
Mathematics
Version 7

MATLAB®

The Language of Technical Computing

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Mathematics
© COPYRIGHT 1984 — 2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered
trademarks of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks
of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
June 2004 First printing New for MATLAB 7.0 (Release 14)

Formerly part of Using MATLAB
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005 Second printing Minor revision for MATLAB 7.0.4
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)

i

Contents

1
Matrices and Linear Algebra

Function Summary . 1-2

Matrices in MATLAB . 1-4
Creating Matrices . 1-4
Adding and Subtracting Matrices . 1-6
Vector Products and Transpose . 1-7
Multiplying Matrices . 1-8
The Identity Matrix . 1-10
The Kronecker Tensor Product . 1-11
Vector and Matrix Norms . 1-12

Solving Linear Systems of Equations 1-13
Computational Considerations . 1-13
General Solution . 1-15
Square Systems . 1-15
Overdetermined Systems . 1-18
Underdetermined Systems . 1-20

Inverses and Determinants . 1-22
Overview . 1-22
Pseudoinverses . 1-23

Cholesky, LU, and QR Factorizations 1-27
Cholesky Factorization . 1-27
LU Factorization . 1-29
QR Factorization . 1-30

Matrix Powers and Exponentials . 1-34

Eigenvalues . 1-38

Singular Value Decomposition . 1-42

ii Contents

2
Polynomials and Interpolation

Polynomials . 2-2
Polynomial Function Summary . 2-2
Representing Polynomials . 2-3
Polynomial Roots . 2-3
Characteristic Polynomials . 2-4
Polynomial Evaluation . 2-4
Convolution and Deconvolution . 2-5
Polynomial Derivatives . 2-5
Polynomial Curve Fitting . 2-6
Partial Fraction Expansion . 2-7

Interpolation . 2-9
Interpolation Function Summary . 2-9
One-Dimensional Interpolation . 2-10
Two-Dimensional Interpolation . 2-12
Comparing Interpolation Methods . 2-13
Interpolation and Multidimensional Arrays 2-15
Triangulation and Interpolation of Scattered Data 2-18
Tessellation and Interpolation of Scattered Data in
Higher Dimensions . 2-26

Selected Bibliography . 2-37

3
Fast Fourier Transform (FFT)

Introduction . 3-2
Finding an FFT . 3-2
Example: Using FFT to Calculate Sunspot Periodicity 3-3

Magnitude and Phase of Transformed Data 3-7

FFT Length Versus Speed . 3-9

iii

Function Summary . 3-10

4
Function Functions

Function Summary . 4-2

Representing Functions in MATLAB . 4-3

Plotting Mathematical Functions . 4-5

Minimizing Functions and Finding Zeros 4-8
Minimizing Functions of One Variable . 4-8
Minimizing Functions of Several Variables 4-9
Fitting a Curve to Data . 4-10
Setting Minimization Options . 4-13
Output Functions . 4-14
Finding Zeros of Functions . 4-21
Tips . 4-25
Troubleshooting . 4-26

Numerical Integration (Quadrature) 4-27
Example: Computing the Length of a Curve 4-27
Example: Double Integration . 4-28

Parameterizing Functions Called by Function Functions 4-30
Providing Parameter Values Using Nested Functions 4-30
Providing Parameter Values to Anonymous Functions 4-31

5
Differential Equations

Initial Value Problems for ODEs and DAEs 5-2
ODE Function Summary . 5-2

iv Contents

Introduction to Initial Value ODE Problems 5-4
Solvers for Explicit and Linearly Implicit ODEs 5-5
Examples: Solving Explicit ODE Problems 5-9
Solver for Fully Implicit ODEs . 5-15
Example: Solving a Fully Implicit ODE Problem 5-16
Changing ODE Integration Properties 5-17
Examples: Applying the ODE Initial Value Problem Solvers . 5-18
Questions and Answers, and Troubleshooting 5-43

Initial Value Problems for DDEs . 5-49
DDE Function Summary . 5-49
Introduction to Initial Value DDE Problems 5-50
DDE Solver . 5-51
Solving DDE Problems . 5-53
Discontinuities . 5-57
Changing DDE Integration Properties 5-60

Boundary Value Problems for ODEs 5-61
BVP Function Summary . 5-62
Introduction to Boundary Value ODE Problems 5-63
Boundary Value Problem Solver . 5-64
Changing BVP Integration Properties 5-67
Solving BVP Problems . 5-68
Using Continuation to Make a Good Initial Guess 5-72
Solving Singular BVPs . 5-80
Solving Multipoint BVPs . 5-84

Partial Differential Equations . 5-89
PDE Function Summary . 5-89
Introduction to PDE Problems . 5-90
MATLAB Partial Differential Equation Solver 5-91
Solving PDE Problems . 5-94
Evaluating the Solution at Specific Points 5-99
Changing PDE Integration Properties 5-100
Example: Electrodynamics Problem . 5-100

Selected Bibliography . 5-106

v

6
Sparse Matrices

Function Summary . 6-2

Introduction . 6-5
Sparse Matrix Storage . 6-5
General Storage Information . 6-6
Creating Sparse Matrices . 6-7
Importing Sparse Matrices from Outside MATLAB 6-12

Viewing Sparse Matrices . 6-13
Information About Nonzero Elements 6-13
Viewing Sparse Matrices Graphically 6-15
The find Function and Sparse Matrices 6-16

Adjacency Matrices and Graphs . 6-17
Introduction to Adjacency Matrices . 6-17
Graphing Using Adjacency Matrices . 6-18
The Bucky Ball . 6-18
An Airflow Model . 6-23

Sparse Matrix Operations . 6-25
Computational Considerations . 6-25
Standard Mathematical Operations . 6-25
Permutation and Reordering . 6-26
Factorization . 6-30
Simultaneous Linear Equations . 6-36
Eigenvalues and Singular Values . 6-39
Performance Limitations . 6-41

Selected Bibliography . 6-44

Index

vi Contents

1
Matrices and Linear
Algebra

Function Summary (p. 1-2) Summarizes the MATLAB® linear algebra functions

Matrices in MATLAB (p. 1-4) Explains the use of matrices and basic matrix operations
in MATLAB

Solving Linear Systems of Equations
(p. 1-13)

Discusses the solution of simultaneous linear equations
in MATLAB, including square systems, overdetermined
systems, and underdetermined systems

Inverses and Determinants (p. 1-22) Explains the use in MATLAB of inverses, determinants,
and pseudoinverses in the solution of systems of linear
equations

Cholesky, LU, and QR Factorizations
(p. 1-27)

Discusses the solution in MATLAB of systems of linear
equations that involve triangular matrices, using
Cholesky factorization, Gaussian elimination, and
orthogonalization

Matrix Powers and Exponentials
(p. 1-34)

Explains the use of MATLAB notation to obtain various
matrix powers and exponentials

Eigenvalues (p. 1-38) Explains eigenvalues and describes eigenvalue
decomposition in MATLAB

Singular Value Decomposition (p. 1-42) Describes singular value decomposition of a rectangular
matrix in MATLAB

1 Matrices and Linear Algebra

1-2

Function Summary
The linear algebra functions are located in the MATLAB matfun directory.

Function Summary

Category Function Description

Matrix analysis norm Matrix or vector norm.

normest Estimate the matrix 2-norm.

rank Matrix rank.

det Determinant.

trace Sum of diagonal elements.

null Null space.

orth Orthogonalization.

rref Reduced row echelon form.

subspace Angle between two subspaces.

Linear equations \ and / Linear equation solution.

inv Matrix inverse.

cond Condition number for inversion.

condest 1-norm condition number estimate.

chol Cholesky factorization.

cholinc Incomplete Cholesky factorization.

linsolve Solve a system of linear equations.

lu LU factorization.

luinc Incomplete LU factorization.

qr Orthogonal-triangular decomposition.

Function Summary

1-3

lsqnonneg Nonnegative least-squares.

pinv Pseudoinverse.

lscov Least squares with known covariance.

Eigenvalues and
singular values

eig Eigenvalues and eigenvectors.

svd Singular value decomposition.

eigs A few eigenvalues.

svds A few singular values.

poly Characteristic polynomial.

polyeig Polynomial eigenvalue problem.

condeig Condition number for eigenvalues.

hess Hessenberg form.

qz QZ factorization.

schur Schur decomposition.

Matrix functions expm Matrix exponential.

logm Matrix logarithm.

sqrtm Matrix square root.

funm Evaluate general matrix function.

Function Summary (Continued)

Category Function Description

1 Matrices and Linear Algebra

1-4

Matrices in MATLAB
A matrix is a two-dimensional array of real or complex numbers. Linear
algebra defines many matrix operations that are directly supported by
MATLAB. Linear algebra includes matrix arithmetic, linear equations,
eigenvalues, singular values, and matrix factorizations.

For more information about creating and working with matrices, see Data
Structures in the MATLAB Programming documentation.

This section describes the following topics:

• “Creating Matrices” on page 1-4

• “Adding and Subtracting Matrices” on page 1-6

• “Vector Products and Transpose” on page 1-7

• “Vector Products and Transpose” on page 1-7

• “Multiplying Matrices” on page 1-8

• “The Identity Matrix” on page 1-10

• “The Kronecker Tensor Product” on page 1-11

• “Vector and Matrix Norms” on page 1-12

Creating Matrices
Informally, the terms matrix and array are often used interchangeably. More
precisely, a matrix is a two-dimensional rectangular array of real or complex
numbers that represents a linear transformation. The linear algebraic
operations defined on matrices have found applications in a wide variety of
technical fields. (The optional Symbolic Math Toolbox extends the capabilities
of MATLAB to operations on various types of nonnumeric matrices.)

MATLAB has dozens of functions that create different kinds of matrices. Two
of them can be used to create a pair of 3-by-3 example matrices for use
throughout this chapter. The first example is symmetric:

A = pascal(3)

A =
 1 1 1
 1 2 3
 1 3 6

Matrices in MATLAB

1-5

The second example is not symmetric:

B = magic(3)

B =
 8 1 6
 3 5 7
 4 9 2

Another example is a 3-by-2 rectangular matrix of random integers:

 C = fix(10*rand(3,2))

 C =
 9 4
 2 8
 6 7

A column vector is an m-by-1 matrix, a row vector is a 1-by-n matrix and a
scalar is a 1-by-1 matrix. The statements

u = [3; 1; 4]

v = [2 0 -1]

s = 7

produce a column vector, a row vector, and a scalar:

u =
 3
 1
 4

v =
 2 0 -1

s =
 7

1 Matrices and Linear Algebra

1-6

Adding and Subtracting Matrices
Addition and subtraction of matrices is defined just as it is for arrays,
element-by-element. Adding A to B and then subtracting A from the result
recovers B:

A = pascal(3);
B = magic(3);
X = A + B

X =
 9 2 7
 4 7 10
 5 12 8

Y = X - A

Y =
 8 1 6
 3 5 7
 4 9 2

Addition and subtraction require both matrices to have the same dimension, or
one of them be a scalar. If the dimensions are incompatible, an error results:

C = fix(10*rand(3,2))
X = A + C
Error using ==> +
Matrix dimensions must agree.

w = v + s

w =
 9 7 6

Matrices in MATLAB

1-7

Vector Products and Transpose
A row vector and a column vector of the same length can be multiplied in either
order. The result is either a scalar, the inner product, or a matrix, the outer
product:

u = [3; 1; 4];
v = [2 0 -1];
x = v*u

x =
 2

X = u*v

X =
 6 0 -3
 2 0 -1
 8 0 -4

For real matrices, the transpose operation interchanges and . MATLAB
uses the apostrophe (or single quote) to denote transpose. The example matrix
A is symmetric, so A' is equal to A. But B is not symmetric:

B = magic(3);
X = B'

X =
 8 3 4
 1 5 9
 6 7 2

Transposition turns a row vector into a column vector:

x = v'

x =
 2
 0
 -1

aij aji

1 Matrices and Linear Algebra

1-8

If x and y are both real column vectors, the product x*y is not defined, but the
two products

x'*y

and

y'*x

are the same scalar. This quantity is used so frequently, it has three different
names: inner product, scalar product, or dot product.

For a complex vector or matrix, z, the quantity z' denotes the complex
conjugate transpose, where the sign of the complex part of each element is
reversed. The unconjugated complex transpose, where the complex part of each
element retains its sign, is denoted by z.'. So if

z = [1+2i 3+4i]

then z' is

1-2i
3-4i

while z.' is

1+2i
3+4i

For complex vectors, the two scalar products x'*y and y'*x are complex
conjugates of each other and the scalar product x'*x of a complex vector with
itself is real.

Multiplying Matrices
Multiplication of matrices is defined in a way that reflects composition of the
underlying linear transformations and allows compact representation of
systems of simultaneous linear equations. The matrix product C = AB is
defined when the column dimension of A is equal to the row dimension of B, or
when one of them is a scalar. If A is m-by-p and B is p-by-n, their product C is
m-by-n. The product can actually be defined using MATLAB for loops, colon
notation, and vector dot products:

Matrices in MATLAB

1-9

A = pascal(3);
B = magic(3);
m = 3; n = 3;
for i = 1:m
 for j = 1:n
 C(i,j) = A(i,:)*B(:,j);
 end
end

MATLAB uses a single asterisk to denote matrix multiplication. The next two
examples illustrate the fact that matrix multiplication is not commutative; AB
is usually not equal to BA:

X = A*B

X =
 15 15 15
 26 38 26
 41 70 39

Y = B*A

Y =
 15 28 47
 15 34 60
 15 28 43

A matrix can be multiplied on the right by a column vector and on the left by a
row vector:

u = [3; 1; 4];
x = A*u

x =
 8
 17
 30

v = [2 0 -1];

1 Matrices and Linear Algebra

1-10

y = v*B

y =
 12 -7 10

Rectangular matrix multiplications must satisfy the dimension compatibility
conditions:

C = fix(10*rand(3,2));
X = A*C

X =
 17 19
 31 41
 51 70

Y = C*A

Error using ==> *
Inner matrix dimensions must agree.

Anything can be multiplied by a scalar:

s = 7;
w = s*v

w =
 14 0 -7

The Identity Matrix
Generally accepted mathematical notation uses the capital letter to denote
identity matrices, matrices of various sizes with ones on the main diagonal and
zeros elsewhere. These matrices have the property that and
whenever the dimensions are compatible. The original version of MATLAB
could not use for this purpose because it did not distinguish between upper
and lowercase letters and already served double duty as a subscript and as
the complex unit. So an English language pun was introduced. The function

eye(m,n)

I

AI A= IA A=

I
i

Matrices in MATLAB

1-11

returns an m-by-n rectangular identity matrix and eye(n) returns an n-by-n
square identity matrix.

The Kronecker Tensor Product
The Kronecker product, kron(X,Y), of two matrices is the larger matrix formed
from all possible products of the elements of X with those of Y. If X is m-by-n and
Y is p-by-q, then kron(X,Y) is mp-by-nq. The elements are arranged in the
following order:

[X(1,1)*Y X(1,2)*Y . . . X(1,n)*Y
 . . .
 X(m,1)*Y X(m,2)*Y . . . X(m,n)*Y]

The Kronecker product is often used with matrices of zeros and ones to build
up repeated copies of small matrices. For example, if X is the 2-by-2 matrix

X =
 1 2
 3 4

and I = eye(2,2) is the 2-by-2 identity matrix, then the two matrices

kron(X,I)

and

kron(I,X)

are

 1 0 2 0
 0 1 0 2
 3 0 4 0
 0 3 0 4

and

 1 2 0 0
 3 4 0 0
 0 0 1 2
 0 0 3 4

1 Matrices and Linear Algebra

1-12

Vector and Matrix Norms
The p-norm of a vector x

is computed by norm(x,p). This is defined by any value of p > 1, but the most
common values of p are 1, 2, and . The default value is p = 2, which
corresponds to Euclidean length:

v = [2 0 -1];
[norm(v,1) norm(v) norm(v,inf)]

ans =
 3.0000 2.2361 2.0000

The p-norm of a matrix A,

can be computed for p = 1, 2, and by norm(A,p). Again, the default value is
p = 2.

C = fix(10*rand(3,2));
[norm(C,1) norm(C) norm(C,inf)]

ans =
 19.0000 14.8015 13.0000

x p Σ xi
p

⎝ ⎠
⎛ ⎞

1 p⁄
=

∞

A p
max

x

Ax p
x p

---------------=

∞

Solving Linear Systems of Equations

1-13

Solving Linear Systems of Equations
This section describes

• Computational considerations

• The general solution to a system

It also discusses particular solutions to

• Square systems

• Overdetermined systems

• Underdetermined systems

Computational Considerations
One of the most important problems in technical computing is the solution of
simultaneous linear equations. In matrix notation, this problem can be stated
as follows.

Given two matrices A and B, does there exist a unique matrix X so that AX = B
or XA = B?

It is instructive to consider a 1-by-1 example.

Does the equation

have a unique solution ?

The answer, of course, is yes. The equation has the unique solution x = 3. The
solution is easily obtained by division:

The solution is not ordinarily obtained by computing the inverse of 7, that is
7-1 = 0.142857…, and then multiplying 7-1 by 21. This would be more work and,
if 7-1 is represented to a finite number of digits, less accurate. Similar
considerations apply to sets of linear equations with more than one unknown;
MATLAB solves such equations without computing the inverse of the matrix.

Although it is not standard mathematical notation, MATLAB uses the division
terminology familiar in the scalar case to describe the solution of a general
system of simultaneous equations. The two division symbols, slash, /, and

7x 21=

x 21 7⁄ 3= =

1 Matrices and Linear Algebra

1-14

backslash, \, are used for the two situations where the unknown matrix
appears on the left or right of the coefficient matrix:

You can think of “dividing” both sides of the equation AX = B or XA = B by A.
The coefficient matrix A is always in the “denominator.”

The dimension compatibility conditions for X = A\B require the two matrices A
and B to have the same number of rows. The solution X then has the same
number of columns as B and its row dimension is equal to the column dimension
of A. For X = B/A, the roles of rows and columns are interchanged.

In practice, linear equations of the form AX = B occur more frequently than
those of the form XA = B. Consequently, backslash is used far more frequently
than slash. The remainder of this section concentrates on the backslash
operator; the corresponding properties of the slash operator can be inferred
from the identity

(B/A)' = (A'\B')

The coefficient matrix A need not be square. If A is m-by-n, there are three
cases:

The backslash operator employs different algorithms to handle different kinds
of coefficient matrices. The various cases, which are diagnosed automatically
by examining the coefficient matrix, include

• Permutations of triangular matrices

• Symmetric, positive definite matrices

• Square, nonsingular matrices

• Rectangular, overdetermined systems

• Rectangular, underdetermined systems

X = A\B Denotes the solution to the matrix equation AX = B.

X = B/A Denotes the solution to the matrix equation XA = B.

m = n Square system. Seek an exact solution.

m > n Overdetermined system. Find a least squares solution.

m < n Underdetermined system. Find a basic solution with at most m
nonzero components.

Solving Linear Systems of Equations

1-15

General Solution
The general solution to a system of linear equations AX = b describes all
possible solutions. You can find the general solution by

1 Solving the corresponding homogeneous system AX = 0. Do this using the
null command, by typing null(A). This returns a basis for the solution
space to AX = 0. Any solution is a linear combination of basis vectors.

2 Finding a particular solution to the non-homogeneous system AX = b.

You can then write any solution to AX = b as the sum of the particular solution
to AX = b, from step 2, plus a linear combination of the basis vectors from step
1.

The rest of this section describes how to use MATLAB to find a particular
solution to AX = b, as in step 2.

Square Systems
The most common situation involves a square coefficient matrix A and a single
right-hand side column vector b.

Nonsingular Coefficient Matrix
If the matrix A is nonsingular, the solution, x = A\b, is then the same size as
b. For example,

A = pascal(3);
u = [3; 1; 4];
x = A\u

x =
 10

-12
 5

It can be confirmed that A*x is exactly equal to u.

1 Matrices and Linear Algebra

1-16

If A and B are square and the same size, then X = A\B is also that size:

B = magic(3);
X = A\B

X =
 19 -3 -1

-17 4 13
 6 0 -6

It can be confirmed that A*X is exactly equal to B.

Both of these examples have exact, integer solutions. This is because the
coefficient matrix was chosen to be pascal(3), which has a determinant equal
to one. A later section considers the effects of roundoff error inherent in more
realistic computations.

Singular Coefficient Matrix
A square matrix A is singular if it does not have linearly independent columns.
If A is singular, the solution to AX = B either does not exist, or is not unique.
The backslash operator, A\B, issues a warning if A is nearly singular and raises
an error condition if it detects exact singularity.

If A is singular and AX = b has a solution, you can find a particular solution
that is not unique, by typing

P = pinv(A)*b

P is a pseudoinverse of A. If AX = b does not have an exact solution, pinv(A)
returns a least-squares solution.

For example,

A = [1 3 7
 -1 4 4
 1 10 18]

is singular, as you can verify by typing

det(A)

ans =
 0

Solving Linear Systems of Equations

1-17

Note For information about using pinv to solve systems with rectangular
coefficient matrices, see “Pseudoinverses” on page 1-23.

Exact Solutions. For b =[5;2;12], the equation AX = b has an exact solution,
given by

pinv(A)*b

ans =
 0.3850
 -0.1103
 0.7066

You can verify that pinv(A)*b is an exact solution by typing

A*pinv(A)*b

ans =
 5.0000
 2.0000
 12.0000

Least Squares Solutions. On the other hand, if b = [3;6;0], then AX = b does not
have an exact solution. In this case, pinv(A)*b returns a least squares solution.
If you type

A*pinv(A)*b

ans =
 -1.0000
 4.0000
 2.0000

you do not get back the original vector b.

1 Matrices and Linear Algebra

1-18

You can determine whether AX = b has an exact solution by finding the row
reduced echelon form of the augmented matrix [A b]. To do so for this example,
enter

rref([A b])
ans =
 1.0000 0 2.2857 0
 0 1.0000 1.5714 0
 0 0 0 1.0000

Since the bottom row contains all zeros except for the last entry, the equation
does not have a solution. In this case, pinv(A) returns a least-squares solution.

Overdetermined Systems
Overdetermined systems of simultaneous linear equations are often
encountered in various kinds of curve fitting to experimental data. Here is a
hypothetical example. A quantity y is measured at several different values of
time, t, to produce the following observations:

Enter the data into MATLAB with the statements

t = [0 .3 .8 1.1 1.6 2.3]';
y = [.82 .72 .63 .60 .55 .50]';

Try modeling the data with a decaying exponential function:

t y

0.0 0.82

0.3 0.72

0.8 0.63

1.1 0.60

1.6 0.55

2.3 0.50

y t() c1≈ c2+ e t–

Solving Linear Systems of Equations

1-19

The preceding equation says that the vector y should be approximated by a
linear combination of two other vectors, one the constant vector containing all
ones and the other the vector with components e-t. The unknown coefficients,
c1 and c2, can be computed by doing a least squares fit, which minimizes the
sum of the squares of the deviations of the data from the model. There are six
equations in two unknowns, represented by the 6-by-2 matrix:

E = [ones(size(t)) exp(-t)]

E =
 1.0000 1.0000
 1.0000 0.7408
 1.0000 0.4493
 1.0000 0.3329
 1.0000 0.2019
 1.0000 0.1003

Use the backslash operator to get the least squares solution:

c = E\y

c =
 0.4760
 0.3413

In other words, the least squares fit to the data is

The following statements evaluate the model at regularly spaced increments in
t, and then plot the result, together with the original data:

T = (0:0.1:2.5)';
Y = [ones(size(T)) exp(-T)]*c;
plot(T,Y,'-',t,y,'o')

You can see that E*c is not exactly equal to y, but that the difference might well
be less than measurement errors in the original data.

y t() 0.4760≈ 0.3413+ e t–

1 Matrices and Linear Algebra

1-20

A rectangular matrix A is rank deficient if it does not have linearly independent
columns. If A is rank deficient, the least squares solution to AX = B is not
unique. The backslash operator, A\B, issues a warning if A is rank deficient and
produces a least squares solution that has at most rank(A) nonzeros.

Underdetermined Systems
Underdetermined linear systems involve more unknowns than equations. The
solution to such underdetermined systems is not unique. The matrix left
division operation in MATLAB finds a basic solution, which has at most m
nonzero components.

Here is a small, random example:

R = [6 8 7 3; 3 5 4 1]
R =
 6 8 7 3
 3 5 4 1

rand('state', 0);

0 0.5 1 1.5 2 2.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Solving Linear Systems of Equations

1-21

b = fix(10*rand(2,1))
b =
 9
 2

The linear system Rx = b involves two equations in four unknowns. Since the
coefficient matrix contains small integers, it is appropriate to use the format
command to display the solution in rational format. The particular solution is
obtained with

format rat
p = R\b
p =
 0
 -3/7
 0
 29/7

One of the nonzero components is p(2) because R(:,2) is the column of R with
largest norm. The other nonzero component is p(4) because R(:,4) dominates
after R(:,2) is eliminated.

The complete solution to the underdetermined system can be characterized by
adding an arbitrary vector from the null space, which can be found using the
null function with an option requesting a “rational” basis:

Z = null(R,'r')
Z =
 -1/2 -7/6
 -1/2 1/2
 1 0
 0 1

It can be confirmed that R*Z is zero and that any vector x where

x = p + Z*q

for an arbitrary vector q satisfies R*x = b.

1 Matrices and Linear Algebra

1-22

Inverses and Determinants
This section provides

• An overview of the use of inverses and determinants for solving square
nonsingular systems of linear equations

• A discussion of the Moore-Penrose pseudoinverse for solving rectangular
systems of linear equations

Overview
If A is square and nonsingular, the equations AX = I and XA = I have the same
solution, X. This solution is called the inverse of A, is denoted by A-1, and is
computed by the function inv. The determinant of a matrix is useful in
theoretical considerations and some types of symbolic computation, but its
scaling and roundoff error properties make it far less satisfactory for numeric
computation. Nevertheless, the function det computes the determinant of a
square matrix:

A = pascal(3)

A =
 1 1 1
 1 2 3
 1 3 6

d = det(A)
X = inv(A)

d =
 1

X =
 3 -3 1

-3 5 -2
 1 -2 1

Inverses and Determinants

1-23

Again, because A is symmetric, has integer elements, and has determinant
equal to one, so does its inverse. On the other hand,

B = magic(3)

B =
 8 1 6
 3 5 7
 4 9 2

d = det(B)
X = inv(B)

d =
 -360

X =
 0.1472 -0.1444 0.0639

-0.0611 0.0222 0.1056
-0.0194 0.1889 -0.1028

Closer examination of the elements of X, or use of format rat, would reveal
that they are integers divided by 360.

If A is square and nonsingular, then without roundoff error, X = inv(A)*B
would theoretically be the same as X = A\B and Y = B*inv(A) would
theoretically be the same as Y = B/A. But the computations involving the
backslash and slash operators are preferable because they require less
computer time, less memory, and have better error detection properties.

Pseudoinverses
Rectangular matrices do not have inverses or determinants. At least one of the
equations AX = I and XA = I does not have a solution. A partial replacement for
the inverse is provided by the Moore-Penrose pseudoinverse, which is computed
by the pinv function:

format short
rand('state', 0);
C = fix(10*rand(3,2));

1 Matrices and Linear Algebra

1-24

X = pinv(C)

X =
 0.1159 -0.0729 0.0171
 -0.0534 0.1152 0.0418

The matrix

Q = X*C

Q =
 1.0000 0.0000
 0.0000 1.0000

is the 2-by-2 identity, but the matrix

P = C*X

P =
 0.8293 -0.1958 0.3213
 -0.1958 0.7754 0.3685
 0.3213 0.3685 0.3952

is not the 3-by-3 identity. However, P acts like an identity on a portion of the
space in the sense that P is symmetric, P*C is equal to C and X*P is equal to X.

Solving a Rank-Deficient System
If A is m-by-n with m > n and full rank n, then each of the three statements

x = A\b
x = pinv(A)*b
x = inv(A'*A)*A'*b

theoretically computes the same least squares solution x, although the
backslash operator does it faster.

However, if A does not have full rank, the solution to the least squares problem
is not unique. There are many vectors x that minimize

norm(A*x -b)

Inverses and Determinants

1-25

The solution computed by x = A\b is a basic solution; it has at most r nonzero
components, where r is the rank of A. The solution computed by x = pinv(A)*b
is the minimal norm solution because it minimizes norm(x). An attempt to
compute a solution with x = inv(A'*A)*A'*b fails because A'*A is singular.

Here is an example that illustrates the various solutions:

A = [1 2 3
 4 5 6
 7 8 9
 10 11 12]

does not have full rank. Its second column is the average of the first and third
columns. If

b = A(:,2)

is the second column, then an obvious solution to A*x = b is x = [0 1 0]'. But
none of the approaches computes that x. The backslash operator gives

x = A\b

Warning: Rank deficient, rank = 2.

x =
 0.5000
 0
 0.5000

This solution has two nonzero components. The pseudoinverse approach gives

y = pinv(A)*b

y =
 0.3333
 0.3333
 0.3333

1 Matrices and Linear Algebra

1-26

There is no warning about rank deficiency. But norm(y) = 0.5774 is less than
norm(x) = 0.7071. Finally

z = inv(A'*A)*A'*b

fails completely:

Warning: Matrix is singular to working precision.

z =
 Inf
 Inf
 Inf

Cholesky, LU, and QR Factorizations

1-27

Cholesky, LU, and QR Factorizations
The MATLAB linear equation capabilities are based on three basic matrix
factorizations:

• Cholesky factorization for symmetric, positive definite matrices

• LU factorization (Gaussian elimination) for general square matrices

• QR factorization (orthogonal) for rectangular matrices

These three factorizations are available through the chol, lu, and qr functions.

All three of these factorizations make use of triangular matrices where all the
elements either above or below the diagonal are zero. Systems of linear
equations involving triangular matrices are easily and quickly solved using
either forward or back substitution.

Cholesky Factorization
The Cholesky factorization expresses a symmetric matrix as the product of a
triangular matrix and its transpose

where R is an upper triangular matrix.

Not all symmetric matrices can be factored in this way; the matrices that have
such a factorization are said to be positive definite. This implies that all the
diagonal elements of A are positive and that the offdiagonal elements are “not
too big.” The Pascal matrices provide an interesting example. Throughout this
chapter, the example matrix A has been the 3-by-3 Pascal matrix. Temporarily
switch to the 6-by-6:

A = pascal(6)

A =
 1 1 1 1 1 1
 1 2 3 4 5 6
 1 3 6 10 15 21
 1 4 10 20 35 56
 1 5 15 35 70 126
 1 6 21 56 126 252

A R′R=

1 Matrices and Linear Algebra

1-28

The elements of A are binomial coefficients. Each element is the sum of its
north and west neighbors. The Cholesky factorization is

R = chol(A)

R =
 1 1 1 1 1 1
 0 1 2 3 4 5
 0 0 1 3 6 10
 0 0 0 1 4 10
 0 0 0 0 1 5
 0 0 0 0 0 1

The elements are again binomial coefficients. The fact that R'*R is equal to A
demonstrates an identity involving sums of products of binomial coefficients.

Note The Cholesky factorization also applies to complex matrices. Any
complex matrix which has a Cholesky factorization satisfies A' = A and is said
to be Hermitian positive definite.

The Cholesky factorization allows the linear system

to be replaced by

Because the backslash operator recognizes triangular systems, this can be
solved in MATLAB quickly with

x = R\(R'\b)

If A is n-by-n, the computational complexity of chol(A) is O(n3), but the
complexity of the subsequent backslash solutions is only O(n2).

Ax b=

R′Rx b=

Cholesky, LU, and QR Factorizations

1-29

LU Factorization
LU factorization, or Gaussian elimination, expresses any square matrix A as
the product of a permutation of a lower triangular matrix and an upper
triangular matrix

where L is a permutation of a lower triangular matrix with ones on its diagonal
and U is an upper triangular matrix.

The permutations are necessary for both theoretical and computational
reasons. The matrix

cannot be expressed as the product of triangular matrices without
interchanging its two rows. Although the matrix

can be expressed as the product of triangular matrices, when is small the
elements in the factors are large and magnify errors, so even though the
permutations are not strictly necessary, they are desirable. Partial pivoting
ensures that the elements of L are bounded by one in magnitude and that the
elements of U are not much larger than those of A.

For example

[L,U] = lu(B)

L =
 1.0000 0 0
 0.3750 0.5441 1.0000
 0.5000 1.0000 0

U =
 8.0000 1.0000 6.0000
 0 8.5000 -1.0000
 0 0 5.2941

A LU=

0 1
1 0

ε 1
1 0

ε

1 Matrices and Linear Algebra

1-30

The LU factorization of A allows the linear system

A*x = b

to be solved quickly with

x = U\(L\b)

Determinants and inverses are computed from the LU factorization using

det(A) = det(L)*det(U)

and

inv(A) = inv(U)*inv(L)

You can also compute the determinants using det(A) = prod(diag(U)),
though the signs of the determinants may be reversed.

QR Factorization
An orthogonal matrix, or a matrix with orthonormal columns, is a real matrix
whose columns all have unit length and are perpendicular to each other. If Q
is orthogonal, then

The simplest orthogonal matrices are two-dimensional coordinate rotations:

For complex matrices, the corresponding term is unitary. Orthogonal and
unitary matrices are desirable for numerical computation because they
preserve length, preserve angles, and do not magnify errors.

The orthogonal, or QR, factorization expresses any rectangular matrix as the
product of an orthogonal or unitary matrix and an upper triangular matrix. A
column permutation may also be involved:

or

Q′Q 1=

θ()cos θ()sin
θ()sin– θ()cos

A Q R=

A P Q R=

Cholesky, LU, and QR Factorizations

1-31

where Q is orthogonal or unitary, R is upper triangular, and P is a
permutation.

There are four variants of the QR factorization– full or economy size, and with
or without column permutation.

Overdetermined linear systems involve a rectangular matrix with more rows
than columns, that is m-by-n with m > n. The full size QR factorization
produces a square, m-by-m orthogonal Q and a rectangular m-by-n upper
triangular R:

[Q,R] = qr(C)

Q =
-0.8182 0.3999 -0.4131
-0.1818 -0.8616 -0.4739
-0.5455 -0.3126 0.7777

R =
-11.0000 -8.5455

 0 -7.4817
 0 0

In many cases, the last m - n columns of Q are not needed because they are
multiplied by the zeros in the bottom portion of R. So the economy size QR
factorization produces a rectangular, m-by-n Q with orthonormal columns and
a square n-by-n upper triangular R. For the 3-by-2 example, this is not much
of a saving, but for larger, highly rectangular matrices, the savings in both time
and memory can be quite important:

[Q,R] = qr(C,0)

Q =
-0.8182 0.3999
-0.1818 -0.8616
-0.5455 -0.3126

R =
-11.0000 -8.5455

 0 -7.4817

1 Matrices and Linear Algebra

1-32

In contrast to the LU factorization, the QR factorization does not require any
pivoting or permutations. But an optional column permutation, triggered by
the presence of a third output argument, is useful for detecting singularity or
rank deficiency. At each step of the factorization, the column of the remaining
unfactored matrix with largest norm is used as the basis for that step. This
ensures that the diagonal elements of R occur in decreasing order and that any
linear dependence among the columns is almost certainly be revealed by
examining these elements. For the small example given here, the second
column of C has a larger norm than the first, so the two columns are exchanged:

[Q,R,P] = qr(C)

Q =
-0.3522 0.8398 -0.4131
-0.7044 -0.5285 -0.4739
-0.6163 0.1241 0.7777

R =
-11.3578 -8.2762

 0 7.2460
 0 0

P =
 0 1
 1 0

When the economy size and column permutations are combined, the third
output argument is a permutation vector, rather than a permutation matrix:

[Q,R,p] = qr(C,0)

Q =
-0.3522 0.8398
-0.7044 -0.5285
-0.6163 0.1241

R =
-11.3578 -8.2762

 0 7.2460

Cholesky, LU, and QR Factorizations

1-33

p =
 2 1

The QR factorization transforms an overdetermined linear system into an
equivalent triangular system. The expression

norm(A*x - b)

is equal to

norm(Q*R*x - b)

Multiplication by orthogonal matrices preserves the Euclidean norm, so this
expression is also equal to

norm(R*x - y)

where y = Q'*b. Since the last m-n rows of R are zero, this expression breaks
into two pieces:

norm(R(1:n,1:n)*x - y(1:n))

and

norm(y(n+1:m))

When A has full rank, it is possible to solve for x so that the first of these
expressions is zero. Then the second expression gives the norm of the residual.
When A does not have full rank, the triangular structure of R makes it possible
to find a basic solution to the least squares problem.

1 Matrices and Linear Algebra

1-34

Matrix Powers and Exponentials
This section tells you how to obtain the following matrix powers and
exponentials in MATLAB:

• Positive integer

• Inverse and fractional

• Element-by-element

• Exponentials

Positive Integer Powers
If A is a square matrix and p is a positive integer, then A^p effectively multiplies
A by itself p-1 times. For example,

A = [1 1 1;1 2 3;1 3 6]

A =

 1 1 1
 1 2 3
 1 3 6

X = A^2

X =
 3 6 10
 6 14 25
 10 25 46

Inverse and Fractional Powers
If A is square and nonsingular, then A^(-p) effectively multiplies inv(A) by
itself p-1 times:

Y = A^(-3)

Matrix Powers and Exponentials

1-35

Y =

 145.0000 -207.0000 81.0000
 -207.0000 298.0000 -117.0000
 81.0000 -117.0000 46.0000

Fractional powers, like A^(2/3), are also permitted; the results depend upon
the distribution of the eigenvalues of the matrix.

Element-by-Element Powers
The .^ operator produces element-by-element powers. For example,

X = A.^2

A =
 1 1 1
 1 4 9
 1 9 36

Exponentials
The function

sqrtm(A)

computes A^(1/2) by a more accurate algorithm. The m in sqrtm distinguishes
this function from sqrt(A) which, like A.^(1/2), does its job
element-by-element.

A system of linear, constant coefficient, ordinary differential equations can be
written

where x = x(t) is a vector of functions of t and A is a matrix independent of t.
The solution can be expressed in terms of the matrix exponential,

The function

expm(A)

dx dt⁄ Ax=

x t() etA
= x 0()

1 Matrices and Linear Algebra

1-36

computes the matrix exponential. An example is provided by the 3-by-3
coefficient matrix

A =
 0 -6 -1
 6 2 -16

-5 20 -10

and the initial condition, x(0)

x0 =
 1
 1
 1

The matrix exponential is used to compute the solution, x(t), to the differential
equation at 101 points on the interval 0 ≤ t ≤ 1 with

X = [];
for t = 0:.01:1
 X = [X expm(t*A)*x0];
end

A three-dimensional phase plane plot obtained with

plot3(X(1,:),X(2,:),X(3,:),'-o')

shows the solution spiraling in towards the origin. This behavior is related to
the eigenvalues of the coefficient matrix, which are discussed in the next
section.

Matrix Powers and Exponentials

1-37

0
0.2

0.4
0.6

0.8
1

−0.5

0

0.5

1

1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 Matrices and Linear Algebra

1-38

Eigenvalues
An eigenvalue and eigenvector of a square matrix A are a scalar and a
nonzero vector v that satisfy

This section explains:

• Eigenvalue decomposition

• Problems associated with defective (not diagonalizable) matrices

• The use of Schur decomposition to avoid problems associated with
eigenvalue decomposition

Eigenvalue Decomposition
With the eigenvalues on the diagonal of a diagonal matrix and the
corresponding eigenvectors forming the columns of a matrix V, you have

If V is nonsingular, this becomes the eigenvalue decomposition

A good example is provided by the coefficient matrix of the ordinary differential
equation in the previous section:

A =
 0 -6 -1
 6 2 -16

-5 20 -10

The statement

lambda = eig(A)

produces a column vector containing the eigenvalues. For this matrix, the
eigenvalues are complex:

lambda =
 -3.0710
 -2.4645+17.6008i
 -2.4645-17.6008i

λ

Av λ= v

Λ

AV VΛ=

A VΛV 1–
=

Eigenvalues

1-39

The real part of each of the eigenvalues is negative, so approaches zero as
t increases. The nonzero imaginary part of two of the eigenvalues, ,
contributes the oscillatory component, , to the solution of the
differential equation.

