaluated results to the workspace.

Using the Basic Fitting Tool
• Plot evaluated results — Select this check box to display the evaluated
points on the plot.

Example — Using the MATLAB Basic Fitting Tool
This example illustrates how to use the Basic Fitting tool in MATLAB by
fitting a cubic polynomial to the census data:

• “Graphically Fitting the Data” on page 2-9

• “Fit Parameters and the Goodness of Fit” on page 2-13

• “Predicting the U.S. Population by Using the Fit” on page 2-14

Graphically Fitting the Data
To open the Basic Fitting dialog,

1 Load and plot the census data:

load census
plot(cdate,pop,'ro')

The file census.mat contains U.S. population data for the years 1790
through 1990.
2-9

2 Data Fitting Using Linear Regression

2-1
2 Open the Basic Fitting dialog by selecting Tools > Basic Fitting in the
figure window.

3 In the Basic Fitting dialog, select the cubic check box to fit a cubic
polynomial to the data.

MATLAB displays the following warning:

Polynomial is badly conditioned. Removing repeated data points or
centering and scaling may improve results.

To fix the problem, select the Center and scale X data check box. For more
information about this option, see “Center and Scale X Data” on page 2-6.
0

Using the Basic Fitting Tool
Note The values of the fitted coefficients are different after centering and
scaling the independent variable when compared to the values obtained from
the original data. However, this does not change the functional form of the
data and the resulting goodness of fit statistics. Therefore, the fitted plot
shows the original, unscaled X-data values.

4 In the Basic Fitting dialog, specify to

- Display the fit equation in the plot

- Plot the fit residuals as a bar plot or a subplot in the figure window that
contains the data

- Display the norm of the residuals

Fit a cubic polynomial to the data.

Show the equation.

Show the norm of the residuals.

Plot the residuals as a bar plot in
the data figure window.

Current data set
2-11

2 Data Fitting Using Linear Regression

2-1
The resulting fit and residuals are shown in the following plot:

The legend contains the name of the data set and the fit equation. If the legend
covers part of the plot, click and drag it to another location.

For comparison, try fitting another equation to the census data by selecting the
corresponding Plot fit check box in the Basic Fitting dialog. The plot legend is
automatically updated when you add or remove data sets or fits. When you
finish adding information to the plot, you can change the default plot settings
by using the Property Editor. These changes are undone when you perform
another fit.

Note If you change the name of a data set in the plot legend, the
corresponding name is automatically updated in the Select Data list of the
Basic Fitting dialog.

Click and drag legend if it
covers part of the plot.
2

Using the Basic Fitting Tool
Fit Parameters and the Goodness of Fit
In the Basic Fitting dialog, click the button to display the estimated
parameters and the norm of the residuals, which indicates the goodness of fit.

To explore the results of a specific fit, select the type of fit from the Fit list.

Note If you also want to display this fit on the plot, you must select the
corresponding Plot fits check box.
2-13

2 Data Fitting Using Linear Regression

2-1
Save the fit data to the MATLAB workspace by selecting the Save to
workspace button. This opens the following dialog:

The fit data is saved as a MATLAB structure:

fit
fit =
 type: 'polynomial degree 3'
 coeff: [3.8555e-006 -0.0153 17.7815 -4.8519e+003]

You can use this structure for subsequent analysis. For example, you can use
the saved coefficients and the polyval function to evaluate the cubic
polynomial at the command line.

Predicting the U.S. Population by Using the Fit
In the Basic Fitting dialog, click the button to specify a vector of X values
at which to evaluate the current fit.

1 Enter the following vector in the field starting with the text Enter value(s)
to predict the population between the years 2000 to 2050 at intervals of 10
years:

2000:10:2050
4

Using the Basic Fitting Tool
2 Click Evaluate.

The X-values and the corresponding values for f(X) are evaluated from the
fit and displayed, as shown below.
2-15

2 Data Fitting Using Linear Regression

2-1
3 Select the Plot evaluated results check box to display the evaluated points
with the data set in the plot, as shown in the following figure:

4 Save the extrapolated data to the MATLAB workspace by clicking Save to
workspace. This opens the following dialog, where you specify the variable
names:
6

Data Fitting at the Command Line
Data Fitting at the Command Line
This section contains the following topics:

• “Polynomial Model” on page 2-17

• “Linear Model with Nonpolynomial Terms” on page 2-19

• “Multiple Regression” on page 2-21

Polynomial Model
MATLAB provides two functions for modeling your data by using a polynomial
function.

Suppose you measure a quantity y at several values of time t:

t = [0 .3 .8 1.1 1.6 2.3]';
y = [0.5 0.82 1.14 1.25 1.35 1.40]';
plot(t,y,'o'), grid on

Polynomial Fit Functions

Function Description

polyfit polyfit(x,y,n) finds the coefficients of a polynomial p(x)
of degree n that fits the data y by minimizing the sum of
the squares of the deviations of the data from the model
(least-squares fit).

polyval polyval(p,x) returns the value of a polynomial of degree
n, determined by polyfit, evaluated at x.
2-17

2 Data Fitting Using Linear Regression

2-1
Based on the plot, it is possible that the data can be modeled by a polynomial
function

The unknown coefficients a0, a1, and a2 are computed by minimizing the sum
of the squares of the deviations of the data from the model (least-squares fit).

To find the polynomial coefficients, type

p=polyfit(t,y,2)

at the command line.

MATLAB calculates the polynomial coefficients in descending powers:

p =
 -0.2387 0.9191 0.5318

The second-order polynomial model of the data is given by

To see how good the fit is, evaluate the polynomial at uniformly spaced times
t2 and overlay the original data on a plot:

y a2t2 a1t a+ + 0=

y 0.2387t2– 0.9191t 0.5318+ +=
8

Data Fitting at the Command Line
t2 = 0:.1:2.8; % Define a uniformly spaced time vector
y2=polyval(p,t2); % Evaluate the polynomial on a specific

% independent variable t2
plot(t,y,'o',t2,y2), grid on

This fit does not perfectly approximate the data. To obtain a better
approximation, you can either try increasing the order of the polynomial fit or
try the technique in “Linear Model with Nonpolynomial Terms” on page 2-19.

Linear Model with Nonpolynomial Terms
When a polynomial function does not produce a satisfactory model of your data,
you can try using a linear model with nonpolynomial terms. For example,
consider the following function that is linear in the parameters a0, a1, and a2,
but nonlinear in the data t:

The unknown coefficients a0, a1, and a2 are computed by minimizing the sum
of the squares of the deviations of the data from the model (least-squares fit).

y a0 a1e t– a2te t–+ +=
2-19

2 Data Fitting Using Linear Regression

2-2
Construct and solve the set of simultaneous equations by forming the
Vandermonde matrix, X, and solving for the parameters by using the backslash
operator:

X = [ones(size(t)) exp(-t) t.*exp(-t)];
a = X\y

a =
 1.3974
- 0.8988

 0.4097

The model of the data is given by

Now evaluate the model at regularly spaced points and plot the model with the
original data, as follows:

T = (0:0.1:2.5)';
Y = [ones(size(T)) exp(-T) T.*exp(-T)]*a;
plot(T,Y,'-',t,y,'o'), grid on

In this case, the fitted curve appears to go through each data point and,
therefore, appears to be a much better fit than the second-order polynomial.

y 1.3974 0.8988 e t–– 0.4097 te t–+=
0

Data Fitting at the Command Line
Multiple Regression
If y is a function of more than one independent variable, the matrix equations
that express the relationships among the variables are expanded to
accommodate the additional data. This is called multiple regression.

Suppose you measure a quantity y for several values of x1 and x2. Enter these
into MATLAB at the command line, as follows:

x1 = [.2 .5 .6 .8 1.0 1.1]';
x2 = [.1 .3 .4 .9 1.1 1.4]';
y = [.17 .26 .28 .23 .27 .24]';

A model of this data is of the form

Multiple regression solves for unknown coefficients a0, a1, and a2 by
minimizing the sum of the squares of the deviations of the data from the model
(least-squares fit).

Construct and solve the set of simultaneous equations by forming the
Vandermonde matrix, X, and solving for the parameters by using the backslash
operator:

X = [ones(size(x1)) x1 x2];
a = X\y

a =
 0.1018
 0.4844

-0.2847

The least-squares fit model of the data is

y a0 a1x1 a2x2+ +=

y 0.1018 0.4844x1 0.2847x2–+=
2-21

2 Data Fitting Using Linear Regression

2-2
To validate the model, find the maximum of the absolute value of the deviation
of the data from the model:

Y = X*a;
MaxErr = max(abs(Y - y))

MaxErr =
 0.0038

This value is sufficiently small when compared to the data values and indicates
a good fit.
2

Example — Fitting Data at the Command Line
Example — Fitting Data at the Command Line
This example uses census data to illustrate how to use MATLAB functions to
accomplish the following:

• Generate a polynomial fit

• Analyze the residuals

• Generate an exponential fit

• Calculate confidence bounds

Loading the Data
The file census.mat contains U.S. population data for the years 1790 through
1990. Load it into MATLAB:

load census

This adds two variables to the MATLAB workspace:

• cdate is a column vector containing the years from 1790 to 1990 in
increments of 10.

• pop is a column vector with the U.S. population numbers corresponding to
each year in cdate.

Generating a Polynomial Fit
This portion of the example applies polyfit and polyval to the census sample
data. Year values are normalized, as described in “Center and Scale X Data” on
page 2-6, by using the following output form of polyfit:

[p,s,mu]=polyfit(cdate, pop1,1) % Calculate fit parameters

and by passing s and my to polyval:

pop1=polyval(p1,cdate,s,mu) % Evaluate the model

The following figure shows three data fits: linear, quadratic, and fourth-degree
polynomial. The linear plot appears unsatisfactory. The quadratic plot is a
better approximation to the data. The fourth-degree plot provides little
improvement over the quadratic.
2-23

2 Data Fitting Using Linear Regression

2-2
A plot of the residuals is shown to the right of each of these fit plots. For each
type of fit plot, the residuals are strongly patterned.

Polynomial Fits and Residuals

Fit Residuals

[p1,s,mu] = polyfit(cdate,pop,1);
pop1 = polyval(p1,cdate,s,mu);
plot(cdate,pop1,'-',cdate,pop,'+')
legend('Fitted','Observed')
xlabel('Census date');
ylabel('Population');
grid on

res1 = pop - pop1;
figure, plot(cdate,res1,'+')
grid on

Straight-line fit appears unsatis-
factory – note negative
population values.

Residuals of straight-line fit
are strongly patterned.
4

Example — Fitting Data at the Command Line
[p2,s,mu] = polyfit(cdate,pop,2);
pop2 = polyval(p2,cdate,s,mu);
plot(cdate,pop2,'-',cdate,pop,'+')
legend('Fitted','Observed')
xlabel('Census date');
ylabel('Population');
grid on

res2 = pop - pop2;
figure, plot(cdate,res2,'+')
grid on

Polynomial Fits and Residuals (Continued)

Fit Residuals

Quadratic polynomial provides a
better fit.

Residuals still appear strongly
patterned.
2-25

2 Data Fitting Using Linear Regression

2-2
Making Nonlinear Models Linear
It is common practice to try to fit nonlinear models to data by first applying
some transformation to the model that makes it linear. For example, suppose
that you want to fit an exponential model to the population data in the
following form:

where y represents the U.S. population and t represents the census time in
years. You can make the model linear by taking the natural logarithm of both
sides:

[p4,s,mu] = polyfit(cdate,pop,4);
pop4 = polyval(p4,cdate,s,mu);
plot(cdate,pop4,'-',cdate,pop,'+')
legend('Fitted','Observed')
xlabel('Census date');
ylabel('Population');
grid on

res4 = pop - pop4;
figure, plot(cdate,res4,'+')
grid on

Polynomial Fits and Residuals (Continued)

Fit Residuals

Fourth-degree polynomial
provides little improvement. The
curve begins to turn upward at
lower end of plot.

Residuals still appear strongly
patterned.

y aebt=

yln bt aln+=
6

Example — Fitting Data at the Command Line
If you plot ln(y) on the vertical axis and t on the horizontal axis, then ln(a)
is the y-intercept and b is the slope of the straight line.

