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The Migdal–Eliashberg equations are solved using the separable model for
the electron-phonon coupling and the Fermi velocity. We show that this very
simple model is capable of describing particular properties of superconducting
MgB2 and is, therefore, very convenient to discuss the specific effects of
anisotropy. The temperature dependence of the specific heat, the upper and
the thermodynamic critical field is calculated and found to be in excellent
agreement with experimental results for a certain set of model parameters.
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1. INTRODUCTION

A large number of publications on experimental and theoretical results
clarified many aspects of the new superconductor MgB2.1 There is almost
no doubt, that superconductivity is mediated by electron-phonon (e−-ph)
coupling and that s-wave pairing prevails. The Fermi surface of MgB2 was
calculated by several groups and found to be not very complicated, but
strongly anisotropic.2–4 The anisotropy of macroscopic superconducting
properties, such as the upper critical field, was soon confirmed by experi-
ments on single crystals.5–7 For a theoretical analysis, the fully anisotropic
Eliashberg (Eb) equations have to be solved using the complete k (wave-
vector) dependent e−-ph coupling matrix and the Coulomb pseudopoten-
tials. Very often, not only the calculations, but also the interpretation of
the results become difficult, especially if the relevant physical mechanism
responsible for a particular feature is to be clarified.



Several models are available, which simplify the Eb equations, but still
take anisotropy effects into account. The two (or N) band and the sepa-
rable model are among them. The latter is particularly simple as it intro-
duces only two anisotropy parameters, one for the e−-ph coupling strength
(Oa2

kP) and one for the anisotropy of the Fermi velocity (Ob2
kP). Simple

models often allow to concentrate on features which dominate a pheno-
menon and for a superconductor it is of quite some importance to know
which phonon modes dominate. It was demonstrated by Manalo and
Schachinger8 for borocarbides that single or double peak e−-ph interaction
spectral densities a2F(w) could be constructed, which together with
appropriately chosen parameters Oa2

kP and Ob2
kP allowed a good reproduc-

tion of experimental data on the temperature dependence of the thermo-
dynamics and of the upper critical field, Hc2(T). The phonon modes which
correspond to the delta peaks in the a2F(w) spectrum can then be inter-
preted as being most important to superconductivity.

The Fermi surface of MgB2 shows four Fermi surface sheets9–11

(two s-bands and two p-bands) and the gap has two sharp maxima,
Dp % 1.7 meV and Ds % 7 meV. Kogan12 pointed out, focusing on the
macroscopic superconducting anisotropy c within Ginzburg–Landau
theory, that a model with two gaps and two sheets of the Fermi surface
may prove useful in relating the various macroscopic properties of MgB2.
In Eliashberg theory this is easily accomplished within the separable model
ansatz. This ansatz is shortly reviewed in Sec. 2. Section 3 applies the sepa-
rable model to MgB2 using an Einstein spectrum for a2F(w) and the ani-
sotropy parameters Oa2

kP and Ob2
kP to fit theoretical results to experimental

data for the specific heat difference DC(T) and for the upper critical field
Hc2(T). The results of this procedure are discussed in detail as is the
relevance of these model calculations. Finally, in Sec. 4, we present our
conclusions.

2. THEORY

The separable model was originally introduced into BCS theory13 and
later adapted for the Eb theory.14, 15 Within this model, the anisotropic
e−-ph interaction spectral function is described by14

a2F(w)k, kŒ=(1+ak) a2F(w)(1+akŒ), (1)

with k and kŒ the incoming and outgoing quasiparticle momentum vectors
in the e−-ph scattering process, ak an anisotropy function with the impor-
tant feature that its Fermi surface average OakP=0, and a2F(w) the e−-ph
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interaction spectral density of the equivalent isotropic system. A similar
ansatz is applied to describe the anisotropy of the Fermi velocity15

vF, k=(1+bk)OvFP. (2)

