
Summary Sec. 1.3:
The interacting Green’s function

Feynman diagrams

From Sec. 1.2.1: Remember the most important properties of
the one-particle Green’s function for non-interacting electrons:

G0
αβ(r, t; r

′t′) = δα,βG
0(r − r′; t − t′) .

That means:

1. As long as the interaction between the electrons is
spin-independent, G0 is diagonal in spin space.

2. As long as no relativistic effects concerning the interaction
are taken into account, G0 is temporally homogenous.

3. As long as the electrons are not subjected to any local
(external) potential, G0 is spatially homogeneous.

If the above conditions are fulfilled, the corresponding
properties are also valid for a system of interacting
electrons:

Gαβ(r, t; r
′t′) = δα,βG(r − r′; t − t′) .

Perturbation expansion of G, based on the non-interacting
functions G0 ? What does that mean?

Gαβ =
∞∑

ν=0

fν(· · ·G
0
αβ · · · V̂ · · ·)

ν means the order of the term with respect of the interaction
operator V̂ (”how often appears V̂ in the term?”).
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The electron-electron interaction operator:

V̂ = V (r − r′; t − t′) =
e2

|r − r′|
δ(t − t′)

with

V (r − r′) =
1

Ω

∑

k

V (k) eik·(r−r
′) and V (k) =

4πe2

k2
.

What’s about the divergence of V (k) for k = 0 ?

V (0) refers to the spatial mean value of the potential energy
of the electrons. Quantummechanically, such a constant energy
value can always be shifted to zero without any change of the
physical content of the Schrödinger equation.

Therefore, for all following formulas, one can write per definition:

V (k = 0) = 0

Feynman diagrams in (k, ω) space:

• R. Feynman (1918-1988), Nobel prize 1965, invented the
diagram technique for his work in quantum electrodynamics;
meanwhile, it has become extremely useful in many other
fields in physics.

• Elements of Feynman diagrams:

• Rule 1: Draw all topographically different, connected
diagrams which consist von ν interaction lines and 2ν + 1
particle lines (propagator lines) (ν means the order of the
diagram).
Each graph has to be entered and left by one and ony one

particle line.
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• Each particle line means a non-interacting Green’s function
which is named by a wave vector, a frequency, and two spin
indices denoting the spin orientation of the electron at the

beginning and the end of the propagator.

• At each vertex, momentum and energy conservation has to
be fulfilled.

• In case of a spin-independent interaction (as, e.g., a Coulomb
interaction), no spin-flip must happen at the vertices.

Mathematical evaluation:

• Each particle line is replaced by a non-interacting Green’s
function G0

αβ(k, ω), each interaction line by a Fourier
coefficient of the bare Coulomb potential V (q).

• Summations over all internal spin indices and integrations
over all internal wave vectors.

• Each diagram of order ν has to be multiplied by the factor
(

i

h̄

)

ν (2π)−4ν (−1)F

with F as the number of closed particle loops in the
diagram.

• Each particle line looking like

has to be replaced by eiωη G0(k, ω).

• After all integrations, the limit η → 0 has to be performed.
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All Feynman diagrams of zeroth, first, and second order,
and some examples of Feynman diagrams of third order:
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Evaluation of the graphs of zeroth and first order:

[(k, ω) → k etc.]

Zeroth-order term (a):

Ga
αβ(k) = δαβG

0(k)

First-order term (b):

Gb
αβ(k) =

i

h̄

1

(2π)4
(−1) V (0)

︸ ︷︷ ︸

=0

[

G0(k)
]2 ∑

γ

∑

σ
δαγδγβδσσ

︸ ︷︷ ︸

2δαβ

∫

d4k1e
iω1ηG0(k1)= 0 .

Tadpole terms do not contribute to the
Green’s function!

First-order term (c):

Gc
αβ(k) =

i

h̄

1

(2π)4

[

G0(k)
]2 ∑

γ

∑

σ
δαγδγσδσβ

︸ ︷︷ ︸

δαβ

∫

d4q V (q)ei(ω−ω1)ηG0(k − q)

= δα,β

i

h̄

1

(2π)4

[

G0(k, ω)
]2
∫

Ω
d3q V (q)

∫

dω1 e−iω1η G0(k − q, ω − ω1) .

(1)
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Selfenergy and proper selfenergy:

→ central terms in electron theory

If we look on the table of Feynman diagrams, we see that the
first-order term Gc

αβ has corresponding higher-order terms

leading to an infinite sum of graphs as

The same type of interaction (”Wechselwirkungs-Motiv” in
German) appears zero-times, once, twice, threetimes etc.
Graphically, this can be written as

Σ(M) is called the selfenergy insertion of the interaction type
M into the electron particle line.

Please note: Σ(M) is not ”the” electron selfenergy but only
the M th part of it. Actually, the type of interaction shown in the
above figures is the simplest approximation to the selfenergy:
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The definition of a so-called proper selfenergy term can also
easily be explained in a graphic way:

Such a definition of proper selfenergy terms enables the repre-
sentation of the inifite sum of diagrams in a recursive way:

Mathematically, such a Dyson equation means an integral equa-
tion in the {r; t} space and an algebraic equation in the {k; ω}
space: the corresponding translation into a mathematical for-
mula is extraordinary simple [once more: k means (k, ω)]:

G(k) = G0(k) + G(k) Σpr(k) G0(k) .

This equation can easily be solved by writing

G(k) =
G0(k)

1 − Σpr(k)G0(k)
=

1

[G0(k)]−1 − Σpr(k)
,

or, again diagramatically:
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How does the formula for the simplest approximation to Σpr

look like? This can be got out by remembering that the first-
order Green’s function term (c) can be written in a twofold way:
firstly, according to Eq. (1) of this summary, as

Gc(k, ω) = G0(k, ω)

×







i

h̄

1

(2π)4

∫

Ω
d3q V (q)

∫

dω1 e−iω1η G0(k − q, ω − ω1)






G0(k, ω) .

and secondly, directly from the corresponding diagram, as

Gc(k, ω) = G0(k, ω) Σpr(c)(k, ω) G0(k, ω) .

The result:

Σpr(c)(k, ω) =
i

h̄

1

(2π)4

∫

Ω
d3q V (q)

∫

dω1 e−iω1η G0(k−q, ω−ω1) .

(2)

• How can this equation be further evaluated (especially what
concerns the integration over ω1 ?
→ see the following appendix.

• What is the physical content of this equation?
→ see Sec. 1.4.
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