With two output arguments, eig computes the eigenvectors and stores the
eigenvalues in a diagonal matrix:

[V,D] = eig(A)

V =
-0.8326 0.2003 - 0.1394i 0.2003 + 0.1394i
-0.3553 -0.2110 - 0.6447i -0.2110 + 0.6447i
-0.4248 -0.6930 -0.6930

D =
-3.0710 0 0

 0 -2.4645+17.6008i 0
 0 0 -2.4645-17.6008i

The first eigenvector is real and the other two vectors are complex conjugates
of each other. All three vectors are normalized to have Euclidean length,
norm(v,2), equal to one.

The matrix V*D*inv(V), which can be written more succinctly as V*D/V, is
within roundoff error of A. And, inv(V)*A*V, or V\A*V, is within roundoff error
of D.

Defective Matrices
Some matrices do not have an eigenvector decomposition. These matrices are
defective, or not diagonalizable. For example,

A = [6 12 19
-9 -20 -33
4 9 15]

For this matrix

[V,D] = eig(A)

eλt

ω±
ωt()sin

1 Matrices and Linear Algebra

1-40

produces

V =

-0.4741 -0.4082 -0.4082
 0.8127 0.8165 0.8165
-0.3386 -0.4082 -0.4082

D =

-1.0000 0 0
 0 1.0000 0
 0 0 1.0000

There is a double eigenvalue at . The second and third columns of V are
the same. For this matrix, a full set of linearly independent eigenvectors does
not exist.

The optional Symbolic Math Toolbox extends the capabilities of MATLAB by
connecting to Maple, a powerful computer algebra system. One of the functions
provided by the toolbox computes the Jordan Canonical Form. This is
appropriate for matrices like the example given here, which is 3-by-3 and has
exactly known, integer elements:

[X,J] = jordan(A)

X =
 -1.7500 1.5000 2.7500
 3.0000 -3.0000 -3.0000
 -1.2500 1.5000 1.2500

J =
 -1 0 0
 0 1 1
 0 0 1

The Jordan Canonical Form is an important theoretical concept, but it is not a
reliable computational tool for larger matrices, or for matrices whose elements
are subject to roundoff errors and other uncertainties.

λ 1=

Eigenvalues

1-41

Schur Decomposition in MATLAB Matrix Computations
The MATLAB advanced matrix computations do not require eigenvalue
decompositions. They are based, instead, on the Schur decomposition

where U is an orthogonal matrix and S is a block upper triangular matrix with
1-by-1 and 2-by-2 blocks on the diagonal. The eigenvalues are revealed by the
diagonal elements and blocks of S, while the columns of U provide a basis with
much better numerical properties than a set of eigenvectors. The Schur
decomposition of this defective example is

[U,S] = schur(A)

U =
 -0.4741 0.6648 0.5774
 0.8127 0.0782 0.5774
 -0.3386 -0.7430 0.5774

S =
 -1.0000 20.7846 -44.6948
 0 1.0000 -0.6096
 0 0 1.0000

The double eigenvalue is contained in the lower 2-by-2 block of S.

Note If A is complex, schur returns the complex Schur form, which is upper
triangular with the eigenvalues of A on the diagonal.

A U S UT=

1 Matrices and Linear Algebra

1-42

Singular Value Decomposition
A singular value and corresponding singular vectors of a rectangular matrix A
are a scalar and a pair of vectors u and v that satisfy

With the singular values on the diagonal of a diagonal matrix and the
corresponding singular vectors forming the columns of two orthogonal matrices
U and V, you have

Since U and V are orthogonal, this becomes the singular value decomposition

The full singular value decomposition of an m-by-n matrix involves an m-by-m
U, an m-by-n , and an n-by-n V. In other words, U and V are both square and

 is the same size as A. If A has many more rows than columns, the resulting
U can be quite large, but most of its columns are multiplied by zeros in . In
this situation, the economy sized decomposition saves both time and storage by
producing an m-by-n U, an n-by-n and the same V.

The eigenvalue decomposition is the appropriate tool for analyzing a matrix
when it represents a mapping from a vector space into itself, as it does for an
ordinary differential equation. On the other hand, the singular value
decomposition is the appropriate tool for analyzing a mapping from one vector
space into another vector space, possibly with a different dimension. Most
systems of simultaneous linear equations fall into this second category.

If A is square, symmetric, and positive definite, then its eigenvalue and
singular value decompositions are the same. But, as A departs from symmetry
and positive definiteness, the difference between the two decompositions
increases. In particular, the singular value decomposition of a real matrix is
always real, but the eigenvalue decomposition of a real, nonsymmetric matrix
might be complex.

σ

Av σu=

ATu σv=

Σ

A V U Σ=

AT U V Σ=

A U Σ VT
=

Σ
Σ

Σ

Σ

Singular Value Decomposition

1-43

For the example matrix

A =
 9 4
 6 8
 2 7

the full singular value decomposition is

[U,S,V] = svd(A)

U =
 -0.6105 0.7174 0.3355
 -0.6646 -0.2336 -0.7098
 -0.4308 -0.6563 0.6194

S =
 14.9359 0
 0 5.1883
 0 0

V =
 -0.6925 0.7214
 -0.7214 -0.6925

You can verify that U*S*V' is equal to A to within roundoff error. For this small
problem, the economy size decomposition is only slightly smaller:

[U,S,V] = svd(A,0)

U =
 -0.6105 0.7174
 -0.6646 -0.2336
 -0.4308 -0.6563

S =
 14.9359 0
 0 5.1883

V =
 -0.6925 0.7214
 -0.7214 -0.6925

Again, U*S*V' is equal to A to within roundoff error.

1 Matrices and Linear Algebra

1-44

2
Polynomials and
Interpolation

Polynomials (p. 2-2) Functions for standard polynomial operations. Additional
topics include curve fitting and partial fraction expansion.

Interpolation (p. 2-9) Two- and multi-dimensional interpolation techniques, taking
into account speed, memory, and smoothness considerations.

Selected Bibliography (p. 2-37) Published materials that support concepts implemented in
“Polynomials and Interpolation”

2 Polynomials and Interpolation

2-2

Polynomials
This section provides

• A summary of the MATLAB polynomial functions

• Instructions for representing polynomials in MATLAB

It also describes the MATLAB polynomial functions that

• Calculate the roots of a polynomial

• Calculate the coefficients of the characteristic polynomial of a matrix

• Evaluate a polynomial at a specified value

• Convolve (multiply) and deconvolve (divide) polynomials

• Compute the derivative of a polynomial

• Fit a polynomial to a set of data

• Convert between partial fraction expansion and polynomial coefficients

Polynomial Function Summary
MATLAB provides functions for standard polynomial operations, such as
polynomial roots, evaluation, and differentiation. In addition, there are
functions for more advanced applications, such as curve fitting and partial
fraction expansion.

The polynomial functions reside in the MATLAB polyfun directory.

Polynomial Function Summary

Function Description

conv Multiply polynomials.

deconv Divide polynomials.

poly Polynomial with specified roots.

polyder Polynomial derivative.

polyfit Polynomial curve fitting.

polyval Polynomial evaluation.

Polynomials

2-3

The Symbolic Math Toolbox contains additional specialized support for
polynomial operations.

Representing Polynomials
MATLAB represents polynomials as row vectors containing coefficients
ordered by descending powers. For example, consider the equation

This is the celebrated example Wallis used when he first represented Newton’s
method to the French Academy. To enter this polynomial into MATLAB, use

p = [1 0 -2 -5];

Polynomial Roots
The roots function calculates the roots of a polynomial:

r = roots(p)

r =
 2.0946
 -1.0473 + 1.1359i
 -1.0473 - 1.1359i

By convention, MATLAB stores roots in column vectors. The function poly
returns to the polynomial coefficients:

p2 = poly(r)

p2 =
1 8.8818e-16 -2 -5

polyvalm Matrix polynomial evaluation.

residue Partial-fraction expansion (residues).

roots Find polynomial roots.

Polynomial Function Summary (Continued)

Function Description

p x() x3 2x– 5–=

2 Polynomials and Interpolation

2-4

poly and roots are inverse functions, up to ordering, scaling, and roundoff
error.

Characteristic Polynomials
The poly function also computes the coefficients of the characteristic
polynomial of a matrix:

A = [1.2 3 -0.9; 5 1.75 6; 9 0 1];
poly(A)

ans =
 1.0000 -3.9500 -1.8500 -163.2750

The roots of this polynomial, computed with roots, are the characteristic roots,
or eigenvalues, of the matrix A. (Use eig to compute the eigenvalues of a matrix
directly.)

Polynomial Evaluation
The polyval function evaluates a polynomial at a specified value. To evaluate
p at s = 5, use

polyval(p,5)

ans =
 110

It is also possible to evaluate a polynomial in a matrix sense. In this case
 becomes , where X is a square

matrix and I is the identity matrix. For example, create a square matrix X and
evaluate the polynomial p at X:

X = [2 4 5; -1 0 3; 7 1 5];
Y = polyvalm(p,X)

Y =
 377 179 439
 111 81 136
 490 253 639

p s() x3 2x– 5–= p X() X3 2X– 5I–=

Polynomials

2-5

Convolution and Deconvolution
Polynomial multiplication and division correspond to the operations
convolution and deconvolution. The functions conv and deconv implement
these operations.

Consider the polynomials and . To
compute their product,

a = [1 2 3]; b = [4 5 6];
c = conv(a,b)

c =
 4 13 28 27 18

Use deconvolution to divide back out of the product:

[q,r] = deconv(c,a)

q =
 4 5 6

r =
 0 0 0 0 0

Polynomial Derivatives
The polyder function computes the derivative of any polynomial. To obtain the
derivative of the polynomial p = [1 0 -2 -5],

q = polyder(p)

q =
 3 0 -2

polyder also computes the derivative of the product or quotient of two
polynomials. For example, create two polynomials a and b:

a = [1 3 5];
b = [2 4 6];

a s() s2 2s 3+ += b s() 4s2 5s 6+ +=

a s()

2 Polynomials and Interpolation

2-6

Calculate the derivative of the product a*b by calling polyder with a single
output argument:

c = polyder(a,b)

c =
 8 30 56 38

Calculate the derivative of the quotient a/b by calling polyder with two output
arguments:

[q,d] = polyder(a,b)

q =
 -2 -8 -2

d =
 4 16 40 48 36

q/d is the result of the operation.

Polynomial Curve Fitting
polyfit finds the coefficients of a polynomial that fits a set of data in a
least-squares sense:

p = polyfit(x,y,n)

x and y are vectors containing the x and y data to be fitted, and n is the degree
of the polynomial to return. For example, consider the x-y test data

x = [1 2 3 4 5]; y = [5.5 43.1 128 290.7 498.4];

A third degree polynomial that approximately fits the data is

p = polyfit(x,y,3)

p =
 -0.1917 31.5821 -60.3262 35.3400

Polynomials

2-7

Compute the values of the polyfit estimate over a finer range, and plot the
estimate over the real data values for comparison:

x2 = 1:.1:5;
y2 = polyval(p,x2);
plot(x,y,'o',x2,y2)
grid on

To use these functions in an application example, see “Data Fitting Using
Linear Regression” in the MATLAB Data Analysis book.

Partial Fraction Expansion
residue finds the partial fraction expansion of the ratio of two polynomials.
This is particularly useful for applications that represent systems in transfer
function form. For polynomials b and a, if there are no multiple roots,

1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

400

450

500

b s()
a s()

r1
s p1–

r2
s p2–
--------------- …

rn
s pn–
--------------- ks+ + + +=

2 Polynomials and Interpolation

2-8

where r is a column vector of residues, p is a column vector of pole locations,
and k is a row vector of direct terms. Consider the transfer function

b = [-4 8];
a = [1 6 8];
[r,p,k] = residue(b,a)

r =
 -12
 8

p =
 -4
 -2

k =
 []

Given three input arguments (r, p, and k), residue converts back to polynomial
form:

[b2,a2] = residue(r,p,k)

b2 =
 -4 8

a2 =
 1 6 8

4s– 8+

s2 6s 8+ +

Interpolation

2-9

Interpolation
Interpolation is a process for estimating values that lie between known data
points. It has important applications in areas such as signal and image
processing.

This section

• Provides a summary of the MATLAB interpolation functions

• Discusses one-dimensional interpolation

• Discusses two-dimensional interpolation

• Uses an example to compare nearest neighbor, bilinear, and bicubic
interpolation methods

• Discusses interpolation of multidimensional data

• Discusses triangulation and interpolation of scattered data

Interpolation Function Summary
MATLAB provides a number of interpolation techniques that let you balance
the smoothness of the data fit with speed of execution and memory usage.

The interpolation functions reside in the MATLAB polyfun directory.

Interpolation Function Summary

Function Description

griddata Data gridding and surface fitting.

griddata3 Data gridding and hypersurface fitting for
three-dimensional data.

griddatan Data gridding and hypersurface fitting (dimension >= 3).

interp1 One-dimensional interpolation (table lookup).

interp2 Two-dimensional interpolation (table lookup).

interp3 Three-dimensional interpolation (table lookup).

interpft One-dimensional interpolation using FFT method.

2 Polynomials and Interpolation

2-10

One-Dimensional Interpolation
There are two kinds of one-dimensional interpolation in MATLAB:

• Polynomial interpolation

• FFT-based interpolation

Polynomial Interpolation
The function interp1 performs one-dimensional interpolation, an important
operation for data analysis and curve fitting. This function uses polynomial
techniques, fitting the supplied data with polynomial functions between data
points and evaluating the appropriate function at the desired interpolation
points. Its most general form is

yi = interp1(x,y,xi,method)

y is a vector containing the values of a function, and x is a vector of the same
length containing the points for which the values in y are given. xi is a vector
containing the points at which to interpolate. method is an optional string
specifying an interpolation method:

• Nearest neighbor interpolation (method = 'nearest'). This method sets the
value of an interpolated point to the value of the nearest existing data point.

• Linear interpolation (method = 'linear'). This method fits a different linear
function between each pair of existing data points, and returns the value of

interpn N-dimensional interpolation (table lookup).

mkpp Make a piecewise polynomial

pchip Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP).

ppval Piecewise polynomial evaluation

spline Cubic spline data interpolation

unmkpp Piecewise polynomial details

Interpolation Function Summary (Continued)

Function Description

Interpolation

2-11

the relevant function at the points specified by xi. This is the default method
for the interp1 function.

• Cubic spline interpolation (method = 'spline'). This method fits a different
cubic function between each pair of existing data points, and uses the spline
function to perform cubic spline interpolation at the data points.

• Cubic interpolation (method = 'pchip' or 'cubic'). These methods are
identical. They use the pchip function to perform piecewise cubic Hermite
interpolation within the vectors x and y. These methods preserve
monotonicity and the shape of the data.

If any element of xi is outside the interval spanned by x, the specified
interpolation method is used for extrapolation. Alternatively,
yi = interp1(x,Y,xi,method,extrapval) replaces extrapolated values with
extrapval. NaN is often used for extrapval.

All methods work with nonuniformly spaced data.

Speed, Memory, and Smoothness Considerations
When choosing an interpolation method, keep in mind that some require more
memory or longer computation time than others. However, you may need to
trade off these resources to achieve the desired smoothness in the result:

• Nearest neighbor interpolation is the fastest method. However, it provides
the worst results in terms of smoothness.

• Linear interpolation uses more memory than the nearest neighbor method,
and requires slightly more execution time. Unlike nearest neighbor
interpolation its results are continuous, but the slope changes at the vertex
points.

• Cubic spline interpolation has the longest relative execution time, although
it requires less memory than cubic interpolation. It produces the smoothest
results of all the interpolation methods. You may obtain unexpected results,
however, if your input data is non-uniform and some points are much closer
together than others.

• Cubic interpolation requires more memory and execution time than either
the nearest neighbor or linear methods. However, both the interpolated data
and its derivative are continuous.

The relative performance of each method holds true even for interpolation of
two-dimensional or multidimensional data. For a graphical comparison of

2 Polynomials and Interpolation

2-12

interpolation methods, see the section “Comparing Interpolation Methods” on
page 2-13.

FFT-Based Interpolation
The function interpft performs one-dimensional interpolation using an
FFT-based method. This method calculates the Fourier transform of a vector
that contains the values of a periodic function. It then calculates the inverse
Fourier transform using more points. Its form is

y = interpft(x,n)

x is a vector containing the values of a periodic function, sampled at equally
spaced points. n is the number of equally spaced points to return.

Two-Dimensional Interpolation
The function interp2 performs two-dimensional interpolation, an important
operation for image processing and data visualization. Its most general form is

ZI = interp2(X,Y,Z,XI,YI,method)

Z is a rectangular array containing the values of a two-dimensional function,
and X and Y are arrays of the same size containing the points for which the
values in Z are given. XI and YI are matrices containing the points at which to
interpolate the data. method is an optional string specifying an interpolation
method.

There are three different interpolation methods for two-dimensional data:

• Nearest neighbor interpolation (method = 'nearest'). This method fits a
piecewise constant surface through the data values. The value of an
interpolated point is the value of the nearest point.

• Bilinear interpolation (method = 'linear'). This method fits a bilinear
surface through existing data points. The value of an interpolated point is a
combination of the values of the four closest points. This method is piecewise
bilinear, and is faster and less memory-intensive than bicubic interpolation.

• Bicubic interpolation (method = 'cubic'). This method fits a bicubic surface
through existing data points. The value of an interpolated point is a
combination of the values of the sixteen closest points. This method is
piecewise bicubic, and produces a much smoother surface than bilinear
interpolation. This can be a key advantage for applications like image

Interpolation

2-13

processing. Use bicubic interpolation when the interpolated data and its
derivative must be continuous.

All of these methods require that X and Y be monotonic, that is, either always
increasing or always decreasing from point to point. You should prepare these
matrices using the meshgrid function, or else be sure that the “pattern” of the
points emulates the output of meshgrid. In addition, each method
automatically maps the input to an equally spaced domain before
interpolating. If X and Y are already equally spaced, you can speed execution
time by prepending an asterisk to the method string, for example, '*cubic'.

Comparing Interpolation Methods
This example compares two-dimensional interpolation methods on a 7-by-7
matrix of data:

1 Generate the peaks function at low resolution:

[x,y] = meshgrid(-3:1:3);
z = peaks(x,y);
surf(x,y,z)

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−6

−4

−2

0

2

4

6

2 Polynomials and Interpolation

2-14

2 Generate a finer mesh for interpolation:

[xi,yi] = meshgrid(-3:0.25:3);

3 Interpolate using nearest neighbor interpolation:

zi1 = interp2(x,y,z,xi,yi,'nearest');

4 Interpolate using bilinear interpolation:

zi2 = interp2(x,y,z,xi,yi,'bilinear');

5 Interpolate using bicubic interpolation:

zi3 = interp2(x,y,z,xi,yi,'bicubic');

6 Compare the surface plots for the different interpolation methods.

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−6

−4

−2

0

2

4

6

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−6

−4

−2

0

2

4

6

surf(xi,yi,zi1)
% nearest

surf(xi,yi,zi2)
% bilinear

surf(xi,yi,zi3)
% bicubic

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−6

−4

−2

0

2

4

6

Interpolation

2-15

7 Compare the contour plots for the different interpolation methods.

Notice that the bicubic method, in particular, produces smoother contours.
This is not always the primary concern, however. For some applications, such
as medical image processing, a method like nearest neighbor may be preferred
because it doesn’t generate any “new” data values.

Interpolation and Multidimensional Arrays
Several interpolation functions operate specifically on multidimensional data.

This section discusses

• Interpolation of three-dimensional data

• Interpolation of higher dimensional data

• Multidimensional data gridding

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

contour(xi,yi,zi1)
% nearest

contour(xi,yi,zi2)
% bilinear

contour(xi,yi,zi3)
% bicubic

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Interpolation Functions for Multidimensional Data

Function Description

interp3 Three-dimensional data interpolation.

interpn Multidimensional data interpolation.

ndgrid Multidimensional data gridding (elmat directory).

2 Polynomials and Interpolation

2-16

Interpolation of Three-Dimensional Data
The function interp3 performs three-dimensional interpolation, finding
interpolated values between points of a three-dimensional set of samples V.
You must specify a set of known data points:

• X, Y, and Z matrices specify the points for which values of V are given.

• A matrix V contains values corresponding to the points in X, Y, and Z.

The most general form for interp3 is

VI = interp3(X,Y,Z,V,XI,YI,ZI,method)

XI, YI, and ZI are the points at which interp3 interpolates values of V. For
out-of-range values, interp3 returns NaN.

There are three different interpolation methods for three-dimensional data:

• Nearest neighbor interpolation (method = 'nearest'). This method chooses
the value of the nearest point.

• Trilinear interpolation (method = 'linear'). This method uses piecewise
linear interpolation based on the values of the nearest eight points.

• Tricubic interpolation (method = 'cubic'). This method uses piecewise cubic
interpolation based on the values of the nearest sixty-four points.

All of these methods require that X, Y, and Z be monotonic, that is, either always
increasing or always decreasing in a particular direction. In addition, you
should prepare these matrices using the meshgrid function, or else be sure that
the “pattern” of the points emulates the output of meshgrid.

Each method automatically maps the input to an equally spaced domain before
interpolating. If x is already equally spaced, you can speed execution time by
prepending an asterisk to the method string, for example, '*cubic'.

Interpolation of Higher Dimensional Data
The function interpn performs multidimensional interpolation, finding
interpolated values between points of a multidimensional set of samples V. The
most general form for interpn is

VI = interpn(X1,X2,X3...,V,Y1,Y2,Y3,...,method)

1, 2, 3, ... are matrices that specify the points for which values of V are given.
V is a matrix that contains the values corresponding to these points. 1, 2, 3, ...

Interpolation

2-17

are the points for which interpn returns interpolated values of V. For
out-of-range values, interpn returns NaN.

Y1, Y2, Y3, ... must be either arrays of the same size, or vectors. If they are
vectors of different sizes, interpn passes them to ndgrid and then uses the
resulting arrays.

There are three different interpolation methods for multidimensional data:

• Nearest neighbor interpolation (method = 'nearest'). This method chooses
the value of the nearest point.

• Linear interpolation (method = 'linear'). This method uses piecewise
linear interpolation based on the values of the nearest two points in each
dimension.

• Cubic interpolation (method = 'cubic'). This method uses piecewise cubic
interpolation based on the values of the nearest four points in each
dimension.

All of these methods require that X1, X2,X3 be monotonic. In addition, you
should prepare these matrices using the ndgrid function, or else be sure that
the “pattern” of the points emulates the output of ndgrid.

Each method automatically maps the input to an equally spaced domain before
interpolating. If X is already equally spaced, you can speed execution time by
prepending an asterisk to the method string; for example, '*cubic'.

Multidimensional Data Gridding
The ndgrid function generates arrays of data for multidimensional function
evaluation and interpolation. ndgrid transforms the domain specified by a
series of input vectors into a series of output arrays. The ith dimension of these
output arrays are copies of the elements of input vector xi.

The syntax for ndgrid is

[X1,X2,X3,...] = ndgrid(x1,x2,x3,...)

For example, assume that you want to evaluate a function of three variables
over a given range. Consider the function

z x2= e
x1

2– x2
2– x3

2–()

2 Polynomials and Interpolation

2-18

for , , and . To evaluate and plot this
function,

x1 = -2:0.2:2;
x2 = -2:0.25:2;
x3 = -2:0.16:2;
[X1,X2,X3] = ndgrid(x1,x2,x3);
z = X2.*exp(-X1.^2 -X2.^2 -X3.^2);
slice(X2,X1,X3,z,[-1.2 0.8 2],2,[-2 0.2])

Triangulation and Interpolation of Scattered Data
MATLAB provides routines that aid in the analysis of closest-point problems
and geometric analysis.

Functions for Analysis of Closest-Point Problems and Geometric Analysis

Function Description

convhull Convex hull.

delaunay Delaunay triangulation.

2π– x1 0≤ ≤ 2π x2 4π≤ ≤ 0 x3 2π≤ ≤

−2
−1

0
1

2

−2

−1

0

1

2
−2

−1

0

1

2

Interpolation

2-19

This section applies the following techniques to the seamount data set supplied
with MATLAB:

• Convex hulls

• Delaunay triangulation

• Voronoi diagrams

See also “Tessellation and Interpolation of Scattered Data in Higher
Dimensions” on page 2-26.

Note Examples in this section use the MATLAB seamount data set.
Seamounts are underwater mountains. They are valuable sources of
information about marine geology. The seamount data set represents the
surface, in 1984, of the seamount designated LR148.8W located at 48.2°S,
148.8°W on the Louisville Ridge in the South Pacific. For more information
about the data and its use, see Parker [2].

The seamount data set provides longitude (x), latitude (y) and depth-in-feet (z)
data for 294 points on the seamount LR148.8W.

delaunay3 3-D Delaunay tessellation.

dsearch Nearest point search of Delaunay triangulation.

inpolygon True for points inside polygonal region.

polyarea Area of polygon.

rectint Area of intersection for two or more rectangles.

tsearch Closest triangle search.

voronoi Voronoi diagram.

Functions for Analysis of Closest-Point Problems and Geometric Analysis

Function Description

2 Polynomials and Interpolation

2-20

Convex Hulls
The convhull function returns the indices of the points in a data set that
comprise the convex hull for the set. Use the plot function to plot the output of
convhull.

This example loads the seamount data and plots the longitudinal (x) and
latitudinal (y) data as a scatter plot. It then generates the convex hull and uses
plot to plot the convex hull:

load seamount
plot(x,y,'.','markersize',10)
k = convhull(x,y);
hold on, plot(x(k),y(k),'-r'), hold off
grid on

Delaunay Triangulation
Given a set of coplanar data points, Delaunay triangulation is a set of lines
connecting each point to its natural neighbors. The delaunay function returns
a Delaunay triangulation as a set of triangles having the property that, for each
triangle, the unique circle circumscribed about the triangle contains no data
points.

210.8 211 211.2 211.4 211.6 211.8
−48.45

−48.4

−48.35

−48.3

−48.25

−48.2

−48.15

−48.1

−48.05

−48

−47.95

Interpolation

2-21

You can use triplot to print the resulting triangles in two-dimensional space.
You can also add data for a third dimension to the output of delaunay and plot
the result as a surface with trisurf, or as a mesh with trimesh.

Plotting a Delaunay Triangulation. To try delaunay, load the seamount data set and
view the longitude (x) and latitude (y) data as a scatter plot:

load seamount
plot(x,y,'.','markersize',12)
xlabel('Longitude'), ylabel('Latitude')
grid on

Apply Delaunay triangulation and use triplot to overplot the resulting
triangles on the scatter plot:

tri = delaunay(x,y);
hold on, triplot(tri,x,y), hold off

210.8 211 211.2 211.4 211.6 211.8
−48.45

−48.4

−48.35

−48.3

−48.25

−48.2

−48.15

−48.1

−48.05

−48

−47.95

Longitude

La
tit

ud
e

2 Polynomials and Interpolation

2-22

Mesh and Surface Plots. Add the depth data (z) from seamount, to the Delaunay
triangulation, and use trimesh to produce a mesh in three-dimensional space.
Similarly, you can use trisurf to produce a surface:

figure
hidden on
trimesh(tri,x,y,z)
grid on
xlabel('Longitude'); ylabel('Latitude'); zlabel('Depth in Feet')

210.8 211 211.2 211.4 211.6 211.8
−48.45

−48.4

−48.35

−48.3

−48.25

−48.2

−48.15

−48.1

−48.05

−48

−47.95

Longitude

La
tit

ud
e

Interpolation

2-23

Contour Plots. This code uses meshgrid, griddata, and contour to produce a
contour plot of the seamount data:

figure
[xi,yi] = meshgrid(210.8:.01:211.8,-48.5:.01:-47.9);
zi = griddata(x,y,z,xi,yi,'cubic');
[c,h] = contour(xi,yi,zi,'b-');
clabel(c,h)
xlabel('Longitude'), ylabel('Latitude')

210.8
211

211.2
211.4

211.6

−48.4
−48.3

−48.2
−48.1

−48

−5000

−4000

−3000

−2000

−1000

0

LongitudeLatitude

D
ep

th
 in

 F
ee

t

2 Polynomials and Interpolation

2-24

The arguments for meshgrid encompass the largest and smallest x and y
values in the original seamount data. To obtain these values, use min(x),
max(x), min(y), and max(y).

Closest-Point Searches. You can search through the Delaunay triangulation data
with two functions:

• dsearch finds the indices of the (x,y) points in a Delaunay triangulation
closest to the points you specify. This code searches for the point closest to
(211.32, -48.35) in the triangulation of the seamount data.
xi = 211.32; yi = -48.35;
p = dsearch(x,y,tri,xi,yi);
[x(p), y(p)]

ans =
 211.3400 -48.3700

• tsearch finds the indices into the delaunay output that specify the enclosing
triangles of the points you specify. This example uses the index of the

210.8 211 211.2 211.4 211.6 211.8
−48.45

−48.4

−48.35

−48.3

−48.25

−48.2

−48.15

−48.1

−48.05

−48

−47.95

Longitude

La
tit

ud
e

−4
00

0

−4000

−4000

−4000

−4000

−4000

−35
00

−3500

−3
50

0

−3500

−3000

−3000

−3000

−2500

−2500

−2000−
2000

−1500

−1000

Interpolation

2-25

enclosing triangle for the point (211.32, -48.35) to obtain the coordinates of
the vertices of the triangle:

xi = 211.32; yi = -48.35;
t = tsearch(x,y,tri,xi,yi);
r = tri(t,:);
A = [x(r) y(r)]

A =
 211.3000 -48.3000
 211.3400 -48.3700
 211.2800 -48.3200

Voronoi Diagrams
Voronoi diagrams are a closest-point plotting technique related to Delaunay
triangulation.

For each point in a set of coplanar points, you can draw a polygon that encloses
all the intermediate points that are closer to that point than to any other point
in the set. Such a polygon is called a Voronoi polygon, and the set of all Voronoi
polygons for a given point set is called a Voronoi diagram.

The voronoi function can plot the cells of the Voronoi diagram, or return the
vertices of the edges of the diagram. This example loads the seamount data,
then uses the voronoi function to produce the Voronoi diagram for the
longitudinal (x) and latitudinal (y) dimensions. Note that voronoi plots only
the bounded cells of the Voronoi diagram:

load seamount
voronoi(x,y)
grid on
xlabel('Longitude'), ylabel('Latitude')

2 Polynomials and Interpolation

2-26

Note See the voronoi function for an example that uses the vertices of the
edges to plot a Voronoi diagram.

Tessellation and Interpolation of Scattered Data in
Higher Dimensions
Many applications in science, engineering, statistics, and mathematics require
structures like convex hulls, Voronoi diagrams, and Delaunay tessellations.
Using Qhull [1], MATLAB functions enable you to geometrically analyze data
sets in any dimension.

210.9 211 211.1 211.2 211.3 211.4 211.5 211.6

−48.4

−48.35

−48.3

−48.25

−48.2

−48.15

−48.1

−48.05

−48

Longitude

La
tit

ud
e

Interpolation

2-27

This section demonstrates these geometric analysis techniques:

• Convex hulls

• Delaunay triangulations

• Voronoi diagrams

• Interpolation of scattered multidimensional data

Convex Hulls
The convex hull of a data set in n-dimensional space is defined as the smallest
convex region that contains the data set.

Computing a Convex Hull. The convhulln function returns the indices of the
points in a data set that comprise the facets of the convex hull for the set. For
example, suppose X is an 8-by-3 matrix that consists of the 8 vertices of a cube.
The convex hull of X then consists of 12 facets:

d = [-1 1];
[x,y,z] = meshgrid(d,d,d);
X = [x(:),y(:),z(:)]; % 8 corner points of a cube
C = convhulln(X)

C =
 4 2 1
 3 4 1

Functions for Multidimensional Geometrical Analysis

Function Description

convhulln N-dimensional convex hull.

delaunayn N-dimensional Delaunay tessellation.

dsearchn N-dimensional nearest point search.

griddatan N-dimensional data gridding and hypersurface fitting.

tsearchn N-dimensional closest simplex search.

voronoin N-dimensional Voronoi diagrams.

2 Polynomials and Interpolation

2-28

 7 3 1
 5 7 1
 7 4 3
 4 7 8
 2 6 1
 6 5 1
 4 6 2
 6 4 8
 6 7 5
 7 6 8

Because the data is three-dimensional, the facets that make up the convex hull
are triangles. The 12 rows of C represent 12 triangles. The elements of C are
indices of points in X. For example, the first row, 3 1 5, means that the first
triangle has X(3,:), X(1,:), and X(5,:) as its vertices.

For three-dimensional convex hulls, you can use trisurf to plot the output.
However, using patch to plot the output gives you more control over the color
of the facets. Note that you cannot plot convhulln output for n > 3.

This code plots the convex hull by drawing the triangles as three-dimensional
patches:

figure, hold on
d = [1 2 3 1]; % Index into C column.
for i = 1:size(C,1) % Draw each triangle.

j= C(i,d); % Get the ith C to make a patch.
 h(i)=patch(X(j,1),X(j,2),X(j,3),i,'FaceAlpha',0.9);
end % 'FaceAlpha' is used to make it transparent.
hold off
view(3), axis equal, axis off
camorbit(90,-5); % To view it from another angle
title('Convex hull of a cube')

Interpolation

2-29

Delaunay Tessellations
A Delaunay tessellation is a set of simplices with the property that, for each
simplex, the unique sphere circumscribed about the simplex contains no data
points. In two-dimensional space, a simplex is a triangle. In three-dimensional
space, a simplex is a tetrahedron.

Computing a Delaunay Tessellation. The delaunayn function returns the indices of
the points in a data set that comprise the simplices of an n-dimensional
Delaunay tessellation of the data set.

This example uses the same X as in the convex hull example, i.e. the 8 corner
points of a cube, with the addition of a center point:

d = [-1 1];
[x,y,z] = meshgrid(d,d,d);
X = [x(:),y(:),z(:)]; % 8 corner points of a cube
X(9,:) = [0 0 0]; % Add center to the vertex list.
T = delaunayn(X) % Generate Delaunay tessellation.

2 Polynomials and Interpolation

2-30

T =
 4 9 3 1
 4 9 2 1
 7 9 3 1
 7 9 5 1
 7 4 9 3
 7 4 8 9
 6 9 2 1
 6 9 5 1
 6 4 9 2
 6 4 8 9
 6 7 9 5
 6 7 8 9

The 12 rows of T represent the 12 simplices, in this case irregular tetrahedrons,
that partition the cube. Each row represents one tetrahedron, and the row
elements are indices of points in X.

For three-dimensional tessellations, you can use tetramesh to plot the output.
However, using patch to plot the output gives you more control over the color
of the facets. Note that you cannot plot delaunayn output for n > 3.

This code plots the tessellation T by drawing the tetrahedrons using
three-dimensional patches:

figure, hold on
d = [1 1 1 2; 2 2 3 3; 3 4 4 4]; % Index into T
for i = 1:size(T,1) % Draw each tetrahedron.

y = T(i,d); % Get the ith T to make a patch.
x1 = reshape(X(y,1),3,4);
x2 = reshape(X(y,2),3,4);
x3 = reshape(X(y,3),3,4);
h(i)=patch(x1,x2,x3,(1:4)*i,'FaceAlpha',0.9);

end
hold off
view(3), axis equal
axis off
camorbit(65,120) % To view it from another angle
title('Delaunay tessellation of a cube with a center point')

Interpolation

2-31

You can use cameramenu to rotate the figure in any direction.

Voronoi Diagrams
Given m data points in n-dimensional space, a Voronoi diagram is the partition
of n-dimensional space into m polyhedral regions, one region for each data
point. Such a region is called a Voronoi cell. A Voronoi cell satisfies the
condition that it contains all points that are closer to its data point than any
other data point in the set.

Computing a Voronoi Diagram. The voronoin function returns two outputs:

• V is an m-by-n matrix of m points in n-space. Each row of V represents a
Voronoi vertex.

• C is a cell array of vectors. Each vector in the cell array C represents a Voronoi
cell. The vector contains indices of the points in V that are the vertices of the
Voronoi cell. Each Voronoi cell may have a different number of points.

2 Polynomials and Interpolation

2-32

Because a Voronoi cell can be unbounded, the first row of V is a point at infinity.
Then any unbounded Voronoi cell in C includes the point at infinity, i.e., the
first point in V.

This example uses the same X as in the Delaunay example, i.e., the 8 corner
points of a cube and its center. Random noise is added to make the cube less
regular. The resulting Voronoi diagram has 9 Voronoi cells:

d = [-1 1];
[x,y,z] = meshgrid(d,d,d);
X = [x(:),y(:),z(:)]; % 8 corner points of a cube
X(9,:) = [0 0 0]; % Add center to the vertex list.
X = X+0.01*rand(size(X)); % Make the cube less regular.
[V,C] = voronoin(X);

V =
Inf Inf Inf

0.0055 1.5054 0.0004
 0.0037 0.0101 -1.4990
 0.0052 0.0087 -1.4990
 0.0030 1.5054 0.0030
 0.0072 0.0072 1.4971
 -1.7912 0.0000 0.0044
 -1.4886 0.0011 0.0036
 -1.4886 0.0002 0.0045
 0.0101 0.0044 1.4971
 1.5115 0.0074 0.0033
 1.5115 0.0081 0.0040
 0.0104 -1.4846 -0.0007
 0.0026 -1.4846 0.0071

C =
[1x8 double]
[1x6 double]
[1x4 double]
[1x6 double]
[1x6 double]
[1x6 double]
[1x6 double]
[1x6 double]
[1x12 double]

Interpolation

2-33

In this example, V is a 13-by-3 matrix, the 13 rows are the coordinates of the 13
Voronoi vertices. The first row of V is a point at infinity. C is a 9-by-1 cell array,
where each cell in the array contains an index vector into V corresponding to
one of the 9 Voronoi cells. For example, the 9th cell of the Voronoi diagram is

C{9} = 2 3 4 5 6 7 8 9 10 11 12 13

If any index in a cell of the cell array is 1, then the corresponding Voronoi cell
contains the first point in V, a point at infinity. This means the Voronoi cell is
unbounded.

To view a bounded Voronoi cell, i.e., one that does not contain a point at
infinity, use the convhulln function to compute the vertices of the facets that
make up the Voronoi cell. Then use patch and other plot functions to generate
the figure. For example, this code plots the Voronoi cell defined by the 9th cell
in C:

X = V(C{9},:); % View 9th Voronoi cell.
K = convhulln(X);
figure
hold on
d = [1 2 3 1]; % Index into K
for i = 1:size(K,1)

j = K(i,d);
h(i)=patch(X(j,1),X(j,2),X(j,3),i,'FaceAlpha',0.9);

end
hold off
view(3)
axis equal
title('One cell of a Voronoi diagram')

2 Polynomials and Interpolation

2-34

Interpolating N-Dimensional Data
Use the griddatan function to interpolate multidimensional data, particularly
scattered data. griddatan uses the delaunayn function to tessellate the data,
and then interpolates based on the tessellation.

Suppose you want to visualize a function that you have evaluated at a set of n
scattered points. In this example, X is an n-by-3 matrix of points, each row
containing the (x,y,z) coordinates for one of the points. The vector v contains
the n function values at these points. The function for this example is the
squared distance from the origin, v = x.^2 + y.^2 + z.^2.

Start by generating n = 5000 points at random in three-dimensional space, and
computing the value of a function on those points:

n = 5000;
X = 2*rand(n,3)-1;
v = sum(X.^2,2);

Interpolation

2-35

The next step is to use interpolation to compute function values over a grid. Use
meshgrid to create the grid, and griddatan to do the interpolation:

delta = 0.05;
d = -1:delta:1;
[x0,y0,z0] = meshgrid(d,d,d);
X0 = [x0(:), y0(:), z0(:)];
v0 = griddatan(X,v,X0);
v0 = reshape(v0, size(x0));

Then use isosurface and related functions to visualize the surface that
consists of the (x,y,z) values for which the function takes a constant value. You
could pick any value, but the example uses the value 0.6. Since the function is
the squared distance from the origin, the surface at a constant value is a
sphere:

p = patch(isosurface(x0,y0,z0,v0,0.6));
isonormals(x0,y0,z0,v0,p);
set(p,'FaceColor','red','EdgeColor','none');
view(3);
camlight;
lighting phong
axis equal
title('Interpolated sphere from scattered data')

Note A smaller delta produces a smoother sphere, but increases the
compute time.

2 Polynomials and Interpolation

2-36

Selected Bibliography

2-37

Selected Bibliography
[1] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993. For information about qhull, see http://www.qhull.org.

[2] Parker, Robert. L., Loren Shure, & John A. Hildebrand, “The Application of
Inverse Theory to Seamount Magnetism.” Reviews of Geophysics. Vol. 25, No. 1,
1987.