Here, OvFP is the Fermi surface average of the Fermi velocity and bk is an
anisotropy function defined in the same way as ak. In principle, the sepa-
rable model assumes anisotropy effects to be rather small and it is, thus,
deemed to be sufficient to keep the mean square anisotropies Oa2

kP and
Ob2

kP as the important anisotropy parameters.
The Eb equations, in the imaginary axis notation, for the renormalized

quasiparticle frequencies w̃k(n) and the Matsubara gaps D4k(n) of an aniso-
tropic superconductor in the clean limit are given by16

w̃k(n)=wn+pT C
m

Olk, kŒ(m − n) fkŒ(m)PŒ (3)

D4k(n)=pT C
|m| [ c

O[lk, kŒ(m − n) − mg
k, kŒ] gkŒ(m)PŒ, (4)

with

fk(n)=w̃k(n)/`D4 2
k(n)+w̃2

k(n) (5)

gk(n)=D4k(n)/`D4 2
k(n)+w̃2

k(n) (6)

lk, kŒ(m − n)=2 F
.

0
dW

Wa2F(W)k, kŒ

W2+(wm − wn)2 . (7)

Here, wn=pT(2n+1), n=0, ± 1, ± 2, . . . are the Matsubara frequencies,
mg

k, kŒ denotes the (anisotropic) Coulomb pseudopotential, c is a cutoff index
related to the cutoff frequency wc, O· · ·P denotes the Fermi surface average,
and, finally, T is the temperature.

Thermodynamics are calculated from the free energy difference
between the normal and superconducting state which is given by17

DF=N(0) pT C
|n| [ c

O[hk(n) − |w̃k(n)|][1 − |w̃0
k(n)|/hk(n)]P, (8)

with

hk(n)=`D4 2
k(n)+w̃2

k(n). (9)

Separable Model Calculations for the Anisotropic Properties of MgB2 409



Here, N(0) denotes the total electronic density of states at the Fermi energy
and w̃0

k(n) are the renormalized normal-state quasiparticle frequencies
which can be determined from Eq. (3) by setting D4k(n)=0, which gives
fk(n)=sgn(wn). Using DF(T) we can calculate the thermodynamic critical
field Hc(T) and the specific heat difference between the normal and the
superconducting state DC(T) using the relations

Hc(T)=`2DF/m0 (10)

DC(T)= − T “
2 DF(T)/“T2. (11)

m0 is the vacuum permeability.
At the transition temperature Tc the Matsubara gaps become infinite-

simally small and, thus, D4 2
k(n) can be neglected giving fk(n)=sgn(wn) and

gk(n)=D4k(n)/|w̃k(n)|. This results in the so-called linearized Eb equations.
At the upper critical field Hc2(T) the superconductor undergoes a second
order phase transition and, thus, determining Hc2(T) is equivalent to the
calculation of the critical temperature Tc(H), for an applied magnetic field
of strength H. Only fk(n) and gk(n) are to be modified15

fk(n)=sgn(wn) (12)

gk(n)=D4k(n) qk(n) (13)

qk(n)=
2

`bk

F
.

0
dx e−x2

tan−1 1 x `bk

|w̃k(n)|
2 (14)

bk=0.5qem0Hc2(T)OvFP
2 (1+bk)2, (15)

for a given temperature T, where qe is the charge of the electron.
In the simplest case, the Fermi surface is divided into two sheets

(s1, s2), on which ak and bk are constant, i.e., they become asi and bsi on
sheet i. Furthermore, if we allow different electronic densities of states on
each sheet with relative weights pi (p1+p2=1), then we find (i, j=1, 2
or 2, 1):18

asi=(−1) i − 1
`Oa2

kP pj/pi (16)

bsi=(−1) i
`Ob2

kP pj/pi . (17)

3. RESULTS AND DISCUSSION

To evaluate the Eb equations, the spectral function a2F(W) of MgB2 is
needed; it was calculated by several groups using ab-initio methods.9, 10, 19, 20
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We employ a very simple Eb function with one peak at 76 meV (cf. Ref. 10)
and with a width of 1 meV. The height is determined by the mass enhan-
cement factor l=l(0)=2 >.

