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Problems with Existing Solvers

• DKES and conventional MC
best suited for collisional regimes
all regions of phase space treated in the same manner
slow convergence, long run-times in low collisional regime
no integral part of the linearized collision operator

• GSRAKE
limited to multiple-helicity model

• NEO
low collisionality, no Er, only pitch angle scattering

• SMT (high dimensional problems, convection, ECRH)
assumption of low collisionality violated in the region around trapped-passing
boundary



Open Physics (and not Physics) Problems

• Bootstrap current in low collisionality regimes
effect mainly determined by region around trapped-passing boundary
proper treatment of collisions for these particles is crucial

• Calculation of current drive efficiencies
generalized Spitzer functions are the main tool for ECRH, NBI and other methods
2D in tokamaks - 4D in stellarators
simplification of collision integrals leads to problems

• Fast solver for balance problems
or for filling the database

• Degradation of the performance of most DKE solvers in LMFP regime - steep
behaviour of f across t-p boundary and boundaries between t-classes
how to create an adaptive grid in phase space

• Solver for general equilibria
PIES, HINT (or just from coil currents)
how to avoid magnetic coordinates in a general solver

• SMT needs propagators for the phase space regions where collisions cannot be
considered by a perturbation theory in the LMFP regime (near t-p boundary)



Questions - And a Vision

• Can one build on the strength of field line tracing

– good convergence in the low collisionality regime
– no immediate need for magnetic coordinates
– relatively easy (e.g., compared to SMT)
– fast

• and construct a general solver?

– which works in all collisionality regimes
– which includes drive from inductive parallel electric fields
– which effectively resolves steep behaviour of f
– which uses the full linearized collision operator
– which allows for radial electric fields

• Let’s start with all collisionality regimes (and parallel electric fields)

• and look ahead to the full collision operator and to Er 6= 0



Drift Kinetic Equation
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Particle Flux Density

Averages over flux surfaces expressed through field line integrals
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Parallel Current Density
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Discretization over η - Scheme
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Discretization over η
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Discretized DKE
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Boundary Problem

f b

f±N
η(0) = 1/B̂

ηN

ηN−1

ηN−2

f b

f b f b

f b

f σ
N

f σ
N f σ

N

f σ
N

f b =

1/B̂∫
ηN

dη f̂+ −
1/B̂∫
ηN

dη f̂− =
2
B̂

|λN |∫
−|λN |

dλ λf

∂f b

∂s
=
κηN
2

(∂f̂
∂λ

)
λ=|λN |

−

(
∂f̂

∂λ

)
λ=−|λN |

−

(
2|λ|V̂G
B̂

)
λ=|λN |

Flux density integrated over boundary layer



Placing of Levels - Introduction of Ripples
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Propagator
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Propagator - Additional Formulas

Convolution plus sources
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Joining of Propagators

Propagators have group properties

1P ∗ 2P = 1,2P , 1P ∗ ( 2P ∗ 3P ) = ( 1P ∗ 2P ) ∗ 3P
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Propagator Visualization - 1
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Propagator Visualization - 2
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Back to Solution within the Ripple - Renormalization

General solution in + (λ > 0) and − (λ < 0) half-spaces
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• Boundary layer included on negative half-space (free choice)

• Integration of DKE in positive direction
one does not want to go forward and backward in RK

– half-space with λ > 0: Diffusion
dispersing solution

– half-space with λ < 0: Anti-Diffusion
peaking solution ⇒ numerically unstable

• Solution Renormalization



Renormalization - Start

DKE Solver (=⇒) Backward Boundary condition at first step
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Renormalization - Intermediate

Forward Backward Boundary condition at intermediate boundary sn
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Renormalization - Final

Forward Backward Boundary condition at sN
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Constructing the Solution
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Solution within the Ripple - Low Collision

κ = 1 · 10−3



Solution within the Ripple - Medium Collision

κ = 1 · 10−2



Solution within the Ripple - High Collision

κ = 5 · 10−2



Solution for Joined Ripple - Low Collision

κ = 1 · 10−3



Solution for Joined Ripple - Medium Collision

κ = 1 · 10−2



Solution for Joined Ripple - High Collision

κ = 5 · 10−2



Binary Joining

1 ← 1 1 ← 1

2 1 ← 1 2 ← 1

2 ← 2 3 ← 1

4 1 ← 1 4 ← 1

4 2 1 ← 1 5 ← 1

4 2 ← 2 6 ← 1

4 ← 4 7 ← 1

8 1 ← 1 8 ← 1

8 2 1 ← 1 9 ← 1

8 2 ← 2 10 ← 1

8 4 1 ← 1 11 ← 1

8 4 2 1 ← 1 12 ← 1

8 4 2 ← 2 13 ← 1

8 4 ← 4 14 ← 1

8 ← 8 15 ← 1

16 16

nh =
[√

( onh)2 + ( o+1nh)2
]



Solution of the drift kinetic equation

Drift kinetic equation:

LD(fa) = LC(fa, fb) +Q

fa distribution function of particle species a
LD describes particle motion in various electric and magnetic fields
LC Coulomb collision operator
Q source term

Full linearized Coulomb collision operator:

LC(fa0 + fa1, fb0 + fb1) ∼= LC(fa0, fb0) + LC(fa1, fb0) + LC(fa0, fb1)

fa0, fb0 Maxwellian distribution functions
fa1, fb1 correction terms (f1/f0 � 1)

LC(fa0, fb0) is zero if both Maxwellians have the same temperature



fa1 is expanded in terms of a complete set of orthogonal velocity-space functions:
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Solution to the DKE:

• substitution of the expansion for fa1 into the DKE

• multiplication of the DKE on the left by the basis function Bl′n′

• integration over v

• DKE is converted into an infinite set of linear equations for cln
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Matrix elements (ME) of the linearized Coulomb operator: (see, e. g. [1])
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• ME can be computed by means of a generated function technique [2]

• generating functions for the ME are governed by recursion relations

• thus, fast numerical evaluation of the ME is possible



Radial Electric Field

• Approximate the cross field convection (rotation) term with the help of finite-difference
scheme over θ0

• Generalize renormalization procedure to allow for field maxima within the ripple

• Solve the coupled (cross field convection) system of ODEs for all field lines which start
at φ = 0,

• Integrate them to the end of a field period

• Apply the periodicity condition

• Sparse matrices, band-block structure

• Standard way - HARD PROBLEM: Adaptive grid in phase space

• Alternative - 2-D Propagators - wait for NEO-3
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