2 Polynomials and Interpolation

2-38

3
Fast Fourier Transform
(FFT)

The fast Fourier transform (FFT) is an efficient algorithm for computing the
discrete Fourier transform (DFT) of a sequence; it is not a separate transform.
It is particularly useful in areas such as signal and image processing, where its
uses range from filtering, convolution, and frequency analysis to power
spectrum estimation.

Introduction (p. 3-2) Introduces Fourier transform analysis with an example
about sunspot activity

Magnitude and Phase of Transformed
Data (p. 3-7)

Calculates magnitude and phase of transformed data

FFT Length Versus Speed (p. 3-9) Discusses the dependence of execution time on length of the
transform

Function Summary (p. 3-10) Summarizes the Fourier transform functions

3 Fast Fourier Transform (FFT)

3-2

Introduction
For length N input sequence x, the DFT is a length N vector, X. fft and ifft
implement the relationships

Note Since the first element of a MATLAB vector has an index 1, the
summations in the equations above are from 1 to N. These produce identical
results as traditional Fourier equations with summations from 0 to N-1.

If x(n) is real, you can rewrite the above equation in terms of a summation of
sine and cosine functions with real coefficients:

where

Finding an FFT
The FFT of a column vector x

x = [4 3 7 -9 1 0 0 0]' ;

is found with

y = fft(x)

X k() x n()e
j2π k 1–() n 1–

N
-------------⎝ ⎠
⎛ ⎞ 1 k N≤ ≤–

n 1=

N

∑=

x n() 1
N
---- X k()e

j2π k 1–() n 1–
N

-------------⎝ ⎠
⎛ ⎞ 1 n N≤ ≤

k 1=

N

∑=

x n() 1
N
---- a k() 2π k 1–() n 1–()

N
---⎝ ⎠
⎛ ⎞cos b k() 2π k 1–() n 1–()

N
---⎝ ⎠
⎛ ⎞sin+

k 1=

N

∑=

a k() X k()(), b k()real X k()(), 1 n N≤ ≤imag–= =

Introduction

3-3

which results in

y =
6.0000
11.4853 - 2.7574i
-2.0000 -12.0000i
-5.4853 +11.2426i
18.0000
-5.4853 -11.2426i
-2.0000 +12.0000i
11.4853 + 2.7574i

Notice that although the sequence x is real, y is complex. The first component
of the transformed data is the constant contribution and the fifth element
corresponds to the Nyquist frequency. The last three values of y correspond to
negative frequencies and, for the real sequence x, they are complex conjugates
of three components in the first half of y.

Example: Using FFT to Calculate Sunspot Periodicity
Suppose, you want to analyze the variations in sunspot activity over the last
300 years. You are probably aware that sunspot activity is cyclical, reaching a
maximum about every 11 years. This example confirms that.

Astronomers have tabulated a quantity called the Wolfer number for almost
300 years. This quantity measures both number and size of sunspots.

Load and plot the sunspot data:

load sunspot.dat
year = sunspot(:,1);
wolfer = sunspot(:,2);
plot(year,wolfer)
title('Sunspot Data')

3 Fast Fourier Transform (FFT)

3-4

Now take the FFT of the sunspot data:

Y = fft(wolfer);

The result of this transform is the complex vector, Y. The magnitude of Y
squared is called the power and a plot of power versus frequency is a
“periodogram.” Remove the first component of Y, which is simply the sum of the
data, and plot the results:

N = length(Y);
Y(1) = [];
power = abs(Y(1:N/2)).^2;
nyquist = 1/2;
freq = (1:N/2)/(N/2)*nyquist;
plot(freq,power), grid on
xlabel('cycles/year')
title('Periodogram')

1700 1750 1800 1850 1900 1950 2000
0

20

40

60

80

100

120

140

160

180

200
Sunspot Data

Introduction

3-5

The scale in cycles/year is somewhat inconvenient. You can plot in years/cycle
and estimate what one cycle is. For convenience, plot the power versus period
(where period = 1./freq) from 0 to 40 years/cycle:

period = 1./freq;
plot(period,power), axis([0 40 0 2e7]), grid on
ylabel('Power')
xlabel('Period(Years/Cycle)')

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

7

cycles/year

Periodogram

3 Fast Fourier Transform (FFT)

3-6

In order to determine the cycle more precisely,

[mp,index] = max(power);
period(index)

ans =
 11.0769

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

7

Period(Years/Cycle)

P
ow

er

Magnitude and Phase of Transformed Data

3-7

Magnitude and Phase of Transformed Data
Important information about a transformed sequence includes its magnitude
and phase. The MATLAB functions abs and angle calculate this information.

To try this, create a time vector t, and use this vector to create a sequence x
consisting of two sinusoids at different frequencies:

t = 0:1/100:10-1/100;
x = sin(2*pi*15*t) + sin(2*pi*40*t);

Now use the fft function to compute the DFT of the sequence. The code below
calculates the magnitude and phase of the transformed sequence. It uses the
abs function to obtain the magnitude of the data, the angle function to obtain
the phase information, and unwrap to remove phase jumps greater than pi to
their 2*pi complement:

y = fft(x);
m = abs(y);
p = unwrap(angle(y));

Now create a frequency vector for the x-axis and plot the magnitude and phase:

f = (0:length(y)-1)'*100/length(y);
subplot(2,1,1), plot(f,m),
ylabel('Abs. Magnitude'), grid on
subplot(2,1,2), plot(f,p*180/pi)
ylabel('Phase [Degrees]'), grid on
xlabel('Frequency [Hertz]')

The magnitude plot is perfectly symmetrical about the Nyquist frequency of 50
hertz. The useful information in the signal is found in the range 0 to 50 hertz.

3 Fast Fourier Transform (FFT)

3-8

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

A
bs

. M
ag

ni
tu

de

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

2

2.5
x 10

4

P
ha

se
 [D

eg
re

es
]

Frequency [Hertz]

FFT Length Versus Speed

3-9

FFT Length Versus Speed
You can add a second argument to fft to specify a number of points n for the
transform:

y = fft(x,n)

With this syntax, fft pads x with zeros if it is shorter than n, or truncates it if
it is longer than n. If you do not specify n, fft defaults to the length of the input
sequence.

The execution time for fft depends on the length of the transform. It is fastest
for powers of two. It is almost as fast for lengths that have only small prime
factors. It is typically several times slower for lengths that are prime or which
have large prime factors.

The inverse FFT function ifft also accepts a transform length argument.

For practical application of the FFT, the Signal Processing Toolbox includes
numerous functions for spectral analysis.

3 Fast Fourier Transform (FFT)

3-10

Function Summary
MATLAB provides a collection of functions for computing and working with
Fourier transforms.

FFT Function Summary

Function Description

fft Discrete Fourier transform.

fft2 Two-dimensional discrete Fourier transform.

fftn N-dimensional discrete Fourier transform.

ifft Inverse discrete Fourier transform.

ifft2 Two-dimensional inverse discrete Fourier transform.

ifftn N-dimensional inverse discrete Fourier transform.

abs Magnitude.

angle Phase angle.

unwrap Unwrap phase angle in radians.

fftshift Move zeroth lag to center of spectrum.

cplxpair Sort numbers into complex conjugate pairs.

nextpow2 Next higher power of two.

4

Function Functions

See the “Differential Equations” and “Sparse Matrices” chapters for information about the use of
other function functions.

For information about function handles, see the function_handle (@), func2str, and str2func
reference pages, and the “Function Handles” section of “Programming and Data Types” in the
MATLAB documentation.

Function Summary (p. 4-2) A summary of some function functions

Representing Functions in MATLAB
(p. 4-3)

Some guidelines for representing functions in MATLAB

Plotting Mathematical Functions
(p. 4-5)

A discussion about using fplot to plot mathematical
functions

Minimizing Functions and Finding
Zeros (p. 4-8)

A discussion of high-level function functions that perform
optimization-related tasks

Numerical Integration (Quadrature)
(p. 4-27)

A discussion of the MATLAB quadrature functions

Parameterizing Functions Called by
Function Functions (p. 4-30)

Explains how to pass additional arguments to
user-defined functions that are called by a function
function.

4 Function Functions

4-2

Function Summary
Function functions are functions that call other functions as input arguments.
An example of a function function is fplot, which plots the graphs of functions.
You can call the function fplot with the syntax

fplot(@fun, [-pi pi])

where the input argument @fun is a handle to the function you want to plot.
The function fun is referred to as the called function.

The function functions are located in the MATLAB funfun directory.

This table provides a brief description of the functions discussed in this
chapter. Related functions are grouped by category.

Function Summary

Category Function Description

Plotting fplot Plot function

Optimization
and zero finding

fminbnd Minimize function of one variable with
bound constraints.

fminsearch Minimize function of several variables.

fzero Find zero of function of one variable.

Numerical
integration

quad Numerically evaluate integral, adaptive
Simpson quadrature.

quadl Numerically evaluate integral, adaptive
Lobatto quadrature.

quadv Vectorized quadrature

dblquad Numerically evaluate double integral.

triplequad Numerically evaluate triple integral.

Representing Functions in MATLAB

4-3

Representing Functions in MATLAB
MATLAB can represent mathematical functions by expressing them as
MATLAB functions in M-files or as anonymous functions. For example,
consider the function

This function can be used as input to any of the function functions.

MATLAB Functions
You can find the function above in the M-file named humps.m.

function y = humps(x)
y = 1./((x - 0.3).^2 + 0.01) + 1./((x - 0.9).^2 + 0.04) - 6;

To evaluate the function humps at 2.0, use @ to obtain a function handle for
humps, and then use the function handle in the same way you would use a
function name to call the function:

fh = @humps;
fh(2.0)

ans =
 -4.8552

Anonymous Functions
A second way to represent a mathematical function at the command line is by
creating an anonymous function from a string expression. For example, you
can create an anonymous function of the humps function. The value returned,
fh, is a function handle:

fh = @(x)1./((x-0.3).^2 + 0.01) + 1./((x-0.9).^2 + 0.04)-6;

You can then evaluate fh at 2.0 in the same way that you can with a function
handle for a MATLAB function:

fh(2.0)
ans =

-4.8552

f x() 1

x 0.3–()2 0.01+
--- 1

x 0.9–()2 0.04+
--- 6–+=

4 Function Functions

4-4

You can also create anonymous functions of more than one argument. The
following function has two input arguments x and y.

fh = @(x,y)y*sin(x)+x*cos(y);
fh(pi,2*pi)
ans =
 3.1416

Plotting Mathematical Functions

4-5

Plotting Mathematical Functions
The fplot function plots a mathematical function between a given set of axes
limits. You can control the x-axis limits only, or both the x- and y-axis limits.
For example, to plot the humps function over the x-axis range [-5 5], use

fplot(@humps,[-5 5])
grid on

You can zoom in on the function by selecting y-axis limits of -10 and 25, using

fplot(@humps,[-5 5 -10 25])
grid on

−5 −4 −3 −2 −1 0 1 2 3 4 5
−20

0

20

40

60

80

100

4 Function Functions

4-6

You can also pass the function handle for an anonymous function for fplot to
graph, as in

fplot(@(x)2*sin(x+3),[-1 1]);

You can plot more than one function on the same graph with one call to fplot.
If you use this with a function, then the function must take a column vector x
and return a matrix where each column corresponds to each function,
evaluated at each value of x.

If you pass an anonymous function consisting of several functions to fplot, the
anonymous function also must return a matrix where each column corresponds
to each function evaluated at each value of x, as in

fplot(@(x)[2*sin(x+3), humps(x)],[-5 5])

which plots the first and second functions on the same graph.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−10

−5

0

5

10

15

20

25

Plotting Mathematical Functions

4-7

Note that the anonymous function

fh = @(x)[2*sin(x+3), humps(x)];

evaluates to a matrix of two columns, one for each function, when x is a column
vector.

fh([1;2;3])

returns

 -1.5136 16.0000
 -1.9178 -4.8552
 -0.5588 -5.6383

−5 0 5
−20

0

20

40

60

80

100

4 Function Functions

4-8

Minimizing Functions and Finding Zeros
MATLAB provides a number of high-level function functions that perform
optimization-related tasks. This section describes the following topics:

• “Minimizing Functions of One Variable” on page 4-8

• “Minimizing Functions of Several Variables” on page 4-9

• “Fitting a Curve to Data” on page 4-10

• “Setting Minimization Options” on page 4-13

• “Output Functions” on page 4-14

• “Finding Zeros of Functions” on page 4-21

The MATLAB optimization functions are:

For more optimization capabilities, see the Optimization Toolbox.

Minimizing Functions of One Variable
Given a mathematical function of a single variable coded in an M-file, you can
use the fminbnd function to find a local minimizer of the function in a given
interval. For example, to find a minimum of the humps function in the range
(0.3, 1), use

x = fminbnd(@humps,0.3,1)

which returns

x =
 0.6370

fminbnd Minimize a function of one variable on a fixed interval

fminsearch Minimize a function of several variables

fzero Find zero of a function of one variable

lsqnonneg Linear least squares with nonnegativity constraints

optimget Get optimization options structure parameter values

optimset Create or edit optimization options parameter structure

Minimizing Functions and Finding Zeros

4-9

You can ask for a tabular display of output by passing a fourth argument
created by the optimset command to fminbnd

x = fminbnd(@humps,0.3,1,optimset('Display','iter'))

which gives the output

Func-count x f(x) Procedure
 3 0.567376 12.9098 initial
 4 0.732624 13.7746 golden
 5 0.465248 25.1714 golden
 6 0.644416 11.2693 parabolic
 7 0.6413 11.2583 parabolic
 8 0.637618 11.2529 parabolic
 9 0.636985 11.2528 parabolic
 10 0.637019 11.2528 parabolic
 11 0.637052 11.2528 parabolic

Optimization terminated:
 the current x satisfies the termination criteria using
OPTIONS.TolX of 1.000000e-004

x =

 0.6370

This shows the current value of x and the function value at f(x) each time a
function evaluation occurs. For fminbnd, one function evaluation corresponds
to one iteration of the algorithm. The last column shows what procedure is
being used at each iteration, either a golden section search or a parabolic
interpolation.

Minimizing Functions of Several Variables
The fminsearch function is similar to fminbnd except that it handles functions
of many variables, and you specify a starting vector x0 rather than a starting
interval. fminsearch attempts to return a vector x that is a local minimizer of
the mathematical function near this starting vector.

4 Function Functions

4-10

To try fminsearch, create a function three_var of three variables, x, y, and z.

function b = three_var(v)
x = v(1);
y = v(2);
z = v(3);
b = x.^2 + 2.5*sin(y) - z^2*x^2*y^2;

Now find a minimum for this function using x = -0.6, y = -1.2, and
z = 0.135 as the starting values.

v = [-0.6 -1.2 0.135];
a = fminsearch(@three_var,v)

a =
 0.0000 -1.5708 0.1803

Fitting a Curve to Data
This section gives an example that shows how to fit an exponential function of
the form to some data. The example uses the function fminsearch to
minimize the sum of squares of errors between the data and an exponential
function for varying parameters A and λ. This section covers the
following topics.

• “Creating an M-file for the Example” on page 4-10

• “Running the Example” on page 4-11

• “Plotting the Results” on page 4-12

Creating an M-file for the Example
To run the example, first create an M-file that

• Accepts vectors corresponding to the x- and y-coordinates of the data

• Returns the parameters of the exponential function that best fits the data

To do so, copy and paste the following code into an M-file and save it as
fitcurvedemo in a directory on the MATLAB path.

function [estimates, model] = fitcurvedemo(xdata, ydata)
% Call fminsearch with a random starting point.
start_point = rand(1, 2);

Ae λ– t

Ae λ– t

Minimizing Functions and Finding Zeros

4-11

model = @expfun;
estimates = fminsearch(model, start_point);
% expfun accepts curve parameters as inputs, and outputs sse,
% the sum of squares error for A * exp(-lambda * xdata) - ydata,
% and the FittedCurve. FMINSEARCH only needs sse, but we want to
% plot the FittedCurve at the end.
 function [sse, FittedCurve] = expfun(params)
 A = params(1);
 lambda = params(2);
 FittedCurve = A .* exp(-lambda * xdata);
 ErrorVector = FittedCurve - ydata;
 sse = sum(ErrorVector .^ 2);
 end
end

The M-file calls the function fminsearch, which find parameters A and lambda
that minimize the sum of squares of the differences between the data and the
exponential function A*exp(-lambda*t). The nested function expfun computes
the sum of squares.

Running the Example
To run the example, first create some random data to fit. The following
commands create random data that is approximately exponential with
parameters A = 40 and lambda = .5.

xdata = (0:.1:10)';
ydata = 40 * exp(-.5 * xdata) + randn(size(xdata));

To fit an exponential function to the data, enter

[estimates, model] = fitcurvedemo(xdata,ydata)

This returns estimates for the parameters A and lambda,

estimates =

 40.1334 0.5025

and a function handle, model, to the function that computes the exponential
function A*exp(-lambda*t).

4 Function Functions

4-12

Plotting the Results
To plot the fit and the data, enter the following commands.

plot(xdata, ydata, '*')
hold on
[sse, FittedCurve] = model(estimates);
plot(xdata, FittedCurve, 'r')

xlabel('xdata')
ylabel('f(estimates,xdata)')
title(['Fitting to function ', func2str(model)]);
legend('data', ['fit using ', func2str(model)])
hold off

The resulting plot displays the data points and the exponential fit.

0 2 4 6 8 10
−5

0

5

10

15

20

25

30

35

40

45

xdata

f(
es

tim
at

es
,x

da
ta

)

Fitting to function fitcurvedemo/expfun

data
fit using fitcurvedemo/expfun

Minimizing Functions and Finding Zeros

4-13

Setting Minimization Options
You can specify control options that set some minimization parameters using
an options structure that you create using the function optimset. You then
pass options as in input to the optimization function, for example, by calling
fminbnd with the syntax

x = fminbnd(fun,x1,x2,options)

or fminsearch with the syntax

x = fminsearch(fun,x0,options)

Use optimset to set the values of the options structure. For example, to set
the 'Display' option to 'iter', in order to display output from the algorithm
at each iteration, enter

options = optimset('Display','iter');

fminbnd and fminsearch use only the options parameters shown in the
following table.

options.Display A flag that determines if intermediate steps in the
minimization appear on the screen. If set to 'iter',
intermediate steps are displayed; if set to 'off', no
intermediate solutions are displayed, if set to final,
displays just the final output.

options.TolX The termination tolerance for x. Its default value is
1.e-4.

options.TolFun The termination tolerance for the function value.
The default value is 1.e-4. This parameter is used
by fminsearch, but not fminbnd.

options.MaxIter Maximum number of iterations allowed.

options.MaxFunEvals The maximum number of function evaluations
allowed. The default value is 500 for fminbnd and
200*length(x0) for fminsearch.

4 Function Functions

4-14

The number of function evaluations, the number of iterations, and the
algorithm are returned in the structure output when you provide fminbnd or
fminsearch with a fourth output argument, as in

[x,fval,exitflag,output] = fminbnd(@humps,0.3,1);

or

[x,fval,exitflag,output] = fminsearch(@three_var,v);

Output Functions
An output function is a function that an optimization function calls at each
iteration of its algorithm. Typically, you might use an output function to
generate graphical output, record the history of the data the algorithm
generates, or halt the algorithm based on the data at the current iteration. You
can create an output function as an M-file function, a subfunction, or a nested
function.

You can use the OutputFcn option with the following MATLAB optimization
functions:

• fminbnd

• fminsearch

• fzero

This section covers the following topics:

• “Creating and Using an Output Function” on page 4-15

• “Structure of the Output Function” on page 4-16

• “Example of a Nested Output Function” on page 4-17

• “Fields in optimValues” on page 4-19

• “States of the Algorithm” on page 4-20

• “Stop Flag” on page 4-20

Minimizing Functions and Finding Zeros

4-15

Creating and Using an Output Function
The following is a simple example of an output function that plots the points
generated by an optimization function.

function stop = outfun(x, optimValues, state)
stop = false;
hold on;
plot(x(1),x(2),'.');
drawnow

You can use this output function to plot the points generated by fminsearch in
solving the optimization problem

To do so,

1 Create an M-file containing the preceding code and save it as outfun.m in a
directory on the MATLAB path.

2 Enter the command

options = optimset('OutputFcn', @outfun);

to set the value of the Outputfcn field of the options structure to a function
handle to outfun.

3 Enter the following commands:

hold on
objfun=@(x) exp(x(1))*(4*x(1)^2+2*x(2)^2+x(1)*x(2)+2*x(2));
[x fval] = fminsearch(objfun, [-1 1], options)
hold off

This returns the solution

x =
 0.1290 -0.5323

fval =
 -0.5689

minimize
x

f x() e
x1 4x1

2 2x2
2 4x1x2 2x2 1+ + + +()=

4 Function Functions

4-16

and displays the following plot of the points generated by fminsearch:

Structure of the Output Function
The function definition line of the output function has the following form:

stop = outfun(x, optimValues, state)

where

• stop is a flag that is true or false depending on whether the optimization
routine should quit or continue. See “Stop Flag” on page 4-20.

• x is the point computed by the algorithm at the current iteration.

• optimValues is a structure containing data from the current iteration.
“Fields in optimValues” on page 4-19 describes the structure in detail.

• state is the current state of the algorithm. “States of the Algorithm” on
page 4-20 lists the possible values.

The optimization function passes the values of the input arguments to outfun
at each iteration.

Minimizing Functions and Finding Zeros

4-17

Example of a Nested Output Function
The example in “Creating and Using an Output Function” on page 4-15 does
not require the output function to preserve data from one iteration to the next.
When this is the case, you can write the output function as an M-file and call
the optimization function directly from the command line. However, if you
want your output function to record data from one iteration to the next, you
should write a single M-file that does the following:

• Contains the output function as a nested function — see Nested Functions in
the online MATLAB documentation for more information.

• Calls the optimization function.

In the following example, the M-file also contains the objective function as a
subfunction, although you could also write the objective function as a separate
M-file or as an anonymous function.

Since the nested function has access to variables in the M-file function that
contains it, this method enables the output function to preserve variables from
one iteration to the next.

The following example uses an output function to record the points generated
by fminsearch in solving the optimization problem

and returns the sequence of points as a matrix called history.

To run the example, do the following steps:

1 Open a new M-file in the MATLAB editor.

2 Copy and paste the following code into the M-file.

function [x fval history] = myproblem(x0)
 history = [];
 options = optimset('OutputFcn', @myoutput);
 [x fval] = fminsearch(@objfun, x0,options);

minimize
x

f x() e
x1 4x1

2 2x2
2 4x1x2 2x2 1+ + + +()=

4 Function Functions

4-18

 function stop = myoutput(x,optimvalues,state);
 stop = false;
 if state == 'iter'
 history = [history; x];
 end
 end

 function z = objfun(x)

z = exp(x(1))*(4*x(1)^2+2*x(2)^2+x(1)*x(2)+2*x(2));
 end
end

3 Save the file as myproblem.m in a directory on the MATLAB path.

4 At the MATLAB prompt, enter

[x fval history] = myproblem([-1 1])

The function fminsearch returns x, the optimal point, and fval, the value of
the objective function at x.

x =

 0.1290 -0.5323

fval =

 -0.5689

In addition, the output function myoutput returns the matrix history, which
contains the points generated by the algorithm at each iteration, to the
MATLAB workspace. The first four rows of history are

history(1:4,:)

ans =

 -1.0000 1.0000
 -1.0000 1.0500
 -1.0750 0.9000
 -1.0125 0.8500

Minimizing Functions and Finding Zeros

4-19

The final row of points is the same as the optimal point, x.

history(end,:)

ans =

 0.1290 -0.5323

objfun(history(end,:))

ans =

 -0.5689

Fields in optimValues
The following table lists the fields of the optimValues structure that are
provided by all three optimization functions, fminbnd, fminsearch, and fzero.
The function fzero also provides additional fields that are described in its
reference page.

 The “Command-Line Display Headings” column of the table lists the headings,
corresponding to the optimValues fields that are displayed at the command
line when you set the Display parameter of options to 'iter'.

optimValues Field
(optimValues.field)

Description Command-Line
Display
Heading

funcount Cumulative number of
function evaluations.

Func-count

fval Function value at
current point.

min f(x)

iteration Iteration number —
starts at 0.

Iteration

procedure Procedure messages Procedure

4 Function Functions

4-20

States of the Algorithm
The following table lists the possible values for state:

The following code illustrates how the output function might use the value of
state to decide which tasks to perform at the current iteration.

switch state
 case 'init'
 % Setup for plots or guis
 case 'iter'
 % Make updates to plot or guis as needed.
 case 'interrupt'
 % Check conditions to see whether optimization

% should quit.
 case 'done'
 % Cleanup of plots, guis, or final plot
otherwise
end

Stop Flag
The output argument stop is a flag that is true or false. The flag tells the
optimization function whether the optimization should quit or continue. The
following examples show typical ways to use the stop flag.

State Description

'init' The algorithm is in the initial state before the first
iteration.

'interrupt' The algorithm is performing an iteration. In this state, the
output function can interrupt the current iteration of the
optimization. You might want the output function to do this
to improve the efficiency of the computations. When state is
set to 'interrupt', the values of x and optimValues are the
same as at the last call to the output function, in which
state is set to 'iter'.

'iter' The algorithm is at the end of an iteration.

'done' The algorithm is in the final state after the last iteration.

Minimizing Functions and Finding Zeros

4-21

Stopping an Optimization Based on Data in optimValues. The output function can stop
an optimization at any iteration based on the current data in optimValues. For
example, the following code sets stop to true if the objective function value is
less than 5:

function stop = myoutput(x, optimValues, state)
stop = false;
% Check if objective function is less than 5.
if optimValues.fval < 5

stop = true;
end

Stopping an Optimization Based on GUI Input. If you design a GUI to perform
optimizations, you can make the output function stop an optimization when a
user clicks a Stop button on the GUI. The following code shows how to do this,
assuming that the Stop button callback stores the value true in the optimstop
field of a handles structure called hObject stored in appdata.

function stop = myoutput(x, optimValues, state)
stop = false;
% Check if user has requested to stop the optimization.
stop = getappdata(hObject,'optimstop');

Finding Zeros of Functions
The fzero function attempts to find a zero of one equation with one variable.
You can call this function with either a one-element starting point or a
two-element vector that designates a starting interval. If you give fzero a
starting point x0, fzero first searches for an interval around this point where
the function changes sign. If the interval is found, fzero returns a value near
where the function changes sign. If no such interval is found, fzero returns
NaN. Alternatively, if you know two points where the function value differs in
sign, you can specify this starting interval using a two-element vector; fzero is
guaranteed to narrow down the interval and return a value near a sign change.

The following sections contain two examples that illustrate how to find a zero
of a function using a starting interval and a starting point. The examples use
the function humps, which is provided with MATLAB. The following figure
shows the graph of humps.

4 Function Functions

4-22

Using a Starting Interval
The graph of humps indicates that the function is negative at x = -1 and
positive at x = 1. You can confirm this by calculating humps at these two points.

humps(1)

ans =
 16

humps(-1)

ans =
 -5.1378

Consequently, you can use [-1 1] as a starting interval for fzero.

−1 −0.5 0 0.5 1 1.5 2
−20

0

20

40

60

80

100

Minimizing Functions and Finding Zeros

4-23

The iterative algorithm for fzero finds smaller and smaller subintervals of
[-1 1]. For each subinterval, the sign of humps differs at the two endpoints. As
the endpoints of the subintervals get closer and closer, they converge to a zero
for humps.

To show the progress of fzero at each iteration, set the Display option to iter
using the function optimset.

options = optimset('Display','iter');

Then call fzero as follows:

a = fzero(@humps,[-1 1],options)

This returns the following iterative output:

a = fzero(@humps,[-1 1],options)

 Func-count x f(x) Procedure
 2 -1 -5.13779 initial
 3 -0.513876 -4.02235 interpolation
 4 -0.513876 -4.02235 bisection
 5 -0.473635 -3.83767 interpolation
 6 -0.115287 0.414441 bisection
 7 -0.115287 0.414441 interpolation
 8 -0.132562 -0.0226907 interpolation
 9 -0.131666 -0.0011492 interpolation
 10 -0.131618 1.88371e-007 interpolation
 11 -0.131618 -2.7935e-011 interpolation
 12 -0.131618 8.88178e-016 interpolation
 13 -0.131618 8.88178e-016 interpolation

Zero found in the interval [-1, 1]

a =

 -0.1316

Each value x represents the best endpoint so far. The Procedure column tells
you whether each step of the algorithm uses bisection or interpolation.

4 Function Functions

4-24

You can verify that the function value at a is close to zero by entering

humps(a)

ans =

 8.8818e-016

Using a Starting Point
Suppose you do not know two points at which the function values of humps
differ in sign. In that case, you can choose a scalar x0 as the starting point for
fzero. fzero first searches for an interval around this point on which the
function changes sign. If fzero finds such an interval, it proceeds with the
algorithm described in the previous section. If no such interval is found, fzero
returns NaN.

For example, if you set the starting point to -0.2, the Display option to Iter,
and call fzero by

a = fzero(@humps,-0.2,options)

fzero returns the following output:

Search for an interval around -0.2 containing a sign change:
 Func-count a f(a) b f(b) Procedure
 1 -0.2 -1.35385 -0.2 -1.35385 initial interval
 3 -0.194343 -1.26077 -0.205657 -1.44411 search
 5 -0.192 -1.22137 -0.208 -1.4807 search
 7 -0.188686 -1.16477 -0.211314 -1.53167 search
 9 -0.184 -1.08293 -0.216 -1.60224 search
 11 -0.177373 -0.963455 -0.222627 -1.69911 search
 13 -0.168 -0.786636 -0.232 -1.83055 search
 15 -0.154745 -0.51962 -0.245255 -2.00602 search
 17 -0.136 -0.104165 -0.264 -2.23521 search
 18 -0.10949 0.572246 -0.264 -2.23521 search

Search for a zero in the interval [-0.10949, -0.264]:
 Func-count x f(x) Procedure
 18 -0.10949 0.572246 initial
 19 -0.140984 -0.219277 interpolation
 20 -0.132259 -0.0154224 interpolation
 21 -0.131617 3.40729e-005 interpolation
 22 -0.131618 -6.79505e-008 interpolation
 23 -0.131618 -2.98428e-013 interpolation
 24 -0.131618 8.88178e-016 interpolation
 25 -0.131618 8.88178e-016 interpolation

Zero found in the interval [-0.10949, -0.264]

Minimizing Functions and Finding Zeros

4-25

a =

 -0.1316

The endpoints of the current subinterval at each iteration are listed under the
headings a and b, while the corresponding values of humps at the endpoints are
listed under f(a) and f(b), respectively.

Note The endpoints a and b are not listed in any specific order: a can be
greater than b or less than b.

For the first nine steps, the sign of humps is negative at both endpoints of the
current subinterval, which are listed under in the output. At the tenth step, the
sign of humps is positive at the endpoint, -0.10949, but negative at the
endpoint, -0.264. From this point on, the algorithm continues to narrow down
the interval [-0.10949 -0.264], as described in the previous section, until it
reaches the value -0.1316.

Tips
Optimization problems may take many iterations to converge. Most
optimization problems benefit from good starting guesses. Providing good
starting guesses improves the execution efficiency and may help locate the
global minimum instead of a local minimum.

Sophisticated problems are best solved by an evolutionary approach, whereby
a problem with a smaller number of independent variables is solved first.
Solutions from lower order problems can generally be used as starting points
for higher order problems by using an appropriate mapping.

The use of simpler cost functions and less stringent termination criteria in the
early stages of an optimization problem can also reduce computation time.
Such an approach often produces superior results by avoiding local minima.

4 Function Functions

4-26

Troubleshooting
Here is a list of typical problems and recommendations for dealing with them.

Problem Recommendation

The solution found by fminbnd
or fminsearch does not appear
to be a global minimum.

There is no guarantee that you have a global minimum unless
your problem is continuous and has only one minimum.
Starting the optimization from a number of different starting
points (or intervals in the case of fminbnd) may help to locate
the global minimum or verify that there is only one minimum.
Use different methods, where possible, to verify results.

Sometimes an optimization
problem has values of x for
which it is impossible to
evaluate f.

Modify your function to include a penalty function to give a
large positive value to f when infeasibility is encountered.

The minimization routine
appears to enter an infinite loop
or returns a solution that is not
a minimum (or not a zero in the
case of fzero).

Your objective function (fun) may be returning NaN or complex
values. The optimization routines expect only real numbers to
be returned. Any other values may cause unexpected results.
To determine whether this is the case, set

options = optimset('FunValCheck', 'on')

and call the optimization function with options as an input
argument. This displays a warning when the objective
function returns NaN or complex values.

Numerical Integration (Quadrature)

4-27

Numerical Integration (Quadrature)
The area beneath a section of a function F(x) can be determined by numerically
integrating F(x), a process referred to as quadrature. The MATLAB quadrature
functions are:

To integrate the function defined by humps.m from 0 to 1, use

q = quad(@humps,0,1)

q =
 29.8583

Both quad and quadl operate recursively. If either method detects a possible
singularity, it prints a warning.

You can include a fourth argument for quad or quadl that specifies a relative
error tolerance for the integration. If a nonzero fifth argument is passed to quad
or quadl, the function evaluations are traced.

Two examples illustrate use of these functions:

• Computing the length of a curve

• Double integration

Example: Computing the Length of a Curve
You can use quad or quadl to compute the length of a curve. Consider the curve
parameterized by the equations

where .

quad Use adaptive Simpson quadrature

quadl Use adaptive Lobatto quadrature

quadv Vectorized quadrature

dblquad Numerically evaluate double integral

triplequad Numerically evaluate triple integral

x t() 2t()sin= , y t() t()cos= , z t() t=

t 0 3π,[]∈

4 Function Functions

4-28

A three-dimensional plot of this curve is

t = 0:0.1:3*pi;
plot3(sin(2*t),cos(t),t)

The arc length formula says the length of the curve is the integral of the norm
of the derivatives of the parameterized equations

The function hcurve computes the integrand

function f = hcurve(t)
f = sqrt(4*cos(2*t).^2 + sin(t).^2 + 1);

Integrate this function with a call to quad

len = quad(@hcurve,0,3*pi)

len =
 1.7222e+01

The length of this curve is about 17.2.

Example: Double Integration
Consider the numerical solution of

For this example . The first step is to build the
function to be evaluated. The function must be capable of returning a vector
output when given a vector input. You must also consider which variable is in
the inner integral, and which goes in the outer integral. In this example, the
inner variable is x and the outer variable is y (the order in the integral is dxdy).
In this case, the integrand function is

function out = integrnd(x,y)
out = y*sin(x) + x*cos(y);

4 2t()cos 2 t()sin 2 1+ + td

0

3π

∫

f x y,() xd yd

xmin

xmax

∫
ymin

ymax

∫

f x y,() y x()sin x y()cos+=

Numerical Integration (Quadrature)

4-29

To perform the integration, two functions are available in the funfun directory.
The first, dblquad, is called directly from the command line. This M-file
evaluates the outer loop using quad. At each iteration, quad calls the second
helper function that evaluates the inner loop.

To evaluate the double integral, use

result = dblquad(@integrnd,xmin,xmax,ymin,ymax);

The first argument is a string with the name of the integrand function. The
second to fifth arguments are

Here is a numeric example that illustrates the use of dblquad.

xmin = pi;
xmax = 2*pi;
ymin = 0;
ymax = pi;
result = dblquad(@integrnd,xmin,xmax,ymin,ymax)

The result is -9.8698.

By default, dblquad calls quad. To integrate the previous example using quadl
(with the default values for the tolerance argument), use

result = dblquad(@integrnd,xmin,xmax,ymin,ymax,[],@quadl);

Alternatively, you can pass any user-defined quadrature function name to
dblquad as long as the quadrature function has the same calling and return
arguments as quad.

xmin Lower limit of inner integral

xmax Upper limit of the inner integral

ymin Lower limit of outer integral

ymax Upper limit of the outer integral

4 Function Functions

4-30

Parameterizing Functions Called by Function Functions
At times, you might want use a function function that calls a function with
several parameters. For example, if you want to use fzero to find zeros of the
cubic polynomial x3 + bx + c for different values of the coefficients b and c,
you would like the function that computes the polynomial to accept the
additional parameters b and c. When you invoke fzero, you must also provide
values for these additional parameters to the polynomial function. This section
describes two ways to do this:

• “Providing Parameter Values Using Nested Functions” on page 4-30

• “Providing Parameter Values to Anonymous Functions” on page 4-31

Providing Parameter Values Using Nested Functions
One way to provide parameters to the polynomial is to write a single M-file that

• Accepts the additional parameters as inputs

• Invokes the function function

• Contains the function called by the function function as a nested function

The following example illustrates how to find a zero of the cubic polynomial
x3 + bx + c, for different values of the coefficients b and c, using this method.
To do so, write an M-file with the following code.

function y = findzero(b, c, x0)

options = optimset('Display', 'off'); % Turn off Display
y = fzero(@poly, x0, options);

function y = poly(x) % Compute the polynomial.
y = x^3 + b*x + c;
end

end

The main function, findzero, does two things:

• Invokes the function fzero to find a zero of the polynomial

• Computes the polynomial in a nested function, poly, which is called by fzero

Parameterizing Functions Called by Function Functions

4-31

You can call findzero with any values of the coefficients b and c, which are
seen by poly because it is a nested function.

As an example, to find a zero of the polynomial with b = 2 and c = 3.5, using
the starting point x0 = 0, call findzero as follows.

x = findzero(2, 3.5, 0)

This returns the zero

x =

 -1.0945

Providing Parameter Values to Anonymous
Functions
Suppose you have already written a standalone M-file for the function poly
containing the following code, which computes the polynomial for any
coefficients b and c,

function y = poly(x, b, c) % Compute the polynomial.
y = x^3 + b*x + c;

You then want to find a zero for the coefficient values b = 2 and c = 3.5. You
cannot simply apply fzero to poly, which has three input arguments, because
fzero only accepts functions with a single input argument. As an alternative
to rewriting poly as a nested function, as described in “Providing Parameter
Values Using Nested Functions” on page 4-30, you can pass poly to fzero as a
function handle to an anonymous function that has the form
@(x) poly(x, b, c). The function handle has just one input argument x, so
fzero accepts it.

b = 2;
c = 3.5;
x = fzero(@(x) poly(x, b, c), 0)

This returns the zero

x =

 -1.0945

4 Function Functions

4-32

“Anonymous Functions” on page 4-3 explains how to create anonymous
functions.

If you later decide to find a zero for different values of b and c, you must
redefine the anonymous function using the new values. For example,

b = 4;
c = -1;
fzero(@(x) poly(x, b, c), 0)

ans =

 0.2463

For more complicated objective functions, it is usually preferable to write the
function as a nested function, as described in “Providing Parameter Values
Using Nested Functions” on page 4-30.

5

Differential Equations

Note In function tables, commonly used functions are listed first, followed by
more advanced functions. The same is true of property tables.

Initial Value Problems for ODEs and
DAEs (p. 5-2)

Describes the solution of ordinary differential equations
(ODEs) and differential-algebraic equations (DAEs), where
the solution of interest satisfies initial conditions at a given
initial value of the independent variable.

Initial Value Problems for DDEs
(p. 5-49)

Describes the solution of delay differential equations
(DDEs) where the solution of interest is determined by a
history function.

Boundary Value Problems for ODEs
(p. 5-61)

Describes the solution of ODEs, where the solution of
interest satisfies certain boundary conditions. The boundary
conditions specify a relationship between the values of the
solution at the initial and final values of the independent
variable.

Partial Differential Equations
(p. 5-89)

Describes the solution of initial-boundary value problems
for systems of parabolic and elliptic partial differential
equations (PDEs) in one spatial variable and time.

Selected Bibliography (p. 5-106) Lists published materials that support concepts described in
this chapter.

5 Differential Equations

5-2

Initial Value Problems for ODEs and DAEs
This section describes how to use MATLAB to solve initial value problems
(IVPs) of ordinary differential equations (ODEs) and differential-algebraic
equations (DAEs). This section covers the following topics:

• “ODE Function Summary” on page 5-2

• “Introduction to Initial Value ODE Problems” on page 5-4

• “Solvers for Explicit and Linearly Implicit ODEs” on page 5-5

• “Examples: Solving Explicit ODE Problems” on page 5-9

• “Solver for Fully Implicit ODEs” on page 5-15

• “Example: Solving a Fully Implicit ODE Problem” on page 5-16

• “Changing ODE Integration Properties” on page 5-17

• “Examples: Applying the ODE Initial Value Problem Solvers” on page 5-18

• “Questions and Answers, and Troubleshooting” on page 5-43

ODE Function Summary

ODE Initial Value Problem Solvers
The following table lists the initial value problem solvers, the kind of problem
you can solve with each solver, and the method each solver uses.