0 dW a2F(W)/W=0.61. This value is found
experimentally in specific heat measurements21, 22 and was confirmed
theoretically.10 To make our model complete, we set the maximum phonon
(Debye) frequency w0 to 100 meV and choose p1=p2=0.5. In our cal-
culations wc=6w0.

3.1. Transition Temperature

We start the calculations by solving the Eb equations for Tc in zero
field, or actually, we set Tc to 38 K, a typical value for single crystals,6 and
calculate the appropriate Coulomb pseudopotential mg, that is assumed to
be constant over the Fermi surface. Unfortunately, mg cannot be deter-
mined exactly from independent measurements or calculations, but is
known to be approximately 0.1–0.2 in almost all superconductors.24 For
the isotropic case, we set Oa2

kP=0.0 and obtain mg 4 0.045, which is
obviously very low. Turning on the anisotropy by increasing Oa2

kP succes-
sively to 0.1, 0.2, and 0.3 changes mg to 0.072, 0.109, and 0.164. The latter
two values are quite reasonable, and it will turn out in the following para-
graphs that Oa2

kP=0.3 is most suitable for reproducing the experimental
data of MgB2. Thus we fix mg=0.164 to investigate the influence of aniso-
tropy on Tc. The corresponding isotropic Tc is found to be 16 K, which is
considerably smaller than the experimental value and illustrates the huge
influence of anisotropy on this quantity. For the intermediate anisotropy
parameters Oa2

kP=0.1, 0.2, we calculate Tc=23 K and 30 K.

3.2. Specific Heat

The temperature dependence of DC(T)/(cnT) (Sommerfeld constant:
cn=2/3p2k2

BN(0)[1+l]) only depends on the anisotropy parameter and
is, therefore, convenient to determine Oa2

kP by comparing theory with
experiment. This is done in Fig. 1a for different anisotropies (but with Tc

fixed at 38 K). A special quantity is the jump of the specific heat at Tc,
DC(Tc)/(cnTc). Its ‘‘universal’’ value in weak coupling isotropic (BCS)
superconductors is 1.43, but generally increases with stronger coupling24

(e.g., to 2.8 for Pb with l=1.55). Figure 1a demonstrates that anisotropy
reduces this value from the isotropic case (1.65) to 1.38, 1.21, and 1.11 for
Oa2

kP=0.1, 0.2, and 0.3, respectively. Experimental results range from ’ 0.8
to 1.2.21, 22, 25
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Fig. 1. (a) Specific heat for several anisotropies Oa2
kP compared with

experimental data (Ref. 21). The thin solid line shows the effect of
changing p1/p2 (the relative weights of the density of states) from 1 to
0.42/0.58. (b) Comparison of the calculated thermodynamic critical field
(Oa2

kP=0.3, cn=2.68 mJ mol−1 K−2 ) with measurements on a single
crystal.23

In the low temperature regime we concentrate on the point, where
DC(T)/(cnT) starts to grow. The onset is determined by the lowest excita-
tion energy of the superconducting state and, therefore, equivalent to the
minimum value of the energy gap. As shown in Fig. 1a, this depends again
strongly on Oa2

kP, because increasing anisotropy leads to weaker coupling
and, at the same time, to a smaller gap in one of the sheets (but to an
opposite behavior in the other sheet).
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With increasing temperature, the slope of DC(T)/(cnT) changes in the
isotropic case smoothly from zero to a positive value, which remains
almost constant up to Tc. With anisotropy, we obtain a steeper slope at low
or medium temperatures than near Tc, but this becomes significant only for
large anisotropies, i.e., for Oa2

kP > 0.2 in our model.
We conclude the analysis of the specific heat by comparing our results

with measurements reported by Bouquet et al.21 (Fig. 1a, open circles).
With an anisotropy parameter Oa2

kP of 0.3 (bold solid line) for MgB2

excellent agreement with the experimental data is obtained over the whole
temperature range in contrast to the other theoretical results shown in
Fig. 1a, which are far off especially at low temperatures. We abstain from
adjusting Oa2

kP more accurately, because minor differences in the published
specific heat curves are obvious, and we are more interested in the qualita-
tive features of the separable model.