To fit a linear model to the transformed data, type at the command line

[logp1,s,mu] = polyfit(cdate,log(pop),1);
logpred1 = exp(polyval(logp1,cdate,s,mu));
semilogy(cdate,logpred1,'-',cdate,pop,'+');
legend('Fitted','Observed')
xlabel('Census date');
ylabel('Log of Population');
grid on

Confidence Bounds
Confidence bounds are useful for determining how accurately you can estimate
the value of the polynomial.

This example applies polyfit and polyval to the census sample data to
produce confidence bounds for a second-order polynomial model.

Year values are normalized by polyfit, as described in “Center and Scale X
Data” on page 2-6.
2-27

2 Data Fitting Using Linear Regression

2-2
The following syntax uses an interval of ±2∆, which corresponds to a 95%
confidence interval:

[p2,s2,mu] = polyfit(cdate,pop,2);
[pop2,del2] = polyval(p2,cdate,s2,mu);
plot(cdate,pop,'+',cdate,pop2,'g-',cdate,pop2+2*del2,'r:',...
 cdate,pop2-2∗del2,'r:');
xlabel('Census date');
ylabel('Population'), grid on
8

3

Analyzing Time Series
from the Command Line

An introduction to the object-oriented command-line API for analyzing time-series data.

Introduction (p. 3-2) Brief description of the time-series objects

Creating timeseries Objects (p. 3-3) Instantiating the timeseries object

timeseries Functions (p. 3-11) Summary of timeseries functions

Creating Time-Series Collection Objects
(p. 3-17)

Instantiating the tscollection object

tscollection Functions (p. 3-20) Summary of tscollection functions

Example — Analyzing Time-Series Data
at the Command Line (p. 3-22)

How to analyze time-series data from the command line

3 Analyzing Time Series from the Command Line

3-2
Introduction
You can analyze time-series data at the command line by using the following
two MATLAB classes:

• timeseries — Contains data and time values, as well as the metadata
information that includes units, events, data quality, and interpolation
method

• tscollection — Contains a group of time-series objects that share a
common time vector to enable operations on related groups of synchronized
time series

The following auxiliary objects are available to define and store metadata for a
time-series object:

• tsdata.event — Defines events

• tsdata.interpolation — Defines the interpolation method

For a detailed example that illustrates how to work with these objects at the
command line, see “Example — Analyzing Time-Series Data at the Command
Line” on page 3-22.

The API for working with time series is object-oriented, where

• Classes define properties and methods.

• Objects are intantiations of classes.

• You use a constructor to create an instance of an object, and use the set
methods or dot notation to modify the properties of your objects.

For a detailed description of the rules of object-oriented programming in
MATLAB, see MATLAB Classes and Objects in the MATLAB Programming
documentation.

To learn how to work with the Time Series Tools graphical user interface (GUI)
instead, see Chapter 4, “Using the Time Series Tools GUI.”

Creating timeseries Objects
Creating timeseries Objects
The time-series object, called timeseries, is a MATLAB variable that contains
time-indexed data and data properties in a single, coherent structure. For
example, in addition to data and time values, you can also use the time-series
object to store events, descriptive information about data and time, data
quality, and the interpolation method.

This section contains the following topics:

• “Observation vs. Data Sample” on page 3-3

• “Double vs. Date-String Time Vectors” on page 3-4

• “timeseries Constructor Syntax” on page 3-4

• “Properties of a timeseries Object” on page 3-5

Observation vs. Data Sample
To properly understand the description of the time-series API, it is important
to clarify the difference between an observation and a data sample.

An observation is a single, scalar value recorded at a specific time.

A time-series data sample consists of one or more observations recorded at a
specific time. The number of data samples in a time series is the same as the
length of the time vector. If you create a time series that contains two data sets,
each sample contains two values. The following table explains the size of a
time-series data sample:

Data Sample Size

Type of Data Data-Sample Description

Vector with length N Scalar value

An N-by-M matrix with
N samples

Vector with M values

An N-by-M-by-P-by-...
multidimensional
array with N samples

Multidimensional array of size
M-by-P-by-...
3-3

3 Analyzing Time Series from the Command Line

3-4
Suppose that you have two redundant sensors simultaneously recording the
same signal. The data collected by each of the sensors constitutes a complete
set of observations. You can create a multivariate time-series object that
contains several data sets (see “timeseries Constructor Syntax” on page 3-4).
This is convenient when all data sets have the same units.

Alternatively, you can create one time-series object for each data set and then
group them into a time-series collection. This is useful when the data sets have
different units. For more information, see “tscollection Constructor Syntax” on
page 3-17.

Double vs. Date-String Time Vectors
The time-series object enables you to specify time values as either double or
date-string values.

timeseries Constructor Syntax
Working with time-series data at the command line requires that you first
create a time-series object.

The table below summarizes the syntax for creating a time-series object by
using the timeseries constructor. For an example of using the constructor, see
“Creating timeseries Objects” on page 3-23.

timeseries Constructor Syntax

Syntax Description

ts = timeseries Creates an empty timeseries object.

ts = timeseries(Data) Creates a time series with the specified
Data.

Uses a default time vector that ranges
from 0 to N-1 with a 1-second interval,
where N is the number of samples.

ts = timeseries('Name') Creates an empty time series with the
name specified by a string 'Name'. This
name can be different from the
time-series variable name.

Creating timeseries Objects
Properties of a timeseries Object
This table lists the properties of the timeseries object. You can specify Data,
Time, Quality, Name, and IsTimeFirst properties as input arguments in the
constructor. To assign other properties, use the set function or dot notation.

Note To get property information from the command line, type help
timeseries/tsprops at the command line.

ts = timeseries(Data, Time) Creates a time series with the specified
data array and time vector.

When time values are date strings, you
must specify Time as a cell array of date
strings.

ts = timeseries(Data, Time,
Quality)

The Quality attribute is a vector of
integers (-128 to 127) that specifies the
quality in terms of codes defined by
QualityInfo.Codes.

ts = timeseries(Data,...,
'Parameter', Value,...)

Optionally enter the following
parameter-value pairs after the Data,
Time, and Quality arguments:

• Name

• IsTimeFirst

• IsDatenum

Both Name and IsTimeFirst are
described in “Properties of a timeseries
Object” on page 3-5.

IsDatenum, when set to true, specifies
that Time values are serial dates.

timeseries Constructor Syntax (Continued)

Syntax Description
3-5

3 Analyzing Time Series from the Command Line

3-6
For an example of editing time-series properties, see “Modifying Time-Series
Units and Interpolation Method” on page 3-25.

timeseries Object Properties

Property Description

Data Time-series data, where each data sample
corresponds to a set of observations in time.

The data can be a scalar, a vector, or a
multidimensional array. Either the first or last
dimension of the data must be aligned with
Time.

By default, NaNs are used to represent missing
or unspecified data. Set the TreatNaNasMissing
property to determine how missing data is
treated in calculations.

DataInfo Contains fields for storing contextual
information about the Data:

• Unit — String that specifies data units

• Interpolation — A tsdata.interpolation
object that specifies the interpolation method
for this time series.

Fields of the tsdata.interpolation object:

- Fhandle — Function handle to the
user-defined interpolation function

- Name — String that specifies the name of
the interpolation method. Default methods
include 'linear' and 'zoh' (zero-order
hold). 'linear' is the default.

• UserData — Any user-defined information
entered as a string

Creating timeseries Objects
Events An array of tsdata.event objects that stores
event information for this time series. You add
events by using the addevent method.

Fields of the tsdata.event object:

• EventData — Any user-defined information
about the event

• Name — String that specifies the name of the
event

• Time — Time value when this event occurs,
specified as a real number or a date string

• Units — Time units

• StartDate — A reference date, specified as a
date string. Empty when you have a
numerical (non-date-string) time vector.

IsTimeFirst Specifies whether the first or last dimension of
the data array is aligned with the time vector
and has the following values:

• true — The first dimension of the data array
is aligned with the time vector.

• false — The last dimension of the data array
is aligned with the time vector.

By default, the first data dimension that
matches the length of the time vector is aligned
with the time vector.

After a time series is created, this property is
read only.

timeseries Object Properties (Continued)

Property Description
3-7

3 Analyzing Time Series from the Command Line

3-8
Name Time-series name entered as a string. This
name can be different from the name of the
time-series variable in the MATLAB
workspace.

Quality A vector or array of integers (-128 to 127) that
specifies the quality in terms of codes defined
by QualityInfo.Codes.

When Quality is a vector, it must have the
same length as the time vector. In this case,
each Quality value applies to a corresponding
data sample.

When Quality is an array, it must have the
same size as the data array. In this case, each
Quality value applies to the corresponding
element of the data array.

QualityInfo Provides a lookup table that converts numerical
Quality codes to readable descriptions.
QualityInfo fields include

• Codes — Vector of integers defining the
“dictionary” of Quality codes that are
assigned to each observation by the Quality
vector or array

• Description — Cell array of strings, where
each element provides a readable description
of the associated quality code

• UserData — Stores any additional
user-defined information

Length of Codes and Description must be the
same.

timeseries Object Properties (Continued)

Property Description

Creating timeseries Objects
Time When TimeInfo.StartDate is empty, the
numerical Time values are measured relative to
zero in specified units. When
TimeInfo.StartDate is defined, the time
values are date strings measured relative to the
StartDate.

The length of Time must be the same as either
the first or the last dimension of Data.

timeseries Object Properties (Continued)

Property Description
3-9

3 Analyzing Time Series from the Command Line

3-1
TimeInfo Contains fields for storing contextual
information about Time:

• Units — Time units with the following
possible values: 'weeks', 'days', 'hours',
'minutes', 'seconds', 'milliseconds',
'microseconds', and 'nanoseconds'

• Start — Start time

• End — End time (read-only)

• Increment — Interval between two
subsequent time values

• Length — Length of the time vector
(read-only)

• Format — String defining the date string
display format. See datestr for more
information.

• StartDate — Date string defining the
reference date. See setabstime
(timeseries) for more information.

• UserData — Stores any additional
user-defined information

TreatNaNasMissing Logical value that specifies how to treat NaN
values in Data:

• true — (Default) Treat all NaN values as
missing data except during statistical
calculations.

• false — Include NaN values in statistical
calculations, in which case NaN values are
propagated to the result.

timeseries Object Properties (Continued)

Property Description
0

timeseries Functions
timeseries Functions
The following categories of functions are available for working with
timeseries objects:

• “General timeseries Functions” on page 3-12

• “Data and Time Manipulation” on page 3-12

• “Events” on page 3-14

• “Arithmetic Operations” on page 3-15

• “Statistical Functions” on page 3-15
3-11

3 Analyzing Time Series from the Command Line

3-1
General timeseries Functions

Data and Time Manipulation

General timeseries Functions

Function Description

get (timeseries) Query timeseries property values

getqualitydesc Return data quality descriptions based on the
Quality values assigned to a timeseries object

getdatasamplesize Return the size of each data sample for a
timeseries object

isempty
(timeseries)

Evaluate to true for an empty timeseries object

length
(timeseries)

Return the length of the time vector

plot (timeseries) Plot the time series

size (timeseries) Return the size property of a time series

set (timeseries) Set specific timeseries property values

Manipulate Time-Series Data and Time

Function Description

addsample Add one sample to a timeseries object

ctranspose
(timeseries)

Transpose a timeseries object

delsample Delete a sample from a timeseries object

detrend (timeseries) Subtract the mean or best-fit line and remove
all NaNs from a time series

filter (timeseries) Shape the time-series data by using a 1-D
digital filter
2

timeseries Functions
getabstime
(timeseries)

Extract a date string time vector into a cell
array

getinterpmethod Get the interpolation method name for a
timeseries object

getsampleusingtime
(timeseries)

Extract data samples from a time series
occurring between specified time values

idealfilter
(timeseries)

Apply an ideal pass or notch (noncausal) filter
to a timeseries object

resample (timeseries) Redefine the time-series data in a timeseries
object for a new time vector

setabstime
(timeseries)

Set the time values in the time vector to
specific date strings

setinterpmethod Set the interpolation method for a time series

synchronize Synchronize and resample two timeseries
objects onto a common time vector

tsdateinterval Specify a uniformly sampled time vector in
date string format

transpose
(timeseries)

Transpose a timeseries object

vertcat (timeseries) Overloaded vertical concatenation of
timeseries objects

Manipulate Time-Series Data and Time (Continued)

Function Description
3-13

3 Analyzing Time Series from the Command Line

3-1
Events
To construct an event object, use the constructor tsdata.event. For an
example of defining events for time series, see “Defining Events” on page 3-26.