Solver Solves These Kinds of Problems Method

ode45 Nonstiff differential equations Runge-Kutta

ode23 Nonstiff differential equations Runge-Kutta

ode113 Nonstiff differential equations Adams

ode15s Stiff differential equations and DAEs NDFs (BDFs)

ode23s Stiff differential equations Rosenbrock

ode23t Moderately stiff differential equations and
DAEs

Trapezoidal
rule

Initial Value Problems for ODEs and DAEs

5-3

ODE Solution Evaluation and Extension
You can use the following functions to evaluate and extend solutions to ODEs.

ODE Solvers Properties Handling
An options structure contains named properties whose values are passed to
ODE solvers, and which affect problem solution. Use these functions to create,
alter, or access an options structure.

ODE Solver Output Functions
If an output function is specified, the solver calls the specified function after
every successful integration step. You can use odeset to specify one of these
sample functions as the OutputFcn property, or you can modify them to create
your own functions.

ode23tb Stiff differential equations TR-BDF2

ode15i Fully implicit differential equations BDFs

Function Description

deval Evaluate the numerical solution using the output of ODE
solvers.

odextend Extend the solution of an initial value problem for an ODE

Function Description

odeset Create or alter options structure for input to ODE solver.

odeget Extract properties from options structure created with odeset.

Function Description

odeplot Time-series plot

odephas2 Two-dimensional phase plane plot

5 Differential Equations

5-4

Introduction to Initial Value ODE Problems

What Is an Ordinary Differential Equation?
The ODE solvers are designed to handle ordinary differential equations. An
ordinary differential equation contains one or more derivatives of a dependent
variable with respect to a single independent variable , usually referred to
as time. The derivative of with respect to is denoted as , the second
derivative as , and so on. Often is a vector, having elements

.

Types of Problems Handled by the ODE Solvers
The ODE solvers handle the following types of first-order ODEs:

• Explicit ODEs of the form

• Linearly implicit ODEs of the form , where M(t,y) is a
matrix

• Fully implicit ODEs of the form (ode15i only)

Using Initial Conditions to Specify the Solution of Interest
Generally there are many functions that satisfy a given ODE, and
additional information is necessary to specify the solution of interest. In an
initial value problem, the solution of interest satisfies a specific initial
condition, that is, is equal to at a given initial time . An initial value
problem for an ODE is then

(5-1)

If the function is sufficiently smooth, this problem has one and only one
solution. Generally there is no analytic expression for the solution, so it is
necessary to approximate by numerical means, such as using one of the
ODE solvers.

odephas3 Three-dimensional phase plane plot

odeprint Print to command window

y t
y t y′

y′′ y t()
y1 y2 … yn, , ,

y′ f t y,()=

M t y,() y′⋅ f t y,()=

f t y y′, ,() 0=

y t()

y y0 t0

y′ f t y,()=

y t0() y0=

f t y,()

y t()

Initial Value Problems for ODEs and DAEs

5-5

Working with Higher Order ODEs
The ODE solvers accept only first-order differential equations. However, ODEs
often involve a number of dependent variables, as well as derivatives of order
higher than one. To use the ODE solvers, you must rewrite such equations as
an equivalent system of first-order differential equations of the form

You can write any ordinary differential equation

as a system of first-order equations by making the substitutions

The result is an equivalent system of first-order ODEs.

“Example: Solving an IVP ODE (van der Pol Equation, Nonstiff)” on page 5-9
rewrites the second-order van der Pol equation

as a system of first-order ODEs.

Solvers for Explicit and Linearly Implicit ODEs
This section describes the ODE solver functions for explicit or linearly implicit
ODEs, as described in “Types of Problems Handled by the ODE Solvers” on
page 5-4. The solver functions implement numerical integration methods for
solving initial value problems for ODEs. Beginning at the initial time with
initial conditions, they step through the time interval, computing a solution at
each time step. If the solution for a time step satisfies the solver’s error
tolerance criteria, it is a successful step. Otherwise, it is a failed attempt; the
solver shrinks the step size and tries again.

y′ f t y,()=

y n() f t y y′ … y n 1–(), , , ,()=

y1 y= y2 y′ … yn, , y n 1–()
= =,

n

y′1 y2=

y2′ y3=

yn′ f t y1 y2 ... y, n, , ,()=

…

y′′1 µ 1 y1
2

–() y′1– y1 0=+

5 Differential Equations

5-6

This section describes:

• Solvers for nonstiff ODE problems

• Solvers for stiff ODE problems

• Basic ODE solver syntax

“Mass Matrix and DAE Properties,” in the reference page for odeset, explains
how to set options to solve more general linearly implicit problems.

The function ode15i, which solves implicit ODEs, is described in “Solver for
Fully Implicit ODEs” on page 5-15.

Solvers for Nonstiff Problems
There are three solvers designed for nonstiff problems:

Solvers for Stiff Problems
Not all difficult problems are stiff, but all stiff problems are difficult for solvers
not specifically designed for them. Solvers for stiff problems can be used exactly
like the other solvers. However, you can often significantly improve the
efficiency of these solvers by providing them with additional information about
the problem. (See “Changing ODE Integration Properties” on page 5-17.)

ode45 Based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver – in computing , it
needs only the solution at the immediately preceding time point,

. In general, ode45 is the best function to apply as a “first
try” for most problems.

ode23 Based on an explicit Runge-Kutta (2,3) pair of Bogacki and
Shampine. It may be more efficient than ode45 at crude tolerances
and in the presence of mild stiffness. Like ode45, ode23 is a
one-step solver.

ode113 Variable order Adams-Bashforth-Moulton PECE solver. It may be
more efficient than ode45 at stringent tolerances and when the
ODE function is particularly expensive to evaluate. ode113 is a
multistep solver – it normally needs the solutions at several
preceding time points to compute the current solution.

y tn()

y tn 1–()

Initial Value Problems for ODEs and DAEs

5-7

There are four solvers designed for stiff problems:

Basic ODE Solver Syntax
All of the ODE solver functions, except for ode15i, share a syntax that makes
it easy to try any of the different numerical methods, if it is not apparent which
is the most appropriate. To apply a different method to the same problem,
simply change the ODE solver function name. The simplest syntax, common to
all the solver functions, is

[t,y] = solver(odefun,tspan,y0,options)

where solver is one of the ODE solver functions listed previously.

ode15s Variable-order solver based on the numerical differentiation
formulas (NDFs). Optionally it uses the backward differentiation
formulas, BDFs, (also known as Gear’s method). Like ode113,
ode15s is a multistep solver. If you suspect that a problem is stiff or
if ode45 failed or was very inefficient, try ode15s.

ode23s Based on a modified Rosenbrock formula of order 2. Because it is a
one-step solver, it may be more efficient than ode15s at crude
tolerances. It can solve some kinds of stiff problems for which
ode15s is not effective.

ode23t An implementation of the trapezoidal rule using a “free”
interpolant. Use this solver if the problem is only moderately stiff
and you need a solution without numerical damping.

ode23tb An implementation of TR-BDF2, an implicit Runge-Kutta formula
with a first stage that is a trapezoidal rule step and a second stage
that is a backward differentiation formula of order 2. Like ode23s,
this solver may be more efficient than ode15s at crude tolerances.

5 Differential Equations

5-8

The basic input arguments are

The output arguments contain the solution approximated at discrete points:

See the reference page for the ODE solvers for more information about these
arguments.

Note See “Evaluating the Solution at Specific Points” on page 5-72 for more
information about solver syntax where a continuous solution is returned.

odefun Handle to a function that evaluates the system of ODEs. The
function has the form

dydt = odefun(t,y)

where t is a scalar, and dydt and y are column vectors. See
“Function Handles” in the MATLAB Programming documentation
for more information.

tspan Vector specifying the interval of integration. The solver imposes
the initial conditions at tspan(1), and integrates from tspan(1) to
tspan(end).

y0 Vector of initial conditions for the problem

See also “Introduction to Initial Value ODE Problems” on page 5-4.

options Structure of optional parameters that change the default
integration properties.

“Changing ODE Integration Properties” on page 5-17 tells you how
to create the structure and describes the properties you can
specify.

t Column vector of time points

y Solution array. Each row in y corresponds to the solution at a time
returned in the corresponding row of t.

Initial Value Problems for ODEs and DAEs

5-9

Examples: Solving Explicit ODE Problems
This section uses the van der Pol equation

to describe the process for solving initial value ODE problems using the ODE
solvers.

• “Example: Solving an IVP ODE (van der Pol Equation, Nonstiff)” on page 5-9
describes each step of the process. Because the van der Pol equation is a
second-order equation, the example must first rewrite it as a system of first
order equations.

• “Example: The van der Pol Equation, m = 1000 (Stiff)” on page 5-12
demonstrates the solution of a stiff problem.

• “Evaluating the Solution at Specific Points” on page 5-15 tells you how to
evaluate the solution at specific points.

Note See “Basic ODE Solver Syntax” on page 5-7 for more information.

Example: Solving an IVP ODE (van der Pol Equation, Nonstiff)
This example explains and illustrates the steps you need to solve an initial
value ODE problem:

1 Rewrite the problem as a system of first-order ODEs. Rewrite the
van der Pol equation (second-order)

where is a scalar parameter, by making the substitution . The
resulting system of first-order ODEs is

See “Working with Higher Order ODEs” on page 5-5 for more information.

y′′1 µ 1 y1
2

–() y′1– y1 0=+

y′′1 µ 1 y1
2

–() y′1– y1 0=+

µ 0> y′1 y2=

y′1 y2=

y′2 µ 1 y1
2

–()y2 y1–=

5 Differential Equations

5-10

2 Code the system of first-order ODEs. Once you represent the equation as
a system of first-order ODEs, you can code it as a function that an ODE
solver can use. The function must be of the form

dydt = odefun(t,y)

Although t and y must be the function’s two arguments, the function does
not need to use them. The output dydt, a column vector, is the derivative of
y.

The code below represents the van der Pol system in the function, vdp1. The
vdp1 function assumes that . The variables and are the entries
y(1) and y(2) of a two-element vector.

function dydt = vdp1(t,y)
dydt = [y(2); (1-y(1)^2)∗y(2)-y(1)];

Note that, although vdp1 must accept the arguments t and y, it does not use
t in its computations.

3 Apply a solver to the problem. Decide which solver you want to use to solve
the problem. Then call the solver and pass it the function you created to
describe the first-order system of ODEs, the time interval on which you want
to solve the problem, and an initial condition vector. See “Examples: Solving
Explicit ODE Problems” on page 5-9 and the ODE solver reference page for
descriptions of the ODE solvers.

For the van der Pol system, you can use ode45 on time interval [0 20] with
initial values y(1) = 2 and y(2) = 0.

[t,y] = ode45(@vdp1,[0 20],[2; 0]);

This example uses @ to pass vdp1 as a function handle to ode45. The
resulting output is a column vector of time points t and a solution array y.
Each row in y corresponds to a time returned in the corresponding row of t.
The first column of y corresponds to , and the second column to .

µ 1= y1 y2

y1 y2

Initial Value Problems for ODEs and DAEs

5-11

Note For information on function handles, see the function_handle (@),
func2str, and str2func reference pages, and the Function Handles chapter of
“Programming and Data Types” in the MATLAB documentation.

4 View the solver output. You can simply use the plot command to view the
solver output.

plot(t,y(:,1),'-',t,y(:,2),'--')
title('Solution of van der Pol Equation, \mu = 1');
xlabel('time t');
ylabel('solution y');
legend('y_1','y_2')

As an alternative, you can use a solver output function to process the output.
The solver calls the function specified in the integration property OutputFcn
after each successful time step. Use odeset to set OutputFcn to the desired

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3
Solution of van der Pol Equation, µ = 1

time t

so
lu

tio
n

y

y
1

y
2

5 Differential Equations

5-12

function. See “Solver Output Properties,” in the reference page for odeset,
for more information about OutputFcn.

Example: The van der Pol Equation, µ = 1000 (Stiff)
This example presents a stiff problem. For a stiff problem, solutions can change
on a time scale that is very short compared to the interval of integration, but
the solution of interest changes on a much longer time scale. Methods not
designed for stiff problems are ineffective on intervals where the solution
changes slowly because they use time steps small enough to resolve the fastest
possible change.

When is increased to 1000, the solution to the van der Pol equation changes
dramatically and exhibits oscillation on a much longer time scale.
Approximating the solution of the initial value problem becomes a more
difficult task. Because this particular problem is stiff, a solver intended for
nonstiff problems, such as ode45, is too inefficient to be practical. A solver such
as ode15s is intended for such stiff problems.

The vdp1000 function evaluates the van der Pol system from the previous
example, but with = 1000.

function dydt = vdp1000(t,y)
dydt = [y(2); 1000∗(1-y(1)^2)∗y(2)-y(1)];

Note This example hardcodes in the ODE function. The vdpode example
solves the same problem, but passes a user-specified as a parameter to the
ODE function.

Now use the ode15s function to solve the problem with the initial condition
vector of [2; 0], but a time interval of [0 3000]. For scaling reasons, plot just
the first component of y(t).

[t,y] = ode15s(@vdp1000,[0 3000],[2; 0]);
plot(t,y(:,1),'-');
title('Solution of van der Pol Equation, \mu = 1000');
xlabel('time t');
ylabel('solution y_1');

µ

µ

µ
µ

Initial Value Problems for ODEs and DAEs

5-13

Note For detailed instructions for solving an initial value ODE problem, see
“Example: Solving an IVP ODE (van der Pol Equation, Nonstiff)” on page 5-9.

Parameterizing an ODE Function
The preceding sections showed how to solve the van der Pol equation for two
different values of the parameter µ. In those examples, the values µ = 1 and
µ = 1000 are hard-coded in the ODE functions. If you are solving an ODE for
several different parameter values, it might be more convenient to include the
parameter in the ODE function and assign a value to the parameter each time
you run the ODE solver. This section explains how to do this for the van der Pol
equation.

0 500 1000 1500 2000 2500 3000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Solution of van der Pol Equation, µ = 1000

time t

so
lu

tio
n

y 1

5 Differential Equations

5-14

One way to provide parameter values to the ODE function is to write an M-file
that

• Accepts the parameters as inputs.

• Contains ODE function as a nested function, internally using the input
parameters.

• Calls the ODE solver.

The following code illustrates this:

function [t,y] = solve_vdp(mu)
tspan = [0 max(20, 3*mu)];
y0 = [2; 0];

% Call the ODE solver ode15s.
[t,y] = ode15s(@vdp,tspan,y0);

 % Define the ODE function as nested function,
 % using the parameter mu.
 function dydt = vdp(t,y)
 dydt = [y(2); mu*(1-y(1)^2)*y(2)-y(1)];
 end
end

Because the ODE function vdp is a nested function, the value of the parameter
mu is available to it.

To run the M-file for mu = 1, as in “Example: Solving an IVP ODE (van der Pol
Equation, Nonstiff)” on page 5-9, enter

[t,y] = solve_vdp(1);

To run the code for µ = 1000, as in “Example: The van der Pol Equation, m =
1000 (Stiff)” on page 5-12, enter

[t,y] = solve_vdp(1000);

See the vdpode code for a complete example based on these functions.

Initial Value Problems for ODEs and DAEs

5-15

Evaluating the Solution at Specific Points
The numerical methods implemented in the ODE solvers produce a continuous
solution over the interval of integration . You can evaluate the
approximate solution, , at any point in using the function deval and
the structure sol returned by the solver. For example, if you solve the problem
described in “Example: Solving an IVP ODE (van der Pol Equation, Nonstiff)”
on page 5-9 by calling ode45 with a single output argument sol,

sol = ode45(@vdp1,[0 20],[2; 0]);

ode45 returns the solution as a structure. You can then evaluate the
approximate solution at points in the vector xint = 1:5 as follows:

xint = 1:5;
Sxint = deval(sol,xint)

Sxint =

 1.5081 0.3235 -1.8686 -1.7407 -0.8344
 -0.7803 -1.8320 -1.0220 0.6260 1.3095

The deval function is vectorized. For a vector xint, the ith column of Sxint
approximates the solution .

Solver for Fully Implicit ODEs
The solver ode15i solves fully implicit differential equations of the form

using the variable order BDF method. The basic syntax for ode15i is

[t,y] = ode15i(odefun,tspan,y0,yp0,options)

The input arguments are

odefun A function that evaluates the left side of the differential equation
of the form .

tspan A vector specifying the interval of integration, [t0,tf]. To obtain
solutions at specific times (all increasing or all decreasing), use
tspan = [t0,t1,...,tf].

a b,[]
S x() a b,[]

y xint(i)()

f t y y′, ,() 0=

f t y y′, ,() 0=

5 Differential Equations

5-16

The output arguments contain the solution approximated at discrete points:

See the ode15i reference page for more information about these arguments.

Note See “Evaluating the Solution at Specific Points” on page 5-72 for more
information about solver syntax where a continuous solution is returned.

Example: Solving a Fully Implicit ODE Problem
The following example shows how to use the function ode15i to solve the
implicit ODE problem defined by Weissinger’s equation

with the initial value . The exact solution of the ODE is

The example uses the function weissinger, which is provided with MATLAB,
to compute the left-hand side of the equation.

Before calling ode15i, the example uses a helper function decic to compute a
consistent initial value for . In the following call, the given initial value

 is held fixed and a guess of 0 is specified for . See the
reference page for decic for more information.

y0, yp0 Vectors of initial conditions for and , respectively. The
specified values must be consistent; that is, they must satisfy
f(t0,y0,yp0) = 0. “Example: Solving a Fully Implicit ODE
Problem” on page 5-16 shows how to use the function decic to
compute consistent initial conditions.

options Optional integration argument created using the odeset function.
See the odeset reference page for details.

t Column vector of time points

y Solution array. Each row in y corresponds to the solution at a time
returned in the corresponding row of t.

y t0() y′ t0()

ty2 y′()3 y3 y′()2 t t2 1+()y′ t2y–+– 0=

y 1() 3 2⁄=

y t() t2 0.5+=

y′ t0()
y 1() 3 2⁄= y′ 1()

Initial Value Problems for ODEs and DAEs

5-17

t0 = 1;
y0 = sqrt(3/2);
yp0 = 0;
[y0,yp0] = decic(@weissinger,t0,y0,1,yp0,0);

You can now call ode15i to solve the ODE and then plot the numerical solution
against the analytical solution with the following commands.

[t,y] = ode15i(@weissinger,[1 10],y0,yp0);
ytrue = sqrt(t.^2 + 0.5);
plot(t,y,t,ytrue,'o');

Changing ODE Integration Properties
The default integration properties in the ODE solvers are selected to handle
common problems. In some cases, you can improve ODE solver performance by
overriding these defaults. You do this by supplying the solvers with an options
structure that specifies one or more property values.

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

11

5 Differential Equations

5-18

For example, to change the value of the relative error tolerance of the solver
from the default value of 1e-3 to 1e-4,

1 Create an options structure using the function odeset by entering

options = odeset('RelTol', 1e-4);

2 Pass the options structure to the solver as follows:

- For all solvers except ode15i, use the syntax
[t,y] = solver(odefun,tspan,y0,options)

- For ode15i, use the syntax
[t,y] = ode15i(odefun,tspan,y0,yp0,options)

For an example that uses the options structure, see “Example: Stiff Problem
(van der Pol Equation)” on page 5-20. For a complete description of the
available options, see the reference page for odeset.

Examples: Applying the ODE Initial Value Problem
Solvers
This section contains several examples that illustrate the kinds of problems
you can solve. For each example, there is a corresponding M-file, included in
MATLAB. You can

• View the M-file code in an editor by entering edit followed by the name of
the M-file at the MATLAB prompt. For example, to view the code for the
simple nonstiff problem example, enter
edit rigidode

Alternatively, if you are reading this in the MATLAB Help Browser, you can
click the name of the M-file in the list below.

• Run the example by entering the name of the M-file at the MATLAB prompt.

This section presents the following examples:

• Simple nonstiff problem (rigidode)

• Stiff problem (vdpode)

• Finite element discretization (fem1ode)

Initial Value Problems for ODEs and DAEs

5-19

• Large, stiff, sparse problem (brussode)

• Simple event location (ballode)

• Advanced event location (orbitode)

• Differential-algebraic problem (hb1dae)

• Computing nonnegative solutions (kneeode)

• “Summary of Code Examples” on page 5-42

Example: Simple Nonstiff Problem
rigidode illustrates the solution of a standard test problem proposed by Krogh
for solvers intended for nonstiff problems [8].

The ODEs are the Euler equations of a rigid body without external forces.

For your convenience, the entire problem is defined and solved in a single
M-file. The differential equations are coded as a subfunction f. Because the
example calls the ode45 solver without output arguments, the solver uses the
default output function odeplot to plot the solution components.

To run this example, click on the example name, or type rigidode at the
command line.

function rigidode
%RIGIDODE Euler equations of a rigid body without external forces
tspan = [0 12];
y0 = [0; 1; 1];

% Solve the problem using ode45
ode45(@f,tspan,y0);
% --
function dydt = f(t,y)
dydt = [y(2)*y(3)
 -y(1)*y(3)
 -0.51*y(1)*y(2)];

y′3 0.51 y– 1 y2=

y′2 y– 1 y3=

y′1 y2 y3=

5 Differential Equations

5-20

Example: Stiff Problem (van der Pol Equation)
vdpode illustrates the solution of the van der Pol problem described in
“Example: The van der Pol Equation, m = 1000 (Stiff)” on page 5-12. The
differential equations

involve a constant parameter .

As increases, the problem becomes more stiff, and the period of oscillation
becomes larger. When is 1000 the equation is in relaxation oscillation and
the problem is very stiff. The limit cycle has portions where the solution
components change slowly and the problem is quite stiff, alternating with
regions of very sharp change where it is not stiff (quasi-discontinuities).

By default, the solvers in the ODE suite that are intended for stiff problems
approximate Jacobian matrices numerically. However, this example provides
a nested function J(t,y) to evaluate the Jacobian matrix analytically at

0 2 4 6 8 10 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y′2 µ(1 y1
2–)y2 y1–=

y′1 y2=

µ

µ
µ

∂f ∂y⁄

Initial Value Problems for ODEs and DAEs

5-21

(t,y) for = MU. The use of an analytic Jacobian can improve the reliability
and efficiency of integration.

To run this example, click on the example name, or type vdpode at the
command line. From the command line, you can specify a value of as an
argument to vdpode. The default is = 1000.

function vdpode(MU)
%VDPODE Parameterizable van der Pol equation (stiff for large MU)
if nargin < 1
 MU = 1000; % default
end

tspan = [0; max(20,3*MU)]; % Several periods
y0 = [2; 0];
options = odeset('Jacobian',@J);

[t,y] = ode15s(@f,tspan,y0,options);

plot(t,y(:,1));
title(['Solution of van der Pol Equation, \mu = ' num2str(MU)]);
xlabel('time t');
ylabel('solution y_1');

axis([tspan(1) tspan(end) -2.5 2.5]);

function dydt = f(t,y)
dydt = [y(2)
 MU*(1-y(1)^2)*y(2)-y(1)];
end % End nested function f

function dfdy = J(t,y)
dfdy = [0 1
 -2*MU*y(1)*y(2)-1 MU*(1-y(1)^2)];
end % End nested function J
end

µ

µ
µ

5 Differential Equations

5-22

Example: Finite Element Discretization
fem1ode illustrates the solution of ODEs that result from a finite element
discretization of a partial differential equation. The value of N in the call
fem1ode(N) controls the discretization, and the resulting system consists of N
equations. By default, N is 19.

This example involves a mass matrix. The system of ODEs comes from a
method of lines solution of the partial differential equation

with initial condition and boundary conditions
. An integer is chosen, is defined as , and

0 500 1000 1500 2000 2500 3000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Solution of van der Pol Equation, µ = 1000

time t

so
lu

tio
n

y 1

e t– u∂
t∂

------ ∂2u
∂x2
---------=

u 0 x,() x()sin=
u t 0,() u t π,() 0= = N h π N 1+()⁄

Initial Value Problems for ODEs and DAEs

5-23

the solution of the partial differential equation is approximated at for
k = 0, 1, ..., N+1 by

Here is a piecewise linear function that is 1 at and 0 at all the other
. A Galerkin discretization leads to the system of ODEs

and the tridiagonal matrices and are given by

and

The initial values are taken from the initial condition for the partial
differential equation. The problem is solved on the time interval .

In the fem1ode example, the properties

options = odeset('Mass',@mass,'MStateDep','none','Jacobian',J)

indicate that the problem is of the form . The nested function
mass(t) evaluates the time-dependent mass matrix and J is the constant
Jacobian.

xk kh=

u t xk(,) ck t()φk x()

k 1=

N

∑≈

φk x() xk
xj

M t()c′ Jc where c t()
c1 t()

cN t()
= =

M t() J

Mij

2h 3 exp t–()⁄ if i j=

h 6 exp t–()⁄ if i j 1±=

0 otherwise⎩
⎪
⎨
⎪
⎧

=

Jij

2– h⁄ if i j=

1 h⁄ if i j 1±=

0 otherwise⎩
⎪
⎨
⎪
⎧

=

c 0()
0 π,[]

M t()y′ Jy=
M t()

5 Differential Equations

5-24

To run this example, click on the example name, or type fem1ode at the
command line. From the command line, you can specify a value of as an
argument to fem1ode. The default is = 19.

function fem1ode(N)
%FEM1ODE Stiff problem with a time-dependent mass matrix

if nargin < 1
 N = 19;
end
h = pi/(N+1);
y0 = sin(h*(1:N)');
tspan = [0; pi];

% The Jacobian is constant.
e = repmat(1/h,N,1); % e=[(1/h) ... (1/h)];
d = repmat(-2/h,N,1); % d=[(-2/h) ... (-2/h)];
% J is shared with the derivative function.
J = spdiags([e d e], -1:1, N, N);

d = repmat(h/6,N,1);
% M is shared with the mass matrix function.
M = spdiags([d 4*d d], -1:1, N, N);

options = odeset('Mass',@mass,'MStateDep','none', ...
 'Jacobian',J);

[t,y] = ode15s(@f,tspan,y0,options);

figure;
surf((1:N)/(N+1),t,y);
set(gca,'ZLim',[0 1]);
view(142.5,30);
title(['Finite element problem with time-dependent mass ' ...
 'matrix, solved by ODE15S']);
xlabel('space (x/\pi)');
ylabel('time');
zlabel('solution');
%---
function yp = f(t,y)

N
N

Initial Value Problems for ODEs and DAEs

5-25

% Derivative function.
 yp = J*y; % Constant Jacobian is provided by outer function
end % End nested function f
%---
function Mt = mass(t)
% Mass matrix function.
 Mt = exp(-t)*M; % M is provided by outer function
end % End nested function mass
%---
end

Example: Large, Stiff, Sparse Problem
brussode illustrates the solution of a (potentially) large stiff sparse problem.
The problem is the classic “Brusselator” system [3] that models diffusion in a
chemical reaction

0
0.2

0.4
0.6

0.8
1

0

1

2

3

4

0

0.2

0.4

0.6

0.8

1

space (x/π)

Finite element problem with time−dependent mass matrix, solved by ODE15S

time

so
lu

tio
n

5 Differential Equations

5-26

and is solved on the time interval [0,10] with = 1/50 and

There are equations in the system, but the Jacobian is banded with a
constant width 5 if the equations are ordered as

In the call brussode(N), where N corresponds to , the parameter N ≥ 2
specifies the number of grid points. The resulting system consists of 2N
equations. By default, N is 20. The problem becomes increasingly stiff and the
Jacobian increasingly sparse as N increases.

The nested function f(t,y) returns the derivatives vector for the Brusselator
problem. The subfunction jpattern(N) returns a sparse matrix of 1s and 0s
showing the locations of nonzeros in the Jacobian . The example assigns
this matrix to the property JPattern, and the solver uses the sparsity pattern
to generate the Jacobian numerically as a sparse matrix. Providing a sparsity
pattern can significantly reduce the number of function evaluations required
to generate the Jacobian and can accelerate integration.

For the Brusselator problem, if the sparsity pattern is not supplied, 2N
evaluations of the function are needed to compute the 2N-by-2N Jacobian
matrix. If the sparsity pattern is supplied, only four evaluations are needed,
regardless of the value of N.

To run this example, click on the example name, or type brussode at the
command line. From the command line, you can specify a value of as an
argument to brussode. The default is = 20.

function brussode(N)
%BRUSSODE Stiff problem modeling a chemical reaction

if nargin < 1
 N = 20;
end

u′i 1 ui
2vi 4ui– α N 1+()2 ui 1– 2ui– ui 1++()+ +=

v′i 3ui ui
2vi– α N 1+()2 vi 1– 2vi– vi 1++()+=

α

ui 0() 1 2πxi()sin+=

vi 0() 3= ⎭
⎬
⎫ with xi i N 1+()⁄ for i 1, ..., N=,=

2N
u1 v1 u2 v2 …, , , ,

N

∂f ∂y⁄

N
N

Initial Value Problems for ODEs and DAEs

5-27

tspan = [0; 10];
y0 = [1+sin((2*pi/(N+1))*(1:N));
repmat(3,1,N)];

options = odeset('Vectorized','on','JPattern',jpattern(N));

[t,y] = ode15s(@f,tspan,y0,options);

u = y(:,1:2:end);
x = (1:N)/(N+1);
surf(x,t,u);
view(-40,30);
xlabel('space');
ylabel('time');
zlabel('solution u');
title(['The Brusselator for N = ' num2str(N)]);
% --
function dydt = f(t,y)
c = 0.02 * (N+1)^2;
dydt = zeros(2*N,size(y,2)); % preallocate dy/dt
% Evaluate the two components of the function at one edge of
% the grid (with edge conditions).
i = 1;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
 c*(1-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
 c*(3-2*y(i+1,:)+y(i+3,:));
% Evaluate the two components of the function at all interior
% grid points.
i = 3:2:2*N-3;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
 c*(y(i-2,:)-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
 c*(y(i-1,:)-2*y(i+1,:)+y(i+3,:));
% Evaluate the two components of the function at the other edge
% of the grid (with edge conditions).
i = 2*N-1;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
 c*(y(i-2,:)-2*y(i,:)+1);

5 Differential Equations

5-28

dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
 c*(y(i-1,:)-2*y(i+1,:)+3);
end % End nested function f
end % End function brussode
% --
function S = jpattern(N)
B = ones(2*N,5);
B(2:2:2*N,2) = zeros(N,1);
B(1:2:2*N-1,4) = zeros(N,1);
S = spdiags(B,-2:2,2*N,2*N);
end;

Example: Simple Event Location
ballode models the motion of a bouncing ball. This example illustrates the
event location capabilities of the ODE solvers.

0
0.2

0.4
0.6

0.8
1

0

2

4

6

8

10
0

0.5

1

1.5

2

2.5

3

space

The Brusselator for N = 20

time

so
lu

tio
n

u

Initial Value Problems for ODEs and DAEs

5-29

The equations for the bouncing ball are

In this example, the event function is coded in a subfunction events

[value,isterminal,direction] = events(t,y)

which returns

• A value of the event function

• The information whether or not the integration should stop when value = 0
(isterminal = 1 or 0, respectively)

• The desired directionality of the zero crossings:

The length of value, isterminal, and direction is the same as the number of
event functions. The ith element of each vector, corresponds to the ith event
function. For an example of more advanced event location, see orbitode
(“Example: Advanced Event Location” on page 5-32).

In ballode, setting the Events property to @events causes the solver to stop the
integration (isterminal = 1) when the ball hits the ground (the height y(1) is
0) during its fall (direction = -1). The example then restarts the integration
with initial conditions corresponding to a ball that bounced.

To run this example, click on the example name, or type ballode at the
command line.

function ballode
%BALLODE Run a demo of a bouncing ball.

tstart = 0;
tfinal = 30;
y0 = [0; 20];

-1 Detect zero crossings in the negative direction only

0 Detect all zero crossings

1 Detect zero crossings in the positive direction only

y′2 9.8–=

y′1 y2=

5 Differential Equations

5-30

refine = 4;
options = odeset('Events',@events,'OutputFcn', @odeplot,...
 'OutputSel',1,'Refine',refine);

set(gca,'xlim',[0 30],'ylim',[0 25]);
box on
hold on;

tout = tstart;
yout = y0.';
teout = [];
yeout = [];
ieout = [];
for i = 1:10
 % Solve until the first terminal event.
 [t,y,te,ye,ie] = ode23(@f,[tstart tfinal],y0,options);
 if ~ishold
 hold on
 end
 % Accumulate output.
 nt = length(t);
 tout = [tout; t(2:nt)];
 yout = [yout; y(2:nt,:)];
 teout = [teout; te]; % Events at tstart are never reported.
 yeout = [yeout; ye];
 ieout = [ieout; ie];

 ud = get(gcf,'UserData');
 if ud.stop
 break;
 end

 % Set the new initial conditions, with .9 attenuation.
 y0(1) = 0;
 y0(2) = -.9*y(nt,2);

 % A good guess of a valid first time step is the length of
 % the last valid time step, so use it for faster computation.
 options = odeset(options,'InitialStep',t(nt)-t(nt-refine),...
 'MaxStep',t(nt)-t(1));

Initial Value Problems for ODEs and DAEs

5-31

 tstart = t(nt);
end

plot(teout,yeout(:,1),'ro')
xlabel('time');
ylabel('height');
title('Ball trajectory and the events');
hold off
odeplot([],[],'done');
% --
function dydt = f(t,y)
dydt = [y(2); -9.8];
% --
function [value,isterminal,direction] = events(t,y)
% Locate the time when height passes through zero in a
% decreasing direction and stop integration.
value = y(1); % Detect height = 0
isterminal = 1; % Stop the integration
direction = -1; % Negative direction only

0 5 10 15 20 25 30
0

5

10

15

20

25

time

he
ig

ht

Ball trajectory and the events

5 Differential Equations

5-32

Example: Advanced Event Location
orbitode illustrates the solution of a standard test problem for those solvers
that are intended for nonstiff problems. It traces the path of a spaceship
traveling around the moon and returning to the earth. (Shampine and
Gordon [8], p.246).

The orbitode problem is a system of the following four equations shown:

where

The first two solution components are coordinates of the body of infinitesimal
mass, so plotting one against the other gives the orbit of the body. The initial
conditions have been chosen to make the orbit periodic. The value of
corresponds to a spaceship traveling around the moon and the earth.
Moderately stringent tolerances are necessary to reproduce the qualitative
behavior of the orbit. Suitable values are 1e-5 for RelTol and 1e-4 for AbsTol.

The nested events function includes event functions that locate the point of
maximum distance from the starting point and the time the spaceship returns
to the starting point. Note that the events are located accurately, even though
the step sizes used by the integrator are not determined by the location of the

y′2 y4=

y′1 y3=

y′3 2y4 y1
µ∗ y1 µ+()

r3
1

---------------------------–
µ y1 µ∗–()

r2
3

---------------------------–+=

y′4 2y3– y2
µ∗y2

r 3
1

------------–
µy2

r2
3

---------–+=

µ 1 82.45⁄=

r2 y1 µ– ∗()2 y2
2+=

r1 y1 µ+()2 y2
2+=

µ∗ 1 µ–=

µ

Initial Value Problems for ODEs and DAEs

5-33

events. In this example, the ability to specify the direction of the zero crossing
is critical. Both the point of return to the initial point and the point of
maximum distance have the same event function value, and the direction of the
crossing is used to distinguish them.

To run this example, click on the example name, or type orbitode at the
command line. The example uses the output function odephas2 to produce the
two-dimensional phase plane plot and let you to see the progress of the
integration.

function orbitode
%ORBITODE Restricted three-body problem

mu = 1 / 82.45;
mustar = 1 - mu;
y0 = [1.2; 0; 0; -1.04935750983031990726];
tspan = [0 7];

options = odeset('RelTol',1e-5,'AbsTol',1e-4,...
 'OutputFcn',@odephas2,'Events',@events);

[t,y,te,ye,ie] = ode45(@f,tspan,y0,options);

plot(y(:,1),y(:,2),ye(:,1),ye(:,2),'o');
title ('Restricted three body problem')
ylabel ('y(t)')
xlabel ('x(t)')
% --
function dydt = f(t,y)
r13 = ((y(1) + mu)^2 + y(2)^2) ^ 1.5;
r23 = ((y(1) - mustar)^2 + y(2)^2) ^ 1.5;
dydt = [y(3)
 y(4)
 2*y(4) + y(1) - mustar*((y(1)+mu)/r13) - ...
 mu*((y(1)-mustar)/r23)
 -2*y(3) + y(2) - mustar*(y(2)/r13) - mu*(y(2)/r23)];
end % End nested function f
% --

5 Differential Equations

5-34

function [value,isterminal,direction] = events(t,y)
% Locate the time when the object returns closest to the
% initial point y0 and starts to move away, and stop integration.
% Also locate the time when the object is farthest from the
% initial point y0 and starts to move closer.
%
% The current distance of the body is
%
% DSQ = (y(1)-y0(1))^2 + (y(2)-y0(2))^2
% = <y(1:2)-y0(1:2),y(1:2)-y0(1:2)>
%
% A local minimum of DSQ occurs when d/dt DSQ crosses zero
% heading in the positive direction. We can compute d(DSQ)/dt as
%
% d(DSQ)/dt = 2*(y(1:2)-y0(1:2))'*dy(1:2)/dt = ...
% 2*(y(1:2)-y0(1:2))'*y(3:4)
%
dDSQdt = 2 * ((y(1:2)-y0(1:2))' * y(3:4));
value = [dDSQdt; dDSQdt];
isterminal = [1; 0]; % Stop at local minimum
direction = [1; -1]; % [local minimum, local maximum]
end % End nested function events

Initial Value Problems for ODEs and DAEs

5-35

end

Example: Differential-Algebraic Problem
hb1dae reformulates the hb1ode example as a differential-algebraic equation
(DAE) problem. The Robertson problem coded in hb1ode is a classic test
problem for codes that solve stiff ODEs.

−1.5 −1 −0.5 0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Restricted three body problem

y(
t)

x(t)

y′1 0.04– y1 104y2y3+=

y′2 0.04y1 104y2y3– 3 107y2
2⋅–=

y′3 3 107y2
2⋅=

5 Differential Equations

5-36

Note The Robertson problem appears as an example in the prolog to
LSODI [4].

In hb1ode, the problem is solved with initial conditions , ,
 to steady state. These differential equations satisfy a linear

conservation law that is used to reformulate the problem as the DAE

These equations do not have a solution for with components that do not
sum to 1. The problem has the form of with

 is singular, but hb1dae does not inform the solver of this. The solver must
recognize that the problem is a DAE, not an ODE. Similarly, although
consistent initial conditions are obvious, the example uses an inconsistent
value to illustrate computation of consistent initial conditions.

To run this example, click on the example name, or type hb1dae at the
command line. Note that hb1dae:

• Imposes a much smaller absolute error tolerance on than on the other
components. This is because is much smaller than the other components
and its major change takes place in a relatively short time.

• Specifies additional points at which the solution is computed to more clearly
show the behavior of .

• Multiplies by 104 to make visible when plotting it with the rest of the
solution.

• Uses a logarithmic scale to plot the solution on the long time interval.

y1 0() 1= y2 0() 0=
y3 0() 0=

y′1 0.04– y1 104y2y3+=

y′2 0.04y1 104y2y3– 3 107y2
2⋅–=

0 y1 y2 y3 1–+ +=

y 0()
My′ f t y,()=

M
1 0 0
0 1 0
0 0 0

=

M

y3 0() 10 3–
=

y2
y2

y2
y2 y2

Initial Value Problems for ODEs and DAEs

5-37

function hb1dae
%HB1DAE Stiff differential-algebraic equation (DAE)

% A constant, singular mass matrix
M = [1 0 0
 0 1 0
 0 0 0];

% Use an inconsistent initial condition to test initialization.
y0 = [1; 0; 1e-3];
tspan = [0 4*logspace(-6,6)];

% Use the LSODI example tolerances. The 'MassSingular' property
% is left at its default 'maybe' to test the automatic detection
% of a DAE.
options = odeset('Mass',M,'RelTol',1e-4,...
 'AbsTol',[1e-6 1e-10 1e-6],'Vectorized','on');

[t,y] = ode15s(@f,tspan,y0,options);

y(:,2) = 1e4*y(:,2);

semilogx(t,y);
ylabel('1e4 * y(:,2)');
title(['Robertson DAE problem with a Conservation Law, '...
 'solved by ODE15S']);
xlabel('This is equivalent to the stiff ODEs coded in HB1ODE.');
% --
function out = f(t,y)
out = [-0.04*y(1,:) + 1e4*y(2,:).*y(3,:)

0.04*y(1,:) - 1e4*y(2,:).*y(3,:) - 3e7*y(2,:).^2
y(1,:) + y(2,:) + y(3,:) - 1];

5 Differential Equations

5-38

Example: Computing Nonnegative Solutions
If certain components of the solution must be nonnegative, use odeset to set
the NonNegative property for the indices of these components.

