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1 Introduction

We derive expressions for the potential and the magnetic field of prolate and
oblate spheroids with permeability µ2 inserted into a static homogeneous mag-
netic field in a medium with permeability µ1. Both directions, that of the
primary field and that of the symmetry axis, are completely arbitrary. The
potential and the field components as well as the arguments of these functions
are expressed in Cartesian coordinates. Though the centre of the spheroid is
at the origin, it is easy to change all the formulas for another position of the
spheroidal centre. This grants more freedom, flexibility and ease for building
complex structures composed of arbitrarily arranged spheroids.

Our derivations start from previous work (Kuchel and Bulliman, 1989) where
the two problems have been solved for spheroids in prolate or oblate spheroidal
coordinates with the z-axis as the symmetry axis and a homogeneous static
external field of arbitrary direction. The potentials and the fields have also
been expressed in Cartesian coordinates except for three functions in cosh η (in
the prolate case) or in sinh η (in the oblate case), where η is the quasi-radial
variable. We succeeded in replacing these hyperbolic functions by square root
expressions involving Cartesian coordinates. These square roots depend on the
square of the radius, a rotation invariant, and on z2, which is invariant under
rotations around the symmetry axis. All other terms of the potentials depend
on similar invariants. These dependences permit one to go from the z−axis to
an arbitrary vector as the symmetry axis. The gradients of the potentials are
needed to determine the field expressions. For this purpose the gradients of
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the three functions occuring in the potentials are computed and simplified. All
these expressions are derived in the third and fourth section.

When deriving these potentials and fields we had in mind magnetic resonance
imaging (MRI) and magnetic resonance spectroscopy (MRS). These make use
of the Larmor resonance signals emitted by protons precessing in the local mag-
netic induction, which is excited by an external static magnetic field. In general,
the MR signal is highly sensitive to the magnetic properties of the matter sur-
rounding the nuclei. Theoretical studies of the resonance signal behaviour in
situations of varying magnetic susceptibilities and dynamic physiological pro-
cesses as for instance diffusion utilize the analytical magnetostatic solutions of
specific geometrical bodies. Models of structures like cells or blood vessels can
be built up from arrays of simple magnetic bodies. In particular prolate and
oblate spheroids are used as such building blocks to analyse the local magnetic
field distribution in the vicinity of blood cells in MRS of cells (Kuchel and
Bulliman, 1989). The magnetic susceptibilities of biological matter are small.
Hence the total field a proton experiences consists of the primary field and of
the perturbation fields of all the spheroids used to model the structure under
investigation. Since the magnetic susceptibilities of the biological materials are
small the interaction between the various spheroids may be neglected. So the
proposed approach described below gives a good approximation.

In this way a toolbox for MRI and MRS resonance signal analyses with
flexible instruments is provided capable of modelling several biological tissues
of interest such as trabecular bone, microvascular network and general interfaces
of adjacent tissues. We give only a short survey of such applications in the fifth
section. More detailed accounts of such investigations will be submitted to
pertinent journals of medical physics.

Conclusions regarding the results obtained and listing of motivation and
other applications are contained in the sixth section.

2 Primary and Total Field

The primary field is a homogeneous static magnetic field. In the general case
this is written as

H0 = (H0x, H0y, H0z) (1)
= H0 (sinβ cosα, sinβ sinα, cosβ)

with the corresponding potential

Φ0(x, y, z) = − (H0x x + H0y y + H0z z) (2)

A spheroid with magnetic permeability µ2 = µ0(1 + χ2) is surrounded by an
infinite medium with magnetic permeability µ1 = µ0(1+χ1). The total external
field H1 and the corresponding potential Φ1 must assume the asymptotic values

lim
|r|→∞

H1 = H0, lim
|r|→∞

Φ1 = Φ0. (3)

The presence of the spheroid induces perturbation fields in the exterior and
the interior, with potentials Φ1r and Φ2r. The corresponding total fields, Φ1 =
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Φ1r + Φ0 and Φ2 = Φ2r + Φ0 must fulfil the following two continuity conditions
at the surface of the spheroid:

r = rs : Φ1 = Φ2, µ1 (s · ∇Φ1)
∣∣∣
r=rs

= µ2 (s · ∇Φ2)
∣∣∣
r=rs

. (4)

s is the normal to the surface of the spheroid. All these conditions define a
unique solution to be found in the next chapters for prolate and oblate spheroids.

3 A Prolate Spheroid in a Homogeneous Mag-
netic Field

For a prolate spheroid (semi-axes ap, ap, cp; cp > ap) with magnetic permeability
µ2 in a medium with magnetic permeability µ1 and in an external homogeneous
field (1) the boundary value problem has been solved in prolate spheroidal co-
ordinates (Kuchel and Bulliman, 1989). The symmetry axis is the z-axis. The
direction of the primary field is arbitrary (cf. eq.(1)). We repeat just the es-
sential equations of this reference. Then we use these expressions to go over
to Cartesian coordinates. Finally these expressions are generalized to the case
where both the symmetry axis and that of the primary field are completely
arbitrary.

3.1 The reaction field in prolate spheroidal coordinates

At first the boundary value problem is solved in prolate spheroidal coordinates
(s., for example, (Moon and Spencer, 1988), Fig.1.06).

x = ep sinh η sin θ cosψ, (5)
y = ep sinh η sin θ sinψ, (6)
z = ep cosh η cos θ; (7)

ep =
√
c2p − a2

p (8)

for a spheroid, whose symmetry axis coincides with the z-axis. The potential
equation can be solved by separation.

Φ(η, θ, ψ) = H(η) Θ(θ) Ψ(ψ). (9)

The particular solutions of the resulting ordinary differential equation for the
quasi-radial functions H(η) are Legendre polynomials or functions in cosh η.
The solutions Θ(θ) must be Legendre polynomials in cos θ; Legendre functions
in cos θ are singular at θ = 0, π; so they must be excluded. In each term the order
n of the quasi-radial functions must agree with that of the Legendre polynomial
Pmn (cos θ). Ψ(ψ) are the trigonometric functions cos(mψ) or sin(mψ).