Define Events and Select Data by Using Events

Function Description

addevent Add one or more events to a time series

delevent Delete one or more events from a time series

gettsafteratevent Create a new timeseries object by extracting the
samples from an existing time series that occur at
or after a specified event

gettsafterevent Create a new timeseries object by extracting the
samples from an existing time series that occur
after a specified event

gettsatevent Create a new timeseries object by extracting the
samples from an existing time series that occur at
the same time as a specified event

gettsbeforeatevent Create a new timeseries object by extracting the
samples from an existing time series that occur
before or at a specified event

gettsbeforeevent Create a new timeseries object by extracting the
samples from an existing time series that occur
before a specified event

gettsbetweenevents Create a new timeseries object by extracting the
samples from an existing time series that occur
between two specified events
4

timeseries Functions
Arithmetic Operations

Statistical Functions

Overloaded Arithmetic Operations

Operation Description

+ Add the corresponding elements of time series

- Subtract the corresponding elements of time series

.* Element-by-element multiplication of time series

* Matrix-multiply two time series

./ Right element-by-element division of time series

/ Right matrix division of time series

.\ Element-by-element left-array divide

\ Left matrix division of time series

Overloaded Statistical Functions

Function Description

iqr
(timeseries)

Return the interquartile range of the time-series data

max
(timeseries)

Return the maximum value of the time-series data

mean
(timeseries)

Return the mean of the time-series data

median
(timeseries)

Return the median of the time-series data

min
(timeseries)

Return the minimum of the time-series data

std
(timeseries)

Return the standard deviation of the time-series data
3-15

3 Analyzing Time Series from the Command Line

3-1
sum
(timeseries)

Return the sum of the time-series data

var
(timeseries)

Return the variance of the time-series data

Overloaded Statistical Functions

Function Description
6

Creating Time-Series Collection Objects
Creating Time-Series Collection Objects
A time-series collection object, called tscollection, is a MATLAB variable that
groups several time series with a common time vector. The time series that you
include in the tscollection are called members of this collection.

MATLAB provides several functions for convenient analysis and manipulation
of time series in a tscollection object.

tscollection Constructor Syntax
Working with a time-series collection at the command line requires that you
first create a tscollection object.

The table below summarizes the syntax for creating a time-series collection
object by using the tscollection constructor. For an example of creating a
tscollection object, see “Creating a Time-Series Collection” on page 3-26.

tscollection Contructor Syntax

Syntax Description

tsc =
tscollection(TimeSeries)

Creates a tscollection object with one
or more timeseries objects already
created in the MATLAB workspace.

The argument TimeSeries can be a

• Single timeseries object

• Cell array of timeseries objects

The TimeSeries objects share a common
vector in the time-series collection.
3-17

3 Analyzing Time Series from the Command Line

3-1
tsc = timeseries(Time) Creates an empty tscollection object
with the time vector Time.

When time values are date strings, you
must specify Time as a cell array of date
strings.

ts = timeseries(Time,
TimeSeries, 'Parameter',
Value,...)

Optionally enter the following
parameter-value pairs after the Time
and TimeSeries arguments:

• Name
• IsDatenum

Name is described in “Properties of
tscollection Objects” on page 3-19.

When set to true, IsDatenum specifies
that the Time values are serial dates.

tscollection Contructor Syntax

Syntax Description
8

Creating Time-Series Collection Objects
Properties of tscollection Objects
This table lists the properties of the tscollection object. You can specify Time,
TimeSeries, and Name properties as input arguments in the constructor.

tscollection Object Properties

Property Description

Name tscollection name entered as a string. This name can
be different from the name of the tscollection variable
in the MATLAB workspace.

Time When TimeInfo.StartDate is empty, the numerical Time
values are measured relative to zero in specified units.
When TimeInfo.StartDate is defined, the time values
are date strings measured relative to the StartDate.

The length of Time must be the same as either the first or
the last dimension of Data.

TimeInfo Contains fields for storing contextual information about
Time:

• Units — Time units with the following possible values:
'weeks', 'days', 'hours', 'minutes', 'seconds',
'milliseconds', 'microseconds', and 'nanoseconds'

• Start — Start time

• End — End time (read-only)

• Increment — Interval between two subsequent time
values

• Length — Length of the time vector (read-only)

• Format — String defining the date string display
format. See datestr for more information.

• StartDate — Date string defining the reference date.
See setabstime (tscollection) for more information.

• UserData — Stores any additional user-defined
information
3-19

3 Analyzing Time Series from the Command Line

3-2
tscollection Functions
The following categories of functions are available for working with time-series
collection objects:

• “General tscollection Functions” on page 3-20

• “Data and Time Manipulation” on page 3-20

General tscollection Functions

Data and Time Manipulation

General tscollection Functions

Function Description

get
(tscollection)

Query tscollection property values

isempty
(tscollection)

Evaluate to true for an empty tscollection object

length
(tscollection)

Return the length of the time vector

plot (timeseries) Plot individual time series in a collection

size
(tscollection)

Return the size of a tscollection object

set
(tscollection)

Set tscollection property values

Manipulate tscollection Data and Time

Function Description

addts Add a timeseries object to a
tscollection

addsampletocollection Add data samples to a tscollection
0

tscollection Functions
delsamplefromcollection Delete data samples from a tscollection
object

getabstime (tscollection) Extract a date string time vector into a
cell array

getsampleusingtime
(tscollection)

Extract data samples from a
tscollection occurring between specified
time values

gettimeseriesnames Return a cell array of names of time series
in a tscollection

horzcat (tscollection) Overloaded horizontal concatenation of
tscollection objects. Combines several
timeseries objects with the same time
vector into one time-series collection.

removets Remove one or more timeseries objects
from a tscollection

resample (tscollection) Redefine a tscollection object on a new
time vector

setabstime (tscollection) Set the time values in the time vector of a
tscollection to specific date strings

settimeseriesnames Change the name of the selected
timeseries object in a tscollection

vertcat (tscollection) Overloaded vertical concatenation of
tscollection objects. Joins time series
collections along the time dimension.

Manipulate tscollection Data and Time (Continued)

Function Description
3-21

3 Analyzing Time Series from the Command Line

3-2
Example — Analyzing Time-Series Data at the Command
Line

This example describes the sample data and illustrates several common tasks:

• “About the Example Data” on page 3-22

• “Creating timeseries Objects” on page 3-23

• “Modifying Time-Series Units and Interpolation Method” on page 3-25

• “Defining Events” on page 3-26

• “Creating a Time-Series Collection” on page 3-26

• “Resampling the tscollection” on page 3-27

• “Adding a Data Sample to the Tscollection” on page 3-27

• “Handling Missing Data” on page 3-28

• “Removing a Time Series from the Collection” on page 3-28

• “Changing a Numerical Time Vector to Date Strings” on page 3-28

• “Plotting tscollection Members” on page 3-29

About the Example Data
The following table contains a data set with hourly traffic counts at three road
intersections in the same town, collected over a 24-hour period.

Hourly Traffic Counts

Time (Hour) Intersection 1 Intersection 2 Intersection 3

1 11 11 9

2 7 13 11

3 14 17 20

4 11 13 9

5 43 51 69

6 38 46 76

7 61 132 186
2

Example — Analyzing Time-Series Data at the Command Line
Creating timeseries Objects
This portion of the example illustrates how to create several timeseries
objects from an array.

%% Import the sample data
load count.dat

This adds the variable count to the MATLAB workspace.

8 75 135 180

9 38 88 115

10 28 36 55

11 12 12 14

12 18 27 30

13 18 19 29

14 17 15 18

15 19 36 48

16 32 47 10

17 42 65 92

18 57 66 151

19 44 55 90

20 114 145 257

21 35 58 68

22 11 12 15

23 13 9 15

24 10 9 7

Hourly Traffic Counts (Continued)

Time (Hour) Intersection 1 Intersection 2 Intersection 3
3-23

3 Analyzing Time Series from the Command Line

3-2
To view the count matrix, type

count

MATLAB responds by showing the following 24-by-3 matrix of double values,
where each column represents the hourly traffic count at three intersections
(see “About the Example Data” on page 3-22):

11 11 9
7 13 11
14 17 20
11 13 9
43 51 69
38 46 76
61 132 186
75 135 180
38 88 115
28 36 55
12 12 14
18 27 30
18 19 29
17 15 18
19 36 48
32 47 10
42 65 92
57 66 151
114 145 257
35 58 68
11 12 15
13 9 15
10 9 7

Create three timeseries objects to store the data collected at each intersection:

count1=timeseries(count(:,1),[1:24],'name', 'intersection1');
count2=timeseries(count(:,2),[1:24],'name', 'intersection2');
count3=timeseries(count(:,3),[1:24],'name', 'intersection3');

By default, this creates a time vector in units of seconds. You will change these
units to hours in “Modifying Time-Series Units and Interpolation Method” on
page 3-25.
4

Example — Analyzing Time-Series Data at the Command Line
Modifying Time-Series Units and Interpolation
Method
After you have created the timeseries object, you can modify its properties by
using dot notation.

To view the current time-series properties, issue the get (timeseries)
command.

get(count1)

MATLAB responds by displaying the current property values of the count1
timeseries object:

Events: []
Name: 'intersection1'
Data: [24x1 double]
DataInfo: [1x1 tsdata.datametadata]
Time: [24x1 double]
TimeInfo: [1x1 tsdata.timemetadata]
Quality: []
QualityInfo: [1x1 tsdata.qualmetadata]
IsTimeFirst: true
TreatNaNasMissing: true

To view the current DataInfo properties, use dot notation.

count1.DataInfo

Then change the data units and the default interpolation method for count1:

count1.DataInfo.Units = 'cars'; % Specify new data units
count1.DataInfo.Interpolation = tsdata.interpolation('zoh');

% Set the interpolation method to zero-order hold

To verify that the DataInfo properties have been modified, type

count1.datainfo

MATLAB confirms the change by displaying

Time Series Data Meta Data Object
 Unit cars
 Interpolation Method zoh
3-25

3 Analyzing Time Series from the Command Line

3-2
Modify the time units to be 'hours' for the three time series:

count1.TimeInfo.Units = 'hours';
count2.TimeInfo.Units = 'hours';
count3.TimeInfo.Units = 'hours';

Defining Events
You can add two events to the data to indicate the times of the AM commute
and PM commute by using the following syntax:

%% Construct and add the first event to all time series
e1 = tsdata.event('AMCommute',8);

% Construct the first event at 8 AM
e1.Units = 'hours'; % Specify the time units of the time
count1 = addevent(count1,e1); % Add the event to count1
count2 = addevent(count2,e1); % Add the event to count2
count3 = addevent(count3,e1); % Add the event to count3

%% Construct and add the second event to all time series
e2 = tsdata.event('PMCommute',18);

% Construct the first event at 6 PM
e2.Units = 'hours'; % Specify the time units of the time
count1 = addevent(count1,e2); % Add the event to count1
count2 = addevent(count2,e2); % Add the event to count2
count3 = addevent(count3,e2); % Add the event to count3

Creating a Time-Series Collection
Create a tscollection object named count_coll and add to it two out of three
time series already in the MATLAB workspace, by using the following syntax:

tsc=tscollection({count1 count2},'name', 'count_coll')

MATLAB responds with

Time Series Collection Object: count_coll
Time vector characteristics
Start time 1 hours
End time 24 hours
Member Time Series Objects:
 intersection1
 intersection2
6

Example — Analyzing Time-Series Data at the Command Line
Note that the Name property of the time series is used to name the collection
members as intersection1 and intersection2.