Note This option is not available for ode23s, ode15i, and for implicit solvers
(ode15s, ode23t, ode23tb) applied to problems where there is a mass matrix.

Imposing nonnegativity is not always a trivial task. We suggest that you use
this option only when necessary, for example in instances in which the
application of a solution or integration will fail otherwise.

Consider the following initial value problem solved on the interval [0, 40]:

y' = - |y|, y(0) = 1

The solution of this problem decays to zero. If a solver produces a negative
approximate solution, it begins to track the solution of the ODE through this
value, the solution goes off to minus infinity, and the computation fails. Using
the NonNegative property prevents this from happening.

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e
4

*
y(

:,2
)

Robertson DAE problem with a Conservation Law, solved by ODE15S

This is equivalent to the stiff ODEs coded in HB1ODE.

Initial Value Problems for ODEs and DAEs

5-39

In this example, the first call to ode45 uses the defaults for the solver
parameters:

ode = @(t,y) abs(y);
[t0,y0] = ode45(ode,[0, 40], 1);

The second uses options to impose nonnegativity conditions:

options = odeset('NonNegative',1);
[t1,y1] = ode45(ode,[0, 40], 1, options);

This plot compares the numerical solution to the exact solution.

Here is a more complete view of the code used to obtain this plot:

ode = @(t,y) abs(y);
options = odeset('Refine',1);
[t0,y0] = ode45(ode,[0, 40], 1,options);
options = odeset(options,'NonNegative',1);
[t1,y1] = ode45(ode,[0, 40], 1, options);
t = linspace(0,40,1000);
y = exp(-t);
plot(t,y,'b-',t0,y0,'ro',t1,y1,'b*');
legend('Exact solution','No constraints','Nonnegativity', ...
 'Location','SouthWest')

5 Differential Equations

5-40

The MATLAB kneeode Demo. The MATLAB kneeode demo solves the “knee
problem” by imposing a nonnegativity constraint on the numerical solution.
The initial value problem is

*y' = (1-x)*y - y^2, y(0) = 1

For 0 < < 1, the solution of this problem approaches null isoclines y = 1 -
x and y = 0 for x < 1 and x > 1 respectively. The numerical solution, when
computed with default tolerances, follows the y = 1 - x isocline for the whole
interval of integration. Imposing nonnegativity constraints results in the
correct solution.

Here is the code that comprises the kneeode demo:

function kneeode
%KNEEODE The "knee problem" with Nonnegativity constraints.

% Problem parameter
epsilon = 1e-6;

y0 = 1;
xspan = [0, 2];

% Solve without imposing constraints
options = [];
[x1,y1] = ode15s(@odefcn,xspan,y0,options);

% Impose nonnegativity constraint
options = odeset('NonNegative',1);
[x2,y2] = ode15s(@odefcn,xspan,y0,options);

figure
plot(x1,y1,'b.-`,x2,y2,'g-')
axis([0,2,-1,1]);
title('The "knee problem"');
legend('No constraints','nonnegativity')
xlabel('x');
ylabel('solution y')

ε

ε

Initial Value Problems for ODEs and DAEs

5-41

 function yp = odefcn(x,y)
 yp = ((1 - x)*y - y^2)/epsilon;
 end
end % kneeode

The derivative function is defined within nested function odefcn. The value of
epsilon used in odefcn is obtained from the outer function:

function yp = odefcn(x,y)
yp = ((1 - x)*y - y^2)/epsilon;
end

The demo solves the problem using the ode15s function, first with the default
options, and then by imposing a nonnegativity constraint. To run the demo,
type kneeode at the MATLAB command prompt.

Here is the output plot. The plot confirms correct solution behavior after
imposing constraints.

5 Differential Equations

5-42

Summary of Code Examples
The following table lists the M-files for all the ODE initial value problem
examples. Click the example name to see the code in an editor. Type the
example name at the command line to run it.

Note The Differential Equations Examples browser enables you to view the
code for the ODE examples and DAE examples. You can also run the examples
from the browser. Click on these links to invoke the browser, or type
odeexamples('ode')or odeexamples('dae')at the command line.

Example Description

amp1dae Stiff DAE — electrical circuit

ballode Simple event location — bouncing ball

batonode ODE with time- and state-dependent mass matrix —
motion of a baton

brussode Stiff large problem — diffusion in a chemical reaction (the
Brusselator)

burgersode ODE with strongly state-dependent mass matrix —
Burger’s equation solved using a moving mesh technique

fem1ode Stiff problem with a time-dependent mass matrix — finite
element method

fem2ode Stiff problem with a constant mass matrix — finite element
method

hb1ode Stiff ODE problem solved on a very long interval —
Robertson chemical reaction

hb1dae Robertson problem — stiff, linearly implicit DAE from a
conservation law

ihb1dae Robertson problem — stiff, fully implicit DAE

Initial Value Problems for ODEs and DAEs

5-43

Questions and Answers, and Troubleshooting
This section contains a number of tables that answer questions about the use
and operation of the ODE solvers:

• General ODE solver questions

• Problem size, memory use, and computation speed

• Time steps for integration

• Error tolerance and other options

• Solving different kinds of problems

• Troubleshooting

iburgersode Burgers' equation solved as implicit ODE system

kneeode The “knee problem” with nonnegativity constraints

orbitode Advanced event location — restricted three body problem

rigidode Nonstiff problem — Euler equations of a rigid body without
external forces

vdpode Parameterizable van der Pol equation (stiff for large)

Example Description

µ

General ODE Solver Questions

Question Answer

How do the ODE solvers
differ from quad or quadl?

quad and quadl solve problems of the form . The ODE
solvers handle more general problems , linearly
implicit problems that involve a mass matrix ,
and fully implicit problems .

Can I solve ODE systems in
which there are more
equations than unknowns,
or vice versa?

No.

y′ f t()=
y′ f t y,()=

M t y,() y′ f t y,()=
f t y y′, ,() 0=

5 Differential Equations

5-44

Problem Size, Memory Use, and Computation Speed

Question Answer

How large a problem can I
solve with the ODE suite?

The primary constraints are memory and time. At each time step,
the solvers for nonstiff problems allocate vectors of length n,
where n is the number of equations in the system. The solvers for
stiff problems but also allocate an n-by-n Jacobian matrix. For
these solvers it may be advantageous to use the sparse option.

If the problem is nonstiff, or if you are using the sparse option, it
may be possible to solve a problem with thousands of unknowns.
In this case, however, storage of the result can be problematic.
Try asking the solver to evaluate the solution at specific points
only, or call the solver with no output arguments and use an
output function to monitor the solution.

I'm solving a very large
system, but only care about
a couple of the components
of y. Is there any way to
avoid storing all of the
elements?

Yes. The user-installable output function capability is designed
specifically for this purpose. When you call the solver with no
output arguments, the solver does not allocate storage to hold the
entire solution history. Instead, the solver calls
OutputFcn(t,y,flag) at each time step. To keep the history of
specific elements, write an output function that stores or plots
only the elements you care about.

What is the startup cost of
the integration and how
can I reduce it?

The biggest startup cost occurs as the solver attempts to find a
step size appropriate to the scale of the problem. If you happen to
know an appropriate step size, use the InitialStep property. For
example, if you repeatedly call the integrator in an event location
loop, the last step that was taken before the event is probably on
scale for the next integration. See ballode for an example.

Initial Value Problems for ODEs and DAEs

5-45

Time Steps for Integration

Question Answer

The first step size that the
integrator takes is too
large, and it misses
important behavior.

You can specify the first step size with the InitialStep property.
The integrator tries this value, then reduces it if necessary.

Can I integrate with fixed
step sizes?

No.

Error Tolerance and Other Options

Question Answer

How do I choose RelTol and
AbsTol?

RelTol, the relative accuracy tolerance, controls the number of
correct digits in the answer. AbsTol, the absolute error tolerance,
controls the difference between the answer and the solution. At
each step, the error e in component i of the solution satisfies

|e(i)| <= max(RelTol*abs(y(i)),AbsTol(i))

Roughly speaking, this means that you want RelTol correct
digits in all solution components except those smaller than
thresholds AbsTol(i). Even if you are not interested in a
component y(i) when it is small, you may have to specify
AbsTol(i) small enough to get some correct digits in y(i) so that
you can accurately compute more interesting components.

I want answers that are
correct to the precision of
the computer. Why can’t I
simply set RelTol to eps?

You can get close to machine precision, but not that close. The
solvers do not allow RelTol near eps because they try to
approximate a continuous function. At tolerances comparable to
eps, the machine arithmetic causes all functions to look
discontinuous.

5 Differential Equations

5-46

How do I tell the solver that
I don’t care about getting
an accurate answer for one
of the solution components?

You can increase the absolute error tolerance corresponding to
this solution component. If the tolerance is bigger than the
component, this specifies no correct digits for the component. The
solver may have to get some correct digits in this component to
compute other components accurately, but it generally handles
this automatically.

Error Tolerance and Other Options (Continued)

Question Answer

Solving Different Kinds of Problems

Question Answer

Can the solvers handle
partial differential
equations (PDEs) that have
been discretized by the
method of lines?

Yes, because the discretization produces a system of ODEs.
Depending on the discretization, you might have a form involving
mass matrices – the ODE solvers provide for this. Often the
system is stiff. This is to be expected when the PDE is parabolic
and when there are phenomena that happen on very different
time scales such as a chemical reaction in a fluid flow. In such
cases, use one of the four solvers: ode15s, ode23s, ode23t,
ode23tb.

If there are many equations, set the JPattern property. This
might make the difference between success and failure due to the
computation being too expensive. For an example that uses
JPattern, see “Example: Large, Stiff, Sparse Problem” on
page 5-25. When the system is not stiff, or not very stiff, ode23 or
ode45 is more efficient than ode15s, ode23s, ode23t, or ode23tb.

Parabolic-elliptic partial differential equations in 1-D can be
solved directly with the MATLAB PDE solver, pdepe. For more
information, see “Partial Differential Equations” on page 5-89.

Can I solve
differential-algebraic
equation (DAE) systems?

Yes. The solvers ode15s and ode23t can solve some DAEs of the
form where is singular. The DAEs
must be of index 1. ode15i can solve fully implicit DAEs of index
1, . For examples, see amp1dae, hb1dae, or ihb1dae.

M t y,()y′ f t y,()= M t y,()

f t y y′, ,() 0=

Initial Value Problems for ODEs and DAEs

5-47

Can I integrate a set of
sampled data?

Not directly. You have to represent the data as a function by
interpolation or some other scheme for fitting data. The
smoothness of this function is critical. A piecewise polynomial fit
like a spline can look smooth to the eye, but rough to a solver; the
solver takes small steps where the derivatives of the fit have
jumps. Either use a smooth function to represent the data or use
one of the lower order solvers (ode23, ode23s, ode23t, ode23tb)
that is less sensitive to this.

What do I do when I have
the final and not the initial
value?

All the solvers of the ODE suite allow you to solve backwards or
forwards in time. The syntax for the solvers is

[t,y] = ode45(odefun,[t0 tf],y0);

and the syntax accepts t0 > tf.

Solving Different Kinds of Problems (Continued)

Question Answer

Troubleshooting

Question Answer

The solution doesn’t look
like what I expected.

If you’re right about its appearance, you need to reduce the error
tolerances from their default values. A smaller relative error
tolerance is needed to compute accurately the solution of
problems integrated over “long” intervals, as well as solutions of
problems that are moderately unstable.

You should check whether there are solution components that
stay smaller than their absolute error tolerance for some time. If
so, you are not asking for any correct digits in these components.
This may be acceptable for these components, but failing to
compute them accurately may degrade the accuracy of other
components that depend on them.

My plots aren’t smooth
enough.

Increase the value of Refine from its default of 4 in ode45 and 1
in the other solvers. The bigger the value of Refine, the more
output points. Execution speed is not affected much by the value
of Refine.

5 Differential Equations

5-48

I’m plotting the solution as
it is computed and it looks
fine, but the code gets stuck
at some point.

First verify that the ODE function is smooth near the point
where the code gets stuck. If it isn’t, the solver must take small
steps to deal with this. It may help to break tspan into pieces on
which the ODE function is smooth.

If the function is smooth and the code is taking extremely small
steps, you are probably trying to solve a stiff problem with a
solver not intended for this purpose. Switch to ode15s, ode23s,
ode23t, or ode23tb.

My integration proceeds
very slowly, using too many
time steps.

First, check that your tspan is not too long. Remember that the
solver uses as many time points as necessary to produce a smooth
solution. If the ODE function changes on a time scale that is very
short compared to the tspan, the solver uses a lot of time steps.
Long-time integration is a hard problem. Break tspan into
smaller pieces.

If the ODE function does not change noticeably on the tspan
interval, it could be that your problem is stiff. Try using ode15s,
ode23s, ode23t, or ode23tb.

Finally, make sure that the ODE function is written in an
efficient way. The solvers evaluate the derivatives in the ODE
function many times. The cost of numerical integration depends
critically on the expense of evaluating the ODE function. Rather
than recompute complicated constant parameters at each
evaluation, store them in globals or calculate them once and pass
them to nested functions.

I know that the solution
undergoes a radical change
at time t where

t0 ≤ t ≤ tf

but the integrator steps
past without “seeing” it.

If you know there is a sharp change at time t, it might help to
break the tspan interval into two pieces, [t0 t] and [t tf], and
call the integrator twice.

If the differential equation has periodic coefficients or solution,
you might restrict the maximum step size to the length of the
period so the integrator won’t step over periods.

Troubleshooting (Continued)

Question Answer

Initial Value Problems for DDEs

5-49

Initial Value Problems for DDEs
This section describes how to use MATLAB to solve initial value problems
(IVPs) for delay differential equations (DDEs). It provides:

• A summary of the DDE functions and examples

• An introduction to DDEs

• A description of the DDE solver and its syntax

• General instructions for representing a DDE

• A discussion and example about discontinuities and restarting

• A discussion about changing default integration properties

DDE Function Summary

DDE Initial Value Problem Solver

DDE Helper Functions

DDE Solver Properties Handling
An options structure contains named properties whose values are passed to
dde23, and which affect problem solution. Use these functions to create, alter,
or access an options structure.

Solver Description

dde23 Solve initial value problems for delay differential equations
with constant delays.

Function Description

deval Evaluate the numerical solution using the output of dde23.

5 Differential Equations

5-50

DDE Initial Value Problem Examples
These examples illustrate the kind of problems you can solve using dde23.
Click the example name to see the code in an editor. Type the example name at
the command line to run it.

Note The Differential Equations Examples browser enables you to view the
code for the DDE examples, and also run them. Click on the link to invoke the
browser, or type odeexamples('dde')at the command line.

Additional examples are provided by “Tutorial on Solving DDEs with DDE23,”
available at http://www.mathworks.com/dde_tutorial.

Introduction to Initial Value DDE Problems
The DDE solver can solve systems of ordinary differential equations

where is the independent variable, is the dependent variable, and
represents . The delays (lags) are positive constants.

Function Description

ddeset Create/alter the DDE options structure.

ddeget Extract properties from options structure created with ddeset.

Example Description

ddex1 Straightforward example

ddex2 Cardiovascular model with discontinuities

y′ t() f t y t() y t τ1–() … y t τk–(), , , ,()=

t y y′
dy dt⁄ τ1 … τk, ,

Initial Value Problems for DDEs

5-51

Using a History to Specify the Solution of Interest
In an initial value problem, we seek the solution on an interval . with

. The DDE shows that depends on values of the solution at times
prior to . In particular, depends on . Because of
this, a solution on depends on its values for , i.e., its history .

Propagation of Discontinuities
Generally, the solution of an IVP for a system of DDEs has a jump in its
first derivative at the initial point because the first derivative of the history
function does not satisfy the DDE there.

A discontinuity in any derivative propagates into the future at spacings of
.

For reliable and efficient integration of DDEs, a solver must track
discontinuities in low order derivatives and deal with them. For DDEs with
constant lags, the solution gets smoother as the integration progresses, so after
a while the solver can stop tracking a discontinuity. See “Discontinuities” on
page 5-57 for more information.

DDE Solver
This section describes:

• The DDE solver, dde23

• DDE solver basic syntax

The DDE Solver
The function dde23 solves initial value problems for delay differential
equations (DDEs) with constant delays. It integrates a system of first-order
differential equations

on the interval , with and given history for .

t0 tf,[]
t0 tf< y′ t()

t y′ t0() y t0 τ1–() … y t0 τk–(), ,
t0 tf,[] t t0≤ S t()

y t()
t0

S′ t0
–() y′ t0

+()≠ f t0 y t0() S t0 τ1–() … S t0 τk–(), , , ,()=

τ1 τ2 … τk, , ,

y′ t() f t y t() y t τ1–() … y t τk–(), , , ,()=

t0 tf,[] t0 tf< y t() S t()= t t0≤

5 Differential Equations

5-52

dde23 produces a solution that is continuous on . You can use the
function deval and the output of dde23 to evaluate the solution at specific
points on the interval of integration.

dde23 tracks discontinuities and integrates the differential equations with the
explicit Runge-Kutta (2,3) pair and interpolant used by ode23. The
Runge-Kutta formulas are implicit for step sizes longer than the delays. When
the solution is smooth enough that steps this big are justified, the implicit
formulas are evaluated by a predictor-corrector iteration.

DDE Solver Basic Syntax
The basic syntax of the DDE solver is

sol = dde23(ddefun,lags,history,tspan,options)

The input arguments are

ddefun Handle to a function that evaluates the right side of the
differential equations. The function must have the form

dydt = ddefun(t,y,Z)

where the scalar t is the independent variable, the column
vector y is the dependent variable, and Z(:,j) is for

 = lags(j). See “Function Handles” in the MATLAB
Programming documentation for more information.

lags A vector of constant positive delays .

history Handle to a function of that evaluates the solution for
. The function must be of the form

S = history(t)

where S is a column vector. Alternatively, if is constant,
you can specify history as this constant vector.

If the current call to dde23 continues a previous integration to
t0, use the solution sol from that call as the history.

tspan The interval of integration as a two-element vector [t0,tf]
with t0 < tf.

t0 tf,[]

y t τj–()
τj

τ1 … τk, ,

t y t()
t t0≤

y t()

Initial Value Problems for DDEs

5-53

For more advanced applications, you can specify solver options by passing an
input argument options.

The output argument sol is a structure created by the solver. It has fields:

To evaluate the numerical solution at any point from [t0,tf], use deval with
the output structure sol as its input.

Solving DDE Problems
This section uses an example to describe:

• Using dde23 to solve initial value problems (IVPs) for delay differential
equations (DDEs)

• Evaluating the solution at specific points

Example: A Straightforward Problem
This example illustrates the straightforward formulation, computation, and
display of the solution of a system of DDEs with constant delays. The history
is constant, which is often the case. The differential equations are

options Structure of optional parameters that change the default
integration properties. You can create the structure options
using odeset. The odeset reference page describes the
properties you can specify.

sol.x Nodes of the mesh selected by dde23

sol.y Approximation to at the mesh points of sol.x

sol.yp Approximation to at the mesh points of sol.x

sol.solver 'dde23'

y t()

y′ t()

y1′ t() y1 t 1–()=

y2′ t() y1 t 1–() y2 t 0.2–()+=

y3′ t() y2 t()=

5 Differential Equations

5-54

The example solves the equations on [0,5] with history

for .

Note The demo ddex1 contains the complete code for this example. To see the
code in an editor, click the example name, or type edit ddex1 at the command
line. To run the example type ddex1 at the command line. See “DDE Solver
Basic Syntax” on page 5-52 for more information.

1 Rewrite the problem as a first-order system. To use dde23, you must
rewrite the equations as an equivalent system of first-order differential
equations. Do this just as you would when solving IVPs and BVPs for ODEs
(see “Examples: Solving Explicit ODE Problems” on page 5-9). However, this
example needs no such preparation because it already has the form of a
first-order system of equations.

2 Identify the lags. The delays (lags) are supplied to dde23 as a
vector. For the example we could use

lags = [1,0.2];

In coding the differential equations, = lags(j).

3 Code the system of first-order DDEs. Once you represent the equations as
a first-order system, and specify lags, you can code the equations as a
function that dde23 can use.

This code represents the system in the function, ddex1de.

function dydt = ddex1de(t,y,Z)
ylag1 = Z(:,1);
ylag2 = Z(:,2);

y1 t() 1=

y2 t() 1=

y3 t() 1=

t 0≤

τ1 … τk, ,

τj

Initial Value Problems for DDEs

5-55

dydt = [ylag1(1)
 ylag1(1) + ylag2(2)
 y(2)];

4 Code the history function. The history function for this example is

function S = ddex1hist(t)
S = ones(3,1);

5 Apply the DDE solver. The example now calls dde23 with the functions
ddex1de and ddex1hist.

sol = dde23(@ddex1de,lags,@ddex1hist,[0,5]);

Here the example supplies the interval of integration [0,5] directly. Because
the history is constant, we could also call dde23 by

sol = dde23(@ddex1de,lags,ones(3,1),[0,5]);

6 View the results. Complete the example by displaying the results. dde23
returns the mesh it selects and the solution there as fields in the solution
structure sol. Often, these provide a smooth graph.

plot(sol.x,sol.y);
title('An example of Wille'' and Baker');
xlabel('time t');
ylabel('solution y');
legend('y_1','y_2','y_3',2)

5 Differential Equations

5-56

Evaluating the Solution at Specific Points
The method implemented in dde23 produces a continuous solution over the
whole interval of integration . You can evaluate the approximate
solution, , at any point in using the helper function deval and the
structure sol returned by dde23.

Sint = deval(sol,tint)

The deval function is vectorized. For a vector tint, the ith column of Sint
approximates the solution .

Using the output sol from the previous example, this code evaluates the
numerical solution at 100 equally spaced points in the interval [0,5] and plots
the result.

tint = linspace(0,5);
Sint = deval(sol,tint);
plot(tint,Sint);

0 1 2 3 4 5
0

20

40

60

80

100

120

140

160

180

200
An example of Wille’ and Baker

time t

so
lu

tio
n

y

y
1

y
2

y
3

t0 tf,[]
S t() t0 tf,[]

y tint(i)()

Initial Value Problems for DDEs

5-57

Discontinuities
dde23 can solve problems with discontinuities in the history or discontinuities
in coefficients of the equations. It provides properties that enable you to supply
locations of known discontinuities and a different initial value.

Discontinuity Property Comments

At the initial value InitialY Generally the initial value is the
value returned by the history
function, which is to say that the
solution is continuous at the initial
point. However, if this is not the case,
supply a different initial value using
the InitialY property.

In the history, i.e.,
the solution at

, or in the
equation
coefficients for

Jumps Provide the known locations of the
discontinuities in a vector as the value
of the Jumps property.

State-dependent Events dde23 uses the events function you
supply to locate these discontinuities.
When dde23 finds such a discontinuity,
restart the integration to continue.
Specify the solution structure for the
current integration as the history for
the new integration. dde23 extends
each element of the solution structure
after each restart so that the final
structure provides the solution for the
whole interval of integration. If the
new problem involves a change in the
solution, use the InitialY property to
specify the initial value for the new
integration.

t t0=
y t0()

S t0()

t t0<

t t0>

t

5 Differential Equations

5-58

Example: Cardiovascular Model
This example solves a cardiovascular model due to J. T. Ottesen [6]. The
equations are integrated over the interval [0,1000]. The situation of interest is
when the peripheral pressure is reduced exponentially from its value of 1.05
to 0.84 beginning at = 600.

This is a problem with one delay, a constant history, and three differential
equations with fourteen physical parameters. It has a discontinuity in a low
order derivative at t = 600.

Note The demo ddex2 contains the complete code for this example. To see the
code in an editor, click the example name, or type edit ddex2 at the command
line. To run the example type ddex2 at the command line. See “DDE Solver
Basic Syntax” on page 5-52 for more information.

In ddex2, the fourteen physical parameters are set as fields in a structure p
that is shared with nested functions. The function ddex2de for evaluating the
equations begins with

function dydt = ddex2de(t,y,Z)
if t <= 600
 p.R = 1.05;
else
 p.R = 0.21 * exp(600-t) + 0.84;
end
.
.
.

Solve Using the Jumps Property. The peripheral pressure is a continuous
function of , but it does not have a continuous derivative at t = 600. The
example uses the Jumps property to inform dde23 about the location of this
discontinuity.

opts = ddeset('Jumps',600);

After defining the delay tau and the constant history, the call is

sol = dde23(@ddex2de,tau,history,[0, 1000],opts);

R
t

R
t

Initial Value Problems for DDEs

5-59

The demo ddex2 plots only the third component, the heart rate, which shows a
sharp change at t = 600.

Solve by Restarting. The example could have solved this problem by breaking it
into two pieces

sol = dde23(@ddex2de,tau,history,[0, 600]);
sol = dde23(@ddex2de,tau,sol,[600, 1000]);

The solution structure sol on the interval [0,600] serves as history for
restarting the integration at t = 600. In the second call, dde23 extends sol so
that on return the solution is available on the whole interval [0,1000]. That
is, after this second return,

Sint = deval(sol,[300,900]);

evaluates the solution obtained in the first integration at t = 300, and the
solution obtained in the second integration at t = 900.

When discontinuities occur in low order derivatives at points known in
advance, it is better to use the Jumps property. When you use event functions
to locate such discontinuities, you must restart the integration at
discontinuities.

0 200 400 600 800 1000
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
Heart Rate for Baroflex−Feedback Mechanism.

time t

H
(t

)

5 Differential Equations

5-60

Changing DDE Integration Properties
The default integration properties in the DDE solver dde23 are selected to
handle common problems. In some cases, you can improve solver performance
by overriding these defaults. You do this by supplying dde23 with an options
structure that specifies one or more property values.

For example, to change the relative error tolerance of dde23 from the default
value of 1e-3 to 1e-4,

1 Create an options structure using the function ddeset by entering

options = ddeset('RelTol', 1e-4);

2 Pass the options structure to dde23 as follows:

sol = dde23(ddefun,lags,history,tspan,options)

For a complete description of the available options, see the reference page for
ddeset.

Boundary Value Problems for ODEs

5-61

Boundary Value Problems for ODEs
This section describes how to use MATLAB to solve boundary value problems
(BVPs) of ordinary differential equations (ODEs). It provides:

• A summary of the BVP functions and examples

• An introduction to BVPs

• A description of the BVP solver and its syntax

• A discussion about changing default integration properties

• General instructions for solving a BVP

• Examples that use continuation to solve a difficult problem

• Instructions for solving singular BVPs

• Instructions for solving multipoint BVPs

5 Differential Equations

5-62

BVP Function Summary

ODE Boundary Value Problem Solver

BVP Helper Functions

BVP Solver Properties Handling
An options structure contains named properties whose values are passed to
bvp4c, and which affect problem solution. Use these functions to create, alter,
or access an options structure.

ODE Boundary Value Problem Examples
These examples illustrate the kind of problems you can solve using the BVP
solver. Click the example name to see the code in an editor. Type the example
name at the command line to run it.

Solver Description

bvp4c Solve boundary value problems for ordinary differential
equations.

Function Description

bvpinit Form the initial guess for bvp4c.

deval Evaluate the numerical solution using the output of bvp4c.

Function Description

bvpset Create/alter the BVP options structure.

bvpget Extract properties from options structure created with bvpset.

Boundary Value Problems for ODEs

5-63

Note The Differential Equations Examples browser enables you to view the
code for the BVP examples, and also run them. Click on the link to invoke the
browser, or type odeexamples('bvp')at the command line.

Additional examples are provided by “Tutorial on Solving BVPs with BVP4C,”
available at http://www.mathworks.com/bvp_tutorial.

Introduction to Boundary Value ODE Problems
The BVP solver is designed to handle systems of ordinary differential
equations

where is the independent variable, is the dependent variable, and
represents .

See “What Is an Ordinary Differential Equation?” on page 5-4 for general
information about ODEs.

Using Boundary Conditions to Specify the Solution of Interest
In a boundary value problem, the solution of interest satisfies certain boundary
conditions. These conditions specify a relationship between the values of the
solution at more than one . In its basic syntax, bvp4c is designed to solve

Example Description

emdenbvp Emden's equation, a singular BVP

fsbvp Falkner-Skan BVP on an infinite interval

mat4bvp Fourth eigenfunction of Mathieu’s equation

shockbvp Solution with a shock layer near x = 0

twobvp BVP with exactly two solutions

threebvp Three-point boundary value problem

y′ f x y,()=

x y y′
dy dx⁄

x

5 Differential Equations

5-64

two-point BVPs, i.e., problems where the solution sought on an interval
must satisfy the boundary conditions

Unlike initial value problems, a boundary value problem may not have a
solution, may have a finite number of solutions, or may have infinitely many
solutions. As an integral part of the process of solving a BVP, you need to
provide a guess for the required solution. The quality of this guess can be
critical for the solver performance and even for a successful computation.

There may be other difficulties when solving BVPs, such as problems imposed
on infinite intervals or problems that involve singular coefficients. Often BVPs
involve unknown parameters that have to be determined as part of solving
the problem

In this case, the boundary conditions must suffice to determine the value of .

Boundary Value Problem Solver
This section describes:

• The BVP solver, bvp4c

• BVP solver basic syntax

• BVP solver options

The BVP Solver
The function bvp4c solves two-point boundary value problems for ordinary
differential equations (ODEs). It integrates a system of first-order ordinary
differential equations

on the interval , subject to general two-point boundary conditions

a b,[]

g y a() y b(),() 0=

p

y′ f x y p, ,()=

g y a() y b() p, ,() 0=

p

y′ f x y,()=

a b,[]

bc y a() y b(),() 0=

Boundary Value Problems for ODEs

5-65

It can also accommodate other types of BVP problems, such as those that have
any of the following:

• Unknown parameters

• Singularities in the solutions

• Multipoint conditions

In this case, the number of boundary conditions must be sufficient to determine
the solution and the unknown parameters. For more information, see “Finding
Unknown Parameters” on page 5-72.

bvp4c produces a solution that is continuous on and has a continuous
first derivative there. You can use the function deval and the output of bvp4c
to evaluate the solution at specific points on the interval of integration.

bvp4c is a finite difference code that implements the 3-stage Lobatto IIIa
formula. This is a collocation formula and the collocation polynomial provides
a C1-continuous solution that is fourth-order accurate uniformly in the interval
of integration. Mesh selection and error control are based on the residual of the
continuous solution.

The collocation technique uses a mesh of points to divide the interval of
integration into subintervals. The solver determines a numerical solution by
solving a global system of algebraic equations resulting from the boundary
conditions, and the collocation conditions imposed on all the subintervals. The
solver then estimates the error of the numerical solution on each subinterval.
If the solution does not satisfy the tolerance criteria, the solver adapts the
mesh and repeats the process. The user must provide the points of the initial
mesh as well as an initial approximation of the solution at the mesh points.

BVP Solver Basic Syntax
The basic syntax of the BVP solver is

sol = bvp4c(odefun,bcfun,solinit)

a b,[]

5 Differential Equations

5-66

The input arguments are:

The output argument sol is a structure created by the solver. In the basic case
the structure has fields x, y, yp, and solver.

odefun Handle to a function that evaluates the differential equations. It has
the basic form

dydx = odefun(x,y)

where x is a scalar, and dydx and y are column vectors. See
“Function Handles” in the MATLAB Programming documentation
for more information. odefun can also accept a vector of unknown
parameters and a variable number of known parameters.

bcfun Handle to a function that evaluates the residual in the boundary
conditions. It has the basic form

res = bcfun(ya,yb)

where ya and yb are column vectors representing y(a) and y(b),
and res is a column vector of the residual in satisfying the boundary
conditions. bcfun can also accept a vector of unknown parameters
and a variable number of known parameters.

solinit Structure with fields x and y:

x Ordered nodes of the initial mesh. Boundary conditions are
imposed at a = solinit.x(1) and b = solinit.x(end).

y Initial guess for the solution with solinit.y(:,i) a guess
for the solution at the node solinit.x(i).

The structure can have any name, but the fields must be named x
and y. It can also contain a vector that provides an initial guess for
unknown parameters. You can form solinit with the helper
function bvpinit. See the bvpinit reference page for details.

sol.x Nodes of the mesh selected by bvp4c

sol.y Approximation to at the mesh points of sol.xy x()

Boundary Value Problems for ODEs

5-67

The structure sol returned by bvp4c contains an additional field if the problem
involves unknown parameters:

The function deval uses the output structure sol to evaluate the numerical
solution at any point from [a,b]. For information about using deval, see
“Evaluating the Solution at Specific Points” on page 5-56.

BVP Solver Options
For more advanced applications, you can specify solver options by passing an
input argument options.

Changing BVP Integration Properties
The default integration properties in the BVP solver bvp4c are selected to
handle common problems. In some cases, you can improve solver performance
by overriding these defaults. You do this by supplying bvp4c with an options
structure that specifies one or more property values.

For example, to change the value of the relative error tolerance of bvp4c from
the default value of 1e-3 to 1e-4,

1 Create an options structure using the function bvpset by entering

options = bvpset('RelTol', 1e-4);

sol.yp Approximation to at the mesh points of sol.x

sol.solver 'bvp4c'

sol.parameters Value of unknown parameters, if present, found by the
solver.

options Structure of optional parameters that change the default
integration properties. This is the fourth input argument.

sol = bvp4c(odefun,bcfun,solinit,options)

You can create the structure options using the function bvpset.
The bvpset reference page describes the properties you can
specify.

y′ x()

5 Differential Equations

5-68

2 Pass the options structure to bvp4c as follows:

sol = bvp4c(odefun,bcfun,solinit,options)

For a complete description of the available options, see the reference page for
bvpset.

Note For other ways to improve solver efficiency, check “Using Continuation
to Make a Good Initial Guess” on page 8-72 and the tutorial, “Solving
Boundary Value Problems for Ordinary Differential Equations in MATLAB
with bvp4c,” available at http://www.mathworks.com/bvp_tutorial.

Solving BVP Problems
This section describes:

• The process for solving boundary value problems using bvp4c

• Finding unknown parameters

• Evaluating the solution at specific points

Example: Mathieu’s Equation
This example determines the fourth eigenvalue of Mathieu's Equation. It
illustrates how to write second-order differential equations as a system of two
first-order ODEs and how to use bvp4c to determine an unknown parameter .

The task is to compute the fourth () eigenvalue of Mathieu's equation

Because the unknown parameter is present, this second-order differential
equation is subject to three boundary conditions

λ

q 5= λ

y′′ λ 2– q 2xcos() y+ 0=

λ

y 0() 1=

y′ 0() 0=

y′ π() 0=

Boundary Value Problems for ODEs

5-69

Note The demo mat4bvp contains the complete code for this example. The
demo uses nested functions to place all functions required by bvp4c in a single
M-file. To run this example type mat4bvp at the command line. See “BVP
Solver Basic Syntax” on page 5-65 for more information.

1 Rewrite the problem as a first-order system. To use bvp4c, you must
rewrite the equations as an equivalent system of first-order differential
equations. Using a substitution and , the differential
equation is written as a system of two first-order equations

Note that the differential equations depend on the unknown parameter .
The boundary conditions become

2 Code the system of first-order ODEs. Once you represent the equation as
a first-order system, you can code it as a function that bvp4c can use.
Because there is an unknown parameter, the function must be of the form

dydx = odefun(x,y,parameters)

The following code represents the system in the function, mat4ode. Variable
q is shared with the outer function:

function dydx = mat4ode(x,y,lambda)
dydx = [y(2)
 -(lambda - 2*q*cos(2*x))*y(1)];
end % End nested function mat4ode

See “Finding Unknown Parameters” on page 5-72 for more information
about using unknown parameters with bvp4c.

y1 y= y2 y′=

y1′ y2=

y2′ λ 2– q 2xcos() y1–=

λ

y1 0() 1– 0=

y2 0() 0=

y2 π() 0=

5 Differential Equations

5-70

3 Code the boundary conditions function. You must also code the boundary
conditions in a function. Because there is an unknown parameter, the
function must be of the form

res = bcfun(ya,yb,parameters)

The code below represents the boundary conditions in the function, mat4bc.

function res = mat4bc(ya,yb,lambda)
res = [ya(2)
 yb(2)
 ya(1)-1];

4 Create an initial guess. To form the guess structure solinit with bvpinit,
you need to provide initial guesses for both the solution and the unknown
parameter.

The function mat4init provides an initial guess for the solution. mat4init
uses because this function satisfies the boundary conditions and
has the correct qualitative behavior (the correct number of sign changes).

function yinit = mat4init(x)
yinit = [cos(4*x)
 -4*sin(4*x)];

In the call to bvpinit, the third argument, lambda, provides an initial guess
for the unknown parameter .

lambda = 15;
solinit = bvpinit(linspace(0,pi,10),@mat4init,lambda);

This example uses @ to pass mat4init as a function handle to bvpinit.

Note See the function_handle (@), func2str, and str2func reference pages,
and the “Function Handles” chapter of “Programming and Data Types” in the
MATLAB documentation for information about function handles.

5 Apply the BVP solver. The mat4bvp example calls bvp4c with the functions
mat4ode and mat4bc and the structure solinit created with bvpinit.

sol = bvp4c(@mat4ode,@mat4bc,solinit);

y 4xcos=

λ

Boundary Value Problems for ODEs

5-71

6 View the results. Complete the example by displaying the results:

a Print the value of the unknown parameter found by bvp4c.
fprintf('The fourth eigenvalue is approximately %7.3f.\n',...

 sol.parameters)

b Use deval to evaluate the numerical solution at 100 equally spaced
points in the interval , and plot its first component. This component
approximates .
xint = linspace(0,pi);
Sxint = deval(sol,xint);
plot(xint,Sxint(1,:))
axis([0 pi -1 1.1])
title('Eigenfunction of Mathieu''s equation.')
xlabel('x')
ylabel('solution y')

See “Evaluating the Solution at Specific Points” on page 5-72 for
information about using deval.

The following plot shows the eigenfunction associated with the final
eigenvalue = 17.097.

λ

0 π,[]
y x()

λ

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Eigenfunction of Mathieu’s equation.

x

so
lu

tio
n

y

5 Differential Equations

5-72

Finding Unknown Parameters
The bvp4c solver can find unknown parameters for problems of the form

You must provide bvp4c an initial guess for any unknown parameters in the
vector solinit.parameters. When you call bvpinit to create the structure
solinit, specify the initial guess as a vector in the additional argument
parameters.

solinit = bvpinit(x,v,parameters)

The bvp4c function arguments odefun and bcfun must each have a third
argument.

dydx = odefun(x,y,parameters)
res = bcfun(ya,yb,parameters)

While solving the differential equations, bvp4c adjusts the value of unknown
parameters to satisfy the boundary conditions. The solver returns the final
values of these unknown parameters in sol.parameters. See “Example:
Mathieu’s Equation” on page 5-68.

Evaluating the Solution at Specific Points
The collocation method implemented in bvp4c produces a C1-continuous
solution over the whole interval of integration . You can evaluate the
approximate solution, , at any point in using the helper function
deval and the structure sol returned by bvp4c.

Sxint = deval(sol,xint)

The deval function is vectorized. For a vector xint, the ith column of Sxint
approximates the solution .

Using Continuation to Make a Good Initial Guess
To solve a boundary value problem, you need to provide an initial guess for the
solution. The quality of your initial guess can be critical to the solver
performance, and to being able to solve the problem at all. However, coming up
with a sufficiently good guess can be the most challenging part of solving a
boundary value problem. Certainly, you should apply the knowledge of the

p

y′ f x y p, ,()=

bc y a() y b() p, ,() 0=

a b,[]
S x() a b,[]

y xint(i)()

Boundary Value Problems for ODEs

5-73

problem's physical origin. Often a problem can be solved as a sequence of
relatively simpler problems, i.e., a continuation. This section provides
examples that illustrate how to use continuation to:

• Solve a difficult BVP.