Having thus established the value for Oa2
kP, we calculate the thermo-

dynamic critical field [Eq. (10)] and fit the data to experimental results
on a MgB2 single crystal23 by choosing the appropriate cn (Hc 3 `cn).
The result, shown in Fig. 1b, suggests cn=2.68 mJ mol−1 K−2 which is
within the range of published data (’ 2.3–2.8).21, 22, 25 The isotropic case
(Oa2

kP=Ob2
kP=0, Tc=38 K) would result in cn=1.92 mJ mol−1 K−2, well

outside the experimental margin.
The thermodynamic critical field deviation function D(T)=

[Hc(T)/Hc(0)] − [1 − (T/Tc)2] is negative in the whole temperature range
and reaches a minimum of − 0.04, slightly below the BCS result. Generally,
D(T) grows with coupling strength24 (and can even become positive), but
gets smaller with increasing anisotropy. We find − 0.02 for the isotropic
case. The fact, that the minimum of the experimentally observed D(T) is
− 0.02, is not really disturbing, because small absolute errors in the Hc(T)
measurement result in large errors in D(T). Furthermore, Hc(0) is not
directly accessible from experiment, but has a significant influence on the
function, D(T), which increases the uncertainty even more.

3.3. Upper Critical Field

In contrast to DC(T) and Hc(T) the upper critical field Hc2(T) is not
a thermodynamic property. It depends on the orientation of the applied
magnetic field H due to the anisotropy of the Fermi velocity vF as a result
of an anisotropic Fermi surface. As was pointed out by Prohammer and
Schachinger,15 Eqs. (12)–(15) are only valid for polycrystals, because they
contain only averaged information on the anisotropy of the Fermi surface.
Nevertheless, the results of these equations can be quite reliable, provided
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the average Fermi velocity OvFP and its anisotropy parameter Ob2
kP are

used for the relevant plane, i.e., that perpendicular to H. To complete the
model for Hc2(T) we choose opposite signs for Oa2

kP and Ob2
kP [Eq. (16)

and (17)] on the same Fermi surface sheet as suggested by de Haas–
van Alphen experiments.26

The most striking feature of the Hab
c2 (T) (H || ab) curve (Fig. 2a) is its

positive curvature near Tc. It was already demonstrated in Ref. 18, that
such a behavior is caused by an anisotropic vF in the plane perpendicular
to H. Accordingly, the slope of Hc2(T) is constant near Tc for Ob2

kP=0 and
the positive curvature emerges and grows with increasing Ob2

kP. Good
agreement with experiment6 (open circles in Fig. 2a) is found for Ob2

kP=0.4
(Oa2

kP=0.3) and OvFP=7.55 × 105 m/s, which also reproduces the absolute
values (Hc2 3 1/OvFP

2) very well. Indeed, band structure calculations2–4

reveal a strong anisotropy in the corresponding plane and also confirm our
mean value of vF.27 Similar parameters have been used to successfully
describe data on polycrystals, e.g., Ref. 28. We also show, for comparison,
the result for an equivalent isotropic system (Oa2

kP=Ob2
kP=0, Tc=38 K,

mg=0.045) in Fig. 2a (dotted line). In order to match the low temperature
value of Hc2(T), OvFP=2.51 × 105 m/s is needed, which is far below the
band structure values.27 If we use, instead, OvFP=7.55 × 105 m/s, we get an
extrapolated m0Hc2(0) [H iso

c2 (0)] of only 1.6 T, which is below the experi-
mental value by almost one order of magnitude.

Following these results we also calculate Hc2(T) for the applied
magnetic field H || c using the anisotropy parameters Oa2

kP=0.3 and
Ob2

kP=0.03, i.e., the mean anisotropy of the Fermi velocity is now much
smaller than for H || ab, which is in accordance with theoretical calcula-
tions.2–4 The mean value of the Fermi velocity is OvFP=7.50 × 105 m/s,
Ref. 27. The results are shown in Fig. 2a (H || c) and demonstrate excellent
agreement with our experimental data (open circles).6

In an attempt to investigate the influence of anisotropy on the upper
critical field Hc2(T) in more detail, we calculate the relative change of
Hc2(T) with respect to the upper critical field H iso

c2 (T) of an equivalent iso-
tropic system (Oa2

kP=Ob2
kP=0) having the same Tc=38 K and the same

average e−-ph coupling and Fermi velocity as the anisotropic system. Thus,
the ratio Hc2(T)/H iso

c2 (T) will only depend on the two anisotropy param-
eters. Figures 2b, c show the results for this ratio in two cases, namely, as a
function of Ob2

kP for a fixed value Oa2
kP=0.3 and as a function of Oa2

kP for
a fixed value of Ob2

kP=0.4 with mg adjusted to keep Tc constant. Concen-
trating on Fig. 2b, we see that Hc2(T) of an anisotropic system with
Oa2

kP ] 0 and Ob2
kP=0 is shifted to higher values, almost constantly for all

temperatures and without showing an upward curvature close to Tc. In

414 M. Zehetmayer et al.



0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

(a)

H // c

H // ab

 experiment
 anisotropic
 isotropic

µ
0 

H
c2

 (
T

)

10 20 30

1

2

3

4

5

6

7

8

9

<bk

2
> = 0.0

<bk

2
> = 0.03

<bk

2
> = 0.2

<ak

2
> = 0.3

(b)<bk

2
> = 0.4

H
c2

 /
 H

c2

is
o

T (K)

10 20 30

<ak

2
> = 0.0

<ak

2
> = 0.1

<ak

2
> = 0.2

<bk

2
> = 0.4

 

(c)<ak

2
> = 0.3

T (K)

5 10 15 20 25 30 35

2.0

2.5

3.0

3.5

4.0

4.5

H
c2

a
b  /

 H
c2

c

Fig. 2. (a) Upper critical field of MgB2. The solid lines represent the
best anisotropic fit for H || ab (Oa2

kP=0.3, Ob2
kP=0.4, and OvFP=

7.55 × 105 m/s) and H || c (Oa2
kP=0.3, Ob2

kP=0.03, and OvFP=
7.50 × 105 m/s), the dotted lines isotropic fits (Oa2

kP=Ob2
kP=0, with

OvFP=2.51 × 105 m/s for H || ab and OvFP=5.31 × 105 m/s for H || c) to
the experimental data (open circles).23 Inset: Upper critical field aniso-
tropy Hab

c2 /Hc
c2. (b) and (c) Relative deviation of the anisotropic Hc2(T)

from the isotropic behavior H iso
c2 (T) at fixed OvFP. The bold solid lines

correspond to the best fits shown in panel (a), i.e., Oa2
kP=0.3,

Ob2
kP=0.4 for H || ab and Oa2

kP=0.3, Ob2
kP=0.03 for H || c. (b) Effect

of varying the vF anisotropy Ob2
kP at fixed coupling anisotropy

Oa2
kP=0.3, and (c) effect of varying Oa2

kP at fixed Ob2
kP=0.4. The

arrows indicate the temperature, where the curvature of Hc2 switches
from negative to positive values.
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contrast, Hc2(T) for Oa2
kP=0 (Fig. 2c) increases with Ob2

kP only at low
temperatures, but even decreases near Tc and develops a significant upward
curvature.

The results presented in Figs. 2b, c reveal nicely the competing
influence of the two anisotropy parameters on the temperature dependence
of Hc2(T). Keeping Oa2

kP constant and increasing Ob2
kP shifts the turning

point in the Hc2(T) curve towards lower temperatures (as indicated by the
down arrows in Fig. 2b) thus making the upward curvature of Hc2(T) close
to Tc more pronounced and the (relative) slope of Hc2(T) at Tc flatter (with
respect to Hc2(0)). On the other hand, keeping Ob2

kP > 0 constant and
increasing Oa2

kP results in just the opposite behavior, as indicated in Fig. 2c,
namely the turning point in the Hc2(T) curve is moved towards higher
temperatures and the (relative) slope of Hc2(T) at Tc remains nearly unaf-
fected (and brings the relative curves closer to the isotropic behavior). The
results presented in Figs. 2b, c prove that appropriate combinations of the
two anisotropy parameters can result in an increase of the zero temperature
upper critical field Hc2(0) over its isotropic equivalent by almost one order
of magnitude, while ‘‘turning on’’ just one of the two parameters has rather
little effect.

Finally, the inset of Fig. 2a shows the calculated anisotropy of Hc2,
c=Hab

c2 /Hc
c2, which nicely reproduces the pronounced temperature

dependence of the experimental data.5–7 Similar curves were obtained
recently by Dahm and Schopol,29 who employed a more realistic Fermi
surface for MgB2. In their calculations based on the Eilenberger formalism,
c(T) depends on the Fermi surface anisotropy (of the s-band) and on the
interband coupling of the two bands. In our model, c(T) directly reflects
the specific properties of Hab

c2 , i.e., being mainly determined by the (mean)
anisotropy of the Fermi velocity, which should, therefore, be a rather
common feature for strongly anisotropic superconductors (exhibiting
s-wave pairing and e−-ph coupling). The effect of varying Oa2

kP or Ob2
kP

(in the plane perpendicular to ab) is similar to that of Hc2/H iso
c2 in Figs. 2b

and c (but with different absolute values), since the temperature depen-
dence of Hc

c2 differs only slightly from the isotropic case.

3.4. Physical Relevance

We now turn to a short discussion of the physical relevance of our
calculations and the resulting parameters. In principle, the separable model
is designed for small anisotropies in the e−-ph coupling of superconductors,
which is certainly not fulfilled for Oa2

kP=0.3. To check for possible errors,
we note, that the anisotropic coupling lk, kŒ and other functions can be
described by a series of Fermi surface harmonics.30 If we stop the
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expansion after the first term, i.e., use Fermi surface harmonics only of
zeroth order, we get the separable model.18 Thus, it is quite plausible that
the most significant features of the system can be described by this simpli-
fied model, which is useful for the understanding of specific anisotropy
effects caused by e−-ph coupling and Fermi velocity anisotropy in MgB2,
whereas they are difficult to explain using the fully anisotropic theory.
Errors made by ignoring higher order terms, can partly be balanced by the
anisotropy parameters. Thus, if we adjust these parameters to reveal the
correct macroscopic effects, we cannot expect to get the correct micro-
scopic quantities as well. Nevertheless, we will show in the following, that
the deviations are not too large.

To get a second perspective on our approximations, we can interpret
the separable model as a special case of the (isotropic) two band model.31

The appropriate coupling strengths are l11=0.73, l22=0.06, l12=
l21=0.21, determined from l ij=pj(1+asi) l(1+asj) (note that Olk, kŒPŒ=
p1lk, s1+p2lk, s2 in our separable model). A wide range of l values was
found in ab-initio calculations9, 10, 19, 20 as well as in de Haas–van Alphen
experiments,26 with l clustering at small and large values, respectively. In
some cases, averaged lk, kŒ distributions were used and applied to the iso-
tropic two band model.9, 32, 33 Our l11 (0.73) and the interband coupling l12

(0.21) are comparable with such averages, but l22 (0.06) is significantly
smaller. In particular, we find l22 < l12, l21, in contrast to other results. To
test the influence of such different parameters, we solve the Eb equations
for l11=1.017, l22=0.448, l12=0.213, and l21=0.155 (cf. Ref. 32), but
this model does not reproduce the pronounced bump in the specific heat
curve at low temperatures very well. Only when l22 is decreased, the exper-
imental behavior is approached. Furthermore, we calculate the energy gaps
on the two bands and find D1=6.4 meV, D2=1.7 meV at 0 K, in reason-
able agreement with experiment.34–37

The parameters Oa2
kP and Ob2

kP also have to compensate for other
simplifications mentioned at the beginning of this section. We assume, e.g.,
equal electronic density of states in both bands (p1=p2=0.5), but band
structure calculations show p1=0.42–0.45 and p2=0.58–0.55.9, 10, 19, 20

However, our model calculations with such weights and slightly modified
parameters lead to similar results (the thin solid line in Fig. 1a, e.g., shows
the effect of changing p1/p2 to 0.42/0.58, which is in less good agreement
with the data, but can be compensated by a slight increase of Oa2

kP to 0.33).
Furthermore, we find, that increasing the width of the peak in the Eb
function from 1 meV to 10 meV, has almost no effect on the temperature
dependence of our main results. Impurities were not considered, because we
suppose the samples, used for the data analysis in this paper, to be in the
clean limit, which in particular holds for the dominant s band.
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4. CONCLUSIONS

We presented a detailed analysis of anisotropy effects in MgB2 solving
the Eliashberg equations for a separable model anisotropy together with an
e−-ph interaction spectral density a2F(w) described by an Einstein spec-
trum with the peak centered around 76 meV. We demonstrated that the
separable model, although very simple, is capable of reproducing experi-
mental data for the thermodynamics and for the upper critical field Hc2(T)
in high quality MgB2 single crystals in the direction H || ab-plane as well as
H || c-axis. This analysis allows to describe the mean square anisotropy of
the e−-ph coupling (Oa2

kP) and of the Fermi velocity (Ob2
kP) within the

ab-plane and along the c-axis. Using only these two parameters, we obtain
the ‘‘unconventional’’ properties of MgB2 and due to the very simple and
concrete physical interpretation of these two parameters in our model, we
find a simple and clear picture of the particular reasons responsible for a
particular effect. E.g., the kink in the specific heat curve emerges and
becomes more pronounced with increasing Oa2

kP. The positive curvature in
Hab

c2 (T) depends in the same way on Ob2
kP but is reduced by an increasing

Oa2
kP. The simplicity of the model also suggests, that many of the unusual

effects in MgB2 are very general for strongly anisotropic superconductors
(with e−-ph coupling and s-wave pairing) and do not strongly rely on the
particular shape and properties of the Fermi surface, but rather on the
mean values and mean anisotropies. It should be noted, that the separable
model can be interpreted as a two band, but also as an anisotropic single
band model, i.e., the properties of MgB2, addressed in this article, cannot
be regarded as a proof of two band superconductivity in any material (this
holds in particular for obtaining a kink in measurements of the specific
heat). Our results show, moreover, that the coupling of the electrons to this
single 76 meV phonon mode is, together with strong anisotropy, the
dominant feature responsible for the superconducting properties of MgB2.
This result is in full agreement with the study by Golubov et al.32 and by
Dolgov et al.,38 who showed that, within a two-band model, basically
a2Fss(w) dominates, which has a very prominent peak at ’ 76 meV
accompanied by much smaller structures at lower energies. The interband
spectral density a2Fsp(w) also shows this peak, but not as pronounced, and
thus gives only a minor contribution to the a2F(w) responsible for the
ab-plane properties of MgB2.
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