Add the third time series in the workspace by using the following syntax:

tsc=addts(tsc, count3)

MATLAB now lists all three time series as members in the collection:

Time Series Collection Object: count_coll
Time vector characteristics
Start time 1 hours
End time 24 hours
Member Time Series Objects:
 intersection1
 intersection2

intersection3

Resampling the tscollection
Resampling a tscollection object casts its members onto a new time vector.
Any new data points are calculated using the default interpolation method you
associated with the time series.

To resample the time series for every half hour and save it as a new collection
object, enter the following syntax:

tsc1=resample(tsc,[1:0.5:24])

The new tscollection variable is tsc1. The new data points in the
intersection1 member are calculated by using the zero-order hold
interpolation method, as specified in “Modifying Time-Series Units and
Interpolation Method” on page 3-25. The new data points in intersection2
and intersection3 are calculated using linear interpolation (by default).

Adding a Data Sample to the Tscollection
You can add a new data sample to the tscollection at 3.3 hours.

The following syntax only specifies data for the intersection1 member:

tsc1=addsampletocollection(tsc1,'time',3.3,'intersection1',5)
3-27

3 Analyzing Time Series from the Command Line

3-2
There are currently three members in the tsc1 collection. Because you did not
specify the data values for the intersection2 and intersection3 time-series
members in the new sample, the missing values are represented by NaNs.

Handling Missing Data
Missing time-series data is represented by NaNs in the time series. When you
perform data analysis, you might want to either remove the missing data or
interpolate it by using the interpolation method you specified for that time
series.

Removing Missing Data
To remove all data samples containing NaN values, enter the following syntax:

tsc1=delsamplefromcollection(tsc1,'index',...
find(isnan(tsc1.intersection2.data)));

Interpolating Missing Data
Because the sample with missing data was removed by the previous command,
add the data sample again to reintroduce NaN values in intersection2 and
intersection3 as follows:

tsc1=addsampletocollection(tsc1,'time',3.3,'intersection1',5);

To interpolate the missing values in the time-series collection, use the
resample function:

tsc1=resample(tsc1,tsc1.Time)

Removing a Time Series from the Collection
To remove the 'intersection3' time series from the tscollection, issue the
following command:

tsc1=removets(tsc1,'intersection3')

Changing a Numerical Time Vector to Date Strings
To convert a numerical time vector to date strings, you must set the StartDate
field of the TimeInfo property. For example, suppose the reference date occurs
on December 25, 2004:

tsc.TimeInfo.StartDate='DEC-25-2004 00:00:00';
8

Example — Analyzing Time-Series Data at the Command Line
To verify that the time vector now uses date strings, type the following
command to look at the sixth element of the intersection2 member (which
was previously interpolated):

tsc1.intersection2(6)

MATLAB returns

Time Series Object: unnamed
Time vector characteristics
 Length 1
 Start date 25-Dec-2004 03:18:00
 End date 25-Dec-2004 03:18:00
Data characteristics
 Interpolation method linear
 Size [1 1]
 Data type double
Time Data Quality

25-Dec-2004 03:18:00 15.8

Note that the sixth element of the intersection2 member has an interpolated
data value of 15.8 cars at 3.3 hours (or 3:18:00). This data value was previously
a NaN when you added a new data sample to the time-series collection without
specifying the data for this time-series member (see “Adding a Data Sample to
the Tscollection” on page 3-27).

Plotting tscollection Members
You can plot the two remaining time-series members in the tsc1 time-series
collection by using the following sequence of commands:

plot(tsc1.intersection1); hold on;
plot(tsc1.intersection2)
3-29

3 Analyzing Time Series from the Command Line

3-3
This plot shows the two time series in the collection: intersection1 and
intesection2. intersection1 uses the zero-order hold interpolation method
and therefore has a jagged curve. In contrast, intersection2 uses a linear
interpolation method.

The circles on the plot indicate events, as defined in “Defining Events” on
page 3-26.
0

4

Using the Time Series
Tools GUI

Describes how to use the MATLAB Time Series Tools graphical user interface (GUI) for analyzing
time-series data.

Introduction (p. 4-2) A brief overview of the Time Series Tools GUI and the
typical workflow

Importing Data into Time Series Tools
(p. 4-9)

Summary of supported data sources; instructions for
importing the data into Time Series Tools from MATLAB,
Simulink, and other data sources; handling missing data

Editing Data, Time, Attributes, and
Events (p. 4-15)

How to access the GUI for editing time-series data, time,
units, interpolation method, quality codes, and events

Working with Time Plots (p. 4-17) Creating a time plot and modifying the plot properties

Selecting Time-Series Data (p. 4-25) How to select the time-series data in a time plot on which
you want to focus the analysis

Working with a Histogram (p. 4-29) Creating a histogram and modifying plot properties

Working with a Spectral Plot (p. 4-33) Creating a spectral plot and modifying plot properties

Working with a Correlogram (p. 4-39) Creating an autocorrelation plot and modifying plot
properties

Comparing Time Series (p. 4-43) Creating an XY and a cross-correlation plot to compare
time series

Example — Analyzing Time-Series
Data with Time Series Tools (p. 4-47)

An example to illustrate importing, plotting, and
analyzing time-series data

4 Using the Time Series Tools GUI

4-2
Introduction
The Time Series Tools graphical user interface (GUI) extends the MATLAB
environment for analyzing both time- and frequency-domain time-series data.

For more information about working with time-series data from the command
line, see Chapter 3, “Analyzing Time Series from the Command Line.”

This section contains the following topics:

• “Starting Time Series Tools” on page 4-2

• “Time Series Tools Window” on page 4-3

• “Workflow in Time Series Tools” on page 4-4

• “Time-Series Analysis Operations” on page 4-5

• “Plots in Time Series Tools” on page 4-6

• “Customizing Plot Line and Marker Styles” on page 4-7

• “Automatic M-Code Generation” on page 4-7

• “Getting Help” on page 4-7

Starting Time Series Tools
To start Time Series Tools, type

tstool

in the MATLAB Command Window.

This opens the Time Series Tools GUI without loading any data. To learn how
to import data into Time Series Tools, see “Importing Data into Time Series
Tools” on page 4-9.

Alternatively, you can start Time Series Tools and simultaneously import the
data from the MATLAB workspace, including

• Time-series objects (see “Creating timeseries Objects” on page 3-3)

• Time-series collection objects (see “Creating Time-Series Collection Objects”
on page 3-17)

• Simulink® logged signals (see the Simulink documentation about enabling
signal logging in Simulink models)

Introduction
Note If a Simulink logged signal Name property contains a “/”, the entire
logged signal — including all levels of the signal hierarchy — is not imported
into Time Series Tools.

The following table summarizes the command-line syntax for starting Time
Series Tools and loading data from the MATLAB workspace:

Time Series Tools Window
The Time Series Tools window consists of the following three areas:

• Time Series Session tree — Organizes time-series data, Simulink
time-series data, and the Views (or plots) you create from this data. The
Simulink Time Series node is shown only when you have Simulink installed
on your computer.

Tip The quickest way to create plots is by dragging and dropping time series
or collections into a Views node that corresponds to the kind of plot you want.

• Application pane — Located to the right of the tree, it enables operations
on the selected data or plot node in the tree.

Syntax for Loading Data from the MATLAB Workspace

To Load... Syntax Description

Time series tstool(tsname) tsname is the name of a
time-series object.

Time-series
collections

tstool(tscname) tscname is the name of a
time-series collection
object.

Simulink logged
signals

tstool(sldata) sldata is the name of the
variable that represents
logged-signal data from a
Simulink model.
4-3

4 Using the Time Series Tools GUI

4-4
• Context-sensitive help pane — Located on the far right of the Time Series
Tools window, it provides brief instructions for working with the application
pane GUI. For more information, see “Getting Help” on page 4-7.

Workflow in Time Series Tools
A typical workflow with Time Series Tools might include the following tasks:

1 Importing data from an Excel Workbook, MAT-file, MATLAB workspace, or
Simulink logged-signal data (see “Importing Data into Time Series Tools” on
page 4-9)

2 Creating a time plot (see “Working with Time Plots” on page 4-17) or
histogram (see “Working with a Histogram” on page 4-29) to explore the
data

3 Selecting a subset of the data for analysis (see “Selecting Time-Series Data”
on page 4-25)

������������	�	
�������������
�������	������������������
�������	�����������

�������������	����������
�����������������	������
������������������������

��	���	������������
���������������������
	�����������

��������������������
�����	�������	��������
������������������

Introduction
4 Preparing the data for analysis by

- Correcting errors (see “Editing Data, Time, Attributes, and Events” on
page 4-15)

- Modifying outliers (see “Selecting Data by Using Rules” on page 4-26)

- Interpolating or removing missing observations (see “Handling Missing
Data” on page 4-12)

5 Generating derived plots to gain further insight into your data, such as

- Spectral plots (see “Working with a Spectral Plot” on page 4-33)

- Autocorrelation plots (see “Working with a Correlogram” on page 4-39)

- XY plots (see “Creating an XY Plot” on page 4-43)

- Cross-correlation plots (see “Creating a Cross-Correlation Plot” on
page 4-44)

6 Exporting data from Time Series Tools to the MATLAB workspace, Excel
worksheet, or MAT-file.

Time-Series Analysis Operations
The following table summarizes the operations you can perform on an
individual time series or on a time-series collection. These operations are
available from the Data menu in Time Series Tools after you select the time
series or collection node in the tree.

You can access on-the-spot instructions via the Help button in the Time Series
Tools dialogs.

Summary of Time-Series Data Analysis Operations

Data Menu Item Description

Remove
Missing Data

Delete the times that contain missing data

Detrend Subtract a constant or a linear trend from the data

Filter Smooth and shape the time-series data
4-5

4 Using the Time Series Tools GUI

4-6
Plots in Time Series Tools
You can generate the following types of plots in Time Series Tools:

• Time plot — Shows time-series data as a function of time. The time plot
quickly exposes important data features, such as outliers, discontinuities,
trends, and periodicities. For more information about time plots, see
“Working with Time Plots” on page 4-17.

• Histogram — Shows the distribution of data values, generated by counting
the number of data values within a specific range, and displays each range
as a rectangular bin. For a multivariate time-series object, all columns are
shown on the same histogram. For more information about histogram plots,
see “Working with a Histogram” on page 4-29.

• Spectral plot — Shows data periodicities by plotting the estimated power
spectral density as a function of frequency. For more information about
spectral plots, see “Working with a Spectral Plot” on page 4-33.

• Correlation plot — Shows the autocorrelation and cross-correlation at
various lags. For more information about correlation plots, see “Working
with a Correlogram” on page 4-39.

• XY plot — Shows relationships between two time series. For more
information about comparing time series on an XY plot, see “Comparing
Time Series” on page 4-43.

Resample Redefine a time series onto a new time vector by using
interpolation

Transform
Algebraically

Create a new time series by algebraically manipulating
existing time series

This command is available only when you select an
individual time series in the tree.

Descriptive
Statistics

Get summary statistics for each time series

Summary of Time-Series Data Analysis Operations (Continued)

Data Menu Item Description

Introduction
Customizing Plot Line and Marker Styles
When you plot several time series on the same axes, or a single time-series
object that contains multiple columns of data, Time Series Tools provide a way
to visually distinguish between the different sets of data.

To distinguish data by color, type of marker, or line style, select Plot > Set Line
Properties in the Time Series Tools window. This opens the Line Styles dialog.
Click Help to learn how to work with this dialog.

Note Your changes are applied to all plots that are currently open.

Automatic M-Code Generation
You can enable automatic generation of M-code while you perform operations
that modify the time-series data in the GUI. Select File > Record M Code in
the Time Series Tools window.

The generated M code can serve as a valuable learning tool for using the
time-series command-line API. For more information, see Chapter 3,
“Analyzing Time Series from the Command Line.”

Getting Help
Time Series Tools provides context-sensitive help in the GUI.

In the Time Series Tools window, the context-sensitive help pane is available
on the right to assist you with the primary tasks. To toggle displaying or hiding
the help pane, click the button in the toolbar. You can change the width of
the help pane by dragging the vertical divider to the left or to the right.