• Verify a solution’s consistent behavior.

Example: Using Continuation to Solve a Difficult BVP
This example solves the differential equation

for , on the interval [-1 1], with boundary conditions and
. For , the solution has a transition layer at . Because

of this rapid change in the solution for small values of , the problem becomes
difficult to solve numerically.

The example solves the problem as a sequence of relatively simpler problems,
i.e., a continuation. The solution of one problem is used as the initial guess for
solving the next problem.

Note The demo shockbvp contains the complete code for this example. The
demo uses nested functions to place all required functions in a single M-file.
To run this example type shockbvp at the command line. See “BVP Solver
Basic Syntax” on page 5-65 and “Solving BVP Problems” on page 5-68 for
more information.

Note This problem appears in [1] to illustrate the mesh selection capability
of a well established BVP code COLSYS.

1 Code the ODE and boundary condition functions. Code the differential
equation and the boundary conditions as functions that bvp4c can use:

The code below represents the differential equation and the boundary
conditions in the functions shockODE and shockBC. Note that shockODE is

εy″ xy′+ επ2 πx()cos πx πx()sin–=

ε 10 4–
= y 1–() 2–=

y 1() 0= 0 ε 1< < x 0=
ε

5 Differential Equations

5-74

vectorized to improve solver performance. The additional parameter is
represented by e and is shared with the outer function.

function dydx = shockODE(x,y)
pix = pi*x;
dydx = [y(2,:)
 -x/e.*y(2,:) - pi^2*cos(pix) - pix/e.*sin(pix)];
end % End nested function shockODE

function res = shockBC(ya,yb)
res = [ya(1)+2
 yb(1)];
end % End nested function shockBC

2 Provide analytical partial derivatives. For this problem, the solver
benefits from using analytical partial derivatives. The code below represents
the derivatives in functions shockJac and shockBCJac.

function jac = shockJac(x,y)
jac = [0 1
 0 -x/e];
end % End nested function shockJac

function [dBCdya,dBCdyb] = shockBCJac(ya,yb)
dBCdya = [1 0
 0 0];
dBCdyb = [0 0
 1 0];
end % End nested function shockBCJac

shockJac shares e with the outer function.

Tell bvp4c to use these functions to evaluate the partial derivatives by
setting the options FJacobian and BCJacobian. Also set 'Vectorized' to
'on' to indicate that the differential equation function shockODE is
vectorized.

options = bvpset('FJacobian',@shockJac,...
 'BCJacobian',@shockBCJac,...
 'Vectorized','on');

ε

Boundary Value Problems for ODEs

5-75

3 Create an initial guess. You must provide bvp4c with a guess structure
that contains an initial mesh and a guess for values of the solution at the
mesh points. A constant guess of and , and a mesh of five
equally spaced points on [-1 1] suffice to solve the problem for . Use
bvpinit to form the guess structure.

sol = bvpinit([-1 -0.5 0 0.5 1],[1 0]);

4 Use continuation to solve the problem. To obtain the solution for the
parameter , the example uses continuation by solving a sequence
of problems for . The solver bvp4c does not perform
continuation automatically, but the code's user interface has been designed
to make continuation easy. The code uses the output sol that bvp4c
produces for one value of e as the guess in the next iteration.

e = 0.1;
for i=2:4
 e = e/10;
 sol = bvp4c(@shockODE,@shockBC,sol,options);
end

5 View the results. Complete the example by displaying the final solution

plot(sol.x,sol.y(1,:))
axis([-1 1 -2.2 2.2])
title(['There is a shock at x = 0 when \epsilon = '...

sprintf('%.e',e) '.'])
xlabel('x')
ylabel('solution y')

y x() 1≡ y′ x() 0≡
ε 10 2–

=

ε 10 4–
=

ε 10 2– 10 3– 10 4–, ,=

5 Differential Equations

5-76

Example: Using Continuation to Verify a Solution’s Consistent Behavior
Falkner-Skan BVPs arise from similarity solutions of viscous, incompressible,
laminar flow over a flat plate. An example is

for on the interval with boundary conditions ,
, and .

The BVP cannot be solved on an infinite interval, and it would be impractical
to solve it for even a very large finite interval. So, the example tries to solve a
sequence of problems posed on increasingly larger intervals to verify the
solution’s consistent behavior as the boundary approaches .

The example imposes the infinite boundary condition at a finite point called
infinity. The example then uses continuation in this end point to get
convergence for increasingly larger values of infinity. It uses bvpinit to
extrapolate the solution sol for one value of infinity as an initial guess for the

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

There is a shock at x = 0 when ε =1e−004.

x

so
lu

tio
n

y

f′′′ ff′′ β 1 f′()2
–()+ + 0=

β 0.5= [0 ∞), f 0() 0=
f′ 0() 0= f′ ∞() 1=

∞

Boundary Value Problems for ODEs

5-77

new value of infinity. The plot of each successive solution is superimposed
over those of previous solutions so they can easily be compared for consistency.

Note The demo fsbvp contains the complete code for this example. The demo
uses nested functions to place all required functions in a single M-file. To run
this example type fsbvp at the command line. See “BVP Solver Basic Syntax”
on page 5-65 and “Solving BVP Problems” on page 5-68 for more information.

1 Code the ODE and boundary condition functions. Code the differential
equation and the boundary conditions as functions that bvp4c can use. The
problem parameter beta is shared with the outer function.

function dfdeta = fsode(eta,f)
dfdeta = [f(2)
 f(3)
 -f(1)*f(3) - beta*(1 - f(2)^2)];
end % End nested function fsode

function res = fsbc(f0,finf)
res = [f0(1)
 f0(2)
 finf(2) - 1];
end % End nested function fsbc

2 Create an initial guess. You must provide bvp4c with a guess structure
that contains an initial mesh and a guess for values of the solution at the
mesh points. A crude mesh of five points and a constant guess that satisfies
the boundary conditions are good enough to get convergence when infinity
= 3.

infinity = 3;
maxinfinity = 6;

solinit = bvpinit(linspace(0,infinity,5),[0 0 1]);

5 Differential Equations

5-78

3 Solve on the initial interval. The example obtains the solution for
infinity = 3. It then prints the computed value of for comparison
with the value reported by Cebeci and Keller [2]:

sol = bvp4c(@fsode,@fsbc,solinit);
eta = sol.x;
f = sol.y;

fprintf('\n');
fprintf('Cebeci & Keller report that f''''(0) = 0.92768.\n')
fprintf('Value computed using infinity = %g is %7.5f.\n', ...
 infinity,f(3,1))

The example prints

Cebeci & Keller report that f''(0) = 0.92768.
Value computed using infinity = 3 is 0.92915.

4 Setup the figure and plot the initial solution.

figure
plot(eta,f(2,:),eta(end),f(2,end),'o');
axis([0 maxinfinity 0 1.4]);
title('Falkner-Skan equation, positive wall shear, \beta = 0.5.')
xlabel('\eta')
ylabel('df/d\eta')
hold on
drawnow
shg

f′′ 0()

Boundary Value Problems for ODEs

5-79

5 Use continuation to solve the problem and plot subsequent solutions.
The example then solves the problem for infinity = 4, 5, 6. It uses bvpinit
to extrapolate the solution sol for one value of infinity as an initial guess
for the next value of infinity. For each iteration, the example prints the
computed value of and superimposes a plot of the solution in the
existing figure.

for Bnew = infinity+1:maxinfinity

 solinit = bvpinit(sol,[0 Bnew]); % Extend solution to Bnew.
 sol = bvp4c(@fsode,@fsbc,solinit);
 eta = sol.x;
 f = sol.y;

 fprintf('Value computed using infinity = %g is %7.5f.\n', ...
 Bnew,f(3,1))

 plot(eta,f(2,:),eta(end),f(2,end),'o');
 drawnow

end

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

Falkner−Skan equation, positive wall shear, β = 0.5.

η

df
/d

η

f′′ 0()

5 Differential Equations

5-80

hold off

 The example prints

Value computed using infinity = 4 is 0.92774.
Value computed using infinity = 5 is 0.92770.
Value computed using infinity = 6 is 0.92770.

Note that the values approach 0.92768 as reported by Cebeci and Keller. The
superimposed plots confirm the consistency of the solution’s behavior.

Solving Singular BVPs
The function bvp4c solves a class of singular BVPs of the form

(5-2)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

Falkner−Skan equation, positive wall shear, β = 0.5.

η

df
/d

η

y′ 1
x
---Sy f x y,()+=

0 g y 0() y b(),()=

Boundary Value Problems for ODEs

5-81

It can also accommodate unknown parameters for problems of the form

Singular problems must be posed on an interval with . Use bvpset
to pass the constant matrix to bvp4c as the value of the 'SingularTerm'
integration property. Boundary conditions at must be consistent with
the necessary condition for a smooth solution, . An initial guess
should also satisfy this necessary condition.

When you solve a singular BVP using

sol = bvp4c(@odefun,@bcfun,solinit,options)

bvp4c requires that your function odefun(x,y) return only the value of the
 term in Equation 5-2.

Example: Solving a BVP that Has a Singular Term
Emden's equation arises in modeling a spherical body of gas. The PDE of the
model is reduced by symmetry to the ODE

on an interval . The coefficient is singular at , but symmetry
implies the boundary condition . With this boundary condition, the
term

is well-defined as approaches 0. For the boundary condition ,
this BVP has the analytical solution

y′ 1
x
---Sy f x y p, ,()+=

0 g y 0() y b() p,,()=

0 b,[] b 0>
S

x 0=
Sy 0() 0=

f x y,()

y′′ 2
x
---y′ y5

+ + 0=

0 1,[] 2 x⁄ x 0=
y′ 0() 0=

2
x
---y′ 0()

x y 1() 3 2⁄=

y x() 1 x2

3
-----+⎝ ⎠

⎛ ⎞
1 2⁄–

=

5 Differential Equations

5-82

Note The demo emdenbvp contains the complete code for this example. The
demo uses subfunctions to place all required functions in a single M-file. To
run this example type emdenbvp at the command line. See “BVP Solver Basic
Syntax” on page 5-65 and “Solving BVP Problems” on page 5-68 for more
information.

1 Rewrite the problem as a first-order system and identify the singular
term. Using a substitution and , write the differential
equation as a system of two first-order equations

The boundary conditions become

Writing the ODE system in a vector-matrix form

the terms of Equation 5-2 are identified as

and

y1 y= y2 y′=

y1′ y2=

y2′ 2
x
---y2– y1

5
–=

y2 0() 0=

y1 1() 3 2⁄=

y1′

y2′
1
x
--- 0 0

0 2–

y1

y2

y2

y1
5

–
+=

S 0 0
0 2–

=

f x y,()
y2

y1
5

–
=

Boundary Value Problems for ODEs

5-83

2 Code the ODE and boundary condition functions. Code the differential
equation and the boundary conditions as functions that bvp4c can use.

function dydx = emdenode(x,y)
dydx = [y(2)
 -y(1)^5];
function res = emdenbc(ya,yb)
res = [ya(2)
 yb(1) - sqrt(3)/2];

3 Setup integration properties. Use the matrix as the value of the
'SingularTerm' integration property.

S = [0,0;0,-2];
options = bvpset('SingularTerm',S);

4 Create an initial guess. This example starts with a mesh of five points and
a constant guess for the solution.

Use bvpinit to form the guess structure

guess = [sqrt(3)/2;0];
solinit = bvpinit(linspace(0,1,5),guess);

5 Solve the problem. Use the standard bvp4c syntax to solve the problem.

sol = bvp4c(@emdenode,@emdenbc,solinit,options);

6 View the results. This problem has an analytical solution

The example evaluates the analytical solution at 100 equally-spaced points
and plots it along with the numerical solution computed using bvp4c.

x = linspace(0,1);
truy = 1 ./ sqrt(1 + (x.^2)/3);
plot(x,truy,sol.x,sol.y(1,:),'ro');
title('Emden problem -- BVP with singular term.')

y1 x() 3 2⁄≡

y2 x() 0≡

y x() 1 x2

3
-----+⎝ ⎠

⎛ ⎞
1 2⁄–

=

5 Differential Equations

5-84

legend('Analytical','Computed');
xlabel('x');
ylabel('solution y');

Solving Multipoint BVPs
In multipoint boundary value problems, the solution of interest satisfies
conditions at points inside the interval of integration. The bvp4c function is
useful in solving such problems.

The following example shows how the multipoint capability in bvp4c can
improve efficiency when solving a nonsmooth problem. The following equations
are solved on for constant parameters n, , , and

. These are subject to boundary conditions v(0) = 0 and
:

v' = (C - 1)/n
C' = (v * C - min(x,1))/

The term min(x,1) is not smooth at xc = 1, and this can affect the solver’s
efficiency. By introducing an interface point at xc = 1, smooth solutions can be
obtained on [0,1] and [1,]. To get a continuous solution over the entire
interval [0,], the example imposes matching conditions at the interface.

0 0.2 0.4 0.6 0.8 1

0.9

0.95

1

Emden problem −− BVP with singular term.

x

so
lu

tio
n

y
Analytical
Computed

0 x λ≤ ≤ κ λ 1>
η λ2 n κ2×()⁄=
C λ() 1=

η

λ
λ

Boundary Value Problems for ODEs

5-85

Note The demo threebvp contains the complete code for this example and
solves the problem for = 2, n = 0.05, and several values of . The demo
uses nested functions to place all functions required by bvp4c in a single
M-file and to communicate problem parameters efficiently. To run this
example, type threebvp at the MATLAB command prompt.

The demo takes you through the following steps:

1. Determine the Interfaces and Divide the Interval of Integration Into
Regions
Introducing an interface point at xc = 1 divides the problem into two regions
in which the solutions remain smooth. The differential equations for the two
regions are

Region 1:

v' = (C - 1)/n
C' = (v * C - x)/

Region 2:

v' = (C - 1)/n
C' = (v * C - 1)/

Note that the interface xc = 1 is included in both regions. At xc = 1, bvp4c
produces a left and right solution. These solutions are denoted as v(1-), C(1-)
and v(1+), C(1+) respectively.

2. Determine the Boundary Conditions
Solving two first order differential equations in two regions requires imposing
four boundary conditions. Two of these conditions come from the original
formulation; the others enforce the continuity of the solution across the
interface xc = 1:

v(0) = 0
C() 1 = 0
v(1-) v(1+) = 0
C(1-) C(1+) = 0

λ κ

0 x 1≤ ≤

η

1 x λ≤ ≤

η

λ

5 Differential Equations

5-86

Here, v(1-), C(1-) and v(1+), C(1+) denote the left and right solution at the
interface.

3. Code the Derivative Function
In the derivative function, y(1) corresponds to v(x), and y(2) corresponds to
C(x). The additional input argument region identifies the region in which the
derivative is evaluated. bvp4c enumerates regions from left to right, starting
with 1. Note that the problem parameters n and are shared with the outer
function:

function dydx = f(x,y,region)
 dydx = zeros(2,1);
 dydx(1) = (y(2) - 1)/n;

 % The definition of C'(x) depends on the region.
 switch region
 case 1 % x in [0 1]
 dydx(2) = (y(1)*y(2) - x)/ ;
 case 2 % x in [1]
 dydx(2) = (y(1)*y(2) - 1)/ ;
 end
end % End nested function f

4. Code the Boundary Conditions Function
For multipoint BVPs, the arguments of the boundary conditions function, YL
and YR, become matrices. In particular, the kth column YL(:,k) represents the
solution at the left boundary of the kth region. Similarly, YR(:,k) represents
the solution at the right boundary of the kth region.

In the example, y(0) is approximated by YL(:,1), while y() is approximated
by YR(:,end). Continuity of the solution at the internal interface requires that
YR(:,1) = YL(:,2). The residual in the boundary conditions is computed by
nested function bc:

function res = bc(YL,YR)
 res = [YL(1,1) % v(0) = 0
 YR(1,1) - YL(1,2) % Continuity of v(x) at x=1
 YR(2,1) - YL(2,2) % Continuity of C(x) at x=1
 YR(2,end) - 1]; % C() = 1
end % End nested function bc

η

η
λ

η

λ

λ

Boundary Value Problems for ODEs

5-87

5. Create an initial guess
For multipoint BVPs, when creating an initial guess using bvpinit, use double
entries in xinit for the interface point xc. This example uses a constant guess
yinit = [1;1]:

xc = 1;
xinit = [0, 0.25, 0.5, 0.75, xc, xc, 1.25, 1.5, 1.75, 2];
solinit = bvpinit(xinit,yinit)

For multipoint BVPs, you can use different guesses in different regions. To do
that, you specify the initial guess for y as a function using the following syntax:

solinit = bvpinit(xinit,@yinitfcn)

The initial guess function must have the following general form:

function y = yinitfcn(x,region)
 switch region
 case 1 % x in [0, 1]
 y = [1;1]; % initial guess for y(x)
 case 2 % x in [1,]
 y = [1;1]; % initial guess for y(x),
end

6. Apply the solver
The bvp4c function uses the same syntax for multipoint BVPs as it does for
two-point BVPs:

sol = bvp4c(@f,@bc,solinit);

The mesh points returned in sol.x are adapted to the solution behavior, but
the mesh still includes a double entry for the interface point xc = 1.
Corresponding columns of sol.y represent the left and right solution at xc.

7. View the results
Using deval, the solution can be evaluated at any point in the interval of
integration.

Note that, with the left and right values computed at the interface, the solution
is not uniquely defined at xc = 1. When evaluating the solution exactly at the
interface, deval issues a warning and returns the average of the left and right

0 x 1≤ ≤
λ

1 x λ≤ ≤

5 Differential Equations

5-88

solution values. Call deval at xc-eps(xc) and xc+eps(xc) to get the limit
values at xc.

The example plots the solution approximated at the mesh points selected by
the solver:

plot(sol.x,sol.y(1,:),sol.x,sol.y(2,:),'--')
legend('v(x)','C(x)')
title('A three-point BVP solved with BVP4C')
xlabel(['\ = ',num2str(), ...
 ', \ = ',num2str(),'.'])
ylabel('v and C')

λ λ
κ κ

Partial Differential Equations

5-89

Partial Differential Equations
This section describes how to use MATLAB to solve initial-boundary value
problems for partial differential equations (PDEs). It provides:

• A summary of the MATLAB PDE functions and examples

• An introduction to PDEs

• A description of the PDE solver and its syntax

• General instructions for representing a PDE in MATLAB, including an
example

• Instructions on evaluating the solution at specific points

• A discussion about changing default integration properties

• An example of solving a real-life problem

PDE Function Summary

MATLAB PDE Solver
This is the MATLAB PDE solver.

PDE Helper Function

PDE Examples
These examples illustrate some problems you can solve using the MATLAB
PDE solver. Click the example name to see the code in an editor. Type the
example name at the command line to run it.

PDE Initial-Boundary Value Problem Solver

pdepe Solve initial-boundary value problems for systems of parabolic
and elliptic PDEs in one space variable and time.

PDE Helper Function

pdeval Evaluate the numerical solution of a PDE using the output of
pdepe.

5 Differential Equations

5-90

Note The Differential Equations Examples browser enables you to view the
code for the PDE examples, and also run them. Click on the link to invoke the
browser, or type odeexamples('pde')at the command line.

Introduction to PDE Problems
pdepe solves systems of parabolic and elliptic PDEs in one spatial variable
and time , of the form

(5-3)

The PDEs hold for and . The interval must be finite.
 can be 0, 1, or 2, corresponding to slab, cylindrical, or spherical symmetry,

respectively. If , then must also hold.

In Equation 5-3, is a flux term and is a source
term. The flux term must depend on . The coupling of the partial
derivatives with respect to time is restricted to multiplication by a diagonal
matrix . The diagonal elements of this matrix are either
identically zero or positive. An element that is identically zero corresponds to
an elliptic equation and otherwise to a parabolic equation. There must be at
least one parabolic equation. An element of that corresponds to a parabolic

Example Description

pdex1 Simple PDE that illustrates the straightforward formulation,
computation, and plotting of the solution

pdex2 Problem that involves discontinuities

pdex3 Problem that requires computing values of the partial
derivative

pdex4 System of two PDEs whose solution has boundary layers at
both ends of the interval and changes rapidly for small

pdex5 System of PDEs with step functions as initial conditions

t

x
t

c x t u
∂u
∂x
-------, , ,⎝ ⎠

⎛ ⎞ ∂u
∂t
------- x m– ∂

∂x
------ xmf x t u

∂u
∂x
-------, , ,⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞ s x t u

∂u
∂x
-------, , ,⎝ ⎠

⎛ ⎞+=

t0 t tf≤ ≤ a x b≤ ≤ a b,[]
m

m 0> a 0≥

f x t u ∂u ∂x⁄, , ,() s x t u ∂u ∂x⁄, , ,()
∂u ∂x⁄

c x t u ∂u ∂x⁄, , ,()

c

Partial Differential Equations

5-91

equation can vanish at isolated values of if they are mesh points.
Discontinuities in and/or due to material interfaces are permitted provided
that a mesh point is placed at each interface.

At the initial time , for all the solution components satisfy initial
conditions of the form

(5-4)

At the boundary or , for all the solution components satisfy a
boundary condition of the form

(5-5)

 is a diagonal matrix with elements that are either identically zero or
never zero. Note that the boundary conditions are expressed in terms of the
flux rather than . Also, of the two coefficients, only can depend on .

MATLAB Partial Differential Equation Solver
This section describes:

• The PDE solver, pdepe

• PDE solver basic syntax

• Additional PDE solver arguments

The PDE Solver
The MATLAB PDE solver, pdepe, solves initial-boundary value problems for
systems of parabolic and elliptic PDEs in the one space variable and time .
There must be at least one parabolic equation in the system.

The pdepe solver converts the PDEs to ODEs using a second-order accurate
spatial discretization based on a fixed set of nodes specified by the user. The
discretization method is described in [9]. The time integration is done with
ode15s. The pdepe solver exploits the capabilities of ode15s for solving the
differential-algebraic equations that arise when Equation 5-3 contains elliptic
equations, and for handling Jacobians with a specified sparsity pattern. ode15s
changes both the time step and the formula dynamically.

x
c s

t t0= x

u x t0,() u0 x()=

x a= x b= t

p x t u, ,() q x t,()f x t u
u∂
x∂

-------, , ,⎝ ⎠
⎛ ⎞+ 0=

q x t,()

f ∂u ∂x⁄ p u

x t

5 Differential Equations

5-92

After discretization, elliptic equations give rise to algebraic equations. If the
elements of the initial conditions vector that correspond to elliptic equations
are not “consistent” with the discretization, pdepe tries to adjust them before
beginning the time integration. For this reason, the solution returned for the
initial time may have a discretization error comparable to that at any other
time. If the mesh is sufficiently fine, pdepe can find consistent initial conditions
close to the given ones. If pdepe displays a message that it has difficulty finding
consistent initial conditions, try refining the mesh. No adjustment is necessary
for elements of the initial conditions vector that correspond to parabolic
equations.

PDE Solver Basic Syntax
The basic syntax of the solver is

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)

Note Correspondences given are to terms used in “Introduction to PDE
Problems” on page 5-90.

The input arguments are:

m Specifies the symmetry of the problem. m can be 0 = slab,
1 = cylindrical, or 2 = spherical. It corresponds to m in Equation 5-3.

pdefun Function that defines the components of the PDE. It computes the
terms , , and in Equation 5-3, and has the form

[c,f,s] = pdefun(x,t,u,dudx)

where x and t are scalars, and u and dudx are vectors that
approximate the solution and its partial derivative with respect
to . c, f, and s are column vectors. c stores the diagonal elements
of the matrix .

icfun Function that evaluates the initial conditions. It has the form

u = icfun(x)

When called with an argument x, icfun evaluates and returns the
initial values of the solution components at x in the column vector u.

c f s

u
x

c

Partial Differential Equations

5-93

bcfun Function that evaluates the terms and of the boundary
conditions. It has the form

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

where ul is the approximate solution at the left boundary
and ur is the approximate solution at the right boundary .
pl and ql are column vectors corresponding to and the diagonal of

 evaluated at xl. Similarly, pr and qr correspond to xr. When
 and , boundedness of the solution near requires

that the flux vanish at . pdepe imposes this boundary
condition automatically and it ignores values returned in pl and ql.

xmesh Vector [x0, x1, ..., xn] specifying the points at which a numerical
solution is requested for every value in tspan. x0 and xn correspond
to and , respectively.

Second-order approximation to the solution is made on the mesh
specified in xmesh. Generally, it is best to use closely spaced mesh
points where the solution changes rapidly. pdepe does not select the
mesh in automatically. You must provide an appropriate fixed
mesh in xmesh. The cost depends strongly on the length of xmesh.
When , it is not necessary to use a fine mesh near to
account for the coordinate singularity.

The elements of xmesh must satisfy x0 < x1 < ... < xn. The length of
xmesh must be ≥ 3.

tspan Vector [t0, t1, ..., tf] specifying the points at which a solution is
requested for every value in xmesh. t0 and tf correspond to and

, respectively.

pdepe performs the time integration with an ODE solver that selects
both the time step and formula dynamically. The solutions at the
points specified in tspan are obtained using the natural continuous
extension of the integration formulas. The elements of tspan merely
specify where you want answers and the cost depends weakly on the
length of tspan.

The elements of tspan must satisfy t0 < t1 < ... < tf. The length of
tspan must be ≥ 3.

p q

xl a=
xr b=

p
q
m 0> a 0= x 0=

f a 0=

a b

x

m 0> x 0=

t0
tf

5 Differential Equations

5-94

The output argument sol is a three-dimensional array, such that:

• sol(:,:,k) approximates component k of the solution .

• sol(i,:,k) approximates component k of the solution at time tspan(i) and
mesh points xmesh(:).

• sol(i,j,k) approximates component k of the solution at time tspan(i) and
the mesh point xmesh(j).

Additional PDE Solver Arguments
For more advanced applications, you can also specify as input arguments solver
options and additional parameters that are passed to the PDE functions.

Solving PDE Problems
This section describes:

• The process for solving PDE problems using the MATLAB solver, pdepe

• Evaluating the solution at specific points

Example: A Single PDE
This example illustrates the straightforward formulation, solution, and
plotting of the solution of a single PDE

This equation holds on an interval for times . At , the
solution satisfies the initial condition

options Structure of optional parameters that change the default
integration properties. This is the seventh input argument.

sol = pdepe(m,pdefun,icfun,bcfun,...
 xmesh,tspan,options)

See “Changing PDE Integration Properties” on page 5-100 for
more information.

u

π2 ∂u
∂t
------ ∂2u

∂x2
---------=

0 x 1≤ ≤ t 0≥ t 0=

u x 0,() πxsin=

Partial Differential Equations

5-95

At and , the solution satisfies the boundary conditions

Note The demo pdex1 contains the complete code for this example. The demo
uses subfunctions to place all functions it requires in a single M-file. To run
the demo type pdex1 at the command line. See “PDE Solver Basic Syntax” on
page 5-92 for more information.

1 Rewrite the PDE. Write the PDE in the form

This is the form shown in Equation 5-3 and expected by pdepe. See
“Introduction to PDE Problems” on page 5-90 for more information. For this
example, the resulting equation is

with parameter and the terms

x 0= x 1=

u 0 t,() 0=

π e t– ∂u
∂x
------ 1 t,()+ 0=

c x t u
∂u
∂x
-------, , ,⎝ ⎠

⎛ ⎞ ∂u
∂t
------- x m– ∂

∂x
------ xm f x t u

∂u
∂x
-------, , ,⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞ s x t u

∂u
∂x
-------, , ,⎝ ⎠

⎛ ⎞+=

π2 ∂u
∂t
------ x0 ∂

∂x
------ x0 ∂u

∂x
-------⎝ ⎠

⎛ ⎞ 0+=

m 0=

c x t u
∂u
∂x
-------, , ,⎝ ⎠

⎛ ⎞ π2
=

f x t u
∂u
∂x
-------, , ,⎝ ⎠

⎛ ⎞ ∂u
∂x
-------=

s x t u
∂u
∂x
-------, , ,⎝ ⎠

⎛ ⎞ 0=

5 Differential Equations

5-96

2 Code the PDE. Once you rewrite the PDE in the form shown above
(Equation 5-3) and identify the terms, you can code the PDE in a function
that pdepe can use. The function must be of the form

[c,f,s] = pdefun(x,t,u,dudx)

where c, f, and s correspond to the , , and terms. The code below
computes c, f, and s for the example problem.

function [c,f,s] = pdex1pde(x,t,u,DuDx)
c = pi^2;
f = DuDx;
s = 0;

3 Code the initial conditions function. You must code the initial conditions
in a function of the form

u = icfun(x)

The code below represents the initial conditions in the function pdex1ic.

function u0 = pdex1ic(x)
u0 = sin(pi*x);

4 Code the boundary conditions function. You must also code the boundary
conditions in a function of the form

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

The boundary conditions, written in the same form as Equation 5-5, are

and

The code below evaluates the components and of the
boundary conditions in the function pdex1bc.

function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
pl = ul;

c f s

u 0 t,() 0 ∂u
∂x
------ 0 t,()⋅+ 0= at x 0=

πe t– 1 ∂u
∂x
------ 1 t,()⋅+ 0= at x 1=

p x t u, ,() q x t,()

Partial Differential Equations

5-97

ql = 0;
pr = pi * exp(-t);
qr = 1;

In the function pdex1bc, pl and ql correspond to the left boundary
conditions (), and pr and qr correspond to the right boundary
condition ().

5 Select mesh points for the solution. Before you use the MATLAB PDE
solver, you need to specify the mesh points at which you want pdepe
to evaluate the solution. Specify the points as vectors t and x.

The vectors t and x play different roles in the solver (see “MATLAB Partial
Differential Equation Solver” on page 5-91). In particular, the cost and the
accuracy of the solution depend strongly on the length of the vector x.
However, the computation is much less sensitive to the values in the vector
t.

This example requests the solution on the mesh produced by 20 equally
spaced points from the spatial interval [0,1] and five values of t from the
time interval [0,2].

x = linspace(0,1,20);
t = linspace(0,2,5);

6 Apply the PDE solver. The example calls pdepe with m = 0, the functions
pdex1pde, pdex1ic, and pdex1bc, and the mesh defined by x and t at which
pdepe is to evaluate the solution. The pdepe function returns the numerical
solution in a three-dimensional array sol, where sol(i,j,k) approximates
the kth component of the solution, , evaluated at t(i) and x(j).

m = 0;
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);

This example uses @ to pass pdex1pde, pdex1ic, and pdex1bc as function
handles to pdepe.

x 0=
x 1=

t x,()

uk

5 Differential Equations

5-98

Note See the function_handle (@), func2str, and str2func reference pages,
and the “Function Handles” chapter of “Programming and Data Types” in the
MATLAB documentation for information about function handles.

7 View the results. Complete the example by displaying the results:

a Extract and display the first solution component. In this example, the
solution has only one component, but for illustrative purposes, the
example “extracts” it from the three-dimensional array. The surface plot
shows the behavior of the solution.
u = sol(:,:,1);

surf(x,t,u)
title('Numerical solution computed with 20 mesh points')
xlabel('Distance x')
ylabel('Time t')

u

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

Distance x

Numerical solution computed with 20 mesh points.

Time t

Partial Differential Equations

5-99

b Display a solution profile at , the final value of . In this example, =

c 2. See “Evaluating the Solution at Specific Points” on page 5-99 for more
information.
figure
plot(x,u(end,:))
title('Solution at t = 2')
xlabel('Distance x')
ylabel('u(x,2)')

Evaluating the Solution at Specific Points
After obtaining and plotting the solution above, you might be interested in a
solution profile for a particular value of t, or the time changes of the solution
at a particular point x. The kth column u(:,k) (of the solution extracted in
step 7) contains the time history of the solution at x(k). The jth row u(j,:)
contains the solution profile at t(j).

Using the vectors x and u(j,:), and the helper function pdeval, you can
evaluate the solution u and its derivative at any set of points xout

[uout,DuoutDx] = pdeval(m,x,u(j,:),xout)

tf t tf

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Solution at t = 2

Distance x

u(
x,

2)

∂u ∂x⁄

5 Differential Equations

5-100

The example pdex3 uses pdeval to evaluate the derivative of the solution at
xout = 0. See pdeval for details.

Changing PDE Integration Properties
The default integration properties in the MATLAB PDE solver are selected to
handle common problems. In some cases, you can improve solver performance
by overriding these defaults. You do this by supplying pdepe with one or more
property values in an options structure.

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)

Use odeset to create the options structure. Only those options of the
underlying ODE solver shown in the following table are available for pdepe.
The defaults obtained by leaving off the input argument options are generally
satisfactory. “Changing ODE Integration Properties” on page 5-17 tells you
how to create the structure and describes the properties.

Example: Electrodynamics Problem
This example illustrates the solution of a system of partial differential
equations. The problem is taken from electrodynamics. It has boundary layers
at both ends of the interval, and the solution changes rapidly for small .

The PDEs are

where . The equations hold on an interval
 for times .

PDE Property Categories

Properties Category Property Name

Error control RelTol, AbsTol, NormControl

Step-size InitialStep, MaxStep

t

∂u1
∂t

--------- 0.024
∂2u1

∂x2
------------ F u1 u2–()–=

∂u2
∂t

--------- 0.170
∂2u2

∂x2
------------ F u1 u2–()+=

F y() 5.73y()exp 11.46y–()exp–=
0 x 1≤ ≤ t 0≥

Partial Differential Equations

5-101

The solution satisfies the initial conditions

and boundary conditions

Note The demo pdex4 contains the complete code for this example. The demo
uses subfunctions to place all required functions in a single M-file. To run this
example type pdex4 at the command line. See “PDE Solver Basic Syntax” on
page 5-92 and “Solving PDE Problems” on page 5-94 for more information.

1 Rewrite the PDE. In the form expected by pdepe, the equations are

The boundary conditions on the partial derivatives of have to be written
in terms of the flux. In the form expected by pdepe, the left boundary
condition is

u

u1 x 0,() 1≡

u2 x 0,() 0≡

∂u1
∂x

--------- 0 t,() 0≡

u2 0 t,() 0≡

u1 1 t,() 1≡

∂u2
∂x

--------- 1 t,() 0≡

1

1

∂
∂t

u1

u2

∂
∂x

0.024 ∂u1 ∂x⁄()

0.170 ∂u2 ∂x⁄()

F u1 u2–()–

F u1 u2–()
+=.∗

u

0
u2

1

0
+

0.024 ∂u1 ∂x⁄()

0.170 ∂u2 ∂x⁄()

0

0
=.∗

5 Differential Equations

5-102

and the right boundary condition is

2 Code the PDE. After you rewrite the PDE in the form shown above, you can
code it as a function that pdepe can use. The function must be of the form

[c,f,s] = pdefun(x,t,u,dudx)

where c, f, and s correspond to the , , and terms in Equation 5-3.

function [c,f,s] = pdex4pde(x,t,u,DuDx)
c = [1; 1];
f = [0.024; 0.17] .* DuDx;
y = u(1) - u(2);
F = exp(5.73*y)-exp(-11.47*y);
s = [-F; F];

3 Code the initial conditions function. The initial conditions function must
be of the form

u = icfun(x)

The code below represents the initial conditions in the function pdex4ic.

function u0 = pdex4ic(x);
u0 = [1; 0];

4 Code the boundary conditions function. The boundary conditions
functions must be of the form

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

The code below evaluates the components and
(Equation 5-5) of the boundary conditions in the function pdex4bc.

function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)
pl = [0; ul(2)];
ql = [1; 0];
pr = [ur(1)-1; 0];
qr = [0; 1];

u1 1–

0

0

1
+

0.024 ∂u1 ∂x⁄()

0.170 ∂u2 ∂x⁄()
0

0
=.∗

c f s

p x t u, ,() q x t,()

Partial Differential Equations

5-103

5 Select mesh points for the solution. The solution changes rapidly for small
. The program selects the step size in time to resolve this sharp change, but

to see this behavior in the plots, output times must be selected accordingly.
There are boundary layers in the solution at both ends of [0,1], so mesh
points must be placed there to resolve these sharp changes. Often some
experimentation is needed to select the mesh that reveals the behavior of the
solution.

x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1];
t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2];

6 Apply the PDE solver. The example calls pdepe with m = 0, the functions
pdex4pde, pdex4ic, and pdex4bc, and the mesh defined by x and t at which
pdepe is to evaluate the solution. The pdepe function returns the numerical
solution in a three-dimensional array sol, where sol(i,j,k) approximates
the kth component of the solution, , evaluated at t(i) and x(j).

m = 0;
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);

7 View the results. The surface plots show the behavior of the solution
components.

u1 = sol(:,:,1);
u2 = sol(:,:,2);

figure
surf(x,t,u1)
title('u1(x,t)')
xlabel('Distance x')
ylabel('Time t')

t

uk

5 Differential Equations

5-104

figure
surf(x,t,u2)
title('u2(x,t)')
xlabel('Distance x')
ylabel('Time t')

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

Distance x

u1(x,t)

Time t

Partial Differential Equations

5-105

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distance x

u2(x,t)

Time t

5 Differential Equations

5-106

Selected Bibliography
[1] Ascher, U., R. Mattheij, and R. Russell, Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations, SIAM, Philadelphia, PA,
1995, p. 372.

[2] Cebeci, T. and H. B. Keller, “Shooting and Parallel Shooting Methods for
Solving the Falkner-Skan Boundary-layer Equation,” J. Comp. Phys., Vol. 7,
1971, pp. 289-300.

[3] Hairer, E., and G. Wanner, Solving Ordinary Differential Equations II, Stiff
and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1991, pp. 5-8.

[4] Hindmarsh, A. C., “LSODE and LSODI, Two New Initial Value Ordinary
Differential Equation Solvers,” SIGNUM Newsletter, Vol. 15, 1980, pp. 10-11.

[5] Hindmarsh, A. C., and G. D. Byrne, “Applications of EPISODE: An
Experimental Package for the Integration of Ordinary Differential Equations,”
Numerical Methods for Differential Systems, L. Lapidus and W. E. Schiesser
eds., Academic Press, Orlando, FL, 1976, pp 147-166.

[6] Ottesen, J. T., “Modelling of the Baroflex-Feedback Mechanism with
Time-Delay,” J. Math. Biol., Vol. 36, 1997.

[7] Shampine, L. F., Numerical Solution of Ordinary Differential Equations,
Chapman & Hall Mathematics, 1994.

[8] Shampine, L. F., and M. K. Gordon, Computer Solution of Ordinary
Differential Equations, W.H. Freeman & Co., 1975.

[9] Skeel, R. D. and M. Berzins, “A Method for the Spatial Discretization of
Parabolic Equations in One Space Variable,” SIAM Journal on Scientific and
Statistical Computing, Vol. 11, 1990, pp.1-32.

6

Sparse Matrices

Function Summary (p. 6-2) A summary of the sparse matrix functions

Introduction (p. 6-5) An introduction to sparse matrices in MATLAB

Viewing Sparse Matrices (p. 6-13) How to obtain quantitative and graphical information about
sparse matrices

Adjacency Matrices and Graphs
(p. 6-17)

Using adjacency matrices to illustrate sparse matrices

Sparse Matrix Operations (p. 6-25) A discussion of functions that perform operations specific to
sparse matrices

Selected Bibliography (p. 6-44) Published materials that support concepts described in this
chapter

6 Sparse Matrices

6-2

Function Summary
The sparse matrix functions are located in the MATLAB sparfun directory.

Function Summary

Category Function Description

Elementary sparse
matrices

speye Sparse identity matrix.

sprand Sparse uniformly distributed random matrix.

sprandn Sparse normally distributed random matrix.

sprandsym Sparse random symmetric matrix.

spdiags Sparse matrix formed from diagonals.

Full to sparse
conversion

sparse Create sparse matrix.

full Convert sparse matrix to full matrix.

find Find indices of nonzero elements.

spconvert Import from sparse matrix external format.

Working with
sparse matrices

nnz Number of nonzero matrix elements.

nonzeros Nonzero matrix elements.

nzmax Amount of storage allocated for nonzero matrix elements.

spones Replace nonzero sparse matrix elements with ones.

spalloc Allocate space for sparse matrix.

issparse True for sparse matrix.

spfun Apply function to nonzero matrix elements.

spy Visualize sparsity pattern.

Function Summary

6-3

Graph theory gplot Plot graph, as in “graph theory.”

etree Elimination tree.

etreeplot Plot elimination tree.

treelayout Lay out tree or forest.

treeplot Plot picture of tree.

