NONLINEAR MODELING OF ECRH/ECCD*

R. Kamendje¹, S. Kasilov², W. Kernbichler¹, E. Poli³, M.F. Heyn¹

¹Institut für Theoretische Physik Technische Universität Graz Petersgasse 16, A–8010 Graz, Austria

²Institute of Plasma Physics National Science Center "Kharkov Institute of Physics and Technology" Ul. Akademicheskaya 1, 61108 Kharkov, Ukraine

³ Max-Planck-Institut für Plasmaphysik Bolztmannstrasse 2, D-85740 Garching bei München, Germany

Graz, September 14, 2004

^{*}This work has been carried out within the Association EURATOM-ÖAW and under contract P16157-N08 with the Austrian Science Foundation.

OUTLINE

- Introduction Motivation
- Kinetic description
- The Fortran codes ECNL and TORBEAM
- **Results for ASDEX-Upgrade parameters**
- Towards ECRH/ECCD modeling for ITER
- Conclusions and Outlook

Introduction

Models of Power Absorption

Linear Theory:

Standard theory, presently applied in most cases

- a) Quasilinear wave-particle interaction (perturbation analysis is valid).
- b) Non-oscillating part of the distribution function is assumed to be Maxwellian.
- c) Ray and beam tracing codes

Quasilinear Theory:

Standard theory, presently applied in some cases

- a) Quasilinear wave-particle interaction.
- b) Non-oscillating part of the distribution function is non Maxwellian.
- c) Bounce averaged Fokker-Planck codes

Nonlinear Theory: Reality!!

- a) Nonlinear wave-particle interaction (perturbation analysis is not valid).
- b) Non-oscillating part of the distribution function is non Maxwellian (computed from an integral equation).
- c) Kinetic equation solver: ECNL

Cyclotron Resonance - 2nd Harmonic X-Mode

Cyclotron resonance line

$$\omega - n\omega_c - k_{\parallel}v_{\parallel} = 0. \tag{1}$$

Width of the resonance zone in velocity space

- Broadening of (1) due to finite parallel beam width $\Rightarrow \Delta v_{\perp,L}$.
- Broadening of (1) due to nonlinear effects $\Rightarrow \Delta v_{\perp,NL}$.

$$\Delta v_{\perp,L} \sim \frac{c^2 v_{\parallel}}{\omega L_b v_{\perp}}, \qquad \Delta v_{\perp,NL} \sim c_{\sqrt{\frac{E_0}{B_0}}}.$$
(2)

- $\Delta v_{\perp,L} \gg \Delta v_{\perp,NL} \Rightarrow$ linear theory is applicable.
- $\Delta v_{\perp,L} \ll \Delta v_{\perp,NL} \Rightarrow$ change in the derivative of the distribution function, f, is strong such that, in the resonance zone, f becomes symmetric around the resonant value of $w_{\perp} = m_e v_{\perp}^2/2$.

Problem Geometry

Inner region (containing resonance zone):

- Exact orbits from solution of equations of motion in the wave field.
- Full kinetic description including gyromotion.
- Neglect of Coulomb collisions.

Outer region:

- Handled by conventional Monte Carlo method.
- Neglect of wave-particle interaction.

Kinetic Description

Kinetic equation

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{e}{c} \mathbf{v} \times \mathbf{B}_0 \cdot \frac{\partial f}{\partial \mathbf{p}} + \underbrace{e\left(\tilde{\mathbf{E}} + \frac{1}{c} \mathbf{v} \times \tilde{\mathbf{B}}\right) \cdot \frac{\partial f}{\partial \mathbf{p}}}_{\text{wave-particle interaction}} = \underbrace{\underbrace{\hat{L}_c f}_{\text{Coulomb collisions}}}_{\text{Coulomb collisions}}$$

- f, t distribution function, time
- v, p particle velocity, particle momentum
- e, c electron charge, speed of light
- \tilde{E}, \tilde{B} wave electric and magnetic field
 - B_0 equilibrium magnetic field
 - \hat{L}_c Coulomb collision operator

Inner region

Transitions probabilities (see Kamendje et al., Phys. Plasmas 10 (1), 75 (2003) for more details).

Outer region

Mapping technique (see Kasilov et al., Phys. Plasmas 9, 3508 (2002) for more details).

The Fortran codes ECNL and TORBEAM

ECNL: ITP TU-Graz

- Monte Carlo kinetic equation solver.
- It implements a nonlocal nonlinear model of wave-particle interaction.
- It solves the equation of energy conservation law, ∇ · S + P_{abs} = 0, along the beam propagation path in a tokamak geometry using an iterative algorithm.
- Output: electron distribution function, profiles of the absorption coefficient, of the absorbed power density and of the EC current density along with the total driven current and the global efficiency.

TORBEAM: IPP-Garching

- Beam tracing equations are solved in a tokamak geometry for arbitrary launching conditions.
- The power absorption is computed using a local linear model of wave-particle interaction. The absorbed power density profile as well as the linear parallel current density profile are typical output.

ASDEX-Upgrade: Perpendicular Injection

- Reduction of the absorption coefficient by a factor $\approx 2-5$.
- Broadening of the absorbed power density profile as consequence of nonlinear effects of wave-particle interaction.

ASDEX-Upgrade: Nonlinear Effects due to Beam Width

• Results suggest a feasible experiment based on measurement of total current.

Resonance Curves in Velocity Space

Towards ECRH/ECCD modeling for ITER

- In ITER ECRH/ECCD applications mainly for neoclassical tearing mode (NTM) control and stabilization.
- NTM's: Instabilities \Rightarrow Islands formation \Rightarrow confinement degradation.
- Low order rational magnetic surfaces in tokamaks are resonant surfaces for NTM's.
- Control and stabilization of NTM's are an essential issue for tokamak operation.
- ECCD currently applied to compensate the loss of current within the island (ASDEX-Upgrade, ...).

ASDEX-Upgrade: On and near Rational-q Flux Surfaces

- ECCD appears to be sensitive to low order rational-q tokamak flux surfaces.
- With increasing beam width (increasing nonlinearity) the region of reduced absorbed power and driven current tends to broaden.
- Feature outside of reach for bounce average Fokker-Planck codes.

NTM Stability index: Δ'

$$\frac{4\pi}{\eta_{nc}c^2}\frac{\mathrm{d}w_0}{\mathrm{d}t} = k_0\Delta' + \sqrt{\epsilon}\frac{k_1\beta_{pe}L_q/L_p}{w_0} \tag{3}$$

- (1): dynamical equation for the island half-width, w_0 , where k_0 and k_1 are numerical constants, $\beta_{pe} = 8\pi p_e/B_{\theta}^2$, L_p is electron pressure length scale, $L_q = (d \ln q/dr)^{-1}$; q is the safety factor.
- Δ' very sensitive to the second derivative of the current density profile.

Linear model: dashed Nonlinear model: solid Without current drive: no markers With co-current drive: circles With counter-current drive: crosses

- Changing the sign of $\Delta' = D'(0) \Rightarrow$ acting against the evolution of the island width.
- At present, "active" NTM control is being performed.
- Nonlinear feature on rational surfaces opens the door for "passive" control mechanism.

Conclusions

- The tokamak geometry has been implemented in ECNL.
- ECNL has been benchmarked and combined with TORBEAM using an interface.
- Good agreement between all models for cases where the linear theory is applicable.
- Broadening and shift of the absorption profile in case of perpendicular injection.
- In ECCD nonlinear reduction of absorption might appear for wider beams. They are to be expected in ITER, therefore, nonlinear effects might be important there.
- Shift of the absorption profile would cause the reduction of the total EC current.
- It has been found that power absorption and current generation are sensitive to rational-q flux surfaces.
- This feature might be important and useful for NTM stabilization.

Outlook

- Consideration of real magnetic geometry and general topology (islands) in the region outside the beam (Mapping code for tokamak).
- ECCD modeling for ITER.
- ECRH/ECCD modeling for O-Mode Propagation.