The interface separating the two domains is the spheroid:

x2

a2
p

+
y2

a2
p

+
z2

c2p
= 1 ⇔ η = ηp = Arcoth(cp/ap). (10)

One starts inserting the spheroidal coordinates into the primary potential
(2). Thereafter these are replaced by the corresponding particular solutions of
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the potential equation using

P 0
1 (cos θ) = cos θ, P 1

1 (cos θ) = sin θ; P 0
1 (cosh η) = cosh η, P 1

1 (cosh η) = sinh η
(11)

to give:

Φ0 = − ep P
1
1 (cosh η) P 1

1 (cos θ) (H0x cosψ +H0y sinψ)
− ep P

0
1 (cosh η) P 0

1 (cos θ) H0z. (12)

The perturbation field in the exterior must vanish at infinity. This is ensured
by the Legendre functions of the quasi-radial variable in the following series
expansions:

η ≥ ηp :

Φ1r =
1∑

m=0

1A
m
1 Qm1 (cosh η)Pm1 (cos θ) cos(mψ) +

+ 1B
1
1 Q

1
1(cosh η)P 1

1 (cos θ) sin(mψ). (13)

In the interior the total field must be finite at the origin. This excludes the
Legendre functions for the quasi-radial variable.

η ≤ ηp :

Φ2 =
1∑

m=0

2A
m
1 Pm1 (cosh η)Pm1 (cos θ) cos(mψ) +

+ 2B
1
1 P

1
1 (cosh η)P 1

1 (cos θ) sin(mψ). (14)

These sums are inserted into the two continuity conditions (4). The normal
derivative s · ∇ becomes just the derivation ∂/∂η up to a metric coefficient,
which cancels on both sides of the equation. In view of the orthogonality of
the Legendre polynomials Pmn (cos θ) and of the trigonometric functions these
two conditions involving sums are decomposed into three system of two linear
equations for the expansion coefficients. Each system comprises just a single
pair of the parameters n and m. Solving these systems gives the expansion
coefficients listed below.

One may start with a more general expansion comprising infinite sums in
n and m. One inserts these infinite sums into the two continuity conditions
(4). The aforementioned orthogonality leads to an infinite system of pairs of
linear equations. But for n 6= 1 and m 6= 0 nor 6= 1 these systems are linear
homogeneous equations for the unknown coefficients 2A

m
n , 2B

m
n , 1A

m
n and 1B

m
n

giving zero solutions. So the simple approach as well as the more complicated
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one give the same solutions:

1A
0
1 =

ep H0z (µ2 − µ1) P 0
1 P 0′

1

µ2 P 0′
1 Q0

1 − µ1 P 0
1 Q0′

1

:= ep H0z L0, (15)

2A
0
1 = ep H0z µ1

(
P 0′

1 Q0
1 − P 0

1 Q0′

1

µ1 P 0
1 Q0′

1 − µ2 P 0′
1 Q0

1

)
:= ep H0z M0; (16)

1A
1
1 =

epH0x (µ2 − µ1) P 1
1 P 1′

1

µ2 P 1′
1 Q1

1 − µ1 P 1
1 Q1′

1

:= ep H0x L1, (17)

1B
1
1 = ep H0y L1, (18)

2A
1
1 = ep H0x µ1

(
P 1′

1 Q1
1 − P 1

1 Q1′

1

µ1 P 1
1 Q1′

1 − µ2 P 1′
1 Q1

1

)
:= ep H0x M1, (19)

2B
1
1 = ep H0y M1. (20)

The argument of all the Legendre polynomials and functions in the above equa-
tions is cosh ηp. The solutions have been obtained with the help of Mathemat-
ica. The corresponding notebook named ProlateCoefficients.nb can be found
at a website (Kraiger and Schnizer, 2011). The solutions agree with those of
(Kuchel and Bulliman, 1989). In the same reference it has been shown that the
Legendre functions and polynomials may be replaced with elementary functions

Q0
1(cosh η) = cosh η Arcoth(cosh η)− 1,

Q1
1(cosh η) = sinh η Arcoth(cosh η)− coth η. (21)

The above results are inserted into eq.(14); the total interior potential comes
out as that of a homogeneous field:

η ≤ ηp :
Φ2 = ep M1 (H0x cosψ +H0y sinψ) sinh η sin θ

+ ep M0 H0z cosh η cos θ.
Φ2(x, y, z) = M1 (H0x x + H0y y) +M0 H0z z. (22)

Similarly one gets for the exterior reaction field:

η ≥ ηp :
Φr1 = ep (H0x cosψ +H0y sinψ)× (23)

× L1 (sinh η Arcoth(cosh η)− coth η) sin θ
+ ep H0z L0 (cosh η Arcoth(cosh η)− 1) cos θ ,

= L1

(
H0x x + H0y y

)(
f1(η) − f2(η)

)
+ L0 H0z z

(
f1(η)− f3(η)

)
,
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with

f1(η) = Arcoth(cosh η), (24)

f2(η) =
cosh η
sinh2 η

, (25)

f3(η) =
1

cosh η
. (26)

The functions f1(η), f2(η), f3(η) above depend solely on the quasi-radial variable
cosh η. In the exterior of the spheroid is η ≥ ηp > 1; so the three functions
just introduced are well-defined, real, finite and non-zero in the exterior of the
spheroid.

Inserting the substitutions (11), (21) and their derivatives into the definitions
of the constants L0, L1,M0,M1 above and going over to the susceptibilities the
expressions for these constants become after some algebra:

L0 =
(χ1 − χ2) cosh ηp

1 + χ2 − (1 + χ1) coth2 ηp + (χ1 − χ2) cosh(ηp)Arcoth(cosh ηp)
,

(27)

L1 =
χ1 − χ2

(2 + χ1 + χ2) csch2ηp sechηp + (χ1 − χ2)
(
Arcoth(cosh ηp)− sechηp

) ,
(28)

M0 = − 1 + χ1

1 + χ1 + (χ1 − χ2) sinh2 ηp (1− cosh ηp Arcoth(cosh ηp))
,

(29)

M1 = − 2 (1 + χ1)
(2 + χ1 + χ2) − (χ1 − χ2) sinh2 ηp (1− cosh ηp Arcoth(cosh ηp))

.