Reordering
algorithms

colamd Column approximate minimum degree permutation.

symamd Symmetric approximate minimum degree permutation.

symrcm Symmetric reverse Cuthill-McKee permutation.

colperm Column permutation.

randperm Random permutation.

dmperm Dulmage-Mendelsohn permutation.

Linear algebra eigs A few eigenvalues.

svds A few singular values.

luinc Incomplete LU factorization.

cholinc Incomplete Cholesky factorization.

normest Estimate the matrix 2-norm.

condest 1-norm condition number estimate.

sprank Structural rank.

Linear equations
(iterative methods)

bicg BiConjugate Gradients Method.

bicgstab BiConjugate Gradients Stabilized Method.

cgs Conjugate Gradients Squared Method.

Function Summary (Continued)

Category Function Description

6 Sparse Matrices

6-4

gmres Generalized Minimum Residual Method.

lsqr LSQR implementation of Conjugate Gradients on the
Normal Equations.

minres Minimum Residual Method.

pcg Preconditioned Conjugate Gradients Method.

qmr Quasi-Minimal Residual Method.

symmlq Symmetric LQ method

Miscellaneous spaugment Form least squares augmented system.

spparms Set parameters for sparse matrix routines.

symbfact Symbolic factorization analysis.

Function Summary (Continued)

Category Function Description

Introduction

6-5

Introduction
Sparse matrices are a special class of matrices that contain a significant
number of zero-valued elements. This property allows MATLAB to:

• Store only the nonzero elements of the matrix, together with their indices.

• Reduce computation time by eliminating operations on zero elements.

This section provides information about:

• Sparse matrix storage

• General storage information

• Creating sparse matrices

• Importing sparse matrices

Sparse Matrix Storage
For full matrices, MATLAB stores internally every matrix element.
Zero-valued elements require the same amount of storage space as any other
matrix element. For sparse matrices, however, MATLAB stores only the
nonzero elements and their indices. For large matrices with a high percentage
of zero-valued elements, this scheme significantly reduces the amount of
memory required for data storage.

MATLAB uses a compressed column, or Harwell-Boeing, format for storing
matrices. This method uses three arrays internally to store sparse matrices
with real elements. Consider an m-by-n sparse matrix with nnz nonzero entries
stored in arrays of length nzmax:

• The first array contains all the nonzero elements of the array in
floating-point format. The length of this array is equal to nzmax.

• The second array contains the corresponding integer row indices for the
nonzero elements stored in the first nnz entries. This array also has length
equal to nzmax.

• The third array contains n integer pointers to the start of each column in the
other arrays and an additional pointer that marks the end of those arrays.
The length of the third array is n+1.

6 Sparse Matrices

6-6

This matrix requires storage for nzmax floating-point numbers and nzmax+n+1
integers. At 8 bytes per floating-point number and 4 bytes per integer, the total
number of bytes required to store a sparse matrix is

8*nzmax + 4*(nzmax+n+1)

Note that the storage requirement depends upon nzmax and the number of
columns, n. The memory required to store a sparse matrix containing a large
number of rows but having few columns is much less that the memory required
to store the transpose of this matrix:

S1 = spalloc(2^20,2,1);
S2 = spalloc(2,2^20,1);

whos
 Name Size Bytes Class

 S1 1048576x2 24 double array (sparse)
 S2 2x1048576 4194320 double array (sparse)

Grand total is 2 elements using 4194344 bytes

Sparse matrices with complex elements are also possible. In this case,
MATLAB uses a fourth array with nnz floating-point elements to store the
imaginary parts of the nonzero elements. An element is considered nonzero if
either its real or imaginary part is nonzero.

General Storage Information
The whos command provides high-level information about matrix storage,
including size and storage class. For example, this whos listing shows
information about sparse and full versions of the same matrix.

M_full = magic(1100); % Create 1100-by-1100 matrix.
M_full(M_full > 50) = 0; % Set elements >50 to zero.
M_sparse = sparse(M_full); % Create sparse matrix of same.

Introduction

6-7

whos
 Name Size Bytes Class

 M_full 1100x1100 9680000 double array
 M_sparse 1100x1100 5004 double array (sparse)

Grand total is 1210050 elements using 9685004 bytes

Notice that the number of bytes used is much less in the sparse case, because
zero-valued elements are not stored.

Creating Sparse Matrices
MATLAB never creates sparse matrices automatically. Instead, you must
determine if a matrix contains a large enough percentage of zeros to benefit
from sparse techniques.

The density of a matrix is the number of non-zero elements divided by the total
number of matrix elements. For matrix M, this would be

nnz(M) / prod(size(M));

 Matrices with very low density are often good candidates for use of the sparse
format.

Converting Full to Sparse
You can convert a full matrix to sparse storage using the sparse function with
a single argument.

S = sparse(A)

For example

A = [0 0 0 5
 0 2 0 0
 1 3 0 0
 0 0 4 0];

S = sparse(A)

produces

6 Sparse Matrices

6-8

 S =

 (3,1) 1
 (2,2) 2
 (3,2) 3
 (4,3) 4
 (1,4) 5

The printed output lists the nonzero elements of S, together with their row and
column indices. The elements are sorted by columns, reflecting the internal
data structure.

You can convert a sparse matrix to full storage using the full function,
provided the matrix order is not too large. For example A = full(S) reverses
the example conversion.

Converting a full matrix to sparse storage is not the most frequent way of
generating sparse matrices. If the order of a matrix is small enough that full
storage is possible, then conversion to sparse storage rarely offers significant
savings.

Creating Sparse Matrices Directly
You can create a sparse matrix from a list of nonzero elements using the sparse
function with five arguments.

S = sparse(i,j,s,m,n)

i and j are vectors of row and column indices, respectively, for the nonzero
elements of the matrix. s is a vector of nonzero values whose indices are
specified by the corresponding (i,j) pairs. m is the row dimension for the
resulting matrix, and n is the column dimension.

The matrix S of the previous example can be generated directly with

S = sparse([3 2 3 4 1],[1 2 2 3 4],[1 2 3 4 5],4,4)

S =

 (3,1) 1
 (2,2) 2

Introduction

6-9

 (3,2) 3
 (4,3) 4
 (1,4) 5

The sparse command has a number of alternate forms. The example above
uses a form that sets the maximum number of nonzero elements in the matrix
to length(s). If desired, you can append a sixth argument that specifies a
larger maximum, allowing you to add nonzero elements later without
reallocating the sparse matrix.

Example: Generating a Second Difference Operator
The matrix representation of the second difference operator is a good example
of a sparse matrix. It is a tridiagonal matrix with -2s on the diagonal and 1s on
the super- and subdiagonal. There are many ways to generate it – here’s one
possibility.

D = sparse(1:n,1:n,-2∗ones(1,n),n,n);
E = sparse(2:n,1:n-1,ones(1,n-1),n,n);
S = E+D+E'

For n = 5, MATLAB responds with

S =

 (1,1) -2
 (2,1) 1
 (1,2) 1
 (2,2) -2
 (3,2) 1
 (2,3) 1
 (3,3) -2
 (4,3) 1
 (3,4) 1
 (4,4) -2
 (5,4) 1
 (4,5) 1
 (5,5) -2

6 Sparse Matrices

6-10

Now F = full(S) displays the corresponding full matrix.

F = full(S)

F =

 -2 1 0 0 0
 1 -2 1 0 0
 0 1 -2 1 0
 0 0 1 -2 1
 0 0 0 1 -2

Creating Sparse Matrices from Their Diagonal Elements
Creating sparse matrices based on their diagonal elements is a common
operation, so the function spdiags handles this task. Its syntax is

S = spdiags(B,d,m,n)

To create an output matrix S of size m-by-n with elements on p diagonals:

• B is a matrix of size min(m,n)-by-p. The columns of B are the values to
populate the diagonals of S.

• d is a vector of length p whose integer elements specify which diagonals of S
to populate.

That is, the elements in column j of B fill the diagonal specified by element j
of d.

Note If a column of B is longer than the diagonal it’s replacing,
super-diagonals are taken from the lower part of the column of B, and
sub-diagonals are taken from the upper part of the column of B.

As an example, consider the matrix B and the vector d.

B = [41 11 0
52 22 0
63 33 13
74 44 24];

Introduction

6-11

d = [-3
 0
 2];

Use these matrices to create a 7-by-4 sparse matrix A.

A = spdiags(B,d,7,4)

A =

 (1,1) 11
 (4,1) 41
 (2,2) 22
 (5,2) 52
 (1,3) 13
 (3,3) 33
 (6,3) 63
 (2,4) 24
 (4,4) 44
 (7,4) 74

In its full form, A looks like this.

full(A)

ans =

 11 0 13 0
 0 22 0 24
 0 0 33 0
 41 0 0 44
 0 52 0 0
 0 0 63 0
 0 0 0 74

spdiags can also extract diagonal elements from a sparse matrix, or replace
matrix diagonal elements with new values. Type help spdiags for details.

6 Sparse Matrices

6-12

Importing Sparse Matrices from Outside MATLAB
You can import sparse matrices from computations outside MATLAB. Use the
spconvert function in conjunction with the load command to import text files
containing lists of indices and nonzero elements. For example, consider a
three-column text file T.dat whose first column is a list of row indices, second
column is a list of column indices, and third column is a list of nonzero values.
These statements load T.dat into MATLAB and convert it into a sparse
matrix S:

load T.dat
S = spconvert(T)

The save and load commands can also process sparse matrices stored as binary
data in MAT-files.

Viewing Sparse Matrices

6-13

Viewing Sparse Matrices
MATLAB provides a number of functions that let you get quantitative or
graphical information about sparse matrices.

This section provides information about:

• Obtaining information about nonzero elements

• Viewing graphs of sparse matrices

• Finding indices and values of nonzero elements

Information About Nonzero Elements
There are several commands that provide high-level information about the
nonzero elements of a sparse matrix:

• nnz returns the number of nonzero elements in a sparse matrix.

• nonzeros returns a column vector containing all the nonzero elements of a
sparse matrix.

• nzmax returns the amount of storage space allocated for the nonzero entries
of a sparse matrix.

To try some of these, load the supplied sparse matrix west0479, one of the
Harwell-Boeing collection.

load west0479
whos
 Name Size Bytes Class

 west0479 479x479 24576 sparse array

This matrix models an eight-stage chemical distillation column.

Try these commands.

nnz(west0479)

ans =
1887

format short e

6 Sparse Matrices

6-14

west0479

west0479 =

 (25,1) 1.0000e+00
 (31,1) -3.7648e-02
 (87,1) -3.4424e-01
 (26,2) 1.0000e+00
 (31,2) -2.4523e-02
 (88,2) -3.7371e-01
 (27,3) 1.0000e+00
 (31,3) -3.6613e-02
 (89,3) -8.3694e-01
 (28,4) 1.3000e+02
 .
 .
 .

nonzeros(west0479);
 ans =

 1.0000e+00
 -3.7648e-02
 -3.4424e-01
 1.0000e+00
 -2.4523e-02
 -3.7371e-01
 1.0000e+00
 -3.6613e-02
 -8.3694e-01
 1.3000e+02
 .
 .
 .

Note Use Ctrl+C to stop the nonzeros listing at any time.

Viewing Sparse Matrices

6-15

Note that initially nnz has the same value as nzmax by default. That is, the
number of nonzero elements is equivalent to the number of storage locations
allocated for nonzeros. However, MATLAB does not dynamically release
memory if you zero out additional array elements. Changing the value of some
matrix elements to zero changes the value of nnz, but not that of nzmax.

However, you can add as many nonzero elements to the matrix as desired. You
are not constrained by the original value of nzmax.

Viewing Sparse Matrices Graphically
It is often useful to use a graphical format to view the distribution of the
nonzero elements within a sparse matrix. The MATLAB spy function produces
a template view of the sparsity structure, where each point on the graph
represents the location of a nonzero array element.

For example,

spy(west0479)

0 100 200 300 400

0

50

100

150

200

250

300

350

400

450

nz = 1887

6 Sparse Matrices

6-16

The find Function and Sparse Matrices
For any matrix, full or sparse, the find function returns the indices and values
of nonzero elements. Its syntax is

[i,j,s] = find(S)

find returns the row indices of nonzero values in vector i, the column indices
in vector j, and the nonzero values themselves in the vector s. The example
below uses find to locate the indices and values of the nonzeros in a sparse
matrix. The sparse function uses the find output, together with the size of the
matrix, to recreate the matrix.

[i,j,s] = find(S)
[m,n] = size(S)
S = sparse(i,j,s,m,n)

Adjacency Matrices and Graphs

6-17

Adjacency Matrices and Graphs
This section includes:

• An introduction to adjacency matrices

• Instructions for graphing adjacency matrices with gplot

• A Bucky ball example, including information about using spy plots to
illustrate fill-in and distance

• An airflow model example

Introduction to Adjacency Matrices
The formal mathematical definition of a graph is a set of points, or nodes, with
specified connections between them. An economic model, for example, is a
graph with different industries as the nodes and direct economic ties as the
connections. The computer software industry is connected to the computer
hardware industry, which, in turn, is connected to the semiconductor industry,
and so on.

This definition of a graph lends itself to matrix representation. The adjacency
matrix of an undirected graph is a matrix whose (i,j)th and (j,i)th entries
are 1 if node i is connected to node j, and 0 otherwise. For example, the
adjacency matrix for a diamond-shaped graph looks like

Since most graphs have relatively few connections per node, most adjacency
matrices are sparse. The actual locations of the nonzero elements depend on
how the nodes are numbered. A change in the numbering leads to permutation

A =

 0 1 0 1
 1 0 1 0
 0 1 0 1
 1 0 1 0

1

2

3

4

6 Sparse Matrices

6-18

of the rows and columns of the adjacency matrix, which can have a significant
effect on both the time and storage requirements for sparse matrix
computations.

Graphing Using Adjacency Matrices
The MATLAB gplot function creates a graph based on an adjacency matrix
and a related array of coordinates. To try gplot, create the adjacency matrix
shown above by entering

A = [0 1 0 1; 1 0 1 0; 0 1 0 1; 1 0 1 0];

The columns of gplot’s coordinate array contain the Cartesian coordinates for
the corresponding node. For the diamond example, create the array by entering

xy = [1 3; 2 1; 3 3; 2 5];

This places the first node at location (1,3), the second at location (2,1), the
third at location (3,3), and the fourth at location (2,5). To view the resulting
graph, enter

gplot(A,xy)

The Bucky Ball
One interesting construction for graph analysis is the Bucky ball. This is
composed of 60 points distributed on the surface of a sphere in such a way that
the distance from any point to its nearest neighbors is the same for all the
points. Each point has exactly three neighbors. The Bucky ball models four
different physical objects:

• The geodesic dome popularized by Buckminster Fuller

• The C60 molecule, a form of pure carbon with 60 atoms in a nearly spherical
configuration

• In geometry, the truncated icosahedron

• In sports, the seams in a soccer ball

The Bucky ball adjacency matrix is a 60-by-60 symmetric matrix B. B has three
nonzero elements in each row and column, for a total of 180 nonzero values.
This matrix has important applications related to the physical objects listed
earlier. For example, the eigenvalues of B are involved in studying the chemical
properties of C60.

Adjacency Matrices and Graphs

6-19

To obtain the Bucky ball adjacency matrix, enter

B = bucky;

At order 60, and with a density of 5%, this matrix does not require sparse
techniques, but it does provide an interesting example.

You can also obtain the coordinates of the Bucky ball graph using

[B,v] = bucky;

This statement generates v, a list of xyz-coordinates of the 60 points in 3-space
equidistributed on the unit sphere. The function gplot uses these points to plot
the Bucky ball graph.

gplot(B,v)
axis equal

It is not obvious how to number the nodes in the Bucky ball so that the
resulting adjacency matrix reflects the spherical and combinatorial
symmetries of the graph. The numbering used by bucky.m is based on the
pentagons inherent in the ball’s structure.

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

6 Sparse Matrices

6-20

The vertices of one pentagon are numbered 1 through 5, the vertices of an
adjacent pentagon are numbered 6 through 10, and so on. The picture on the
following page shows the numbering of half of the nodes (one hemisphere); the
numbering of the other hemisphere is obtained by a reflection about the
equator. Use gplot to produce a graph showing half the nodes. You can add the
node numbers using a for loop.

k = 1:30;
gplot(B(k,k),v);
axis square
for j = 1:30, text(v(j,1),v(j,2), int2str(j)); end

To view a template of the nonzero locations in the Bucky ball’s adjacency
matrix, use the spy function:

spy(B)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16

1718

19

20

21

22

23

24 25
26

27

28

29

30

Adjacency Matrices and Graphs

6-21

The node numbering that this model uses generates a spy plot with 12 groups
of five elements, corresponding to the 12 pentagons in the structure. Each node
is connected to two other nodes within its pentagon and one node in some other
pentagon. Since the nodes within each pentagon have consecutive numbers,
most of the elements in the first super- and sub-diagonals of B are nonzero. In
addition, the symmetry of the numbering about the equator is apparent in the
symmetry of the spy plot about the antidiagonal.

Graphs and Characteristics of Sparse Matrices
Spy plots of the matrix powers of B illustrate two important concepts related to
sparse matrix operations, fill-in and distance. spy plots help illustrate these
concepts.

spy(B^2)
spy(B^3)
spy(B^4)
spy(B^8)

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 180

6 Sparse Matrices

6-22

Fill-in is generated by operations like matrix multiplication. The product of
two or more matrices usually has more nonzero entries than the individual
terms, and so requires more storage. As p increases, B^p fills in and spy(B^p)
gets more dense.

The distance between two nodes in a graph is the number of steps on the graph
necessary to get from one node to the other. The spy plot of the p-th power of B
shows the nodes that are a distance p apart. As p increases, it is possible to get
to more and more nodes in p steps. For the Bucky ball, B^8 is almost completely
full. Only the antidiagonal is zero, indicating that it is possible to get from any
node to any other node, except the one directly opposite it on the sphere, in
eight steps.

0 20 40 60

0

10

20

30

40

50

60

nz = 420
0 20 40 60

0

10

20

30

40

50

60

nz = 780

0 20 40 60

0

10

20

30

40

50

60

nz = 1380
0 20 40 60

0

10

20

30

40

50

60

nz = 3540

Adjacency Matrices and Graphs

6-23

An Airflow Model
A calculation performed at NASA’s Research Institute for Applications of
Computer Science involves modeling the flow over an airplane wing with two
trailing flaps.

In a two-dimensional model, a triangular grid surrounds a cross section of the
wing and flaps. The partial differential equations are nonlinear and involve
several unknowns, including hydrodynamic pressure and two components of
velocity. Each step of the nonlinear iteration requires the solution of a sparse
linear system of equations. Since both the connectivity and the geometric
location of the grid points are known, the gplot function can produce the graph
shown above.

In this example, there are 4253 grid points, each of which is connected to
between 3 and 9 others, for a total of 28831 nonzeros in the matrix, and a
density equal to 0.0016. This spy plot shows that the node numbering yields a
definite band structure.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

6 Sparse Matrices

6-24

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000

...
..
.
..
..............
.............................
......
.
.................
.

.

.............

.

...............

...........................

......

.

.......

.............................

.......

..
....
..

.

..

.....

.

.

.......

...................................

..............

.....

.

.

.......

.....

.

.

............................

....

.

.

.

.....

..

............................

......

.

..

...

....

.

.

.

..............

......

.

.

.........................

.

.............

.......

...

.

.

....................................

....

.

..

...............

....................

..

..............

..............

.....

..

.......

.......

.......

.......

...

.

..

.

.................

.....

..

...................................

.

..............

.......

.......

....

.

..

....................

.

............

.

.

......................

.

.....

..

.......

....

.

..

.......

.............

.....

..

.....................

.......

........

...

.

..

.

........

...

.

.

.

.

.............

.............

.

....

..

.

.....................

.....

.

..............

....

...

........

.....

..

..............

..
...
....
.
..

..

....

...

..................................

.......

.......

.....................

.......

..............

.......

.....................

....

..

.

.......

....

...

..............

.......

............................

.....

..

...
.......
.......
............................
......
..
.
...
..
.................
..
...
.

.....

..

.....

.......

.................

..............

...

....

.....

.......

...
...................

..

..

..

.

.....

..
.......

...

.

...

.....

...

..

..

.......

..........................

..

...

..

.................................

...

.

...

.......

...
...
....
..
......................
.......
..............

..

..

.

..

............

.

......

............

..

...

..

............................

..

...

..

..........................

..

.....

..

..

...

...

..............

...

.

...

..
........

.

......

...
..

.

..

.

...

............

..............

.

.

...

..

....................

.

..

....

..

..

.

..

...

.......

.......

.....................

...........................

..

...

..

..............

........

..

...

....

..

..

.

.

.

...................

.......

.......

..............

..........................

............

.............

.

......

........

.

.

.....

.......

.......

...................

.

.

..

.

..

...

.

......

..............

..

.....

..
.................................
.......
.................................

.

......

.......

.

......

.......

.......

..

....

..........................

.

......

.......

...................

..

..

.

..

..

.......

..
..............
..................

..

.

..

..

..............

..

....

.

......

..............

.......

..........................

..

.....

.......

.......

..

.....

..

.....

.....................

..

..

.

..

...................

.......

.......

............

.

.

.....

.

.

..

..

..

.......

..............

...................

.......

..

.....

.....................

.

..

....

.......

...................

.....................

.

.

.....

..................................

.......

...................

..

...

..

.......

.......

....................

..

...

..

.

......

..........

.......

...

.......

...................

..

.

.

.

.

.

..............

........

..............

.......

..

.....

..

..............

............

........

..............

.......

.......

..
.......

..

...

.

..

.

.

.....

..............

...................

.............

.......

..

..

...

..............

.......

.......

.

..

.

.

.

.

..................................

...............

............

.

.

.

.

..

.

.......

...................

.......

..............

....................

.......

..............

.......

........

.................................

..

.....

..............

.......

.......

...............................

.......

...

.

.

..

.....................

.......

............................

.......

................................

......

...............

............................

.......

..

.......

..............

...................................

....

...

............

.......

.................................

.

.

.

...

..

...

..

.

.

..

.

..............

..............

.......

.......

..

.......

................................

.......

...................................

........

.....

..

.....

.......

.......

..............

.......

.

.

..

..

..........................

..........................

.......

....................................

..

.....

.............

..

...

..

..........................

.

.

...

..

.......

.

..

.

..

.

.

......

..............

.

.

.

.

.

.......

.......

..

.......

......................

.....

.................................

.......

..............

............................

.......

.............

..............

.....

.

.

...

..

...................................

.

.

...

..

.................................

.....................

.....................

.....

............

..............

.......

.

.

..

..

.

.

......

...................................

..
..
.....
.......

.

..

.

.

..

.....

.......

.......

.......

.......

..............

.......

.......

.......

..........................

..........................

.......

............................

.

.

.

.

..

.

..............

..

.....

.......

..

.

..

..

..

..

............

..

..

.....

.......

.......

.......

..

...

..

.......

...................

.......

.......

..............

.

.

.

.

...

..............

.......

..

......

...................................

.......

..

...

..

...

..............

..

..

...

.

.

.

.

.

..

............

.......

...................................

..............

.......

..............

.......

.......

.......

...................

.............

...................................

.......

..........................

.......

..
.......
.......
....................
.......
..
........
.......
..................................
.......
..
.....
..........
.......
.......

.

..

....

..............

.......

..

.....

.......

.......

............................

...............

.......

.......

............

.

..

....

.....................

..............

.......

.......

..

.....

..............

.

..

.....

...............................

..

.......

.

.

.

.

.

..

..............

....................

.......

.......

.......

..................

...................................

..............

.

......

.......

.....................

.......

.......

...

.

......

..............

.......

..............

.............

...

.......

......

...............

.

.

..

..

.....................................

.......

.....................

.......

..............

...............

.......

..............

.

.

...

..

.....................

.......

.................................

..............

.

.

...

..

.......

.

..

..

..

............

.......

...
.......

.

.

...

..

..............

..............

.......

..............

........

.......

.......

.......

...

.....

..

...
.......
...................
........
...
.......
..............
.....................
.....................
.......
...

.

.

..

..

...

..............

...
.......
.......
..
...
..
............

.

.

...

..

........

..........................

.......

..

.....

............................

.......

.......

..

.....

.......

..................................

...
.......
..

..

.....

...................................

......

.....................

.......

.....................

................................

..
.......
.......
.......
..
........
.......
...............
.....................
..........................
.......
.......
..
..
.....
.......
.....

..

.....

..
.......
..........................

..

.....

....................

.......

.......

.....................

.......

...................................

.................................

.

..

..

..
........
.......

.

....

..

........

...
........
..
.......
..............
.......
..............
.......
...
........
......................
.......
...
.......
..................................
...............
......................................
.......
.......
.......
...
...................
.......
..
..............
.....................
...................
.......
.........................
..............
....
.
..............
..............
.......
..............
.
...
.

..............

.......

.......

...
.......
.....................
..............
.....................
.......
.......................
.....................
.....................
.......
..............
....................................
.....
..
..
........
.......
.......
.......
...
.......
.....
.....
..
.......................................
.......
.......
...
..
..
.
..........................
.......
...............
.......
...........................
.......
...
.......
.................................
.......
...................................
.......
....................
.......
..
.....................
........
.....................
.......
...
.....
..
.

.......

............................

..

...

..

......

..............

.......

.....................

........

..

..

.

..............

..

...

.

.

...

.......

.......

.....................

..............

.......

..........................

..

..

.

...
.......
..
..............
.......
..............
..............
.......
..
.......
.......
.......
...................................
....
.
.

.

................................

......

.

....

.

.

..

......

............................

..

......

.

......

.

...................................

...................................

.......

.

...............

.....................................

..

..

.

.

.

........

..
..
.....

.

.

.......

....

.

.

.

.......................................

.....

.

.

.....................

....

..

.

.....

..

..
...........................
.....
......
.
........
.......
...
.....
.....
..
............
.......
............
.................................
.....
..
..............
.............

..

.

.

.

.

..

.....

..

..........................

.......

..............

.......

.....................

...

...

..

.................................

.

..

.

..

.

.

.................................

.....

...........................

.......

.......

....

.

..

.......

....................

....................

.......

.....................

......

.............................

.......

...

...

.

.

.

.

.......

.....

..

.................................

.......

.......

.......

.......

.......

..............

...

........

....................

.....

..............

.......

.......

......

.

...
.......
.......
..................................
..

..

...

..

.......

.........................

.......

.......

...

.

..

.

.......

...

..

..

..................................

......................

..

...

...

.......

.......

.....

..

...................

.......

..

...............................

........

...........................

.......

.............

..

...............

.......

...................

..

..

.....

.....................

.......

..............

...

.......

............................

.......

...................

.......

..............

.......

...

.

.

.

.

..

...................

..............

......

.

..

.

.

.

.

.................................

..............

.

.

.

.

.

..

..

...

....

....................

..

...

.

.

.......

..

...

.

.

........................

.

..

.

.

.

.

.............

.......

.......

.......

......................

..

...

..

..........................

.

.

..

.

.

.

...

........

.....

..

.........................

.......

.............

...

.

.

...

.

.

...................

.......

.

...................

.......

......

.....................

......

.

....................

..

...

.

.

.

...............

..
..............
............................

.

....

..

....................................

..

.

.

..

.

.

.

........

..............

.......

...
.......
..

..

...

..

.........................

......

.

...........................

........

......

.

.....

.

..

.......

....

.

..

......

..
.....................
.......
........................

.

.

.

.

.

..

.....................

.....

..

.

........

......

.

...................................

.......

...

.

..

.

.....................

........

...

.......

.....................

...........................

..............

..............

....

.

.

.

.......

...

........

.......

.....

.

.

...............

......

..............

..

..

.

..

............................

...

.

.

..

........

.......

..............

......

............................

........

.......

.......

........

............

.

.......

.......

.......

.......

.......

............

........

.......

................

.......

.......

........

.......

.

..

.

.

.

.

................

......

.

.......

.......

.....

..

..

...

.......

............

.......

.......

......

...

.

.

..

.......

.......

.......

.......

....................

........

...................

.......

.

.

.....

...

............

....

..

.......

.......

.......

...................

.......

.......

.............

...

....

...

.............

.......

...

.

...

.......

............

.......

..

...

...

.......

..

.....

.......

.......

......

.......

.......

.......

.......

......................................

..

..

...

..............

.......

..............

............................

.......

.......

...................

...........................

.......

.......

.......

...................

..............

...

....................

.......

.......

..............

.......

..

....

.................................

..

....

.......

.......

.......

.

..

.

..

............

...

.

...

..............

.......

.......

..

.....

...

.......

.......

.......

..............

...................

.......

...............

...

.....

.....

..............

.....................

.........................

..........

..............

..........................

.......

...........................

..............

..

.

.

..

.

.......

.....................

.....................

.......

............

.

......

............................

.......

..

.....

..........................

...

..

..

..

..

......

..............

.......

......

.....................

.

.

.

....

.......

.......

............

..

.

.

.

.

.

.

......

.....................

.......

..

.....

.......................................

.......

........

.......

...

.

.

...

..

...............

.

.

...

..

.

......

.......

..

.......

.....................

.

......

..............

.

.

......

.........................

...........................

......

.

.

.

.....

.................................

.

.

.....

..............

........

.......

..........................

.......

.......

......................

........

.......................................

.........................

.

....

..

.................................

.

.

.

.

.

.

.

.....................

..

......

...................

.....

..

.......

.....

..

.......

.

.....

..............

...............

..

...

..

....................

.

.

.

.

.

..

.......

....................................

..............

..

...........

..........................

........

.....................

.

...

...

.......

.

.............

.

.

.

.

.

.

.

.....

..............

.......

...................

..............

..

...

..

..

..

...

..

.......

........

......

.

..

..

.

.

.

.

..

..

..

..........................

.......

.......

.....................

.......

.............

.......

.......

.............

.....

..

.....................

..............

.......

.......

.......

............

.......

.....................

.......

.......

.......

.....................

......

....................

..

...

..

.......

...

..

.......

......

..

..............

.......

.......

..............

.......

...................

........

.......

.......

.......

.......

.......

.......

..

...

..

.....................

.......

.

......

....................

.......

.......

..............

..

.....

............

.......

.

.

.

.

.

..

.....

..

.....

............

.......

.......

.......

.......

.......

...................

.......

.....

.......

.................

..............

.....

..

..............

.......

.......

............

.

..

.

...

.....

.......

.......

..............

.............

............

........

.....................

.......

............

.......

...................

.

......

.

....

..............

...................

.......

.......

.......

...

..

...

.

......

...

..

...

..

..........................

.......

.......

..........................

.......

...................................

...................

..

...

..

.....

............

..

..

.

..

.......

.....

.

.

...

.

...........................

.......

.......

...........................

..

.

.

.

.

.

..

...

..

..

...

..

.......

.......

........

........

..

...

..

.......

.......

.......

..

.....

...................

.

.

.....

.......

.......

.............

...............................

.......

.......................

.......

...................................

.

.

.

..

.

..

...................................

.......

..........

........

...

.......

..............

...

..

..

........

............

.......

.......

........

.......

.......

.....

...................

.....................

.

....

..

.

.

...

.

.

.............

.......

............

.......

.....

..

...

..

.......

.

.

.

.

.

..

.......

..............

...

.....

.......................................

.......

............

..............

.

.

..

.

.

.

..

...

..

.......

.......

..

...

.

.

.......

.......

....

...

.....

.

.

...

..

..............

.......

.......

..

...

..

...................

...............................

.......

.......

.......

.......

.....................

....................

.

......

..................

.......

.......

............

.......

.......

.......

............

............................

..............

.

.

..

..

...

.......

.................

.

.

...

..

..............

............

.......

.......

.......

...............

.

.

..

.

..

..............................

.......

...............

.......

.......

.......

.

.

.

.

.

.

.

.....

.......

..

.....

......

..

.......

..

...

..

.....................

.......

.....

..

.....

........

.......

.......

.....

.......

.......

....................

.......

...................

.................

.......

.....

..

..............

.......

.......

.......

..

..

..

.

.......

...............

.......

.........................

.....................

.

...

...

...........

.......

...........................

..

...

..

.......................................

.......

.....................

.......

.......

.....

.......

....

.

.................................

..

.

..

..

..........................

.......

..............

.......

..........................

..

...

..

............

.................

.......

.......

.......

............

.......

.......

..

.....

..............

............

...........................

..

.

.

....

.....

..

.....

.......

.

.

.

.

.

..

.......

..........

.......

.......

......

.......

.......

.......

...
.......
.....................
.......
...................................
.......
.....................
.......
................
.......
.....

.......

.......

.......

...

..

.....

......

.......

.......

..............

............

.......

.....................

.....................

.......

.......

.......

..............

......

.......

.......

.............

.......

.......

.......

.......

..

....

.

.

...

..

.......

.

......

...........................

.

..

....

.....................

.

.

.

..

...

...............

.......

...........

............

.

.

.....

...............

......

.......

..............

.......

.....................

.......

.......

.......

..............

......................

.......

...............

...................

.......

.

.

.

.

.

..

.

......

....................

.....

..

.....

.

.

.....

..

.....

.......

.......

.......

.....................

..

.....

.....................

.......

.......

............

.......

......

.......

.......

.......

.......

.

......

.......

........

.....................

............

.

......

..............

..

......

..........................

..............

.......

..............

.......

.......

.......

.............

..........................

...............

.......

.................................

..............

.

......

.

.

.

.

.

...........................

........

.......

............

.

.

.

.

.

.

.............................

.....

.......

..
.......
......
............
...............
.......
........
...................
.......
.......
..............
.......

..

.....

...................

..............

.......

............................

.......

.......

.......

....................

..

...

..

.......

...............................

.......

.

.

...

..

.......

..

.....

.....................

.......

.......

.................................

.......

.......

.

.

...

.

.................................

.....................

.......

.......

..........................

..

..

.

.

.

........

..............

.

.

.....

..............

.......

...................

.......

.......

.......

.......

..........................

.......

.......

.....................

.......

......

.

..............

.......

...............................

.......

.......

.

......

.....................

......

.......

.

.

...

.

..

..............

..............

.

.

.

..

.

.

.........................

.......

.......

.....

.......

.....................

............................

........

...................

.......

..............

.......

...

.......

......

.

.....

.......

..............

.......

............................

.....

..

.......

..............

...

....

..........................

.

.

.

.

..

.

.......

...................

.......

........

...................................

.......

...

.......

...
........
............
.......
.......
.....

..

...

..

.......

..

.....

.....................

.....................

.....

..

...................

.......

.......

.......

.......

.......

.......

.......

............

.......

............................

.......

.......

...

....

.......

...................

.......

.......

.......

........

............

.......

.......

.......

.......

.......

..

..

..

.

.......

.......

..........................

.......

.......

.......

.......

..........................

.......

..............

..........................

.......

...................................

.......

........................

.......

.....................

.......

.......

.......

.......

......

.......

.......

..

.....

.......

.......

.......

.......

.......

.....

..............

............

.......

.............

.......

..

.....

........

.......

.......

.......

.....................

.......

...

.....

..............

........

............

........

.......

.

.

...

.

.

.......

.......

..........................

.............

.......

.......

.......

....

..

.......

.

.

.

.

.

..

.......

............

.....................

.......

.......

.......

............

.......

.....................

.......

..............

.......

.

.

.

.

.

..

.......

....

..

.

.......

.......

.......

.....

..

.....

.......

.......

..............

.......

.......

.......

..............

............

.......

.......

.....................

.......

.......

......

.

.

.

.

.....

.......

.......

..

..

..

.

..............

.......

.......

.......

.......

.............

............

.......

.......

..............

.......

...................

.......

..............

.......

......

.......

.......

.......

.......

.......

.......

.......

......

.............

.......

.......

.......

.....

.......

.....................

.......

.......

.......

..

.....

.....

..

.......

.......

.....

..

............

.......

.......

.......

............

.......

.......

.......

.......

.......

.

..

.

...

.......

.......

.....

..

.......

..............

.......

.......

.......

.......

.....

.......

............

.......

......

.......

.......

.......

......

..............

.......

..

..

...

.......

.................

.......

.......

.......

..............

.......

..............

.......

.......

.......................

.............

................

............

.............

.......

.......

.......

.......

.......

.......

.............

...............

.......

.......

........

.......

.......

........

.......

.......

.......

.......

........

.

..

..

..

.

..

....

.....................

.......

.......

..

.....

.......

.......

......

.

.

..

.

...

......................

.......

.......

........

..

......

.......

.....................

........

.......

...............

.......

.......

.......

..............

..

.

....

.......

.......

..............

..............

.......

............................

......

.......

.

.

.....

...........................

.......

.......

.....................

.......

.......

.......

.......

..............

.

......

.......

..............

.......

.......

..................................

...............

..............

......

.......

..............

.......

.

.

...

.

......

.......

...........................

.......

.....................

........

..............

.....................

..............

......

............................

............................

............................

.......

....................

...................................

.

..

....

.....................

.......

.......

.............................

.

.

.....

..............

..

.....

...........................

.......

.......

........

..

.

.

...

...............

........

...

.

......

............................

.......

...
..
..
...

nz = 28831

The Laplacian of the mesh.

Sparse Matrix Operations

6-25

Sparse Matrix Operations
Most of the MATLAB standard mathematical functions work on sparse
matrices just as they do on full matrices. In addition, MATLAB provides a
number of functions that perform operations specific to sparse matrices. This
section discusses:

• “Computational Considerations” on page 6-25

• “Standard Mathematical Operations” on page 6-25

• “Permutation and Reordering” on page 6-26

• “Factorization” on page 6-30

• “Simultaneous Linear Equations” on page 6-36

• “Eigenvalues and Singular Values” on page 6-39

• “Performance Limitations” on page 6-41

Computational Considerations
The computational complexity of sparse operations is proportional to nnz, the
number of nonzero elements in the matrix. Computational complexity also
depends linearly on the row size m and column size n of the matrix, but is
independent of the product m*n, the total number of zero and nonzero elements.

The complexity of fairly complicated operations, such as the solution of sparse
linear equations, involves factors like ordering and fill-in, which are discussed
in the previous section. In general, however, the computer time required for a
sparse matrix operation is proportional to the number of arithmetic operations
on nonzero quantities.

Standard Mathematical Operations
Sparse matrices propagate through computations according to these rules:

• Functions that accept a matrix and return a scalar or vector always produce
output in full storage format. For example, the size function always returns
a full vector, whether its input is full or sparse.

• Functions that accept scalars or vectors and return matrices, such as zeros,
ones, rand, and eye, always return full results. This is necessary to avoid
introducing sparsity unexpectedly. The sparse analog of zeros(m,n) is

6 Sparse Matrices

6-26

simply sparse(m,n). The sparse analogs of rand and eye are sprand and
speye, respectively. There is no sparse analog for the function ones.

• Unary functions that accept a matrix and return a matrix or vector preserve
the storage class of the operand. If S is a sparse matrix, then chol(S) is also
a sparse matrix, and diag(S) is a sparse vector. Columnwise functions such
as max and sum also return sparse vectors, even though these vectors may be
entirely nonzero. Important exceptions to this rule are the sparse and full
functions.

• Binary operators yield sparse results if both operands are sparse, and full
results if both are full. For mixed operands, the result is full unless the
operation preserves sparsity. If S is sparse and F is full, then S+F, S*F, and
F\S are full, while S.*F and S&F are sparse. In some cases, the result might
be sparse even though the matrix has few zero elements.

• Matrix concatenation using either the cat function or square brackets
produces sparse results for mixed operands.

• Submatrix indexing on the right side of an assignment preserves the storage
format of the operand unless the result is a scalar. T = S(i,j) produces a
sparse result if S is sparse and either i or j is a vector. It produces a full
scalar if both i and j are scalars. Submatrix indexing on the left, as in
T(i,j) = S, does not change the storage format of the matrix on the left.

• Multiplication and division are performed on only the nonzero elements of
sparse matrices. Dividing a sparse matrix by zero returns a sparse matrix
with Inf at each nonzero location. Because the zero-valued elements are not
operated on, these elements are not returned as NaN. Similarly, multiplying
a sparse matrix by Inf or NaN returns Inf or NaN, respectively, for the
nonzero elements, but does not fill in NaN for the zero-valued elements.

Permutation and Reordering
A permutation of the rows and columns of a sparse matrix S can be represented
in two ways:

• A permutation matrix P acts on the rows of S as P*S or on the columns as
S*P'.

• A permutation vector p, which is a full vector containing a permutation of
1:n, acts on the rows of S as S(p,:), or on the columns as S(:,p).