Context-sensitive help is also available via the Help button in the Time Series
Tools dialogs.
4-7

4 Using the Time Series Tools GUI

4-8
In the Time Series Tools Import Wizard, you can also access field-level help to
assist you with importing data, as follows:

1 Right-click the text label of a field on which you want to get help.

2 Select What's This from the shortcut menu.

Importing Data into Time Series Tools
Importing Data into Time Series Tools
After starting Time Series Tools, you can import the data from a file or from
the MATLAB workspace.

This section contains the following topics:

• “Types of Data Sources” on page 4-9

• “Observation vs. Data Sample” on page 4-10

• “How to Import Data” on page 4-10

• “Changes to the Data During Import” on page 4-11

• “Handling Missing Data” on page 4-12

• “Importing Multivariate Data” on page 4-12

Types of Data Sources
You can import the following kinds of data into Time Series Tools from a file or
from the MATLAB workspace:

• Raw data from an Excel file, MAT-file, or an array in the MATLAB
workspace

The Import Wizard in Time Series Tools facilitates assigning a time vector
to the data during import. You can either import the time vector or define a
uniformly-spaced time vector.

Note You use the Import Wizard in Time Series Tools specifically to create
time-series objects. This is different from the Import Wizard you access from
the MATLAB Command Window, which imports data as MATLAB vectors and
matrices.

• Timeseries or tscollection objects in the MATLAB workspace

For more information about creating these objects, see Chapter 3, “Analyzing
Time Series from the Command Line.”

• Simulink® logged-signal data from a Simulink model

For more information about enabling signal logging in Simulink models, see
the Simulink documentation.
4-9

4 Using the Time Series Tools GUI

4-1
Observation vs. Data Sample
To properly understand importing time-series data, it is important to clarify
the difference between an observation and a data sample.

An observation is a single scalar value recorded at a specific time.

A time-series data sample consists of one or more observations recorded at a
specific time. The number of data samples in a time series is the same as the
length of the time vector. If you create a time series that contains two data
columns, the size of each sample contains two values. The following table
explains the size of a time-series data sample:

Suppose that you have two redundant sensors simultaneously recording the
same signal. The data collected by each of the sensors constitutes a complete
set of observations. When importing the data, you can create a multivariate
time-series object that contains several observation sets. This is convenient
when all data sets have the same units.

Alternatively, you can create one time-series object for each data set and then
group them into a time-series collection. This is useful when the data sets have
different units. For more information, see “From Raw Data to a Time-Series
Collection” on page 4-13.

How to Import Data
The following table summarizes how to access the GUI for importing data into
Time Series Tools from each of the supported data sources. After you open the
appropriate GUI, you can get additional instructions by clicking Help.

Data Sample Size

Type of Data Data-Sample Description

A vector with length N Scalar value

An N x M matrix with
N samples

Vector with M values
0

Importing Data into Time Series Tools
Each time series you import or create by using the Import Wizard is added as
a node to the Time Series Session tree in the Time Series Tools window.

Note You cannot import a timeseries or tscollection object from a
MAT-file.

Changes to the Data During Import
When you import data into Time Series Tools, a copy of the data is imported
without affecting the original data source. The copy in Time Series Tools is
automatically modified as follows:

• Rowwise data is transposed to become columnwise with the time vector in
the first column.

• Non-double data, such as int, logical, and fixed-point, is converted to
double.

• Missing data values are replaced by NaNs.

• Sparse matrix is converted to full matrix.

• Data that has more than two dimensions is reshaped to two dimensions such
that dimensions three and higher become additional columns in the data
table. For example, a 2-by-3-by-5 data array becomes a 2-by-15 data array
(when time is aligned with the first dimension).

Type of Data Source File Menu Command

Excel Worksheet (.xls file)
data table

Create Time Series from File

MAT-file array Create Time Series from File

MATLAB workspace array Import from Workspace > Array Data

Time-series or collection object
in the MATLAB workspace

Import from Workspace > Time Series
or Collection Object

Simulink logged-signal data Import from Workspace > Simulink
Data Logs
4-11

4 Using the Time Series Tools GUI

4-1
Caution When exporting the data you imported into Time Series Tools, note
that it might differ from the original data you imported.

Handling Missing Data
When you import data from an Excel Worksheet that contains missing values
into Time Series Tools, the missing data is automatically replaced with NaNs.

You can also deliberately replace selected data with NaNs, as described in
“Selecting Time-Series Data” on page 4-25.

Time Series Tools enables you to handle missing data in the Process Data
dialog by performing the following operations:

• Interpolate missing values using the method specified in “Editing Data,
Time, Attributes, and Events” on page 4-15.

You can interpolate either by using the existing data in the current time
series, or the interpolated data value at the same time from another time
series.

• Remove samples with missing values.

To open the Process Data dialog from the Time Series Tools window,

1 Select a time series or a collection in the Time Series Session tree.

2 Select Data > Interpolate or Data > Remove Missing Data.

3 In the Process Data dialog, click Help to access context-sensitive help.

Importing Multivariate Data
When data consists of several related variables, you might want to keep these
observations synchronized during data analysis.

There are two ways to prepare multivariate data in Time Series Tools for
synchronized analysis:

• Create a time-series collection with a common time vector, where each
variable is a member of the collection.
2

Importing Data into Time Series Tools
• Import several data sets into a single time-series object such that each
variable becomes a column in the time-series object.

Choosing How to Represent Multivariate Data
Whether you choose to represent multivariate data as several time series in a
collection or a single time series with several columns depends on how you
want to label your data. In either case, the data remains synchronized after
manipulation and transformation.

When your data set contains different quantities that must be distinguished
during analysis, then it is better to store each quantity as a separate time
series and then group them into a collection. For example, if you are working
with the stock-price data in a portfolio, you might want to represent each stock
as a separate time series.

Suppose you have a data set consisting of several redundant sensor
measurements: all sensors are recording the same quantity. In this case, it
might be best to store the entire data set in a single time-series object.

From Raw Data to a Time-Series Collection
The following procedure outlines a simple way to create a time-series collection
from a multivariate data set, which comes from either an Excel workbook or a
MATLAB array.

At each step, you can click the Help button in the GUI to access
context-sensitive help.

1 To import each data set as a separate time series, select File > Import >
Raw Data in Time Series Tools to open the Import Wizard.

2 After importing the data, select the Time Series node in the tree and export
all time series from Time Series Tools to the MATLAB workspace.

3 In the MATLAB Command Window, combine the individual time series into
a time-series collection object. For an example of creating a time-series
collection from individual time series, see “Creating a Time-Series
Collection” on page 3-26.

4 In Time Series Tools, select File > Import > Time Series or Collection
Object to import the time-series collection from the MATLAB workspace.
4-13

4 Using the Time Series Tools GUI

4-1
5 Perform analysis tasks on the time-series collection. For a list of the kinds of
tasks you can perform, see “Workflow in Time Series Tools” on page 4-4.
4

Editing Data, Time, Attributes, and Events
Editing Data, Time, Attributes, and Events
Time Series Tools provides an easy way to edit time-series data, time,
attributes, and events.

Time-series attributes consist of the following:

• Data quality codes — Used to annotate the quality of each value in the data
table

• Data units — Used to annotate the data axis on plots

• Interpolation method — Used by default for this time series to fill in missing
data or to resample the data onto a new time vector

You use events to mark the data at a specific time in the data table and on a
plot. Events also provide a convenient way to synchronize the data for multiple
time series.

To display the interface for editing time series and adding events, select the
time-series data node in the tree and follow the instructions in the
context-sensitive help pane.

Note To toggle displaying and hiding the help pane, click the button in
the toolbar.
4-15

4 Using the Time Series Tools GUI

4-1
���������	���
���	�������

 �����������������
��	��	��	
	�����	��
���������
����

 �����������������
���	����
��������
��	���	������	��

�	�!�"���	��������
���	��������#��	��
�����$���	��$����
	��������	����������
6

Working with Time Plots
Working with Time Plots
After you import the data into Time Series Tools, it is helpful to first generate
a time plot.

By plotting your data as a function of time, you can quickly gain insight into
the following data features:

• Outliers, or values that have a low likelihood of being consistent with the rest
of the data

• Discontinuities

• Trends

• Periodicities

• Time interval containing the data of interest

These features, when considered in the context of the data, enable you to plan
your analysis strategy.

This section contains the following topics:

• “Creating a Time Plot” on page 4-17

• “Time Plot Tools” on page 4-19

• “Data Analysis from a Time Plot” on page 4-19

• “Scaling the Time Plot Graphically” on page 4-20

• “Scaling the Time Plot in the Property Editor” on page 4-22

Note You cannot save the plot from the plot window.

Creating a Time Plot
A convenient way to create a time plot is by dragging and dropping a
time-series data node into the Time Plots node in the Times Series Session
tree.

The time plot opens in a separate plot window that is similar to the standard
MATLAB figure window, as described in the MATLAB documentation.
4-17

4 Using the Time Series Tools GUI

4-1
Additional commands that are specific to time-series plots are included in the
toolbar (see “Time Plot Tools” on page 4-19) and the Tools menu.

 	����������	��������	��%

&��������'�	���������	��
��������������������	��
��������������������!	��
����	��	����������	����
8

Working with Time Plots
Time Plot Tools
The Time Plot window contains several tools that are specific to time-series
data. Click the button to enable the corresponding mode.

Data Analysis from a Time Plot
The following table summarizes the operations you can perform on an
individual time series or on a time-series collection from a time plot.

These operations are available by right-clicking inside the time plot and
selecting a command from the shortcut menu. Context-sensitive help provides
detailed, on-the-spot instructions via the Help button in the Time Series Tools
dialogs.

Time Plot Commands Specific to Time Series

Tool Button Description

Select Data — After enabling this mode, click and drag
a rectangular region to select the data inside it.

Move Time Series — After enabling this mode, click
and drag a time series to translate a time series on the
plot and recalculate the data and time values.

Rescale Time Series — Click to rescale both axes of the
time plot.

Select Interval — After enabling this mode, click and
drag to select data within one or more time intervals.
4-19

4 Using the Time Series Tools GUI

4-2
Scaling the Time Plot Graphically
To identify important data features, it is often helpful to view the time plot at
different scales. For data sets with fewer than 5000 points, the time-plot axes
are scaled automatically to display the entire data set.

For performance reasons, larger data sets are shown in parts by displaying
5000 data points at a time. In this case, you can pan the data.

Summary of Time-Series Data Analysis Operations

Shortcut Menu
Command

Description

Select Data Opens a dialog where you select data in a time plot by
defining logical MATLAB expressions.

Remove
Missing Data

Delete the times that contain missing data.

For time series with multiple data columns, the entire
data sample is removed if any part of it contains
missing data (see “Observation vs. Data Sample” on
page 4-10).

Detrend Subtract a constant or a linear trend from the data.

Filter Smooth and shape the time-series data.

Resample Redefine a time series onto a new time vector by using
interpolation.

Transform
Algebraically

Create a new time series by algebraically manipulating
existing time series.

Available only when you select an individual time
series in the tree.

Descriptive
Statistics

Get summary statistics of each time series.
0

Working with Time Plots
Note You can also scale axes in the Property Editor, where you have the
additional option of setting axis limits by using events. To learn how to scale
axes in the Property Editor, see “Scaling the Time Plot in the Property Editor”
on page 4-22. For more information about defining events, see “Editing Data,
Time, Attributes, and Events” on page 4-15.

Use the following procedures when graphically rescaling the time plot axes:

• “Zooming In on a Data Region” on page 4-21

• “Centering a Plot Region” on page 4-22

• “Restoring the Original Scale” on page 4-22

Zooming In on a Data Region
The easiest way to rescale a time plot is by using the Zoom In command.

1 In the Time Plot window, click the Zoom In button in the toolbar.

This changes the mouse pointer to .

2 Do you want to zoom in only on a specific axis? By default, you zoom in on
both axes.

- If yes, go to step 3.

- If no, go to step 4.

3 Right-click anywhere in the time plot and select one of the following:

- To zoom in on the horizontal axis only, select Zoom Options > Horizontal
Zoom in the shortcut menu.

- To zoom in on the vertical axis only, select Zoom Options > Vertical Zoom
in the shortcut menu.

4 Click the time plot region that you want to enlarge and center in the time
plot.
4-21

4 Using the Time Series Tools GUI

4-2
Note To zoom out, right-click anywhere in the window and select Zoom Out
in the shortcut menu.

Centering a Plot Region
The simplest way to center a specific region of the plot without changing its
magnification is by using the Pan command.

To center a specific plot region,

1 In the Time Plot window, click the Pan button in the toolbar.

This changes the pointer to .

2 Click anywhere on the plot and drag it to the desired position.

Restoring the Original Scale
Right-click anywhere inside the time plot and select Reset to Original View
from the shortcut menu. This displays the full data set or the maximum
window of 5000 points (whichever is larger).

Scaling the Time Plot in the Property Editor
The Property Editor for time-series plots is displayed at the bottom of the Time
Plot window when you first create the plot.

This section describes how to perform the following operations in the Property
Editor:

• “Scaling the Y Axis” on page 4-23

• “Scaling the Time Axis” on page 4-23

• “Displaying Summary Statistics on a Plot” on page 4-24

Tip If you close the Property Editor, you can reopen it by selecting View >
Property Editor from the Time Plot menu bar. To display the Property Editor
for a specific time-series plot, select it in the Plot Browser.
2

Working with Time Plots
Scaling the Y Axis

1 In the Time Plot Property Editor, select the Define Y Axes Scaling tab (if it
is not already selected).

2 In the Ymin column, enter the minimum value of the Y axis. Press Enter.

3 In the Ymax column, enter the maximum value of the Y axis. Press Enter.

Tip To rescale the plot to display the full data set again, select auto in the
Scaling column.

Scaling the Time Axis
You can scale the time axis in the Define Domain tab of the Time Plot Property
Editor by specifying any of the following:

• The Start or End time, or both

• The Start or End event, or both

• A combination of a time and an event

If you have not defined any events for your time-series data, you can only
specify the axis limits by time values. For more information about defining
events, see “Editing Data, Time, Attributes, and Events” on page 4-15.
4-23

4 Using the Time Series Tools GUI

4-2
Note. If you are working with an Absolute time vector that uses calendar
dates (nonempty StartDate property), you can display the time series on both
an absolute and a relative time vector. However, if your time series uses a
Relative time vector (empty StartDate property), you can only display the
times series on a relative time vector. For more information about time series
properties, see “Properties of a timeseries Object” on page 3-5.

Displaying Summary Statistics on a Plot
The following procedure describes how to display the mean, standard deviation
(STD), and median of your time-series data on the time plot. You can specify
the time interval for which these statistical measures are calculated.

Tip To view summary statistics for any time-series object that you imported
or loaded into Time Series Tools, select that time series in the tree and choose
Data > Descriptive Statistics.

1 In the Time Plot Property Editor, select the Define Statistical Annotations
tab.

2 In the Show column, select the check box corresponding to each statistical
measure you want to display on the plot:

- Mean

- STD

- Median

3 Do you want to change the time interval for any of the selected statistics? By
default, the time interval is set to the entire length of the time vector.

- If yes, edit the Start Time or the End Time, or both, for each statistical
measure.

If your time values are in terms of calendar dates, be careful to enter the
time in the correct format.

- If no, you are done.
4

Selecting Time-Series Data
Selecting Time-Series Data
Before beginning data analysis, you might want to select the data on which to
focus your analysis.

You can select the data in a specific time interval or within a specific range of
values from a time plot:

• “Selecting Data by Using Rules” on page 4-26

Select data by creating logical expressions. Identify outliers and constant
values.

• “Selecting Data Graphically” on page 4-27

Describes how to use the mouse to select data values or time intervals.
4-25

4 Using the Time Series Tools GUI

4-2
After you select the data, you can perform the following operations:

Selecting Data by Using Rules
You can specify data-selection rules in the Select Data Using Rules dialog,
accessed from a time plot. For more information about creating time plots, see
“Creating a Time Plot” on page 4-17.

To open the Select Data Using Rules dialog, right-click inside the time plot
where you want to select data and choose Select Data from the shortcut menu.

Task Operation

Remove selected data from the time
series

With multiple data columns in a
single time-series object, removes
the entire data sample at that time.

Right-click the selected data in the
time plot and choose Remove
Observations from the shortcut
menu.

Remove all but the selected data
from the time series

Right-click the selected data in the
time plot and choose Keep
Observations from the shortcut
menu.

Replace the selected data with NaN
(“Not-a-Number”) values

For more information, see
“Handling Missing Data” on
page 4-12.

Press the Delete key. Alternatively,
right-click the selected data in the
time plot and choose Replace with
NaNs.

Then do one of the following to
handle NaNs:

• Interpolate the missing values.

• Remove the data and the
associated times from the time
series.
6

Selecting Time-Series Data
You can define up to four kinds of data-selection conditions:

• Bounds — Upper and lower bounds for time and data values

• Outlier detection — Condition for detecting outliers, or data values that have
a low likelihood of being consistent with the rest of the data

• MATLAB expression — A logical MATLAB expression that selects specific
data values

• Flatline values — Condition for detecting flatlines, entered as the number of
successive data points with a constant value

To learn what to do after you select the data, see “Selecting Time-Series Data”
on page 4-25.

Selecting Data Graphically
You can select data in a time plot by using the mouse. For more information
about creating time plots, see “Creating a Time Plot” on page 4-17.

You can select data using two modes:

• Data mode — Selects data values in a rectangular region

For more information, see “How to Select Data in a Rectangular Region on
the Plot” on page 4-28.

• Time mode — Selects data values in a specific time interval

For more information, see “How to Select Data in a Time Interval” on
page 4-28.

Tip To learn how you can select specific data values in a histogram plot, see
“Select a Range of Data Values” on page 4-31.
4-27

4 Using the Time Series Tools GUI

4-2
How to Select Data in a Rectangular Region on the Plot

1 In the Time Plot window, click the Select Data button in the toolbar.

2 Click and drag a rectangular region on the plot that encloses the data you
want to select.

The data values are selected when you release the mouse button.

3 Do you want to select another region?

- If yes, repeat step 2. This does not clear a previous selection.

- If no, continue as described in “Selecting Time-Series Data” on page 4-25.

How to Select Data in a Time Interval

1 In the Time Plot window, click the Select Time Interval(s) button in the
toolbar.

2 Click the start of a region that encloses the time interval where you want to
select data and drag it.

The selected time interval appears in a different color.

3 Do you want to select another time interval?

- If yes, repeat step 2.

- If no, continue as described in “Selecting Time-Series Data” on page 4-25.
8

Working with a Histogram
Working with a Histogram
The histogram plot shows the distribution of data values by counting the
number of data values within a specific range of values and displaying each
range as a rectangular bin. The heights of the bins represent the numbers of
values that fall within each range.

You can use a histogram plot to select data values that fall in a specific range
of values either to delete them, or to isolate them for analysis.

This section contains the following topics:

• “Creating a Histogram” on page 4-29

• “Modifying the Histogram in the Property Editor” on page 4-29

• “Select a Range of Data Values” on page 4-31

Note Time Series Tools generates a histogram plot of a time series by
applyting the MATLAB hist function. You cannot save the plot from the plot
window.

Creating a Histogram
A convenient way to create a histogram is by dragging and dropping a
time-series data node into the Histograms node in the Times Series Session
tree.

The plot opens in a separate plot window that is similar to the standard
MATLAB figure window, as described in the MATLAB documentation.
Additional commands that are specific to time-series plots are included in the
toolbar and the Tools menu.

Modifying the Histogram in the Property Editor
The Property Editor for histogram plots is displayed at the bottom of the
Time-Series Viewer when you first create the plot.
4-29

4 Using the Time Series Tools GUI

4-3
This section describes how to perform the following operations in the Property
Editor:

• “How to Scale the Y Axis” on page 4-30

• “How to Change the Data Bins” on page 4-31

• “How to Display Summary Statistics on the Plot” on page 4-31

Tip If you close the Property Editor, you can reopen it by selecting View >
Property Editor from the Histogram window. To display the Property Editor
for a specific histogram plot, select it in the Plot Browser. For example, select
Histogram Plot in the Plot Browser to open the Property Editor for plot axes
and statistics.

How to Scale the Y Axis

1 In the Histogram Property Editor, select the Define Y Axes Scaling tab (if
it is not already selected).

2 In the Ymin column, enter the minimum value of the Y axis. Press Enter.

3 In the Ymax column, enter the maximum value of the Y axis. Press Enter.

Tip To rescale the plot to display the full data set again, select auto in the
Scaling column.
0

Working with a Histogram
How to Change the Data Bins
You can change the bin size by specifying either uniform bins or custom bins.
By default, the data is distributed into 50 bins.

1 In the Histogram Property Editor, select the Define Bins tab.

2 Do you want uniform bins?

- If yes, select Uniform centers and edit the Number of bins. You are done.

- If no, go to step 3.

3 To specify custom bins, select Custom centers and enter the vector of bin
centers. Use MATLAB syntax for entering a vector, but omit the square
brackets around the vector.

For example, enter 1:10 to specify the vector [1, 2, 3, 4, 5, 6, 7, 8, 9,
10].

How to Display Summary Statistics on the Plot
The following procedure describes how to display the mean and median of your
time-series data on the histogram:

1 In the Histogram Property Editor, select the Define Statistical
Annotations tab.

2 In the Show column, select the check box corresponding to each statistical
measure you want to display on the plot:

- Mean
- Median

Select a Range of Data Values

1 In the Histogram window, click the Select Y Range Interval(s) button
in the toolbar.

2 Click the region aligned with the start of the data interval and drag to select
the data interval.

The selected data interval displays the data in a different color.
4-31

4 Using the Time Series Tools GUI

4-3
3 Do you want to select another time interval?

- If yes, repeat step 2.

- If no, go to step 4.

4 Do you want to remove the data values in the selected region? This also
removes the corresponding times from the time series.

- If yes, right-click the selected data in the plot and choose Remove
Selection from the shortcut menu. You are done.

- If no, go to step 5.

5 Do you want to replace the selected data with NaN values?

- If yes, press Delete. To learn how to handle NaN-tagged data, see
“Handling Missing Data” on page 4-12.

- If no, you are done.
2

Working with a Spectral Plot
Working with a Spectral Plot
You use a spectral plot (or periodogram) of time-series data to gain insight into
the frequencies of the periodic variations in the data. The periodogram is
particularly useful for picking out periodic components in the presence of noise;
a peak in the periodogram indicates an important contribution to variance
frequencies near the value that corresponds to the peak.

The periodogram is the unbiased estimate of the power spectral density of
time-series data, calculated as the scaled absolute value of the (FFT)2 of the
time series. The corresponding frequency vector is computed in cycles per unit
time and has the same length as the power vector.

The periodogram is scaled so that the variance is equal to the mean of the
periodogram. To learn how to view the variance in a specific frequency range,
see “How to Display the Variance on the Plot” on page 4-36.

This section contains the following topics:

• “Creating a Periodogram” on page 4-33

• “Modifying the Periodogram in the Property Editor” on page 4-34

• “How to Filter the Data in a Frequency Range” on page 4-38

Note You cannot save the plot from the plot window.

Creating a Periodogram
A convenient way to create a spectral plot is by dragging and dropping a
time-series data node into the Spectral Plots node in the Times Series
Session tree.

The plot opens in a separate plot window that is similar to the standard
MATLAB figure window, as described in the MATLAB documentation.
Additional commands that are specific to time-series plots are included in the
toolbar and the Tools menu.
4-33

4 Using the Time Series Tools GUI

4-3
Modifying the Periodogram in the Property Editor
The Property Editor for spectral plots is displayed at the bottom of the
Histogram plot when you first create the plot.
4

Working with a Spectral Plot
This section describes how to perform the following operations in the Property
Editor:

• “How to Scale the Y Axis” on page 4-35

• “How to Scale the Frequency Axis” on page 4-36

• “How to Display the Variance on the Plot” on page 4-36

Tip If you close the Property Editor, you can reopen it by selecting View >
Property Editor from the Time-Series Viewer menu bar. To display the
Property Editor for a specific histogram plot, select it in the Plot Browser. For
example, select Spectral Plot in the Plot Browser to open the Property Editor
for plot axes and statistics.

How to Scale the Y Axis

1 In the Spectral Plot Property Editor, select the Define Y Axes Scaling tab
(if it is not already selected).

2 In the Ymin column, enter the minimum value of the Y axis. Press Enter.

3 In the Ymax column, enter the maximum value of the Y axis. Press Enter.

Tip To rescale the plot to display the full data set again, select auto in the
Scaling column.
4-35

4 Using the Time Series Tools GUI

4-3
How to Scale the Frequency Axis

1 In the Spectral Plot Property Editor, select the Define Frequency Vector
tab.

2 Do you want to set a different start frequency?

- If yes, enter a new value in the Start frequency field. Press Enter and go
to step 3.

- If no, go to step 3.

3 Do you want to set a different end frequency?

- If yes, enter a new value in the End frequency field. Press Enter and go
to step 4.

- If no, go to step 4.

4 Do you want to change the frequency units?

- If yes, select the units from the Units list. Press Enter.

- If no, you are done.

How to Display the Variance on the Plot
The periodogram is scaled so that the variance is equal to the mean of the
periodogram.

To get a quantitative estimate of how much variation occurs in a specific
frequency range, you set the frequency interval on the plot and display a tooltip
with the percent of the total variance in that interval.

To display the variance on the plot,

1 In the Spectral Plot Property Editor, select the Define Statistical
Annotations tab.

2 In the Show column, select the Variance check box.

This adds a horizontal line to the graph to indicate the variance.
6

Working with a Spectral Plot
3 Do you want to change the Low limit of the frequency range?

- If yes, double-click the Low limit field to make it editable and type the
lowest frequency. Press Enter.

- If no, go to step 4.

4 Do you want to change the High limit of the frequency range?

- If yes, double-click the High limit field to make it editable and type the
highest frequency. Press Enter.

- If no, go to step 5.

5 To display a tooltip with the percent of the total variance in the interval,
click or hover over the corner of the rectangle that marks the frequency
range. The percent value is given by the Variance fraction in the tooltip.
4-37

4 Using the Time Series Tools GUI

4-3
How to Filter the Data in a Frequency Range
You can use the spectral plot to apply an ideal pass or stop filter to the data.
You use the ideal notch (stop) filter when you want to attenuate the variations
in the data for a specific frequency range. Alternatively, you use the ideal pass
filter to allow only the variations in a specific frequency range.

These filters are “ideal” in the sense that they are not realizable; an ideal filter
is noncausal and the ends of the filter amplitude are perfectly flat in the
frequency domain.

To apply the ideal filter in the periodogram,

1 In the Spectral Plot window, click the Select Frequency Interval(s)
button in the toolbar.

2 Click the starting frequency and drag a region that encloses the frequency
interval.

The selected time interval appears in a different color.

3 Do you want to select another frequency interval?

- If yes, repeat step 2.

- If no, go to step 4.

4 Right-click anywhere on the plot and select one of the following from the
shortcut menu:

- To allow only the variations in the selected frequency range, select Pass.

- To remove the variations in the selected frequency range, select Notch.
8

Working with a Correlogram
Working with a Correlogram
The autocorrelation function is a major diagnostic tool for analyzing time series
in the time domain. You use the autocorrelation plot, or a correlogram, to gain
insight into the correlation between observations at different distances apart
(lags) to better understand the evolution of a process through time.

A correlogram plot is not useful when the data contains a trend; data at all lags
will appear to be correlated because an observation on one side of the mean
tends to be followed by a large number of observations on the same side of the
mean. You must remove any trend in the data before you create a correlogram.
For more information about accessing detrending functionality, see
“Time-Series Analysis Operations” on page 4-5.

What Is Plotted in the Correlogram
The correlogram is a plot of correlation coefficients between observations that
are k steps apart.

The correlation coefficients are given by

where is an observation at time t, and the overall mean is

Note k is also called the lag between observations.

rk

rk

xt x–() xt k+ x–()

t 1=

N

∑

xt x–()2

t 1=

N

∑

--=

xt

x xt N⁄

t 1=

N

∑=
4-39

4 Using the Time Series Tools GUI

4-4
Creating a Correlogram
A convenient way to create a spectral plot is by dragging and dropping a
time-series data node into the Correlations node in the Times Series Session
tree.

The plot opens in a separate plot window that is similar to the standard
MATLAB figure window, as described in the MATLAB documentation.
Additional commands that are specific to time-series plots are included in the
toolbar and the Tools menu.

1 Click and hold down the mouse button on the name of the time-series data
in the Time Series node.

2 Drag the data into Correlations in the Views node.

3 In the Data Explorer, right-click the new plot in the Views node and select
Rename from the shortcut menu.

4 Enter the name of the plot and click OK.

Note You cannot save the plot from the plot window.

Modifying the Correlogram in the Property Editor
The Property Editor for correlogram plots is displayed at the bottom of the
Correlation plot when you first create the plot.

This section describes how to perform the following operations in the Property
Editor:

• “How to Scale the Y Axis” on page 4-41

• “How to Modify the Lag Range” on page 4-42
0

Working with a Correlogram
Tip If you close the Property Editor, you can reopen it by selecting View >
Property Editor from the Time-Series Viewer menu bar. To display the
Property Editor for a specific correlogram plot, select it in the Plot Browser.
For example, select Time Series Correlation in the Plot Browser to open the
Property Editor.

How to Scale the Y Axis

Note The possible values of autocorrelation coefficients range between -1
and +1.

1 In the Correlogram Property Editor, select the Define Y Axes Scaling tab
(if it is not already selected).

2 In the Ymin column, enter the minimum value of the Y axis. Press Enter.

3 In the Ymax column, enter the maximum value of the Y axis. Press Enter.

Tip To rescale the plot to display the full data set again, select auto in the
Scaling column.
4-41

4 Using the Time Series Tools GUI

4-4
How to Modify the Lag Range

1 In the Correlogram Property Editor, select the Define Lags tab.

2 Do you want to modify the smallest lag?

- If yes, enter a new value in the From field. Press Enter and go to step 3.

- If no, go to step 3.

3 Do you want to modify the largest lag?

- If yes, enter a new value in the To field. Press Enter.

- If no, you are done.
2

Comparing Time Series
Comparing Time Series
Time Series Tools enables you to compare two sets of data by

• “Creating an XY Plot” on page 4-43

• “Creating a Cross-Correlation Plot” on page 4-44

Note You cannot save the plot from the plot window.

Creating an XY Plot
An XY plot plots data values from two different time series. Any relationship
between the two time series is evident from a pattern on the plot.

Note For you to generate an XY plot, both time series must have the same
time vectors.

How to Create an XY Plot
To create an XY plot,

1 Select a time series in the Time Series Session tree.

2 In the Plot time series area, select Create new. Then choose XY Plots from
the list.

3 In the named field, enter the plot name.

4 Click Display.

A blank plot appears in the XY Plot window. To complete the plot you must
add a second time series to the plot.

To add a second time-series object to the plot,

1 Select another time-series object in the Time Series Session tree.
4-43

4 Using the Time Series Tools GUI

4-4
2 In the Display Time Series section, select Add to existing plot.

3 In the list, select the XY plot created in step 3 of the above procedure and
click Display.

Tip You can also create an XY plot by dragging a time series onto XY Plots in
the Time Series Session tree, and then dragging another time series onto the
same XY Plots node.

Interpreting XY Plots
The XY plot is useful for determining relationships between two sets of data.
For example, when the points of the XY plot form a straight line, there is a
linear relationship between the two data sets.

When you are comparing two time series such that each has a single column of
data, the XY plot contains a single set of axes.

Each point on the plot represents a single data value from each data set. Both
data values are taken from the same position in the column of data; i.e., the
third data point from one data set is plotted against the third data point from
the other data set. The plot does not show time information.

When you are comparing two time series that contain several columns of data,
the XY plot shows a grid of axes. Each axis displays an XY plot between two
corresponding columns of data.

Creating a Cross-Correlation Plot
Cross-correlation is a measure of the degree of the linear relationship between
two data sets. It is similar to autocorrelation except that it compares values in
two different data sets instead of comparing different values within the same
data set. For more information about correlation coefficients, see “Correlation
Coefficients” on page 1-23.

How to Create a Cross-Correlation Plot
To create a cross-correlation plot,

1 Select a time series in the Time Series Session tree.
4

Comparing Time Series
2 In the Plot time series area, select Create new. Then choose Correlations
from the list.

3 In the named field, enter the plot name.

4 Click Display.

A blank plot appears in the Correlation Plot window. To complete the plot
you must add a second time series to the plot.

To add a second time-series object to the plot,

1 Select another time-series object in the Time Series Session tree.

2 In the Display Time Series section, select Add to existing plot.

3 In the list, select the correlation plot created in step 3 of the above procedure
and click Display.

This displays the cross-correlation plot of the two time-series objects.

Tip You can also create a cross-correlation plot by dragging a time series onto
Correlations in the Time Series Session tree, and then dragging another
time series onto the same Correlations node.

Interpreting Cross-Correlation Plots
The cross-correlation is computed at several different lags. This means that the
data sets are translated with respect to each other before the cross-correlation
is plotted.

A cross-correlation plot of two single-column time-series objects shows the
degree of linear relationship between the data values. The following table
4-45

4 Using the Time Series Tools GUI

4-4
connects the cross-correlation value to the degree of relationship between the
data sets:

A correlation plot of two time series with multiple data columns contains a grid
of axes, where each plot shows the cross-correlations between corresponding
data columns in the time series.

The number of axes in the plot is equal to the number of columns of data in the
first time series multiplied by the number of columns of data in the second time
series.

Interpreting Cross-Correlation Values

Cross-Correlation Value
Is Close To

Meaning

1 A strong linear relationship between the data
values: An increase in one data set
corresponds to an increase in the other data
set.

-1 A strong anticorrelation between the data
values: A decrease in the data values of one
data set corresponds to a decrease in the
values of the other data set.

0 The variations in the data show no
relationships.
6

Example — Analyzing Time-Series Data with Time Series Tools
Example — Analyzing Time-Series Data with Time Series
Tools

This example illustrates how to perform the following tasks in Time Series
Tools:

• “Loading Data into the MATLAB Workspace” on page 4-47

• “Starting Time Series Tools” on page 4-47

• “Importing Data into Time Series Tools” on page 4-47

• “Creating a Time Plot” on page 4-50

• “Resampling Time Series on a New Time Vector” on page 4-55

• “Comparing Data on an XY Plot” on page 4-57

Loading Data into the MATLAB Workspace
Type the following command to load the data set with hourly traffic counts at
three road intersections in the same town, collected over a 24-hour period. For
information about the data sets in this example, see “About the Example Data”
on page 3-22.

load count.dat

This adds the variable count to the MATLAB workspace.

Starting Time Series Tools
To start Time Series Tools, type

tstool

This opens the Time Series Tools window. For more information about the
graphical user interface (GUI), see “Time Series Tools Window” on page 4-3.

Importing Data into Time Series Tools
This portion of the example illustrates how to create three time-series objects
from the 24-by-3 count array you loaded into the MATLAB workspace.
4-47

4 Using the Time Series Tools GUI

4-4
Note To get help on a specific field in the Import Wizard, right-click the field
label and select What’s This from the shortcut menu.

1 In Time Series Tools, select File > Import > Raw Data. This opens the
Import Wizard.

2 In the Import from list, select MATLAB workspace and click Next.

3 In Step 2 of the Import Wizard, select the count variable. The Import
Wizard infers from the data that it is arranged by columns and imports the
full 24-by-3 array.
8

Example — Analyzing Time-Series Data with Time Series Tools
4 In the Specify Time Vector area, select hours from the Units list. The
Import Wizard has already specified the remaining options to define a
uniformly spaced time vector with a length of 24 and an interval of 1.

5 Click Next.

6 In Step 3 of the Import Wizard, select Create several time series using:
common name+number and Enter common name: intersection.

7 Click Finish. This adds three time series to the Time Series Session tree,
named intersection1, intersection2, and intersection3.

(���������	������	������
���������������������������
4-49

4 Using the Time Series Tools GUI

4-5
Creating a Time Plot
To explore the data, you can create a time plot of the three time series.

1 In the Time Series Session tree, drag and drop the intersection1 time
series into the Time Plots node. This creates a time plot in a new window
with the default name View1.

 	����������	��������	��%

&��������'�	���������	��
��������������������	��
��������������������!	��
����	��	����������	����
0

Example — Analyzing Time-Series Data with Time Series Tools
2 In the Time Series Session tree, drag and drop the intersection2 and
intersection3 time series into the View1 node to add them to the plot.
4-51

4 Using the Time Series Tools GUI

4-5
3 To display all three time series on the same axes, select the View1 node in
the Time Series Tools window. Then change the subplot indices for the
second and third time series to [1]and press Enter.

'�	�������������	�����������)%*����
���	������	�������	������������
��������������

����������	�	��+
����!���������	��
������	������	���	�����
����
2

Example — Analyzing Time-Series Data with Time Series Tools
This groups the plots as shown below:
4-53

4 Using the Time Series Tools GUI

4-5
4 To change the appearance of the time series in the plot, select Plot > Set
Line Properties. This opens the Line Styles dialog.

�	�!��������������������
���������������������$����!��$
���	�����������������	��	���	��
�	������	���

����������	��	���	���	��	
	���
�	������	���	�������������	��
	���������
4

Example — Analyzing Time-Series Data with Time Series Tools
The plot now looks like this:

Resampling Time Series on a New Time Vector
You can cast two of the three time series onto a new time vector with samples
every half hour, rather than every hour. The new data points are calculated by
using the interpolation method you associated with the time series (see
“Editing Data, Time, Attributes, and Events” on page 4-15).
4-55

4 Using the Time Series Tools GUI

4-5
First, resample the time series intersection1:

1 In the Time Series Session tree, select the time series intersection1.

2 Select Data > Resample. This opens the Resample Data dialog.

3 Select the Uniform time vector with time interval option, and specify the
time interval to be 0.5 hour. Click OK.
6

Example — Analyzing Time-Series Data with Time Series Tools
You can resample intersection2 a different way by

• Creating a common vector for intersection1 and intersection2 by taking
the union of their time vector

• Resampling intersection2 on the common time vector

To resample intersection2,

1 In the time plot you created in “Creating a Time Plot” on page 4-50,
right-click and select Data > Resample from the shortcut menu. This opens
the Resample Data dialog.

2 In the Resample Data dialog, clear the check box to the left of
intersection3 to exclude it from resampling.

3 Select Union of time vectors on the interval where they overlap. Click
OK.

• To verify that intersection2 has been resampled, select it in the Time
Series Session tree and examine the data table. The union of the time
vectors is the same as the time vector for intersection1 after it was
resampled at half-hour intervals.

Comparing Data on an XY Plot
The XY plot is useful for determining relationships between two sets of data.
For example, when the points of the XY plot form a straight line, there is a
linear relationship between the two data sets.

To compare intersection1 and intersection2 on an XY plot,

1 In the Time Series Session tree, drag and drop the intersection1 time
series into the XY Plots node. This creates a new plot node with the default
name View2.
4-57

4 Using the Time Series Tools GUI

4-5
2 Drag and drop the intersection2 time series into the View2 node. This
creates the following XY plot.

3 To show the best-fit line on the XY plot, select the Define Statistical
Annotations tab in the Property Editor in the XY Plot window.

Note that this XY plot shows a strong linear correlation between the two
data sets.
8

Example — Analyzing Time-Series Data with Time Series Tools
4 Select the Best fit line check box. This adds a best-fit line to the plot.
4-59

4 Using the Time Series Tools GUI

4-6
0

Index
B
Basic Fitting tool 2-4

example 2-9

C
confidence bounds 2-27
correlation coefficients 1-23
correlogram 4-39
covariance 1-22
cross-correlation plot 4-44
curve fitting

See data fitting

D
data analysis

MATLAB functions 1-2
MATLAB tools 1-3
plot data 1-6
related products 1-3
vector and matrix data 1-3

data filtering
See filtering

data fitting 2-1
at the command line 2-17
Basic Fitting tool 2-4
confidence bounds 2-27
example using command line 2-23
exponential 2-26
multiple regression 2-21
nonpolynomial 2-19
polynomial 2-23
residuals 2-3
data sample 3-3
data statistics

formatting plots of 1-19
in plot legend 1-19

Data Statistics tool 1-17
example 1-18
interface 1-18
saving to workspace 1-21

descriptive statistics 1-15
detrending data 1-30
difference equations 1-25
discrete filter 1-27
discrete Fourier transform

See Fourier transforms

E
exponential data fitting 2-26
exporting data 1-5

F
fast Fourier transform

See Fourier transforms
filtering

detrending data 1-30
difference equations 1-25
discrete filter 1-27
filter function 1-25
moving average 1-26

finite differences 1-24
Fourier analysis 1-31

calculating sunspot periodicity 1-33
Fourier transforms
Index-1

Index

Ind
calculating the FFT 1-32
performance of calculation 1-38
phase and magnitude 1-36

function M-files 1-2
functions

for timeseries object 3-11
for tscollection object 3-20

G
goodness of fit 2-3

H
histogram 4-29

I
importing data 1-5

into Time Series Tools 4-9
interpolation

missing data 1-11
isnan function 1-10

L
load function 1-6

M
magnitude of Fourier transform 1-36
maximum 1-15
mean 1-15
median 1-15
minimum 1-15
missing data

about 1-9
handling in Time Series Tools 4-12
ex-2
interpolate 1-11
propagation through calculations 1-9
removing 1-10
representing by NaNs 1-9

mode 1-15
moving average filter 1-26
multiple regression 2-21

N
NaNs

propagation in calculations 1-9
removing from data 1-10

nonpolynomial fit 2-19

O
observation 3-3
outliers

removing from data 1-13

P
periodogram 4-33
phase of Fourier transform 1-36
plotting data

correlogram in Time Series Tools 4-39
cross-correlation plot in Time Series Tools 4-44
histogram in Time Series Tools 4-29
in MATLAB 1-6
periodogram in Time Series Tools 4-33
time plot in Time Series Tools 4-17
XY plot in Time Series Tools 4-43

plotting tools 1-3
polynomial regression 2-23

Index
properties
of timeseries object 3-5
of tscollection object 3-19

R
regression 2-1

multiple 2-21
nonpolynomial 2-19
polynomial 2-17

residuals 2-3

S
sample 3-3
Simulink logged-data signals 4-9
spectral plot 4-33
standard deviation 1-15
statistics

calculating 1-15
Data Statistics tool 1-17
format on plot 1-19
formatting plots of 1-19
removing NaNs 1-10
removing outliers 1-13
saving to workspace 1-21

sunspot periodicity
calculating using Fourier transforms 1-33

T
time plot 4-17
Time Series Tools

correlogram 4-39
cross-correlation plot 4-44
example 4-47
GUI 4-1

histogram 4-29
import data 4-9
importing Simulink logged signal 4-9
periodogram 4-33
time plot 4-17
XY plot 4-43

time-series analysis
command-line API 3-1
comparing time series 4-43
data sample 3-3
example for command line 3-22
example for Time Series Tools 4-47
observation 3-3
Time Series Tools 4-1

timeseries object
creating 3-3
functions 3-11
properties 3-5

tools
Basic Fitting 2-4
Data Statistics 1-17
plotting 1-3
summary 1-3
Time Series Tools 4-1

tscollection object
creating 3-17
functions 3-20
properties 3-19

V
variance 1-15

X
XY plot 4-43
Index-3

	Fundamentals of Data Analysis
	Introduction
	MATLAB Data Analysis Functions
	Vector vs. Matrix Function Arguments
	MATLAB Tools for Data Analysis
	Related Products

	Importing and Exporting Data
	Plotting Data
	Example — Loading and Plotting Data

	Handling Missing Data
	Representing Missing Data Values
	Calculations with NaNs
	Removing NaNs from the Data
	Interpolating Missing Data

	Removing Outliers
	Descriptive Statistics
	Descriptive Statistics at the Command Line
	Using the Data Statistics Tool

	Covariance and Correlation Coefficients
	Covariance
	Correlation Coefficients

	Finite Differences
	Difference Equations and Filtering
	Filter Function
	Example 1 — Moving Average
	Example 2 — Discrete Filter

	Detrending Data
	Fourier Analysis and the Fast Fourier Transform (FFT)
	Function Summary
	Calculating the FFT
	Magnitude and Phase of Transformed Data
	FFT Length vs. Performance

	Data Fitting Using Linear Regression
	Introduction
	When to Use the Curve Fitting Toolbox
	Residuals and the Goodness of Fit

	Using the Basic Fitting Tool
	What Is the Basic Fitting GUI?
	Sorting Large Data Sets to Improve Performance
	Basic Fitting Options
	Example — Using the MATLAB Basic Fitting Tool

	Data Fitting at the Command Line
	Polynomial Model
	Linear Model with Nonpolynomial Terms
	Multiple Regression

	Example — Fitting Data at the Command Line
	Loading the Data
	Generating a Polynomial Fit
	Making Nonlinear Models Linear
	Confidence Bounds

	Analyzing Time Series from the Command Line
	Introduction
	Creating timeseries Objects
	Observation vs. Data Sample
	Double vs. Date-String Time Vectors
	timeseries Constructor Syntax
	Properties of a timeseries Object

	timeseries Functions
	General timeseries Functions
	Data and Time Manipulation
	Events
	Arithmetic Operations
	Statistical Functions

	Creating Time-Series Collection Objects
	tscollection Constructor Syntax
	Properties of tscollection Objects

	tscollection Functions
	General tscollection Functions
	Data and Time Manipulation

	Example — Analyzing Time-Series Data at the Command Line
	About the Example Data
	Creating timeseries Objects
	Modifying Time-Series Units and Interpolation Method
	Defining Events
	Creating a Time-Series Collection
	Resampling the tscollection
	Adding a Data Sample to the Tscollection
	Handling Missing Data
	Removing a Time Series from the Collection
	Changing a Numerical Time Vector to Date Strings
	Plotting tscollection Members

	Using the Time Series Tools GUI
	Introduction
	Starting Time Series Tools
	Time Series Tools Window
	Workflow in Time Series Tools
	Time-Series Analysis Operations
	Plots in Time Series Tools
	Customizing Plot Line and Marker Styles
	Automatic M-Code Generation
	Getting Help

	Importing Data into Time Series Tools
	Types of Data Sources
	Observation vs. Data Sample
	How to Import Data
	Changes to the Data During Import
	Handling Missing Data
	Importing Multivariate Data

	Editing Data, Time, Attributes, and Events
	Working with Time Plots
	Creating a Time Plot
	Time Plot Tools
	Data Analysis from a Time Plot
	Scaling the Time Plot Graphically
	Scaling the Time Plot in the Property Editor

	Selecting Time-Series Data
	Selecting Data by Using Rules
	Selecting Data Graphically

	Working with a Histogram
	Creating a Histogram
	Modifying the Histogram in the Property Editor
	Select a Range of Data Values

	Working with a Spectral Plot
	Creating a Periodogram
	Modifying the Periodogram in the Property Editor
	How to Filter the Data in a Frequency Range

	Working with a Correlogram
	What Is Plotted in the Correlogram
	Creating a Correlogram
	Modifying the Correlogram in the Property Editor

	Comparing Time Series
	Creating an XY Plot
	Creating a Cross-Correlation Plot

	Example — Analyzing Time-Series Data with Time Series Tools
	Loading Data into the MATLAB Workspace
	Starting Time Series Tools
	Importing Data into Time Series Tools
	Creating a Time Plot
	Resampling Time Series on a New Time Vector
	Comparing Data on an XY Plot

	Index