(30)

If both media are the same the above coefficients become:

χ2 → χ1 : L0 → 0, L1 → 0, M0 → −1, M1 → −1. (31)

The exterior reaction potential, eq.(23), then assumes the value zero. The total
interior potential, eq.(22), becomes equal to the primary potential, eq.(2). So
the interior reaction potential is:

Φ2r(x, y, z) = Φ2(x, y, z) − Φ0(x, y, z) =
=

(
H0x x + H0y y

)
(M1 + 1) + H0z z (M0 + 1). (32)

3.2 The reaction field in Cartesian coordinates

We want expressions for the potential which depend on x, y, z only. So cosh η
must be replaced with a corresponding expression in Cartesian coordinates.
From eqs.(5) to (7) one finds:

cosh2 η =
1
2

1 +
r2

e2
p

±

√(
1 +

r2

e2
p

)2

− 4
z2

e2
p

 .
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Intense numerical studies show that only the plus sign applies. So we have:

cosh η =
1√
2

√
1 +

r2

e2
p

+ wp(r, ez) := up(r, ez)/
√

2, (33)

wp(r, ez) =

√(
1 +

r2

e2
p

)2

− 4
z2

e2
p

=

√(
1 +

r2

e2
p

)2

− 4
(ez · r)2

e2
p

, (34)

r2 = x2 + y2 + z2. (35)

Inserting this expression for cosh η into eqs.(24) to (26)

f1(r, ez) = Arcoth(up(r, ez)/
√

2), (36)

f2(r, ez) =
√

2 up(r, ez)
up(r, ez)2 − 2

, (37)

f3(r, ez) =
√

2
up(r, ez)

. (38)

and inserting the resulting expressions for f1, f2, f3 into eq.(23) we get the fi-
nal expression for the exterior potential as a pure function of the Cartesian
coordinates x, y, z:

Φr1(x, y, z) = L1 (H0x x +H0y y)
(
f1(r, ez

)
− f2(r, ez)) +

+ L0 H0z z
(
f1(r, ez) − f3(r, ez)

)
. (39)

As stated after eqs.(26) these functions encounter no problems in the exterior
of the spheroid. The interior potential, eq.(32), is already a simple function of
the Cartesian coordinates.

3.3 Potential and field for an arbitrary direction of the
spheroidal symmetry axis

For applications it is necessary to consider spheroids whose symmetry axis has
an arbitrary direction. The corresponding expressions for the potential will be
derived from those given in eqs.(39) and (32). These are rewritten in a way
suggesting a general form:

Φr1(x, y, z) = (H0⊥ · r⊥) L1 (f1(r, ez)− f2(r, ez)) +
+ (H0‖ · r‖) L0 (f1(r, ez)− f3(r, ez)),

(40)
Φr2(x, y, z) = (H0⊥ · r⊥) (M1 + 1) + (H0‖ · r‖)(M0 + 1).

The vectors H0‖, r‖ give the projections of the corresponding vector parallel to
the symmetry axis, i.e. the z-axis. Similarly, the vectors H0⊥ = (H0x, H0y, 0),
r⊥ = (x, y, 0) give the vector corresponding to the projection onto the x,y-plane,
which is perpendicular to the symmetry axis.

Now it is easy to accomplish the substitutions for an arbitrary direction of
the symmetry axis given by the unit vector n. Any vector s may be decomposed
into a component parallel to n and one perpendicular to that vector:

s = s‖ + s⊥ = n(s · n) +
(
s − n(s · n)

)
. (41)
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In wp(r, ez), eq.(34), only the variable z = (ez · r), the component of the
position vector along ez, must be replaced by (n · r) giving:

cosh η =
1√
2

√
1 +

r2

e2
p

+ wp(r,n) := up(r,n)/
√

2, (42)

wp(r,n) =

√(
1 +

r2

e2
p

)2

− 4
(n · r)2

e2
p

. (43)

The functions fi, eqs.(36) to (38), remain the same except that up(r, ez) and
wp(r, ez) must be replaced with up(r,n) and wp(r,n) giving the new functions
fi(r,n):

f1(r,n) = Arcoth(up(r,n)/
√

2), (44)

f2(r,n) =
√

2 up(r,n)(
up(r,n)

)2 − 2
, (45)

f3(r,n) =
√

2
up(r,n)

. (46)

Inserting all these new functions into eqs.(40) gives the potential for a prolate
spheroid whose symmetry axis is given by the arbitrary unit vector n:

Φr1(x, y, z) = L1 (H0 · r)
(
f1(r,n) − f2(r,n)

)
+ (47)

+ (H0 · n)(n · r)
[

L0

(
f1(r,n) − f3(r,n)

)
−

− L1

(
f1(r,n) − f2(r,n)

)]
,

Φr2(x, y, z) = (H0 · r) (M1 + 1) + (H0 · n)(n · r) [M0 − M1]. (48)

The evaluation of the magnetic field requires the gradients of the functions
fi(r,n). These are done by symbolic computation. Since the resulting expres-
sions consist again of polynomials and the square roots already occuring in the
potential it is possible to find simpler expressions. These are again checked
against the original gradients by symbolic computation. All gradients are pro-
portional to the vector rp:

rp :=
√

2
e2
p

(
r− 2n

(n · r)
[up(r,n)]2

)
. (49)

∇f1(r,n)−∇f2(r,n) =
up(r,n)
wp(r,n)

4
[(up(r,n))2 − 2]2

rp, (50)

∇f1(r,n)−∇f3(r,n) =
2

[2− (up(r,n))2] up(r,n) wp(r,n)
rp. (51)

The corresponding checks are contained in the notebook ProlatePotDeriva-
tives.nb (Kraiger and Schnizer, 2011).

The vector rp and all the gradients listed above are well-defined and real
in the exterior of the spheroid, including the interface, where η ≥ ηp, which
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is equivalent with the condition (55) in Cartesian coordinates. In fact, a more
detailed analysis shows that on the interface:

up(r,n) =
√

2 cosh ηp, (52)

wp(r,n) =
√
z4/
(
ep cosh(ηp)

)4 − 2z2/e2
p + cosh4 ηp (53)

sinh2 ηp ≤ wp(r,n) ≤ cosh2 ηp. (54)

For example, for a = 1, c = 2, (ep =
√

3) one finds
√

2 cosh ηp = 2
√

2/3 =
1.63... >

√
2; 1/3 ≤ wp(r,n) ≤ 4/3.

3.4 Final formulas for the field

So the final formulas for the reaction field excited in an arbitray homogeneous
primary field H0 by a prolate spheroid with arbitrary symmetry axis given by
a unit vector n is in the exterior:

r2 − (n · r)2

a2
p

+
(n · r)2

c2p
≥ 1 : (55)

Hr1(x, y, z) = − H0 L1

(
f1(r,n)− f2(r,n)

)
−

− n(H0 · n)
[
L0 (f1(r,n)− f3(r,n)

)
− L1

(
f1(r,n)− f2(r,n)

)]
− rp (H0 · r) L1

up(r,n)
wp(r,n)

4
[(up(r,n))2 − 2]2

− rp (H0 · n)(r · n) L0
2

[2− (up(r,n))2]up(r,n) wp(r,n)

+ rp (H0 · n)(r · n) L1
4 up(r,n)

wp(r,n) [(up(r,n))2 − 2]2
; (56)

and in the interior:

r2 − (n · r)2

a2
p

+
(n · r)2

c2p
≤ 1 :

Hr2(x, y, z) = − H0 (M1 + 1) − n (H0 · n) [M0 − M1]. (57)

3.5 Concluding remarks for the field of the prolate spheroid

A prolate spheroid is inserted into an external homogeneous magnetic field H0

of arbitrary direction. Its permeability is µ2 = µ0(1+χ2); while that of the sur-
rounding medium is µ1 = µ0(1+χ1). The spheroid has semi-axes ap, ap, cp, cp >
ap; these determine the excentricy ep and the quasi-radial parameter ηp, eqs.(8)
and (10). These in turn determine the coefficients L0, L1,M0,M1, eqs.(27) to
(30). The spheroid’s symmetry axis is the arbitrary unit vector n. The reac-
tion field due to the presence of the spheroid in the external field is given in
Cartesian coordinates, r = (x, y, z), by eq.(56) in the exterior, by eq.(57) in the
interior. The functions f1(r,n), f2(r,n), f3(r,n), eqs.(44) to (46), depend on the
variables up(r,n) and wp(r,n), eqs.(42) and (43). The needed gradients of the
fi(r,n) are given in eqs.(50) and (51) . Eqs.(56) and eq.(57) are for a spheroid,
whose centre is at the origin. If the centre is at the point r0 = (x0, y0, z0) then
the vector r must replaced simply with r− r0.
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4 A Single Oblate Spheroid in a Homogeneous
Magnetic Field

An oblate spheroid (semi-axes ao, ao, co; co < ao) with magnetic permeability
µ2 = µ0(1+χ2) is in a medium with magnetic permeability µ1 = µ0(1+χ1) and
in an external field (1). The solution of this boundary value problem has been
sketched in (Kuchel and Bulliman, 1989). We use a notation for the coefficients
which differs somewhat from that employed in this reference. The derivations
are quite analogous to those performed in the previous chapter. The main
difference is the different analytical form of the quasi-radial particular solutions.

4.1 The reaction field in oblate spheroidal coordinates

The spheroid induces a reaction field represented by the potentials Φr1(x, y, z)
in the exterior, by Φr2(x, y, z) in the interior. This problem has been solved in
(Kuchel and Bulliman, 1989) in oblate spheroidal coordinates (s., for example,
(Moon and Spencer, 1988), Fig.1.07).

x = eo cosh η sin θ cosψ, (58)
y = eo cosh η sin θ sinψ, (59)
z = eo sinh η cos θ; (60)

eo =
√
a2
o − c2o (61)

for a spheroid, whose symmetry axis coincides with the z-axis. Φ0, Φ1 = Φ0 +
Φr1, Φ2 = Φ0 + Φr2 must be solutions of the potential equation in oblate
coordinates. This partial differential equation can be solved by separation.
The particular solutions of the separated equations suitable for the problem
under investigation are Legendre polynomials or functions in i sinh η; Legendre
polynomials in cos θ; trigonometric functions in ψ.

The interface separating the two domains is the spheroid:

x2

a2
o

+
y2

a2
o

+
z2

c2o
= 1 ⇔ η = ηo = Artanh(co/ao). (62)

The potential and the normal component of the magnetic induction must be
continuous across this interface. So conditions (4) apply again.

One starts with expansion in the particular solutions fulfilling the boundary
conditions. We already know from the previous chapter that only the parameter
values n = 1, m = 0 and 1 are needed. We want to get real expansion coeffi-
cients. According to (Kuchel and Bulliman, 1989), eqs.(A64), the Pm1 (i sinh η)
are purely imaginary, the Qm1 (i sinh η) are real:

P 0
1 (i sinh η) = i sinh η,
P 1

1 (i sinh η) = i cosh η; (63)
Q0

1(i sinh η) = sinh η arccot(sinh η) − 1,
Q1

1(i sinh η) = cosh η arccot(sinh η) − tanh η. (64)

These reality properties are taken into account below by inserting imaginary
units in the expansions for the potentials. The primary potential is expressed
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as:

Φ0 = i eo H0z P
0
1 (i sinh η) P 0

1 (cos θ) −
− i eo (H0x cosψ +H0y sinψ) P 1

1 (i sinh η) P 1
1 (cos θ) (65)

by eqs.(58) to (60) and (63). The total potentials are assumed as:

η ≥ ηo :

Φ1 = Φ0 +
1∑

m=0

1A
m
1 Qm1 (i sinh η)Pm1 (cos θ) cos(mψ) +

+ 1B
1
1 Q

1
1(i sinh η)P 1

1 (cos θ) sinψ ; (66)
η ≤ ηo :

Φ2 =
1∑

m=0

i 2A
m
1 Pm1 (i sinh η)Pm1 (cos θ) cos(mψ) +

+ i 2B
1
1 P

1
1 (i sinh η)P 1

1 (cos θ) sinψ . (67)

The sums are inserted into the continuity conditions (4). In view of the
orthogonality of the Legendre polynomials Pmn (cos θ) and of the trigonomet-
ric functions these two conditions involving sums are decomposed into three
independent systems with the solutions:

1A
0
1 = i

eo H0z (µ2 − µ1) P 0
1 P 0′

1

µ2 P 0′
1 Q0

1 − µ1 P 0
1 Q0′

1

:= eo H0z L̄0, (68)

2A
0
1 = eo H0z µ1

(
P 0′

1 Q0
1 − P 0

1 Q0′

1

µ2 P 0′
1 Q0

1 − µ1 P 0
1 Q0′

1

)
:= eo H0z M̄0; (69)

1A
1
1 = i

eo H0x (µ1 − µ2) P 1
1 P 1′

1

µ2 P 1′
1 Q1

1 − µ1 P 1
1 Q1′

1

:= eo H0x L̄1 , (70)

1B
1
1 = eo H0y L̄1, (71)

2A
1
1 = eo H0x µ1

(
P 1′

1 Q1
1 − P 1

1 Q1′

1

µ2 P 1′
1 Q1

1 − µ1 P 1
1 Q1′

1

)
:= eo H0x M̄1 , (72)

2B
1
1 = eo H0y M̄1 . (73)

The solutions are given in the notebook OblateCoefficients.nb (Kraiger and
Schnizer, 2011). The argument of all the Lengendre polynomials and functions
in all of the above equations is i sinh ηo. Inserting these solutions and thereafter
the elementary functions (63) and (64) we get the total interior potential as that
of a homogeneous field:

η ≤ ηo :
Φ2 = − eo M̄1 (H0x cosψ +H0y sinψ) cosh η sin θ −

− eo M̄0 H0z sinh η cos θ.
Φ2(x, y, z) = − M̄1 (H0x x +H0y y) − H0z z. (74)
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Similarly we get for the external reaction field:

η ≥ ηo :
Φr1 = eo (H0x cosψ +H0y sinψ)×

× L̄1 (cosh η arccot(sinh η)− tanh η) sin θ
+ eo H0z L̄0 (sinh η arccot(sinh η)− 1) cos θ ,

= − L̄1 (H0x x +H0y y)(g1(η)− g2(η)) − L̄0 H0z z (g1(η)− g3(η)).
(75)

The functions g1, g2, g3 depend solely on the function sinh η:

g1(η) = arccot(sinh η), (76)

g2(η) =
sinh η

cosh2 η
=

sinh η
1 + sinh2 η

, (77)

g3(η) =
1

sinh η
. (78)

Substituting eqs.(63) and (64) and their derivatives into the definitions of the
constants L̄0, L̄1, M̄0, M̄1 and going over to the susceptibilities the expressions
for the constants become after some algebra:

L̄0 =
(χ1 − χ2) sinh ηo

(1 + χ2)− (1 + χ1) tanh2 ηo + (χ1 − χ2) sinh ηo arccot(sinh ηo)
,

(79)

L̄1 = − (χ1 − χ2) cosh2 ηo sinh ηo
2 + χ1 + χ2 + (χ1 − χ2) cosh2 ηo

(
1− sinh ηo arccot(sinh ηo)

) ,
(80)

M̄0 =
(1 + χ1) sech2ηo

(1 + χ2)− (1 + χ1) tanh2 ηo + (χ1 − χ2) sinh ηo arccot(sinh ηo)
,

(81)

M̄1 =
2(1 + χ1)

2 + χ1 + χ2 + (χ1 − χ2) cosh2 ηo
(
1− sinh ηo arccot(sinh ηo)

) . (82)

The corresponding transformations are also given in the notebook OblateCoef-
ficients.nb (Kraiger and Schnizer, 2011).

If both media are the same the external reaction potential must be zero.
The internal potential must become the primary potential. Indeed, the limits
of the four coefficients

χ2 → χ1 : L̄0 → 0, L̄1 → 0, M̄0 → 1, M̄1 → 1 (83)

ensure this. In view of these results the reaction potentials, Φr1 and Φr2, may
be rewritten as:

Φ1r =
(
H0x x + H0y y

)
L̄1(g1 − g2) + H0z z L̄0(g1 − g3), (84)

Φ2r(x, y, z) =
(
H0x x + H0y y

)
(1− M̄1) + H0z z (1− M̄0). (85)
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4.2 The reaction field in Cartesian coordinates

We want expressions for the potential which depend on x, y, z only. So sinh η
must be replaced with a corresponding expression in Cartesian coordinates.
From eqs.(58) to (60) one finds:

sinh2 η =
1
2

− 1 +
r2

e2
o

±

√(
− 1 +

r2

e2
o

)2

+ 4
z2

e2
o

 .

Since the square root is larger than the preceeding polynomial it is obvious that
only the plus sign applies. This is also confirmed by intense numerical studies.
So we have:

sinh η =
1√
2

√
− 1 +

r2

e2
o

+ wo(r, ez) := uo(r, ez)/
√

2, (86)

wo(r, ez) =

√(
− 1 +

r2

e2
o

)2

+ 4
z2

e2
o

=

√(
− 1 +

r2

e2
o

)2

+ 4
(r · ez)2

e2
o

,(87)

r2 = x2 + y2 + z2. (88)

Inserting this expression for sinh η into eqs.(76) to (78) and inserting the
resulting expressions for g1, g2, g3

g1 = acoth(uo(r, ez)/
√

2), (89)

g2 =
√

2 uo(r, ez)
[uo(r, ez)]2 + 2

, (90)

g3 =
√

2
uo(r, ez)

. (91)

into eq.(84) we get the final expression for the exterior potential as pure function
of the Cartesian coordinates x, y, z:

Φr1(x, y, z) = (H0x x +H0y y) L̄1 (g1 − g2) + H0z z L̄0 (g1 − g3).(92)

The interior potential, eq.(85), is already a pure function of the Cartesian coor-
dinates.

4.3 Potential and field for an arbitrary direction of the
spheroidal symmetry axis

For applications it is necessary to consider spheroids whose symmetry axis has
an arbitrary direction. The corresponding expressions for the potential will be
derived from those given in eqs.(92) and (85). These are rewritten in a way
suggesting a general form:

Φr1(x, y, z) = (H0⊥ · r⊥) L̄1 (g1 − g2) + (H0‖ · r‖) L̄0 (g1 − g3),
Φr2(x, y, z) = (H0⊥ · r⊥) (1− M̄1) 1 (H0‖ · r‖)(1− M̄0). (93)

The meaning of the subscripts ⊥ and ‖ has already been explained above before
and in eq.(41). n is a unit vector giving the symmetry axis of the spheroid.
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In wo, eq.(87), only the variable z, the component of the position vector
along the z-axis, i.e. the symmetry axis, must be replaced by (n · r) giving:

sinh η =
1√
2

√
− 1 +

r2

e2
o

+ w̄o(r,n) := ūo(r,n)/
√

2, (94)

w̄o(r,n) =

√(
− 1 +

r2

e2
o

)2

+ 4
(n · r)2

e2
o

. (95)

The functions gi, eqs.(89) to (91), remain the same except that uo(r, ez) and
wo(r, ez) must be replaced with ūo(r,n) and w̄o(r,n) giving the new functions
ḡi:

ḡ1 = acoth(ūo(r,n)/
√

2), (96)

ḡ2 =
√

2 ūo(r,n)
[ūo(r,n)]2 + 2

, (97)

ḡ3 =
√

2
ūo(r,n)

. (98)

Inserting all these new functions into eqs.(93) gives the potential for an oblate
spheroid whose symmetry axis is given by the arbitrary unit vector n:

Φr1(x, y, z) = (H0 · r) L̄1 (ḡ1 − ḡ2) +
+ (H0 · n)(n · r) [L̄0 (ḡ1 − ḡ3) − L̄1 (ḡ1 − ḡ2)], (99)

Φr2(x, y, z) = (H0 · r) (1− M̄1) + (H0 · n)(n · r) [M̄1 − M̄0]. (100)

The evaluation of the magnetic field requires the gradients of the functions ḡi.
These are done by symbolic computation. Since the resulting expressions consist
again of polynomials and the square roots already occuring in the potential it is
possible to find simpler expressions. These are again checked against the original
gradients by symbolic computation. All these derivatives are proportional to the
vector ro

ro :=
√

2
e2
o

(
r + 2n

(n · r)
(ūo(r,n))2

)
. (101)

∇ḡ1 −∇ḡ2 = − ūo(r,n)
w̄o(r,n)

4
[(ūo(r,n))2 + 2]2

ro, (102)

∇ḡ1 −∇ḡ3 =
2

[2 + (ūo(r,n))2] ūo(r,n) w̄o(r,n)
ro. (103)

The corresponding checks are contained in the notebook OblatePotDerivatives.nb
(Kraiger and Schnizer, 2011).

The vector ro and all the gradients listed above are well-defined and real
in the exterior of the oblate spheroid, where η ≥ ηo; which is equivalent with
the condition (107) in Cartesian coordinates. In fact, a more detailed analysis
shows that on the interface:

ūo(r,n) =
√

2 sinh ηo, (104)

w̄o(r,n) =
√
z4/
(
eo sinh(ηo)

)4 + 2z2/e2
o + sinh4 ηo (105)

sinh2 ηo ≤ w̄o(r,n) ≤ cosh2 ηo. (106)
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In the exterior of the spheroid ūo(r,n), w̄o(r,n) respectively are always larger
than

√
2 sinh ηo, sinh2 ηo respectively. For a = 1, c = 2, (eo =

√
3) one finds√

2 sinh ηo =
√

2/3 = 0.816... ; 1/3 ≤ w̄o(r,n) ≤ 4/3.

4.4 Final formulas for the field

So the final formulas for the reaction field excited in an arbitray homogeneous
primary field H0 by an oblate spheroid with arbitrary symmetry axis given by
a unit vector n is in the exterior:

r2 − (n · r)2

a2
o

+
(n · r)2

c2o
≥ 1 : (107)

Hr1(x, y, z) = − H0 L̄1 (ḡ1 − ḡ2) − n(H0 · n)[L̄0 (ḡ1 − ḡ3) − L̄1 (ḡ1 − ḡ2)]

+ ro (H0 · r) L̄1
ūo(r,n)
w̄o(r,n)

4
[2 + (ūo(r,n))2]2

− ro (H0 · n)(r · n) L̄0
2

[2 + (ūo(r,n))2] ūo(r,n) w̄o(r,n)

− ro (H0 · n)(r · n) L̄1
4 ūo(r,n)

w̄o(r,n) [(ūo(r,n))2 + 2]2
; (108)

and in the interior:

r2 − (n · r)2

a2
+

(n · r)2

c2
≤ 1 :

Hr2(x, y, z) = H0 (1− M̄1) + n (H0 · n) [M̄1 − M̄0]. (109)

4.5 Concluding remarks for the field of an oblate spheroid

An oblate spheroid is inserted into an external homogeneous magnetic field
H0 of arbitrary direction. Its permeability is µ2 = µ0(1 + χ2); while that
of the surrounding medium is µ1 = µ0(1 + χ1). The spheroid has semi-axes
ao, ao, co, co < ao; these determine the excentricy eo and the quasi-radial
parameter ηo, eqs.(61) and (62). These in turn determine the coefficients
L̄0, L̄1, M̄0, M̄1, eqs.(79) to (82). The spheroid’s symmetry axis is the arbi-
trary unit vector n. The reaction field due to the presence of the spheroid in
the external field is given in Cartesian coordinates, r = (x, y, z), by eq.(108) in
the exterior, by eq.(109) in the interior. The functions ḡ1, ḡ2, ḡ3, eqs.(96) to (98),
depend on the functions ūo(r,n) and w̄o(r,n), eqs.(94) and (95). The needed
gradients of the ḡi are given in eqs.(102) and (103). Eqs.(108) and eq.(109)
are for a spheroid, whose centre is at the origin. If the centre is at the point
r0 = (x0, y0, z0) then the vector r must replaced simply with r− r0.
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5 Application: modelling trabecular bone

5.1 Introduction

Generally, in magnetic resonance experiments disturbances of the homogeneous
main magnetic field have an essential impact on the formation of the resonance
signal. In principle magnetic inhomogeneities can be classified with respect to
their origin and strength, and their influence on the formation of the signal decay
(Yablonksy and Haacke, 1994). Especially in MR-Osteodensitometry insights on
the microarchitectural status of cancellous bone can be gained (Majumdar and
Genant,1992; Wehrli et al., 2006). In the space of spongy bone the relaxation
properties of bone marrow are changed due to the susceptibility effects induced
by the discontinuities of the magnetic susceptibility across the surface of the
network of branching bone spicules (Davis et al., 1986). In several studies
direct relations between the effective transversal relaxation time T ∗2 , a measure
sensitive to field disturbances, and bone mineral density (BMD) (Grampp et al.,
1995; Link et al., 1996; Arokoski et al., 2002) and as well mechanical competence
of trabecular bone (Chung et al., 1993; Brismar et al., 1997; Beuf et al., 2001)
were reported.

The resonance signal decay in a gradient echo MR experiment obeys, in
case of these inhomogeneities being of Lorentzian characteristics, the following
empirical expression:

S(TE) ∝ e−R
∗
2TE with R∗2 = 1/T2 +R′2 , (110)

with T2 giving the intrinsic transversal relaxation time and TE the echo time.
The quantity R′2 accounts for the additional contribution, originating from the
local field inhomogeneities, to the effective transversal relaxation rate R∗2 =
1/T ∗2 . Further, R′2 ≈ γ∆B with ∆B representing the field variation and γ the
gyromagnetic ratio.

Computer simulations modelling the magnetic field distortion make it pos-
sible to gain insight into the interrelationship between the temporal character-
istics of the resonance signal and the histomorphometrical parameters of the
bone lattice. Hence interactions of morphometric quantities such as intertra-
becular distance, trabecular thickness, bone volume fraction and the induced
line broadening of the resonance spectra can be studied, as has been shown in
(Kraiger, 2012) for situations of trabecular microcracks in a simplified model of
vertebrae.

5.2 Simulation

A two-compartment model, consisting of bone marrow and the mineralized bone,
was applied evaluating the magnetic field distribution. For the simulation of
architectures made up by plate-like trabeculae, as they can be found in the
epiphysis of long bones like the femur, oblate spheroids were used. Hence,
in a three-dimensional unit cell representing the volume of interest (VOI) ellip-
soids were arranged appropriately to model the known trabecular microstructure
(Hildebrand et al., 1999).

Following the approach described by (Bakker et al., 1992), the reaction fields
induced by the susceptibility difference between the ellipsoids (trabeculae) and
the background (bone marrow) were computed at first. Subsequently the time
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course of the resonance signal was computed applying a Fourier Transformation
of the spatial magnetic field distribution with respect to time (Ford et al., 1993).

In a homogeneous magnetic field the precession frequency of spins is deter-
mined through the magnetic induction B. Now introducing a sample with a
different susceptibility - in the current experiment trabecular bone (χ2) is sur-
rounded by bone marrow (χ1) - the resulting magnetic induction Bz can be
generally written as:

Bz = µ (H0z +Mz (r)) = µ0(1 + χ) (H0z +Mz (r)) , (111)

with Mz characterising the induced reaction field. Herein the units are given in
the MKS-system, and susceptibility units are per unit volume.

Since the transversal magnetization decay of mineralized bone is several
magnitudes faster comparing to bone marrow, the received resonance signal
in MR-Osteodensitometry is governed by the magnetization arising within the
marrow. Hence Mz corresponds to the computed reaction field ∆Hr1,z caused
by the difference in magnetic property between bone and marrow.

Within the unit cell the distribution of the reaction field originating from
the n ellipsoids was determined as the sum of all individual contributions Hr1i:

∆Hr1,z (r) =
n∑
i=1

Hr1i (r) . (112)

Interactions between the trabeculae have been neglected. This assumption is
valid, since such interactions include susceptibility effects of the second order,
which will give rise to field contributions of H0 (∆χ)2, or ≈ H0 · 10−12.

In a simple MR experiment, RF excitation followed by an acquisition period,
the signal of the free induction decay (FID) can be written as:

S(t) = const
∫

V OI

d3r e−iω(r)t e−t/T2 ; (113)

with ω(r) = γBz(r) it follows:

S(t) = const
∫

V OI

d3r e−iγBz(r)t e−t/T2 . (114)

Applying (111) again, the following expression in Hz can be found:

S(t) = const
∫

V OI

d3r e−iγt µ0(1+χ1)(H0z+∆Hr1,z(r)) e−t/T2 . (115)

This integral must be extended over the entire unit cell enclosing all ellipsoids.
In order to compare the simulation results with commonly acquired MR

magnitude images S(t) has to be further processed. From eq.(115) it is clear,
that except for the dissipative relaxation phenomenon e−t/T2 the expressions
are purely oscillatory in H0z. Hence, the essential decay for the analysis of the
signal course can be expressed as:

|S(t)| = const
∫

V OI

d3r e−iγt µ0(1+χ1)∆Hr1,z(r). (116)
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∆Hr1,z(r) can be computed according to (112) as the sum over all the reac-
tions fields of the individual ellipsoids, where µ0(1 + χ) describes the magnetic
permeability at the location r.

5.2.1 Algorithm

Utilizing the expression developed for the reaction field of an oblate ellipsoid
eq.(108) the simulations were implemented in Mathematica (Wolfram Research,
Inc.). As input parameters the spacing of the trabeculae in x-, y- and z-direction,
the dimensions of the ellipsoids and the position of the symmetry axis with
respect to the z-axis of the coordinate system had to be defined. Further, the
susceptibilities of the bones, the background and the orientation of the applied
homogenous main magnetic field had to be set. The program computed the field
distribution of the z-component of the reaction fields in the sense of a histogram
and generated the MR signal curve according to (116). The obtained signal
was subsequently processed within a fitting-procedure yielding the relaxation
constant R′2.

Figure 1: a.) Schematic depiction of six oblate ellipsoids forming the three-
dimensional plate-like microstructure of Model I; b.) Detailed view of the ap-
plied unit cell; dimensions are given in mm. The centres of the ellipsoids are
indicated by crosses, the subscripts v, h are denote the horizontal and vertical
flat ellipses representing the trabeculae in the array; C indicates the origin.

5.2.2 T ′2 Data fitting

From the simulated signal curves the relaxation time was estimated assuming
a Gaussian signal model (Selby et al., 1996; Fransson et al., 1998). The signal
intensities computed at the echo times ranging from 0 to 50 ms (eq.(116)), 2.5
ms increment, were used to generate a single T ′2 value by means of a non linear
least-squares-approximation to a three parameter fit function:

S(t) = A+B e−t
2/(2T ′2

2) . (117)
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The fitting model is equivalent to a bi-Gaussian function with one term having a
decay constant greater than the maximum TE (50 ms). A high value of the ratio
A/B corresponds to a decay that deviates significantly from a single Gaussian
(Newitt et al., 1996; Fransson et al., 1998).

5.2.3 Model: plate-like trabecular structure

The effect of the loss of bone mass within a three-dimensional plate-like trabec-
ular model was analysed using oblate ellipsoids. Hence, stepwise decreasing of
the bone volume fraction ς = BV/TV , bone volume (BV )/total volume (TV ),
was performed. In accordance with the findings of (Hildebrand et al., 1999),
ς values ranging from 0.530–0.406 were investigated. The bone remodelling
was simulated as a simultaneous decrease of the thickness of the horizontal and
vertical ellipsoids by 12.5 µm.

The configuration of the 3D unit cell and the parameter settings are shown
in Figure 1, Tables 1 and 2.

Parameters

Trabecula Vector n (x,y,z) Center T (x,y,z)

nv nh Tv Th

left/top sin 10◦, 0, cos 10◦ 0, sin 95◦, cos 95◦ -400,0,0 0,0,-700
middle 1, 0, 0 0, 0, 1 0, 0, 0 0, 0, 0
right/bottom sin 15◦, 0, cos 15◦ 0, sin 95◦, cos 95◦ 400,0,0 0,0,700

Table 1: Parameters of the oblate ellipsoids utilized in Model I. Units of the
centres are given in µm. The susceptibility of the trabecular bone and the
bone marrow were set to χ1 = −0.62× 4π × 10−6 and χ2 = −0.9× 4π × 10−6,
respectively (Hopkins and Wehrli, 1997). A main magnetic induction of B0z = 3
T, α = 5◦ and β = 0◦ was applied.

5.2.4 Simulating bone loss

In this subsection the results of the analysis studying the effect of loss of bone
mass on the field distribution and the resulting relaxation constant T ′2 are pre-
sented. The resulting histograms are reflecting the impact of decreasing ς on the
field distribution of the reaction fields, see Figure 2. Depending on the fraction
the reaction fields varried approximately between -0.6 and -0.05 A/m. As a
consequence of the bone loss the field distribution became more homogeneous,

Dimensions

ellipsoids a/bv,h 3000/100 µm
unit cell volume 3.92 mm3

initial BV/TV ς0 0.482

Table 2: Dimensions of the ellipsoids, the unit cells and the initial bone volume
fractions BV/TV.
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Figure 2: Resulting field distributions of the reaction field Hr1,z induced by the
susceptibility effect between bone and bone marrow. The fields were computed
within the entire volume of Model I as a function of ς. A main magnetic field
B0z = 3 T, respective H0z = 2.38732 · 106 A/m with α = 5◦ and β parallel
z-axes, and values of χ1 = −0.62 · 4 · π · 10−6 and χ2 = −0.9 · 4 · π · 10−6 were
applied.

hence the broadness of the histogram narrowed, whereby its maxima was shifted
in the direction of a more positive field strength.

The simulated signal curves as a function of ς are presented in Figure 3
together with the estimated relaxation times. The estimated parameters of the
least-squares approximation are given in Table 3. During the decrease of ς

Figure 3: Simulated impact of the computed reaction field Hr1,z on the MR
signal decay. The signals are normalized to the values at the first echo time TE
and presented for various bone volume fractions ς. Markers are indicating the
computed signal values at TE , whereby the dashed curve was obtained using
the estimated parameters of the Gaussian fit-function.

the applied Gaussian signal model responded with a moderate increase of T ′2.
Further, the Gaussian approach exhibited an almost linear relation between the
loss of bone mass and the increase of T ′2, as can be concluded from Table 3 .
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BV/TV Agau Bgau T ′2 (ms) RMSE

0.530 -0.021 1.021 36.10 0.12 ·10−3

0.505 -0.029 1.030 38.86 0.10 ·10−3

0.482 -0.035 1.035 42.12 0.07 ·10−3

0.457 -0.035 1.035 45.78 0.05 ·10−3

0.431 -0.038 1.038 49.99 0.03 ·10−3

0.406 -0.035 1.035 54.88 0.02 ·10−3

Table 3: Resulting parameter estimates of the non-linear least-squares approx-
imation of the simulated signal decay to a Gaussian function. The approxima-
tions were performed for various ς.

5.3 Discussion

The novel analytical solutions of the three-dimensional Laplacian potential prob-
lem of spheroids were successfully applied in the area of MR-Osteodensitometry.
Especially coordinate transformations became unnecessary, thus simplifying the
modelling of arbitrary orientated trabecular bones in an arbitrary orientated
main magnetic field.

To the authors best knowledge for the first time oblate ellipsoids were used to
mimic the field effects of plate-like structures more realistically. Such structures
made it possible to study the effects of bone mass loss in a basic model of
oseous bone. In principle there are no restrictions concerning the amount and
orientation of the used oblate spheroids, hence even complex architectures are
accessible for modelling.

In the case of bone disorders such as osteoporosis annual changes of the bone
mass between 2–5 % were reported (Harris and Dawson-Hughes,1992; Davis et
al., 1991). Applying the presented novel analytical field expressions, such realis-
tic alterations in conjunction with their effects on the MR relaxation parameter
T ′2 can be studied. In the current simulations minor alterations of ∆ς = 0.025
were successfully modelled, yielding variations of the MR relaxation parame-
ter T ′2 in a measurable range of ms. The presented results are qualitatively
comparable with previously reported studies, whereby either a different size of
the volume of interest or different trabecular elements, rod-like structures, were
utilized (Selby et al., 1996; Chung et al., 1996).

In general, the use of the analytical field expression of the prolate case enables
the investigation of induced field distortions in the surrounding of the trabecu-
lar microcracks. This has been studied in a second application described in the
report given by (Kraiger and Schnizer, 2011). In an additional study using a
more realistic 3D bone model the variations of the reaction fields along the pro-
gression of pathological bone remodelling are under investigation. The results
of the ongoing study will be published elsewhere.

6 Conclusions

1. Expressions for the potential and field of a prolate spheroid in a homo-
geneous external field of arbitrary direction have been derived in pro-
late spheroidal coordinates. These expressions have been transformed to
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Cartesian coordinates. The resulting expressions have been generalized to
an arbitrary direction of the symmetry axis while the external field axis
may still have another arbitrary direction.

2. The same has been done for an oblate spheroid with arbitrary symmetry
axis and an other arbitrary field axis.

3. Since the magnetic susceptibilites of biological tissues are small (volume
susceptibility ≈ −10−6) (Schenck,1996) it is easy to construct models
of trabecular bone structures by arrays of spheroids as described in the
previous item. The total magnetic induction is that of the primary field
plus that of all the spheroids in the array to a very good approximation
which disregards the small magnetic interaction of the spheroids among
themselves.

4. This modelling is particularly easy since all field dependences may be
expressed in the same general Cartesian coordinate system.

5. As an example of the method the following configuration is treated: Oblate
spheroids are used in a 3D model to study the impact of trabecular bone
loss on the MR signal decay characteristic.

6. In the present work just one application of the analytical expressions, the
modelling of bone disorders in the area of MR-Osteodensitometry, was
given. For example in the field of functional MRI the devoloped toolbox
eases the analysis of the BOLD (blood oxygenation level-dependent) con-
trast, where induced reaction fields in the surrounding of vascular networks
are of great interest (Ogawa et al., 1990). A fast and precise computa-
tion of the magnetic distortion is essential for improving the precision of
the temperature determination in techniques using the proton resonance
frequency (PRF) shift method (Hindmann, 1966; Rieke and Pauly, 2008).
Temperature mapping in the vicinity of the needle electrode is a crucial
determinant of MRI guided interventional radiofrequency ablations (Boss
et al., 2005). Further, in the field of metabolism studies using NMR spec-
troscopy (MRS) the expressions can be used in order to model specific cells
introduced in solutes differing in magnetic susceptibility (Kuchel, 1983).

7. The authors believe that the novel formulation of solutions depending
solely on the Cartesian coordinates will facilitate the modelling of countless
magnetostatic problems.

Not added in proof:

A very concise compilation of the formulas of this paper together with some
new formulas for the coefficients L0, L1, ..., M̄1 have been given in Kraiger and
Schnizer (2112).
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