Sparse Matrix Operations

6-27

For example, the statements

p = [1 3 4 2 5]
I = eye(5,5);
P = I(p,:);
e = ones(4,1);
S = diag(11:11:55) + diag(e,1) + diag(e,-1)

produce

p =

 1 3 4 2 5

P =

 1 0 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 1 0 0 0
 0 0 0 0 1

S =

 11 1 0 0 0
 1 22 1 0 0
 0 1 33 1 0
 0 0 1 44 1
 0 0 0 1 55

You can now try some permutations using the permutation vector p and the
permutation matrix P. For example, the statements S(p,:) and P*S produce

ans =

 11 1 0 0 0
 0 1 33 1 0
 0 0 1 44 1
 1 22 1 0 0
 0 0 0 1 55

6 Sparse Matrices

6-28

Similarly, S(:,p) and S*P' produce

ans =

 11 0 0 1 0
 1 1 0 22 0
 0 33 1 1 0
 0 1 44 0 1
 0 0 1 0 55

If P is a sparse matrix, then both representations use storage proportional to n
and you can apply either to S in time proportional to nnz(S). The vector
representation is slightly more compact and efficient, so the various sparse
matrix permutation routines all return full row vectors with the exception of
the pivoting permutation in LU (triangular) factorization, which returns a
matrix compatible with the full LU factorization.

To convert between the two representations, let I = speye(n) be an identity
matrix of the appropriate size. Then,

P = I(p,:)
P' = I(:,p)
p = (1:n)*P'
p = (P*(1:n)')'

The inverse of P is simply R = P'. You can compute the inverse of p with
r(p) = 1:n.

r(p) = 1:5

r =

 1 4 2 3 5

Reordering for Sparsity
Reordering the columns of a matrix can often make its LU or QR factors
sparser. Reordering the rows and columns can often make its Cholesky factors
sparser. The simplest such reordering is to sort the columns by nonzero count.
This is sometimes a good reordering for matrices with very irregular
structures, especially if there is great variation in the nonzero counts of rows
or columns.

Sparse Matrix Operations

6-29

The function p = colperm(S) computes this column-count permutation. The
colperm M-file has only a single line.

[ignore,p] = sort(sum(spones(S)));

This line performs these steps:

1 The inner call to spones creates a sparse matrix with ones at the location of
every nonzero element in S.

2 The sum function sums down the columns of the matrix, producing a vector
that contains the count of nonzeros in each column.

3 full converts this vector to full storage format.

4 sort sorts the values in ascending order. The second output argument from
sort is the permutation that sorts this vector.

Reordering to Reduce Bandwidth
The reverse Cuthill-McKee ordering is intended to reduce the profile or
bandwidth of the matrix. It is not guaranteed to find the smallest possible
bandwidth, but it usually does. The function symrcm(A) actually operates on
the nonzero structure of the symmetric matrix A + A', but the result is also
useful for asymmetric matrices. This ordering is useful for matrices that come
from one-dimensional problems or problems that are in some sense “long and
thin.”

Approximate Minimum Degree Ordering
The degree of a node in a graph is the number of connections to that node. This
is the same as the number of off-diagonal nonzero elements in the
corresponding row of the adjacency matrix. The approximate minimum degree
algorithm generates an ordering based on how these degrees are altered during
Gaussian elimination or Cholesky factorization. It is a complicated and
powerful algorithm that usually leads to sparser factors than most other
orderings, including column count and reverse Cuthill-McKee. Because the
keeping track of the degree of each node is very time-consuming, the
approximate minimum degree algorithm uses an approximation to the degree,
rather than the exact degree.

6 Sparse Matrices

6-30

The following MATLAB functions implement the approximate minimum
degree algorithm:

• symamd — Use with symmetric matrices

• colamd — Use with nonsymmetric matrices and symmetric matrices of the
form A*A' or A'*A.

See “Reordering and Factorization” on page 6-31 for an example using symamd.

You can change various parameters associated with details of the algorithms
using the spparms function.

For details on the algorithms used by colamd and symamd, see [5]. The
approximate degree the algorithms use is based on [1].

Factorization
This section discusses four important factorization techniques for sparse
matrices:

• LU, or triangular, factorization

• Cholesky factorization

• QR, or orthogonal, factorization

• Incomplete factorizations

LU Factorization
If S is a sparse matrix, the following command returns three sparse matrices L,
U, and P such that P*S = L*U.

[L,U,P] = lu(S)

lu obtains the factors by Gaussian elimination with partial pivoting. The
permutation matrix P has only n nonzero elements. As with dense matrices, the
statement [L,U] = lu(S) returns a permuted unit lower triangular matrix and
an upper triangular matrix whose product is S. By itself, lu(S) returns L and
U in a single matrix without the pivot information.

The three-output syntax

[L,U,P] = lu(S)

Sparse Matrix Operations

6-31

selects P via numerical partial pivoting, but does not pivot to improve sparsity
in the LU factors. On the other hand, the four-output syntax

[L,U,P,Q]=lu(S)

selects P via threshold partial pivoting, and selects P and Q to improve sparsity
in the LU factors.

You can control pivoting in sparse matrices using

lu(S,thresh)

where thresh is a pivot threshold in [0,1]. Pivoting occurs when the diagonal
entry in a column has magnitude less than thresh times the magnitude of any
sub-diagonal entry in that column. thresh = 0 forces diagonal pivoting.
thresh = 1 is the default. (The default for thresh is 0.1 for the four-output
syntax).

When you call lu with three or less outputs, MATLAB automatically allocates
the memory necessary to hold the sparse L and U factors during the
factorization. Except for the four-output syntax, MATLAB does not use any
symbolic LU prefactorization to determine the memory requirements and set
up the data structures in advance.

Reordering and Factorization. If you obtain a good column permutation p that
reduces fill-in, perhaps from symrcm or colamd, then computing lu(S(:,p))
takes less time and storage than computing lu(S). Two permutations are the
symmetric reverse Cuthill-McKee ordering and the symmetric approximate
minimum degree ordering.

r = symrcm(B);
m = symamd(B);

The three spy plots produced by the lines below show the three adjacency
matrices of the Bucky Ball graph with these three different numberings. The
local, pentagon-based structure of the original numbering is not evident in the
other three.

spy(B)
spy(B(r,r))
spy(B(m,m))

6 Sparse Matrices

6-32

The reverse Cuthill-McKee ordering, r, reduces the bandwidth and
concentrates all the nonzero elements near the diagonal. The approximate
minimum degree ordering, m, produces a fractal-like structure with large
blocks of zeros.

To see the fill-in generated in the LU factorization of the Bucky ball, use
speye(n,n), the sparse identity matrix, to insert -3s on the diagonal of B.

B = B - 3*speye(n,n);

Since each row sum is now zero, this new B is actually singular, but it is still
instructive to compute its LU factorization. When called with only one output
argument, lu returns the two triangular factors, L and U, in a single sparse
matrix. The number of nonzeros in that matrix is a measure of the time and
storage required to solve linear systems involving B. Here are the nonzero
counts for the three permutations being considered.

Even though this is a small example, the results are typical. The original
numbering scheme leads to the most fill-in. The fill-in for the reverse

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 180

Original

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 180

Minimum Degree

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 180

Reverse Cuthill−McKee

Original lu(B) 1022

Reverse Cuthill-McKee lu(B(r,r)) 968

Approximate minimum degree lu(B(m,m)) 636

Sparse Matrix Operations

6-33

Cuthill-McKee ordering is concentrated within the band, but it is almost as
extensive as the first two orderings. For the approximate minimum degree
ordering, the relatively large blocks of zeros are preserved during the
elimination and the amount of fill-in is significantly less than that generated
by the other orderings. The spy plots below reflect the characteristics of each
reordering.

Cholesky Factorization
If S is a symmetric (or Hermitian), positive definite, sparse matrix, the
statement below returns a sparse, upper triangular matrix R so that R'*R = S.

R = chol(S)

chol does not automatically pivot for sparsity, but you can compute
approximate minimum degree and profile limiting permutations for use with
chol(S(p,p)).

Since the Cholesky algorithm does not use pivoting for sparsity and does not
require pivoting for numerical stability, chol does a quick calculation of the
amount of memory required and allocates all the memory at the start of the
factorization. You can use symbfact, which uses the same algorithm as chol,
to calculate how much memory is allocated.

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 1022

Original

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 968

Reverse Cuthill−McKee

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 636

Minimum Degree

6 Sparse Matrices

6-34

QR Factorization
MATLAB computes the complete QR factorization of a sparse matrix S with

 [Q,R] = qr(S)

but this is usually impractical. The orthogonal matrix Q often fails to have a
high proportion of zero elements. A more practical alternative, sometimes
known as “the Q-less QR factorization,” is available.

With one sparse input argument and one output argument

R = qr(S)

returns just the upper triangular portion of the QR factorization. The matrix R
provides a Cholesky factorization for the matrix associated with the normal
equations,

R'*R = S'*S

However, the loss of numerical information inherent in the computation of
S'*S is avoided.

With two input arguments having the same number of rows, and two output
arguments, the statement

[C,R] = qr(S,B)

applies the orthogonal transformations to B, producing C = Q'*B without
computing Q.

The Q-less QR factorization allows the solution of sparse least squares
problems

with two steps

[c,R] = qr(A,b)
x = R\c

If A is sparse, but not square, MATLAB uses these steps for the linear equation
solving backslash operator

x = A\b

Or, you can do the factorization yourself and examine R for rank deficiency.

minimize Ax b–

Sparse Matrix Operations

6-35

It is also possible to solve a sequence of least squares linear systems with
different right-hand sides, b, that are not necessarily known when R = qr(A)
is computed. The approach solves the “semi-normal equations”

R'*R*x = A'*b

with

x = R\(R'\(A'*b))

and then employs one step of iterative refinement to reduce roundoff error

r = b - A*x
e = R\(R'\(A'*r))
x = x + e

Incomplete Factorizations
The luinc and cholinc functions provide approximate, incomplete
factorizations, which are useful as preconditioners for sparse iterative
methods.

The luinc function produces two different kinds of incomplete LU
factorizations, one involving a drop tolerance and one involving fill-in level. If
A is a sparse matrix, and tol is a small tolerance, then

[L,U] = luinc(A,tol)

computes an approximate LU factorization where all elements less than tol
times the norm of the relevant column are set to zero. Alternatively,

[L,U] = luinc(A,'0')

computes an approximate LU factorization where the sparsity pattern of L+U is
a permutation of the sparsity pattern of A.

For example,

load west0479
A = west0479;
nnz(A)
nnz(lu(A))
nnz(luinc(A,1e-6))
nnz(luinc(A,'0'))

6 Sparse Matrices

6-36

shows that A has 1887 nonzeros, its complete LU factorization has 16777
nonzeros, its incomplete LU factorization with a drop tolerance of 1e-6 has
10311 nonzeros, and its lu('0') factorization has 1886 nonzeros.

The luinc function has a few other options. See the luinc reference page for
details.

The cholinc function provides drop tolerance and level 0 fill-in Cholesky
factorizations of symmetric, positive definite sparse matrices. See the cholinc
reference page for more information.

Simultaneous Linear Equations
There are two different classes of methods for solving systems of simultaneous
linear equations:

• Direct methods are usually variants of Gaussian elimination. These methods
involve the individual matrix elements directly, through matrix
factorizations such as LU or Cholesky factorization. MATLAB implements
direct methods through the matrix division operators / and \, which you can
use to solve linear systems.

• Iterative methods produce only an approximate solution after a finite number
of steps. These methods involve the coefficient matrix only indirectly,
through a matrix-vector product or an abstract linear operator. Iterative
methods are usually applied only to sparse matrices.

Direct Methods
Direct methods are usually faster and more generally applicable than indirect
methods, if there is enough storage available to carry them out. Iterative
methods are usually applicable to restricted cases of equations and depend
upon properties like diagonal dominance or the existence of an underlying
differential operator. Direct methods are implemented in the core of MATLAB
and are made as efficient as possible for general classes of matrices. Iterative
methods are usually implemented in MATLAB M-files and may make use of
the direct solution of subproblems or preconditioners.

Using a Different Preordering. If A is not diagonal, banded, triangular, or a
permutation of a triangular matrix, backslash (\) reorders the indices of A to
reduce the amount of fill-in — that is, the number of nonzero entries that are
added to the sparse factorization matrices. The new ordering, called a

Sparse Matrix Operations

6-37

preordering, is performed before the factorization of A. In some cases, you might
be able to provide a better preordering than the one used by the backslash
algorithm.

To use a different preordering, first turn off both of the automatic preorderings
that backslash might perform by default, using the function spparms as follows:

spparms('autoamd',0);
spparms('autommd',0);

Now, assuming you have created a permutation vector p that specifies a
preordering of the indices of A, apply backslash to the matrix A(:,p), whose
columns are the columns of A, permuted according to the vector p.

x = A (:,p) \ b;
x(p) = x;
spparms('autoamd',1);
spparms('autommd',1);

The commands spparms('autoamd',1) and spparms('autommd',1) turns the
automatic preordering back on, in case you use A\b later without specifying an
appropriate preordering.

Iterative Methods
Nine functions are available that implement iterative methods for sparse
systems of simultaneous linear systems.

Functions for Iterative Methods for Sparse Systems

Function Method

bicg Biconjugate gradient

bicgstab Biconjugate gradient stabilized

cgs Conjugate gradient squared

gmres Generalized minimum residual

lsqr Least squares

minres Minimum residual

pcg Preconditioned conjugate gradient

6 Sparse Matrices

6-38

These methods are designed to solve or . For the
Preconditioned Conjugate Gradient method, pcg, A must be a symmetric,
positive definite matrix. minres and symmlq can be used on symmetric
indefinite matrices. For lsqr, the matrix need not be square. The other five can
handle nonsymmetric, square matrices.

All nine methods can make use of preconditioners. The linear system

is replaced by the equivalent system

The preconditioner M is chosen to accelerate convergence of the iterative
method. In many cases, the preconditioners occur naturally in the
mathematical model. A partial differential equation with variable coefficients
may be approximated by one with constant coefficients, for example.
Incomplete matrix factorizations may be used in the absence of natural
preconditioners.

The five-point finite difference approximation to Laplace's equation on a
square, two-dimensional domain provides an example. The following
statements use the preconditioned conjugate gradient method preconditioner
M = R'*R, where R is the incomplete Cholesky factor of A.

A = delsq(numgrid('S',50));
b = ones(size(A,1),1);
tol = 1.e-3;
maxit = 10;
R = cholinc(A,tol);
[x,flag,err,iter,res] = pcg(A,b,tol,maxit,R',R);

Only four iterations are required to achieve the prescribed accuracy.

qmr Quasiminimal residual

symmlq Symmetric LQ

Functions for Iterative Methods for Sparse Systems (Continued)

Function Method

Ax b= min b Ax–

Ax b=

M 1– Ax M 1– b=

Sparse Matrix Operations

6-39

Background information on these iterative methods and incomplete
factorizations is available in [2] and [7].

Eigenvalues and Singular Values
Two functions are available which compute a few specified eigenvalues or
singular values. svds is based on eigs which uses ARPACK [6].

These functions are most frequently used with sparse matrices, but they can be
used with full matrices or even with linear operators defined by M-files.

The statement

[V,lambda] = eigs(A,k,sigma)

finds the k eigenvalues and corresponding eigenvectors of the matrix A which
are nearest the “shift” sigma. If sigma is omitted, the eigenvalues largest in
magnitude are found. If sigma is zero, the eigenvalues smallest in magnitude
are found. A second matrix, B, may be included for the generalized eigenvalue
problem

The statement

[U,S,V] = svds(A,k)

finds the k largest singular values of A and

[U,S,V] = svds(A,k,0)

finds the k smallest singular values.

For example, the statements

L = numgrid('L',65);
A = delsq(L);

Functions to Compute a Few Eigenvalues or Singular Values

Function Description

eigs Few eigenvalues

svds Few singular values

Av λBv=

6 Sparse Matrices

6-40

set up the five-point Laplacian difference operator on a 65-by-65 grid in an
L-shaped, two-dimensional domain. The statements

size(A)
nnz(A)

show that A is a matrix of order 2945 with 14,473 nonzero elements.

The statement

[v,d] = eigs(A,1,0);

computes the smallest eigenvalue and eigenvector. Finally,

L(L>0) = full(v(L(L>0)));
x = -1:1/32:1;
contour(x,x,L,15)
axis square

distributes the components of the eigenvector over the appropriate grid points
and produces a contour plot of the result.

The numerical techniques used in eigs and svds are described in [6].

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sparse Matrix Operations

6-41

Performance Limitations
This section describes some limitations of the sparse matrix storage format and
their impact on matrix creation, manipulation, and operations.

Creating Sparse Matrices
The best way to create a sparse matrix is to use the sparse function. If you do
not have prior knowledge of the nonzero indices or their values, it is much more
efficient to create the vectors containing these values and then create the
sparse matrix.

Preallocating the memory for a sparse matrix and filling it in an elementwise
manner causes a significant amount of overhead in indexing into the sparse
array:

S1 = spalloc(1000,1000,100000);
tic;
for n = 1:100000
 i = ceil(1000*rand(1,1));
 j = ceil(1000*rand(1,1));
 S1(i,j) = rand(1,1);
end
toc

Elapsed time is 26.281000 seconds.

Whereas constructing the vectors of indices and values eliminates the need to
index into the sparse array, and thus is significantly faster:

i = ceil(1000*rand(100000,1));
j = ceil(1000*rand(100000,1));
v = zeros(size(i));
for n = 1:100000
 v(n) = rand(1,1);
end

tic;
S2 = sparse(i,j,v,1000,1000);
toc

Elapsed time is 0.078000 seconds.

6 Sparse Matrices

6-42

Manipulating Sparse Matrices
Because sparse matrices are stored in a column-major format, accessing the
matrix by columns is more efficient than by rows. Compare the time required
for adding rows of a matrix 1000 times

S = sparse(10000,10000,1);
tic;
for n = 1:1000
 A = S(100,:) + S(200,:);
end;
toc

Elapsed time is 1.208162 seconds.

versus the time required for adding columns

S = sparse(10000,10000,1);
tic;
for n = 1:1000
 B = S(:,100) + S(:,200);
end;
toc

Elapsed time is 0.088747 seconds.

When possible, you can transpose the matrix, perform operations on the
columns, and then retranspose the result:

S = sparse(10000,10000,1);
tic;
for n = 1:1000
 A = S(100,:)' + S(200,:)';
 A = A';
end;
toc

Elapsed time is 0.597142 seconds.

The time required to transpose the matrix is negligible. Note that the sparse
matrix memory requirements may prevent you from transposing a sparse
matrix having a large number of rows. This might occur even when the number
of nonzero values is small.

Sparse Matrix Operations

6-43

Using linear indexing to access or assign an element in a large sparse matrix
will fail if the linear index exceeds intmax. To access an element whose linear
index is greater than intmax, use array indexing:

S = spalloc(216^2, 216^2, 2)
S(1) = 1
S(end) = 1
S(216^2,216^2) = 1

6 Sparse Matrices

6-44

Selected Bibliography
[1] Amestoy, P. R., T. A. Davis, and I. S. Duff, “An Approximate Minimum
Degree Ordering Algorithm,” SIAM Journal on Matrix Analysis and
Applications, Vol. 17, No. 4, Oct. 1996, pp. 886-905.

[2] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[3] Davis, T.A., Gilbert, J. R., Larimore, S.I., Ng, E., Peyton, B., “A Column
Approximate Minimum Degree Ordering Algorithm,” Proc. SIAM Conference
on Applied Linear Algebra, Oct. 1997, p. 29.

[4] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse Matrices in
MATLAB: Design and Implementation,” SIAM J. Matrix Anal. Appl., Vol. 13,
No. 1, January 1992, pp. 333-356.

[5] Larimore, S. I., An Approximate Minimum Degree Column Ordering
Algorithm, MS Thesis, Dept. of Computer and Information Science and
Engineering, University of Florida, Gainesville, FL, 1998, available at
http://www.cise.ufl.edu/tech_reports/

[6] Lehoucq, R. B., D. C. Sorensen, C. Yang, ARPACK Users’ Guide, SIAM,
Philadelphia, 1998.

[7] Saad, Yousef, Iterative Methods for Sparse Linear Equations. PWS
Publishing Company, 1996.

Index-1

Index

A
additional parameters

BVP example 5-73, 5-76
adjacency matrix

and graphing 6-17
Bucky ball 6-18
defined 6-17
distance between nodes 6-22
node 6-17
numbering nodes 6-19

airflow modeling 6-23
amp1dae demo 5-42
anonymous functions

representing mathematical functions 4-3
arguments, additional 4-30

B
ballode demo 5-28
bandwidth of sparse matrix, reducing 6-29
batonode demo 5-42
bicubic interpolation 2-12
bilinear interpolation 2-12
boundary conditions

BVP 5-63
BVP example 5-70
PDE 5-91
PDE example 5-96

Boundary Value Problems. See BVP
Brusselator system (ODE example) 5-25
brussode demo 5-25
Buckminster Fuller dome 6-18
Bucky ball 6-18
burgersode demo 5-42
BVP 5-61

defined 5-63
rewriting as first-order system 5-69

BVP solver 5-64
basic syntax 5-65
evaluate solution at specific points 5-72
examples

boundary condition at infinity (shockbvp)
5-76

Mathieu’s Equation (mat4bvp) 5-68
multipoint terms 5-84
rapid solution changes (shockbvp) 5-73
singular terms 5-80

initial guess 5-72
multipoint terms 5-84
performance 5-67
representing problems 5-68
singular terms 5-80
unknown parameters 5-72

BVP solver properties
querying property structure 5-89

C
cat

sparse operands 6-26
characteristic polynomial of matrix 2-4
characteristic roots of matrix 2-4
chol

sparse matrices 6-26
Cholesky factorization 1-27

sparse matrices 6-33
closest point searches

Delaunay triangulation 2-24
colamd

minimum degree ordering 6-30
colmmd

column permutation 6-31
colperm 6-29

Index

Index-2

comparing
sparse and full matrix storage 6-6

complex values in sparse matrix 6-6
computational functions

applying to sparse matrices 6-25
computational geometry

multidimensional 2-26
two-dimensional 2-18

contents of sparse matrix 6-13
convex hulls

multidimensional 2-27
two-dimensional 2-20

convolution 2-5
creating

sparse matrix 6-8
cubic interpolation

multidimensional 2-17
one-dimensional 2-11
spline 2-11

curve fitting
polynomial 2-6

curves
computing length 4-27

Cuthill-McKee
reverse ordering 6-29

D
DAE

solution of 5-2
data gridding

multidimensional 2-17
DDE 5-49

rewriting as first-order system 5-54
DDE solver 5-51

basic syntax 5-52
discontinuities 5-57

evaluating solution at specific points 5-56
examples

cardiovascular model (ddex2) 5-58
straightforward example (ddex1) 5-53

performance 5-60
representing problems 5-53

ddex1 demo 5-53
ddex2 demo 5-58
decomposition

eigenvalue 1-38
Schur 1-41
singular value 1-42

deconvolution 2-5
Delaunay tessellations 2-29
Delaunay triangulation 2-20

closest point searches 2-24
Delay Differential Equations. See DDE
density

sparse matrix 6-7
derivatives

polynomial 2-5
determinant of matrix 1-22
diag 6-26
diagonal

creating sparse matrix from 6-10
differential equations 5-1

boundary value problems for ODEs 5-61
initial value problems for DAEs 5-2
initial value problems for DDEs 5-49
initial value problems for ODEs 5-2
partial differential equations 5-89

differential-algebraic equations. See DAE
direct methods

systems of sparse equations 6-36
discontinuities

DDE solver 5-57

Index

Index-3

displaying
sparse matrices 6-15

distance between nodes 6-22
dot product 1-8

E
eigenvalues 1-38

of sparse matrix 6-39
eigenvectors 1-38
electrical circuits

DAE example 5-42
Emden’s equation

example 5-81
error tolerance

effects of too large (ODE) 5-47
machine precision 5-45

event location (ODE)
advanced example 5-32
simple example 5-28

eye

derivation of the name 1-10
sparse matrices 6-25

F
factorization 6-30

Cholesky 1-27
Hermitian positive definite 1-28
incomplete 6-35
LU 1-29
partial pivoting 1-29
positive definite 1-27
QR 1-30
sparse matrices 6-30

Cholesky 6-33
LU 6-30

triangular 6-30
fem1ode demo 5-22
fem2ode demo 5-42
fill-in of sparse matrix 6-22
find function

sparse matrices 6-16
finite element discretization (ODE example) 5-22
first-order differential equations

representation for BVP solver 5-69
representation for DDE solver 5-54

Fourier analysis
concepts 3-2

Fourier transforms
calculating sunspot periodicity 3-3
FFT-based interpolation 2-12
length vs. speed 3-9
phase and magnitude of transformed data 3-7

fsbvp demo 5-76
full 6-26, 6-29
function functions 4-1
functions

mathematical. See mathematical functions
optimizing 4-8

G
Gaussian elimination 1-29
geodesic dome 6-18
geometric analysis

multidimensional 2-26
two-dimensional 2-18

global minimum 4-26
global variables 4-30
gplot 6-18
graph

characteristics 6-21
defined 6-17

Index

Index-4

H
hb1dae demo 5-35
hb1ode demo 5-42
Hermitian positive definite matrix 1-28
higher-order ODEs

rewriting as first-order ODEs 5-5

I
iburgersode demo 5-43
identity matrix 1-10
ihb1dae demo 5-42
importing

sparse matrix 6-12
incomplete factorization 6-35
infeasible optimization problems 4-26
initial conditions

ODE 5-4
ODE example 5-10
PDE 5-91
PDE example 5-96

initial guess (BVP)
example 5-70
quality of 5-72

initial value problems
DDE 5-49
defined 5-4
ODE and DAE 5-2

initial-boundary value PDE problems 5-89
inner product 1-7
integration

double 4-28
numerical 4-27
triple 4-27
See also differential equations

integration interval
DDE 5-52

PDE (MATLAB) 5-93
interpolation 2-9

comparing methods graphically 2-13
FFT-based 2-12
multidimensional 2-16

scattered data 2-34
one-dimensional 2-10
speed, memory, smoothness 2-11
three-dimensional 2-16
two-dimensional 2-12

inverse of matrix 1-22
iterative methods

sparse matrices 6-37
sparse systems of equations 6-36

K
Kronecker tensor matrix product 1-11

L
least squares 6-34
length of curve, computing 4-27
linear algebra 1-4
linear equations

minimal norm solution 1-25
overdetermined systems 1-18
rectangular systems 1-23
underdetermined systems 1-20

linear interpolation
multidimensional 2-17
one-dimensional 2-10

linear systems of equations
direct methods (sparse) 6-36
full 1-13
iterative methods (sparse) 6-36
sparse 6-36

Index

Index-5

linear transformation 1-4
load

sparse matrices 6-12
Lobatto IIIa BVP solver 5-65
LU factorization 1-29

sparse matrices and reordering 6-30

M
mat4bvp demo 5-63
mat4bvp demo 5-68
mathematical functions

as function input arguments 4-1
finding zeros 4-21
minimizing 4-8
numerical integration 4-27
plotting 4-5
representing in MATLAB 4-3

mathematical operations
sparse matrices 6-25

Mathieu’s equation (BVP example) 5-68
matrices 1-4

as linear transformation 1-4
characteristic polynomial 2-4
characteristic roots 2-4
creation 1-4
determinant 1-22
full to sparse conversion 6-7
identity 1-10
inverse 1-22
iterative methods (sparse) 6-37
orthogonal 1-30
pseudoinverse 1-23
rank deficiency 1-20
symmetric 1-7
triangular 1-27

matrix operations
addition and subtraction 1-6
division 1-13
exponentials 1-35
multiplication 1-8
powers 1-34
transpose 1-7

matrix products
Kronecker tensor 1-11

max 6-26
M-files

representing mathematical functions 4-3
minimizing mathematical functions

of one variable 4-8
of several variables 4-9
options 4-13

minimum degree ordering 6-29
Moore-Penrose pseudoinverse 1-23
multidimensional

data gridding 2-17
interpolation 2-16

multidimensional interpolation 2-16
scattered data 2-26

multistep solver (ODE) 5-6

N
nearest neighbor interpolation

multidimensional 2-17
one-dimensional 2-10
three-dimensional 2-16
two-dimensional 2-12

nnz 6-13
nodes 6-17

distance between 6-22
numbering 6-19

Index

Index-6

nonstiff ODE examples
rigid body (rigidode) 5-19

nonzero elements
maximum number in sparse matrix 6-9
number in sparse matrix 6-13
sparse matrix 6-13
storage for sparse matrices 6-5
values for sparse matrices 6-13
visualizing for sparse matrices 6-21

nonzeros 6-13
norms

vector and matrix 1-12
numerical integration 4-27

computing length of curve 4-27
double 4-28
triple 4-27

nzmax 6-13, 6-15

O
objective function 4-1

return values 4-26
ODE

coding in MATLAB 5-10
defined 5-4
overspecified systems 5-43
solution of 5-2

ODE solver
evaluate solution at specific points 5-15

ODE solver properties
fixed step sizes 5-45

ODE solvers 5-5
algorithms

Adams-Bashworth-Moulton PECE 5-6
Bogacki-Shampine 5-6
Dormand-Prince 5-6
modified Rosenbrock formula 5-7

numerical differentiation formulas 5-7
backwards in time 5-47
basic example

stiff problem 5-12
basic syntax 5-7
calling 5-10
examples 5-18
minimizing output storage 5-44
minimizing startup cost 5-44
multistep solver 5-6
nonstiff problem example 5-9
nonstiff problems 5-6
one-step solver 5-6
overview 5-5
performance 5-17
problem size 5-44
representing problems 5-9
sampled data 5-47
stiff problems 5-6, 5-12
troubleshooting 5-43

one-dimensional interpolation 2-10
ones

sparse matrices 6-25
one-step solver (ODE) 5-6
optimization 4-8

helpful hints 4-25
options parameters 4-13
troubleshooting 4-26
See also minimizing mathematical functions

orbitode demo 5-32
Ordinary Differential Equations. See ODE
orthogonal matrix 1-30
outer product 1-7
output functions 4-14
overdetermined

rectangular matrices 1-18
overspecified ODE systems 5-43

Index

Index-7

P
Partial Differential Equations. See PDE
partial fraction expansion 2-7
PDE 5-89

defined 5-90
discretized 5-46

PDE examples (MATLAB) 5-89
PDE solver (MATLAB) 5-91

basic syntax 5-92
evaluate solution at specific points 5-99
examples

electrodynamics problem 5-100
simple PDE 5-94

performance 5-100
representing problems 5-94

PDE solver (MATLAB) properties 5-100
pdex1 demo 5-94
pdex2 demo 5-90
pdex3 demo 5-90
pdex4 demo 5-100
pdex5 demo 5-90
performance

de-emphasizing an ODE solution component
5-46

improving for BVP solver 5-67
improving for DDE solver 5-60
improving for ODE solvers 5-17
improving for PDE solver 5-100

permutations 6-26
plotting

mathematical functions 4-5
polynomial interpolation 2-10
polynomials

basic operations 2-2
calculating coefficients from roots 2-3
calculating roots 2-3
curve fitting 2-6

derivatives 2-5
evaluating 2-4
multiplying and dividing 2-5
partial fraction expansion 2-7
representing as vectors 2-3

preconditioner
sparse matrices 6-35

property structure (BVP)
querying 5-89

pseudoinverse
of matrix 1-23

Q
QR factorization 1-30, 6-34
quad, quadl functions

differ from ODE solvers 5-43
quadrature. See numerical integration

R
rand

sparse matrices 6-25
rank deficiency

detecting 1-32
rectangular matrices 1-20
sparse matrices 6-34

rectangular matrices
identity 1-10
overdetermined systems 1-18
pseudoinverse 1-23
QR factorization 1-30
rank deficient 1-20
singular value decomposition 1-42
underdetermined systems 1-20

reorderings 6-26
for sparser factorizations 6-28

Index

Index-8

LU factorization 6-30
minimum degree ordering 6-29
reducing bandwidth 6-29

representing
mathematical functions 4-3

rigid body (ODE example) 5-19
rigidode demo 5-19
Robertson problem

DAE example 5-35
ODE example 5-42

roots
polynomial 2-3

S
sampled data

with ODE solvers 5-47
save 6-12
scalar

as a matrix 1-5
scalar product 1-8
scattered data

multidimensional interpolation 2-34
multidimensional tessellation 2-26
triangulation and interpolation 2-18

Schur decomposition 1-41
seamount data set 2-19
second difference operator

example 6-9
shockbvp demo 5-73
singular value matrix decomposition 1-42
size

sparse matrices 6-25
solution changes, rapid

making initial guess 5-73
verifying consistent behavior 5-76

solving linear systems of equations
full 1-13
sparse 6-36

sort 6-29
sparse function

converting full to sparse 6-7
sparse matrix

advantages 6-5
and complex values 6-6
Cholesky factorization 6-33
computational considerations 6-25
contents 6-13
conversion from full 6-7
creating 6-7

directly 6-8
from diagonal elements 6-10

density 6-7
distance between nodes 6-22
eigenvalues 6-39
fill-in 6-22
importing 6-12
linear systems of equations 6-36
LU factorization 6-30

and reordering 6-30
mathematical operations 6-25
nonzero elements 6-13

maximum number 6-9
specifying when creating matrix 6-8
storage 6-5, 6-13
values 6-13

nonzero elements of sparse matrix
number of 6-13

operations 6-25
permutation 6-26
preconditioner 6-35
propagation through computations 6-25
QR factorization 6-34

Index

Index-9

reordering 6-26
storage 6-5

for various permutations 6-28
viewing 6-13

triangular factorization 6-30
viewing contents graphically 6-15
viewing storage 6-13
visualizing 6-21

sparse ODE examples
Brusselator system (brussode) 5-25

spconvert 6-12
spdiags 6-10
speye 6-26
spones 6-29
spparms 6-37
sprand 6-26
spy 6-15
spy plot 6-21
startup cost

minimizing for ODE solvers 5-44
stiff ODE examples

Brusselator system (brussode) 5-25
differential-algebraic problem (hb1dae) 5-35
finite element discretization (fem1ode) 5-22
van der Pol (vdpode) 5-20

stiffness (ODE), defined 5-12
storage

minimizing for ODE problems 5-44
permutations of sparse matrices 6-28
sparse and full, comparison 6-6
sparse matrix 6-5
viewing for sparse matrix 6-13

sum

counting nonzeros in sparse matrix 6-29
sparse matrices 6-26

sunspot periodicity
calculating using Fourier transforms 3-3

symamd

minimum degree ordering 6-30
symmetric matrix

transpose 1-7
symrcm

column permutation 6-31
reducing sparse matrix bandwidth 6-29

systems of equations. See linear systems of
equations

T
tessellations, multidimensional

Delaunay 2-29
Voronoi diagrams 2-31

theoretical graph 6-17
example 6-18
node 6-17

threebvp demo 5-63
three-dimensional interpolation 2-16
transfer functions

using partial fraction expansion 2-7
transpose

complex conjugate 1-8
unconjugated complex 1-8

triangular factorization
sparse matrices 6-30

triangular matrix 1-27
triangulation

closest point searches 2-24
Delaunay 2-20
scattered data 2-18
Voronoi diagrams 2-25
See also tessellation

tricubic interpolation 2-16
trilinear interpolation 2-16
troubleshooting (ODE) 5-43

Index

Index-10

twobvp demo 5-63
two-dimensional interpolation 2-12

comparing methods graphically 2-13

U
underdetermined

rectangular matrices 1-20
unitary matrices

QR factorization 1-30
unknown parameters (BVP) 5-72

example 5-68

V
van der Pol example 5-20

simple, nonstiff 5-9
simple, stiff 5-12

vdpode demo 5-20
vector products

dot or scalar 1-8
outer and inner 1-7

vectors
column and row 1-5
multiplication 1-7

visualizing
sparse matrix 6-21

visualizing solver results
BVP 5-71
DDE 5-55
ODE 5-11
PDE 5-98

Voronoi diagrams
multidimensional 2-31
two-dimensional 2-25

Z
zeros

of mathematical functions 4-21
zeros

sparse matrices 6-25

	Matrices and Linear Algebra
	Function Summary
	Matrices in MATLAB
	Creating Matrices
	Adding and Subtracting Matrices
	Vector Products and Transpose
	Multiplying Matrices
	The Identity Matrix
	The Kronecker Tensor Product
	Vector and Matrix Norms

	Solving Linear Systems of Equations
	Computational Considerations
	General Solution
	Square Systems
	Overdetermined Systems
	Underdetermined Systems

	Inverses and Determinants
	Overview
	Pseudoinverses

	Cholesky, LU, and QR Factorizations
	Cholesky Factorization
	LU Factorization
	QR Factorization

	Matrix Powers and Exponentials
	Eigenvalues
	Singular Value Decomposition

	Polynomials and Interpolation
	Polynomials
	Polynomial Function Summary
	Representing Polynomials
	Polynomial Roots
	Characteristic Polynomials
	Polynomial Evaluation
	Convolution and Deconvolution
	Polynomial Derivatives
	Polynomial Curve Fitting
	Partial Fraction Expansion

	Interpolation
	Interpolation Function Summary
	One-Dimensional Interpolation
	Two-Dimensional Interpolation
	Comparing Interpolation Methods
	Interpolation and Multidimensional Arrays
	Triangulation and Interpolation of Scattered Data
	Tessellation and Interpolation of Scattered Data in Higher Dimensions

	Selected Bibliography

	Fast Fourier Transform (FFT)
	Introduction
	Finding an FFT
	Example: Using FFT to Calculate Sunspot Periodicity

	Magnitude and Phase of Transformed Data
	FFT Length Versus Speed
	Function Summary

	Function Functions
	Function Summary
	Representing Functions in MATLAB
	Plotting Mathematical Functions
	Minimizing Functions and Finding Zeros
	Minimizing Functions of One Variable
	Minimizing Functions of Several Variables
	Fitting a Curve to Data
	Setting Minimization Options
	Output Functions
	Finding Zeros of Functions
	Tips
	Troubleshooting

	Numerical Integration (Quadrature)
	Example: Computing the Length of a Curve
	Example: Double Integration

	Parameterizing Functions Called by Function Functions
	Providing Parameter Values Using Nested Functions
	Providing Parameter Values to Anonymous Functions

	Differential Equations
	Initial Value Problems for ODEs and DAEs
	ODE Function Summary
	Introduction to Initial Value ODE Problems
	Solvers for Explicit and Linearly Implicit ODEs
	Examples: Solving Explicit ODE Problems
	Solver for Fully Implicit ODEs
	Example: Solving a Fully Implicit ODE Problem
	Changing ODE Integration Properties
	Examples: Applying the ODE Initial Value Problem Solvers
	Questions and Answers, and Troubleshooting

	Initial Value Problems for DDEs
	DDE Function Summary
	Introduction to Initial Value DDE Problems
	DDE Solver
	Solving DDE Problems
	Discontinuities
	Changing DDE Integration Properties

	Boundary Value Problems for ODEs
	BVP Function Summary
	Introduction to Boundary Value ODE Problems
	Boundary Value Problem Solver
	Changing BVP Integration Properties
	Solving BVP Problems
	Using Continuation to Make a Good Initial Guess
	Solving Singular BVPs
	Solving Multipoint BVPs

	Partial Differential Equations
	PDE Function Summary
	Introduction to PDE Problems
	MATLAB Partial Differential Equation Solver
	Solving PDE Problems
	Evaluating the Solution at Specific Points
	Changing PDE Integration Properties
	Example: Electrodynamics Problem

	Selected Bibliography

	Sparse Matrices
	Function Summary
	Introduction
	Sparse Matrix Storage
	General Storage Information
	Creating Sparse Matrices
	Importing Sparse Matrices from Outside MATLAB

	Viewing Sparse Matrices
	Information About Nonzero Elements
	Viewing Sparse Matrices Graphically
	The find Function and Sparse Matrices

	Adjacency Matrices and Graphs
	Introduction to Adjacency Matrices
	Graphing Using Adjacency Matrices
	The Bucky Ball
	An Airflow Model

	Sparse Matrix Operations
	Computational Considerations
	Standard Mathematical Operations
	Permutation and Reordering
	Factorization
	Simultaneous Linear Equations
	Eigenvalues and Singular Values
	Performance Limitations

	Selected Bibliography

	Index
	A���
	B���
	C���
	D���
	E���
	F���
	G���
	H���
	I���
	K���
	L���
	M���
	N���
	O���
	P���
	Q���
	R���
	S���
	T���
	U���
	V���
	Z���

