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The distribution in frequency of optical spectral weight remaining under the real part of the optical conduc-
tivity in the superconducting state of ad-wave superconductor depends on impurity concentration, on the
strength of the impurity potential, as well as on temperature and there is some residual absorption even atT
=0. In BCS theory the important weight is confined to the microwave region if the scattering is sufficiently
weak. In an Eliashberg formulation substantial additional weight is to be found in the incoherent, boson
assisted background which falls in the infrared and is not significantly depleted by the formation of the
condensate, although it is shifted as a result of the opening of a superconducting gap.
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I. INTRODUCTION

When a metal enters its superconducting state, optical
spectral weight is lost at finite frequencies under the real part
of the optical conductivity,s1sT,vd.1 Provided the change in
kinetic energy between normal and superconducting states is
small and can be neglected, the missing spectral weight re-
appears as a contribution at zero frequency which originates
in the superfluid, and the overall optical sum rule of Ferrell,
Glover, and Tinkham2,3 (FGT) remains unchanged. The dis-
tribution in frequency of the remaining spectral weight under
s1svd sv.0d depends on gap symmetry, on the nature of the
inelastic scattering involved, on the concentration and scat-
tering strength of the impurities, and on temperature.4 In this
paper we consider explicitly the case ofd-wave gap symme-
try within a generalized Eliashberg formalism.5 In this ap-
proach the optical conductivity(as well as the quasiparticle
spectral density) contains an incoherent part associated with
boson assisted absorption which is not centered about zero
frequency and which contributes to the optical spectral
weight in the infrared range. In addition, there is the usual
quasiparticle contribution of BCS theory. Alternate ap-
proaches to include inelastic scattering exist. In several
works, the quasiparticle scattering rate due to coupling to
spin fluctuations is simply added to a BCS formalism
through an additional scattering channel.6–9 Nevertheless,
whenever we refer to BCS within this paper we mean the
standard theory without these additional features.

In BCS theory the London penetration depth10,11 at zero
temperatureflLs0dg in the clean limit is given bylL

−2s0d
=lcl

−2s0d=4pne2/m=Vp
2 (n is the free electron density,e is

the charge on the electron,m is its mass,Vp is the plasma
frequency, and we have set the velocity of light equal to 1)
and all the optical spectral weight condenses. However, as
the impurity mean-free path is reduced, not all the spectral
weight is transferred to the condensate12,13and there remains
some residual impurity induced absorption.14–16 Details de-
pend on gap symmetry.

In Eliashberg theory the pairing interaction is described
by an electron-phonon spectral density, denoted by
a2Fsvd.10,11,17 Twice the first inverse moment ofa2Fsvd

gives the quasiparticle mass renormalization with the effec-
tive sm*d to baresmd mass ratiom* /m=1+l. While the gap
and renormalization function of Eliashberg theory acquire a
frequency dependence which requires numerical treatment, a
useful, although not exact, approximation is to assume that
the important frequencies ina2Fsvd are much higher than
the superconducting energy scale and, thus, one can approxi-
mate the renormalizations by a constantl value.11 In this
approximation, the zero-temperature penetration depth is
lL

−2s0d.s4pne2/mc2df1/s1+ldg in the clean limit. Thus, the
electron-phonon renormalization simply changes the bare
mass in the London expression to the renormalized massm* .
This result does not depend explicitly on the gap and holds
independent of its symmetry. A naive interpretation of this
result is that only the coherent quasiparticle part of the
electron-spectral density[which contains approximately
1/s1+ld of the total spectral weight of 1] condenses. While
this is approximately true, we will see that the incoherent
part which contains the remainingl / s1+ld part of the spec-
tral weight is also involved, although in a more minor and
subtle way.

In an s-wave superconductor the entire incoherent part of
the conductivity is shifted upward by twice the gap valueD
when compared to its normal state. It is also slightly dis-
torted but, to a good approximation, it remains unchanged.
The fact that there is a 2D shift between normal and super-
conducting states implies that an optical spectral weight shift
originates from this contribution even if its overall contribu-
tion to the sum rule should remain the same. For ad-wave
superconductor the situation is more complex because the
gap is anisotropic and, thus, the shift by 2Dsfd varies with
the polar anglef on the two-dimensional Fermi surface of
the CuO2 planes.

The goal of this paper is to understand, within an Eliash-
berg formalism, how the remaining area under the real part
of the optical conductivity is distributed in frequency, how
this distribution is changed by finite temperature effects and
by the introduction of elastic impurity scattering, and what
information can be obtained from such studies about the su-
perconducting state and the nature of the mechanism which
drives it.
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In reference tod-wave superconductivity in the cuprates,
two boson exchange models which have received much at-
tention are the nearly antiferromagnetic Fermi liquid
(NAFFL) model18–23 and the marginal Fermi liquid(MFL)
model.24–26Both models are characterized by an appropriate
charge-carrier-exchange boson spectral densityI2xsvd which
replaces thea2Fsvd of the phonon case10,27–29 and which
reflects the nature of the inelastic scattering envisioned. In
the NAFFL model a further complication arises in that we
would expectI2xsvd to be very anisotropic as a function of
momentum on the Fermi surface. For simplicity we ignore
this complication here. Also, in principle, a different spectral
weight function can enter the gap and renormalization chan-
nel, respectively.

In Sec. II, we provide some theoretical background. The
quasiparticle spectral density as a function of energy is con-
sidered as is the effect of impurities on it. In Sec. III we give
the necessary formulas for the optical conductivity and dis-
cuss some results. In Sec. IV the conditions under which a
partial sum rule involving only the quasiparticle part of the
spectral density can be expected are described. Section V
deals with issues associated with the residual absorption and
Sec. VI deals with a more detailed discussion of optical spec-
tral weight readjustment due to superconductivity. Conclu-
sions are found in Sec. VII.

II. QUASIPARTICLE SPECTRAL DENSITY

We begin with a discussion of the quasiparticle spectral
density which will allow us to understand the basic features
expected of the optical conductivity. In Nambu notation the

232-matrix Green’s functionĜsk ,vd in the superconduct-
ing state is given in terms of the single quasiparticle disper-
sion «k with momentumk, the renormalized Matsubara fre-

quency ṽsvd, and the pairing energyD̃ksvd which for a
d-wave superconductor is proportional to coss2fd. In terms
of Pauli’s t̂ matrices

Ĝsk,vd =
ṽsvdt̂0 + «kt̂3 + D̃ksvdt̂1

ṽ2svd − «k
2 − D̃k

2svd
. s1d

The quasiparticle spectral densityAsk ,vd is given by

Ask,vd = −
1

p
ImG11sk,v + i0+d

=−
1

p
Im

ṽsv + i0+d + «k

ṽ2sv + i0+d − «k
2 − D̃k

2sv + i0+d
. s2d

The generalized Eliashberg equations applicable tod-wave
gap symmetry which include renormalization effects in thev
channel have been written down before and will not be re-
peated here.5 They are a set of coupled nonlinear integral

equations forṽsvd andD̃ksvd which depend on an electron-
boson spectral densityI2xsvd. The boson exchange mecha-
nism involved in superconductivity is what determines its
shape in frequency and its magnitude. In general, the projec-

tion of the electron-boson interaction on theD̃ andṽ channel

can be different but for simplicity, here, the same form of
I2xsvd is used in both channels but with a different magni-

tude: we usegI2xsvd with gÞ1 for the D̃ channel.
In Fig. 1 we present numerical results forAskF ,vd based

on numerical solutions of the Eliashberg equations. The ker-
nel I2xsvd used for the numerical work is shown in the inset
in the top frame of Fig. 2 and was obtained from consider-
ation of the infrared optical conductivity of
YBa2Cu3O6.95sYBCO6.95d.22 Besides coupling to an optical
resonance at 41 meV(the energy where a spin resonance is
also seen in the inelastic neutron scattering30) which grows
with decreasing temperature into the superconducting state,
there is also additional coupling to a broad spin fluctuation
spectrum background of the form introduced by Milliset
al.18 in their NAFFL model. This is seen as the long tail in
I2xsvd which extends to very high energies of order
400 meV. The existence of these tails is a universal property
of the cuprates.12,13,23,31–33This energy scale is of the order
of the magnetic parameterJ in the t-J model.34 A flat back-
ground spectrum is also characteristic of the MFL
model.24–26 In this work, the shape and size ofI2xsvd are
fixed from our previous fit to optical data22 and left un-
changed. It applies at low temperatures in the superconduct-
ing statesT,10 Kd.

The top frame of Fig. 1 gives results for the charge-carrier
spectral densityAskF ,vd vs v where kF implies that we

FIG. 1. The charge-carrier spectral densityAskF ,vd as a func-
tion of v for a d-wave superconductor based on the electron-spin
fluctuation spectral densityI2xsvd shown in the inset of Fig. 2. The
solid curve applies to the nodal while the dashed curve is for the
antinodal direction. The top frame is for a pure sample with impu-
rity parametersG+=0.003 meV andc=0.2 while the bottom frame
is for G+=0.63 meV andc=0.
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consider only the Fermi energy in Eq.(2). The results are for
a pure sample withG+=0.003 meV andc=0.2. Here,G+ is
proportional to the impurity concentration and is related to
the normal state impurity scattering ratestimp

−1 d equal to
2pG+f1/sc2+1dg, wherec=1/f2pNs0dVimpg. Ns0d is the nor-
mal state density of states at the Fermi energy andVimp the
strength of the impurity potential. These impurity parameters
were determined to fit well the microwave data in YBCO6.99
obtained by Hosseiniet al.35 The solid curve is for the nodal
direction and the dashed curve for the antinodal direction.

The spectral gap is the value ofDsv+ i0+d=D̃sv+ i0+d / ṽsv
+ i0+d evaluated at the frequency of the coherence peak in the
density of states

Nsvd
Ns0d

=K ṽsv + i0+d
Îṽ2sv + i0+d − D̃2sv + i0+d

L8
; Vsvd, s3d

and is equal to 22.3 meV. This is also the position of the
large peak seen in the dashed curve in the top frame of Fig.
1. However, there is no gap in the nodal direction, and in this
case the spectral function is peaked aboutv=0. It rapidly

decays to nearly zero within a very narrow frequency range
determined by a combination of the small impurity scattering
rate which we have included and the equally small inelastic
scattering which reflects the presence ofI2xsvd and finite
temperature. A second peak is also observed at higher ener-
gies but with reduced amplitude. This peak has its origin in
the incoherent boson assisted processes described by the
spectral densityI2xsvd. Note that the two contributions are
well separated. In the constantl model, the coherent part

AskF,vd =
1

1 + l

pG+/fs1 + lds1 + c2dg
v2 + hpG+/fs1 + lds1 + c2dgj2 s4d

is a Lorentzian of widthpG+/ fs1+lds1+c2dg and has total
weight of 1/s1+ld. The remaining weight in the complete
spectral density which is normalized to 1, is thus to be found
in the incoherent, boson assisted background. Returning to
the antinodal direction, we see that in this case the separation
between quasiparticle peak and incoherent boson assisted
background is lost as the two contributions overlap signifi-
cantly. In the bottom frame of Fig. 1 we show similar results
for the charge carrier spectral density but now a larger
amount of impurity scattering is included withG+

=0.63 meV(Ref. 36) and the unitary limit is taken, i.e.,c
=0. In this instance, even for the nodal direction, impurities
have the effect of filling in the region between quasiparticle
and incoherent background(solid curve). Also for the antin-
odal direction(dashed curve), because we are ind-wave, the
region below the gap energy which is now,30 meV is filled
in significantly. It would be zero in BCSs-wave. At v=0,
ṽs0d= ig, and in antinodal direction

AskF,v = 0d =
1

ps1 + ld
g/s1 + ld

D2 + fg/s1 + ldg2 , s5d

which is finite. Hereg is the quasiparticle scattering rate at
zero frequency in the superconducting state. It is calculated
in Sec. V. This limit is not universal in contrast to the uni-
versal limit found by Lee37 for the real part of the electrical
conductivity at zero temperature which issne2/md
3h1/fpDs1+ldgj in the constantl model. Note that what
enters the universal limit is the renormalized massms1+ld
=m* rather than the bare mass. This important fact has gen-
erally been overlooked in the discussion of this limit even
though the difference can be numerically large(order ,3).
We note one technical point about our Eliashberg numerical
solutions. In all casesI2xsvd is kept fixed as isTc=92 K. In
a d-wave superconductor the introduction of impurities, of
course, reduces the critical temperature. What is done is that
the parameterg which multipliesI2xsvd in the gap channel is
readjusted slightly to keepTc fixed. This procedure leads to
the larger value of the spectral gap seen in the bottom frame
of Fig. 1 as compared with the top frame(dashed lines).

III. INFRARED CONDUCTIVITY

A general expression for the infrared optical conductivity
at temperatureT in a BCSd-wave superconductor is36,38,39

FIG. 2. Top frame: Real part of the optical conductivitys1sT,vd
vs v for an optimally doped, untwinned YBCO6.95 single crystal at
T=10 K. The solid line represents the experimental data reported
by Homeset al. (Ref. 32), the dashed line the result of a fit to a full
Eliashberg calculation using the electron-boson spectral density
I2xsvd shown in the inset and the impurity parametersG+

=0.63 meV andc=0. (Ref. 36) The dotted line presents, for com-
parison, the result of a BCS calculation using the same impurity
parameters. Bottom frame: the microwave region ofs1sT,vd for
G+=0.003 meV andc=0.2 which fits well the data of Hosseiniet
al. (Ref. 35) (shown as symbols) for three temperatures,T=10 K
(solid line), T=15 K (dashed line), andT=20 K (dotted line). (Ref.
38). Again, theI2xsvd shown in the inset of the top frame has been
used.
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ssT,nd = −
Vp

2

4p

i

nKF−E
0

`

dv tanhSbv

2
DJsv,nd

+E
−n

`

dv tanhSb
v + n

2
DJs− v − n,ndGL , s6d

where the functionJsv ,nd takes on the form

2Jsv,nd =
1

E1svd + E2sv,nd
f1 − NsvdNsv + nd

− PsvdPsv + ndg+
1

E1
*svd − E2sv,nd

3f1 + N*svdNsv + nd + P*svdPsv + ndg. s7d

In Eq. (6) b=1/kBT, with kB the Boltzmann factor. In Eq.
(7),

E1svd = Îṽ2sv + i0+d − D̃2sv + i0+d, E2sv,nd = E1sv + nd
s8ad

and

Nsvd =
ṽsv + i0+d

E1svd
, Psvd =

D̃sv + i0+d
E1svd

, s8bd

andE1
*svd, N*svd, andP*svd are the complex conjugates of

E1svd, Nsvd, andPsvd, respectively. These expressions hold
for an Eliashberg superconductor as well as for BCS in

which case the gapD̃svd does not depend on frequency; it
only depends on temperature, and on angle. Here, for brevity,
we have suppressed these dependencies but they are implic-
itly implied by the bracketsk¯l in Eq. (6) which denote an
angular average over momentum directions of electrons on
the Fermi surface at a given temperature.

Figure 2 presents two fits of theoretical results to experi-
mental data for the real part of the optical conductivity
s1sT,vd. The top frame presents a comparison with data
reported by Homeset al.32 for an untwinned, optimally
doped YBCO6.95 single crystal(solid line) at T=10 K. The
dashed line corresponds to the best-fit theoretical results gen-
erated using extended Eliashberg theory. The phenomeno-
logically determined electron-boson spectrumI2xsvd re-
ported by Schachingeret al.22 (shown in the inset) was used.
The impurity parametersG+=0.63 meV andc=0 resulted in
this best fit.36 For comparison, the dotted line corresponds to
the results of a BCS calculation using the same impurity
parameters. It is obvious that the BCS calculation cannot
reproduce the boson assisted higher-energy incoherent back-
ground which starts at about 80 meV. The full Eliashberg
theory, on the other hand, is capable of modeling very well
the experimentals1sT,vd data over the whole infrared re-
gion. The bottom frame of Fig. 2 showss1sT,vd restricted to
the microwave region up tov=0.1 meV. Three temperatures
are considered, namely,T=10 K (solid curve), T=15 K
(dashed curve), and T=20 K (dotted curve). The impurity
parameters were varied to get a good fit to the data of a
high-purity YBCO6.99 sample reported by Hosseiniet al.35

and presented by symbols. The best fit was found forG+

=0.003 meV andc=0.2. It is clear that this sample is very
pure and that it is not in the unitary limit. All curves for
s1sT,vd vs v in this frame show the upward curvature char-
acteristic of finitec values. Unitary scattering would give a
downward curvature in disagreement with the data.

The excellent agreement between theory and experiment
shown in Fig. 2 encourages us to apply theory to discuss in
detail, issues connected with the redistribution of optical
spectral weight in going from the normal(not always avail-
able in experiment) to the superconducting state and the ef-
fect of temperature and impurities on it.

The real part of the optical conductivitys1sT,vd as a
function of v is shown in the top frame of Fig. 3. A factor
Vp

2/ s8pd has been omitted from all theoretical calculations
and sos1sT,vd is in meV−1. In these units the usual FGT
sum rule which gives the total available optical spectral
weighte0

` dvs1svd=p (including the superfluid contribution
at v=0). Two cases are shown in the frequency range 0+

øvø250 meV. One is for the very pure sample(solid
curve) with G+=0.003 meV andc=0.2. The other is for a

FIG. 3. Top frame: Real part of the optical conductivitys1svd
vs v in units ofVp

2/ s8pd. The solid curve is for a pure sample with
impurity parametersG+=0.003 meV,c=0.2 and the dashed curve is
for G+=0.63 meV and c=0. The temperatureT=10 K. The
electron-boson spectral densityI2xsvd used is shown in the inset of
the top frame of Fig. 2. For the solid curve, the narrow coherent
quasiparticle peak centered atv=0 is well separated from the
higher-energy incoherent, boson-assisted region. This separation is
less clear in the dashed curve. Bottom frame: Real part of the op-
tical conductivity s1sT,vd vs v in units of Vp

2/ s8pd for a pure
sample with impurity parametersG+=0.003 meV andc=0.2 at
10 K. The superconducting state(solid line) is compared with the

normal state, i.e., setting the gapD̃svd=0 in the Eliashberg equa-
tions (dotted line). The dashed curve is a repeat of the normal state
curve but has been shifted in frequency by 26 meV.
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less pure sample(dotted curve) with G+=0.63 meV in the
unitary limit, c=0. In the solid curve we clearly see a sepa-
rate quasiparticle contribution peaked aboutv=0 which is
responsible for a coherent Drude-like contribution to the real
part of the optical conductivity. In this process the energy of
the photon is transferred to the electrons with the impurities
providing a momentum sink. The width of the quasiparticle
peak and corresponding Drude peak is related to the impurity
scattering rate. Because we are using Eliashberg theory there
is also a small contribution to this width coming from the
thermal population of excited spin fluctuations. In addition,
there is a separate incoherent contribution at higher frequen-
cies. This second contribution involves the creation of spin
fluctuations during the absorption process. Its shape reflects
details of the frequency dependence of the spectral density
I2xsvd involved. For the normal state at temperatureT.Tc

the spectral densityI2xsvd in the NAFFL model does not
show the resonance peak seen in the inset of the top frame of
Fig. 2 but consists mainly of the reasonably flat background.
This implies that in this region MFL behavior results with
optical and quasiparticle lifetimes linear in frequency and in
temperature. The energy scale associated with this behavior
is the spin-fluctuation scalevSF. This is verified in numerous
experiments in the cuprates as reviewed by Puchkovet al.31

Just as for the charge-carrier spectral density discussed in the
preceding section, the optical weight under the coherent part,
to which we add the superfluid contribution atv=0, is about
1/s1+ld of the total weight availablesVp

2/8d with the re-
mainder,l / s1+ld, to be found in the incoherent part. In the
model considered here, which fits the available data for
YBCO6.99 and YBCO6.95, l=2.01 so that only one third of
the weight is in the coherent part. This order of magnitude
agrees well with the extensive experimental results in other
cuprates given in Refs. 12 and 13. Note that coherent and
incoherent region are nicely separated over a substantial fre-
quency range in which the conductivity is small relative to
its value in the quasiparticle peak and in the boson assisted
background. This will lead to a plateau in the integrated op-
tical spectral weight as a function of the upper limitv in the
integral overs1sT,vd which will, in turn, lead to an approxi-
mate partial or truncated sum rule on the coherent contribu-
tion to the conductivity itself. It is only this piece which is
included in BCS theory and which can be described by such
a theory in cases when it is well separated from the incoher-
ent background. We note that the addition of impurities, as in
the dashed curve in the top frame of Fig. 3, greatly increases
the frequency width of the quasiparticle peak ins1sT,vd and
also fills in the region between coherent and incoherent parts
of the conductivity. While these two contributions are still
recognizable as distinct, they now overlap significantly and
cannot as easily be separated.

Finally, but very importantly, in the bottom frame of Fig.
3 we repeat the curve fors1sT,vd vs v for the pure sample
of the top frame of Fig. 3(solid curve) and compare it with
its normal state counterpart(dotted curve). We see that due to
superconductivity, much of the weight under the Drude peak
in the solid curve(superconducting) as compared with the
dotted curve(normal) has been transferred to the condensate
and is not part of the figure[d-function atv=0 in s1sv ,Td].

It has also shifted the incoherent part to higher energies. For
an s-wave superconductor the appropriate shift would be
twice the gap as seen in the work of Marsiglio and Carbotte1

(see their Fig. 11). For thed-wave case there is a distribution
of gap values around the Fermi surface and consequently of
upward shifts. This leads to some distortion of the incoherent
part as compared with its normal state value as can be seen in
the dashed curve which is the dotted curve displaced up-
wards by 26 meV, a value slightly larger than the gap of
22.3 meV and much less than twice the spectral gap. The
difference between dashed and solid curves is small but not
negligible. This shows that in the optical spectral weight dis-
tribution the boson assisted part of the spectrum is in a first
approximation shifted in energy but not significantly de-
pleted or augmented. The addition of impurities also has an
effect on the incoherent background as can be seen in the top
frame of Fig. 3 on comparison of the solid with the dashed
curve.

IV. APPROXIMATE PARTIAL SUM RULE FOR THE
COHERENT PART

In the top frame of Fig. 4 we show our theoretical results
for the remaining integrated optical spectral weight under the
real part of the conductivitys1sT,vd in the superconducting

FIG. 4. The remaining integrated optical spectral weight in the
superconducting state. Top frame:WsT,vd=e0+

v dns1sT,nd for val-
ues of v up to 1 meV. The temperatures are 10 K(solid lines),
15 K (dashed lines), and 20 K(dotted line). The gap is 22.3 meV,
G+=0.003 meV, and c=0.2. Bottom frame: SsT,vd
=limv→0vs2sT,vd+2WsT,vd /p in units such that limv→`SsT,vd
=2.
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state up to frequency v. By definition WsT,vd
=e0+

v dns1sT,nd where the upper limit of the integral is vari-
able. The data is for the very pure sample for which coherent
and incoherent contributions are well separated. Results for
three temperatures are shown, namely,T=10 K (solid line),
T=15 K (dashed line), and T=20 K (dotted line) and the
variable upper limitv ranges from zero to 1 meV, i.e., only
very low frequencies are sampled. Consequently, only the
coherent quasiparticle contribution to the conductivity(solid
curve in the top frame of Fig. 2) is significantly involved
since the incoherent contribution is almost negligible in this
energy range. Note that already forv,0.4 meV a well-
developed plateau is seen in each curve, although its magni-
tude depends on temperature.WsT,vd represents the residual
absorption in the microwave region that remains at low tem-
peratures in the superconducting state. It decreases with de-
creasing temperature as more optical weight is transferred to
the condensate. In our calculations this residual absorption
has its origin in the inelastic scattering associated with ther-
mally activated bosons which exist at any finiteT and which
broadens the quasiparticle contribution. This is in addition to
impurity absorption which is also small, whenG+ is small.
Strictly, at zero temperature only the impurity absorption re-
mains and this goes to zero asG+ goes to zero. We will see
later that an extrapolation to zero temperature of the numeri-
cal data forWsT,vd gives for the cutoffv=1 meV, a value
of 0.000 23[in units of Vp

2/ s8pd] which is very small.
In the bottom frame of Fig. 4 we show results for a

closely related quantitySsT,vd vs v in units of Vp
2/ s8pd. In

the superconducting state, missing spectral weight under the
real part of the conductivity when compared to its normal
state is found in ad-function atv=0 weighted by the amount
in the condensate. In our computer units the full sum rule
which applies whens1sT,vd is integrated to infinity and the
condensate contribution added, is 2. The partial sum up tov
is

SsT,vd = lim
v→0

vs2sT,vd +
2

p
E

0+

v

dns1sT,nd

;
2

p
E

0

v

dn s1sT,nd, s9d

and is shown for the same three temperatures as in the top
frame. Heres2sT,vd is the imaginary part of the conductiv-
ity. When multiplied byv its v→0 limit is proportional to
the inverse square of the London penetration depth which, in
turn, is proportional to the superfluid density.

For an Eliashberg superconductor the expression for the
penetration depth at any temperatureT is (in our computer
units)

1

lL
2sTd

= 8pTo
vn
K D̃k8

2 svnd

fṽ2svnd + D̃k8
2 svndg3/2L8

. s10d

For T→0 in the constantl model with no impurities we get

1

lL
2sT = 0d

=
8p

1 + lKE0

`

dv
D2coss2f8d

fv2 + D2cos2s2f8dg3/2L8

=
1

lcl
2 s0d

S 1

1 + l
D , s11d

where we have restored the units andlL
−2sT=0d is the usual

value of the London penetration depth. There are so called
strong coupling corrections to Eq.(11) (see Ref. 11), but
these are small and, in a first approximation, can be ne-
glected. A physical interpretation of Eq.(11) is that it is only
the coherent quasiparticle part of the spectral density(Fig. 1)
which significantly participates in the condensation.

Returning to the bottom frame of Fig. 4 we see that at
v,0.4 meV a plateau has been reached inSsT,vd vs v as
well and that, relative to what is the case forWsT,vd in the
top frame, little variation with temperature remains. Never-
theless, the small amount that is seen will have consequences
as we will describe later. For now, neglecting thisT depen-
dence, the plateau seen inSsT,vd vs v implies that an ap-
proximate partial sum rule will apply to the coherent part of
the conductivity by itself, provided the cutoff onv is kept
small. This has important implications for the analysis of
experiments. While only approximately 1/s1+ld of the op-
tical spectral weight is involved in this contribution, this
piece behaves like a BCS superconductor. The partial sum
rule which applies when the cutoffvc is kept below the
frequency at which the incoherent part starts to make an
important contribution is

SsT,vcd = lim
v→0

vs2sT,vd +
2

p
E

0+

vc

dn s1sT,nd .
2

1 + l

s12d

in the constantl approximation of Sec. II. In our full Eliash-
berg calculations forT=10 K we get,0.71 for Eq. (12)
instead of,2/3 with l=2.01. It is the existence of the par-
tial sum rule (12) for very pure samples that has allowed
Turneret al.14 to analyze their microwave data within a BCS
formalism without reference to the midinfrared incoherent
contribution. Nevertheless, one has to keep in mind that this
partial sum rule involves only 1/s1+ld of the whole spectral
weight under thes1sT,vd curve with important conse-
quences on the results derived from such an analysis.

For the pure case considered here the cutoffvc in Eq. (12)
is well defined. This is further illustrated in Fig. 5 were we
show once moreWsT,vd (top frame) and SsT,vd (bottom
frame) but now for an extended frequency range up to
250 meV for the caseT=10 K only. We also show, for com-
parison, additional BCS results and results for a second set of
impurity parameters. The solid and dotted curves in both
frames areWsT,vd andSsT,vd for an Eliashberg supercon-
ductor with G+=0.63 meV, c=0 and G+=0.003 meV, c
=0.2, respectively. The dashed and dash-dotted curves are
for a BCS superconductor withG+=0.63 meV,c=0 andG+

=0.05 meV,c=0.2. We first note that for the purer Eliash-
berg case(dotted curve) the plateau in bothWsT,vd and
SsT,vd identified in Fig. 4 extends tov.50 meV. Clearly,
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any value of frequency betweenv.0.4 meV and 50 meV
will do for vc in Eq. (12) and a partial sum rule is well
defined but for the less pure case(solid curve) a plateau is
not as well defined. In both cases, however, the increase
beyond the plateau value of,0.7 towards saturation is rather
slow and even atv=250 meVSsT,vd is still well below 2.
This feature reflects directly the large energy scale involved
in the boson exchange mechanism we have used. This be-
havior is in sharp contrast to BCS. For the dash-dotted curve
SsT,vd is already close to 2 atv.25 meV while for the less
pure case(dashed curve) the rise to 2 is slower and distrib-
uted over a larger energy scale of the order,100 meV. In-
asmuch as impurities strongly affect such scale estimates
they are not fundamental to the superconductivity itself. If, in
our Eliashberg calculations, we look only at the initial rise to
its plateau values,0.7d, the scales involved are different
again,,1 meV and,50 meV, respectively.

V. RELATION BETWEEN RESIDUAL ABSORPTION
AND PENETRATION DEPTH

We next turn to the relationship between the temperature
dependence of the residual absorption and the penetration

depth. This is illustrated in Fig. 6 which has three frames.
The top frame presents BCS results and is for comparison
with the two other frames which are based on Eliashberg
solutions. The central frame has impurity parametersG+

=0.003 meV andc=0.2. The bottom frame is for a less pure
sample withG+=0.63 meV andc=0.2 and illustrates how
impurities change the results. In the top frame, the dashed
curve is the difference in superfluid densityl−2s0d−l−2sTd
as a function of temperatureT up to 20 K for a BCS super-
conductor with gapD=24Î2 meV, G+=0.1 meV, andc
=0.3. These parameters were chosen only for the purpose of
illustration. Turneret al.14 considered the optical spectral
weight concentrated in the microwave region of an ortho-II
YBCO6.5 sample and the temperature dependence ofWsTd
that is obtained from consideration of the microwave region
only. They found it to extrapolate to a finite value atT=0
(zero-temperature residual absorption) while at the same
time WsTd parallels the temperature dependence found for
the penetration depth. In our solid curve(top frame of Fig. 6)
we have integrateds1sT,vd to getWsT,vd up to 1 meV and
find a curve forWsTd which is parallel to the dashed curve
for the penetration depth but indeed does not extrapolate to
zero atT=0. Note that in a BCS model for pure samples the
ordinary FGT sum rule applies even if only the microwave
region is considered and so the solid and dashed curves are

FIG. 5. Top frame: The optical spectral weightWsT,vd
=e0+

v dns1sT,nd as a function of the upper limitv. Two curves
apply to BCS and two correspond to Eliashberg calculations. In one
case the unitary limitsc=0d is used withG+=0.63 meV(solid curve
for Eliashberg, dashed for BCS). The dotted curve is similar but for
G+=0.003 meV andc=0.2 in Eliashberg theory and the dash-dotted
one is forG+=0.05 meV,c=0.2 in BCS. Bottom frame: the same as
the top frame but now the sumSsT,vd=limv→0vs2sT,vd
+s2/pde0+

v dns1sT,nd is shown. In both frames the temperatureT
=10 K and thed-wave gap amplitude is the same for Eliashberg
and BCS calculations.

FIG. 6. Top frame: comparison ofs2/pdWsTd vs T (dotted
curve) with l−2s0d−l−2sTd (dashed curve) for a BCSd-wave super-
conductor with the gap amplitude set atD=24Î2 meV and with
G+=0.1 meV andc=0.3. The lines are parallel to each other. The
superfluid density goes to zero atT=0 while the remaining area
under the real part of the conductivity goes to a finite value(re-
sidual absorption). Middle frame: same comparison as in the top
frame for an Eliashberg superconductor modeled for YBa2Cu3O6.99,
with G+=0.003 meV andc=0.2. The curve fors2/pdWsTd extrapo-
lates to a very small value asT→0 and the two curves are not quite
parallel. Bottom frame: same as for the middle frame but withG+

=0.63 meV andc=0.2. Three different cutoffs inWsT,vd are used.
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parallel. This is no longer the case in Eliashberg theory as
shown in the center frame of Fig. 6. There the dashed and
solid curves are not quite parallel with the dashed curve
showing a slightly steeper slope. Also, the solid curve ex-
trapolates to a finite, though very small, value atT=0. This is
expected since the impurity content in this run is very small.
This case corresponds closely to the YBCO6.99 sample con-
sidered in Fig. 4 of Turneret al.14 The slight difference in
slope between solid and dashed curve can be understood in
terms of our result forSsT,vcd given in the bottom frame of
Fig. 4. We have already noted that atv=1 meV, the cutoff
used in evaluation ofWsT,vcd (solid curve, center frame of
Fig. 6), there remains a small temperature dependence to the
saturated value ofSsT,vcd. This means thatSsT,vcd in this
region is slightly smaller atT=20 K (dotted curve in the
bottom frame of Fig. 4) than it is atT=10 K (solid curve).
This slight deviation from the partial sum rule embodied in
our Eq. (12) leads immediately to the difference in slope
seen in the center frame of Fig. 6 betweenWsT,vcd and the
penetration depth.

In the bottom frame of Fig. 6 we show results forG+

=0.63 meV andc=0.2. In this case the coherent and inco-
herent contributions tos1sT,vd (see Fig. 3, top frame, dotted
curve, although this curve, is forc=0) are not as well sepa-
rated as in the pure case andWsT,vd vs v does not show as
clear a plateau which would allow the formulation of a par-
tial sum rule on the coherent part alone. Nevertheless, we do
note that for vc=1 meV, 2WsT,vcd /p (solid squares) is
nearly parallel to the dashed curve for the penetration depth.
If, however,vc is increased to 5 meV(solid up triangles) or
10 meV (solid down triangles) this no longer holds. This
result can be traced to the fact that no real temperature and
cutoff independent plateau is reached in these cases. Thus,
there is no partial sum rule which can be applied onWsT,vd
and an analysis as performed by Turneret al.14 on very high
purity samples appears not to be possible. This case may
correspond better to the relatively dirtier film data.15 Note, in
particular, that the residual absorption at zero temperature
depends now strongly on the cutoff frequency chosen for the
partial sum rule. In our example(bottom frame of Fig. 6) the
residual absorption increases almost linearly with increasing
cutoff frequency.

We turn next to the zero-temperature value of the residual
absorption and its impurity dependence. Equation(10) ap-
plies but now we wish to consider impurities so thatṽn is not
simply ṽn=vns1+ld in the constantl model. Instead, we
must use

ṽsv + i0+d = vs1 + ld + ipG+ Vsvd
c2 + V2svd

, s13d

which needs to be solved self-consistently forṽsv+ i0+d. For
v=0, we can writeṽsv+ i0+d= ig with

g = pG+ Vsigd
c2 + V2sigd

s14d

andVsigd is given by Eq.(3). EvaluatingVsigd gives

g = pG+

2g

pDs1 + ld
lnS4Ds1 + ld

g
D

c2 + S 2g

pDs1 + ldD
2

ln2S4Ds1 + ld
g

D . s15d

This transcendental equation forg, the zero-frequency scat-
tering rate at zero frequency, is to be solved numerically for
any value ofc. Results can be found in Refs. 36 and 38 for
the casel=0. What is found is thatg /c increases withG+

and, for a given value ofG+, decreases rapidly withc. At c
=0 we get the approximate, but very useful relation

g = 0.63ÎpG+Ds1 + ld. s16d

Note that this is the same expression as in Ref. 40 except that
it contains an additional factor ofs1+ld. In terms ofg we
can get an approximate expression for the zero-temperature
London penetration depth including impurities. Returning to
Eq. (10), we need to replaceṽn by vns1+ld+g to get38

1

lL
2s0d

= 8p
1

1 + l
E

0

2p

dfE
0

`

dv

3
D2 cos2s2fd

FSv +
g

1 + l
D2

+ D2 cos2s2fdG3/2 s17d

.
1

lcl
2 s0dH1 −

2

p
KF i

g
Ds1 + ldGJ , s18d

whereKsxd is the elliptic integral of the first kind. The ap-
proximation made to get the last equality, Eq.(18), is not
very accurate but has the important advantage that it is ana-
lytic and simple. It gives

lL
−2s0d . lcl

−2s0dF1 −
2gs1 + ld

pD
lnS4Ds1 + ld

g
DG . s19d

In a BCS modelsl=0d this gives in the limitsT→0 andv
→`,

WsT = 0,v → `d ; Ws0d =E
0+

`

dvs1s0,vd =
g

D
lnS4D

g
D .

s20d

Exact numerical results forWs0d based on Eq.(17) with l
=0 are compared with those based on Eq.(20) in the top
frame of Fig. 7. We see that Eq.(20) is qualitatively, but not
quantitatively, correct. In the bottom frame we show the cor-
responding values ofgscd vs c for the convenience of the
reader. It is clear that the residual absorption due to the co-
herent part of the charge-carrier spectral density does depend
significantly on impurity content. In a real superconductor
we have additional absorption atT=0 coming from the in-
coherent, boson assisted background which enters whenv in
the upper limit of the defining integral forWsT,vd is made to
span energies in the infrared region of the spectrum.
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VI. MISSING AREA

The FGT sum rule implies that the missing optical spec-
tral weight under the real part of the conductivity in the
superconducting state appears as ad-function contribution at
the origin proportional to the superfluid density. It depends
on temperature and on impurity content. IncreasingT and/or
G+ decreases the superfluid density. In the top frame of Fig. 8
we show our results for the remaining integrated optical
spectral weightWsT,vd as a function ofv up to 250 meV
for a sample withG+=0.63 meV andc=0. We have done
similar calculations for a clean sample but there is no quali-
tative difference. The solid curve is for the superconducting
state atT=10 K and is to be compared with the dotted curve
which is for the normal state at the same temperature. We see
a great deal of missing spectral weight between these two
curves with WNsT,vd rising much faster at smallv than
WSsT,vd and it is rising to a much higher value. The differ-
enceWNsv ,T=10 Kd−WSsv ,T=10 Kd (dashed curve) is the
amount of optical spectral weight betweens0+,vd that has
been transferred to the superfluid condensate. As we see, the
dashed curve rapidly grows within a few meV to a value
close (but not quite) to the asymptotic value it assumes at
v=250 meV. After this the remaining variation is small but
there is a shallow minimum around 30 meV with a corre-
sponding broad and slight peak around 100 meV which is
followed by a small gradual decrease still seen at 250 meV.
These features can be understood in detail when the fre-

quency dependence ofs1sT,vd is considered. The relevant
curves to be compared are the dotted(normal) and solid(su-
perconducting) ones in the bottom frame of Fig. 8. Both are
at 10 K. The curves cross at three places on the frequency
axis. Above the first crossing atv1<8 meV the difference in
the integrated area decreases tillv2<32 meV at which it
begins to increase. Finally, at the third crossingv3
<130 meV it begins to decrease again towards its value at
250 meV. These features are the direct result of the shift in
incoherent background towards higher energies due to the
opening up of the superconducting gap. The area between the
dotted and solid lines that falls betweenv2 andv3 is made
up slowly at higher frequencies. This feature would not be
part of BCS theory in which case the energy scale for the
optical weight which significantly participates in the conden-
sate is set as a few times the gapD (Ref. 41) and the satu-
rated value is reached from below rather than from above. In
our theory the existence of the incoherent background effec-
tively increases this scale to much higher energies, the scale

FIG. 7. Top frame: theT→0 limit of the remaining optical
spectral weightWs0d=e0+

` dvs1sT=0,vd as a function of the im-
purity potential strengthc for various values ofG+. The heavy con-
tinuous curves are the approximationWs0d.sg /Ddlns4D /gd while
the light curves with solid squaressG+=0.15 meVd, solid circles
sG+=0.1 meVd, solid trianglessG+=0.05 meVd, and solid diamonds
sG+=0.01 meVd are exact results. The bottom frame gives the zero
frequency value of the effective scattering in the superconducting
state,gscd as a function ofc.

FIG. 8. Top frame: Optical spectral weightWsv ,Td
=e0+

v dns1snd for various cases as a function ofv. The dotted
(dash-double-dotted) curve is for the normal state atT=10 KsT
=95 Kd, the solid curve for the superconducting state atT=10 K.
The dashed(dash-dotted) curve is the difference curve between

superconducting and normal states[D̃svd=0 in the Eliashberg equa-
tions] at T=10 KsT=95 Kd. The approach of the difference in area
to its saturated largev value depends significantly on the tempera-
ture used for the subtracted normal state. The thin dash-double-
dotted horizontal line is the value of the penetration depth. Bottom
frame: it shows the real part of the conductivity for the normal state
at T=293 K (dashed curve), T=95 K (dash-dotted curve), T
=10 K (dotted curve), and for the superconducting state aT
=10 K (solid curve). All curves are for YBCO6.95 with the impurity
parameters set toG+=0.63 meV andc=0.
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set by the bosons involved, although the amount of spectral
weight involved is very small.42,43 We note that atv
=250 meV the missing area curvesWNsT=10 K,vd−WSsT
=10 K,vd and WNsT=95 K,vd−WSsT=10 K,vd of the top
frame of Fig. 8 are still about 2.5% higher than the value
indicated for the penetration depth(thin dash-double-dotted
line) which is obtained directly from the imaginary part of
the optical conductivity.

In an actual experiment it is not possible to access the
normal state at low temperatures so thatWNsv ,T=10 Kd
cannot be used to compute the difference withWSsv ,T
=10 Kd. Usually WNsv ,T=95 Kd is used instead. This is
shown as the dashed-double-dotted curve in the top frame of
Fig. 8 which is seen to merge with the dotted curve only at
large values ofv. Because in our theoretical work, the in-
elastic scattering atT=Tc is large with a scattering rate of the
order 2Tc or so, the corresponding optical spectral weight in
s1sT,vd is shifted to higher energies. Consequently,
WNsv ,T=Tcd rises much more slowly out ofv=0 than does
WNsv ,T=10 Kd and the difference curveWNsv ,T=95 Kd
−WSsv ,T=10 Kd (dash-dotted curve) reflects this. It merges
with the dashed curve only forv*200 meV. Thus, making
use of WNsv ,T=Tcd rather thanWNsv ,T=10 Kd makes a
considerable difference in the estimate of thev dependence
of the missing area. None of the structure seen in the dashed
curve remains in the dash-dotted curve and much informa-
tion on separate coherent and incoherent contributions is lost,
although the curve still approaches itsv→` limiting value
from above. From this point of view, it is the dashed curve
which is fundamental but it is not directly available in ex-
periments. If an even higher temperature had been used for
the normal state, say around room temperature, the fre-
quency at which the differenceWNsvd−WSsvd would agree
with the penetration depth is pushed to very high energies
well beyond the 250-meV range shown in the top frame of
Fig. 8. The reason for this is clear when the bottom frame of
this same figure is considered. What is shown is the real part
of the conductivity for four cases: the normal state atT
=293 K (dashed curve), at T=95 K (dash-dotted curve), and
at T=10 K (dotted curve). Increasing the normal state tem-
perature shifts a lot of spectral weight to higher energies and
can even make the differenceWN−WS negative for smallv.

We stress again that individualWsT,vd curves show no
saturation as a function ofv in the range shown. This is
characteristic of the high-Tc oxides and resides in the fact
that I2xsvd, the electron-boson exchange spectral density, ex-
tends to very high energies. This is fundamental to an under-
standing of the optical properties in these materials and is
very different from the electron-phonon case. In that instance
there is a maximum phonon energyvD never larger than
about 100 meV and hence the curve forWsT,vd would reach
saturation at a much smaller energy than in our work. This
observation provides strong evidence against solely a phonon
mechanism for superconductivity in the oxides.

To aid this discussion we added Fig. 9 which, in its top
frame, shows the experimental data for the real part of the
optical conductivity,s1sT,vd, reported by Tuet al.33 in an
optimally doped Bi2Sr2Ca Cu2O8+d (Bi2212) single crystal
for three temperatures, namely,T=6, 100, 295 K. The ex-

perimental data have been augmented by theoretical data5 in
the frequency region 0,vø12.4 meV derived from best fits
to experiment. This graph is to be compared with the bottom
frame of Fig. 8. The bottom frame of Fig. 9 presents the
corresponding optical spectral weightWsv ,Td calculated
from the experimentals1sv ,Td data. The results follow
closely similar theoretical curves presented in the top frame
of Fig. 8. In particular,WSsv ,T=6 Kd does not develop a
well-defined plateau around 50 meV as we found it for opti-
mally doped YBCO6.95 single crystals[solid line in the top
frame of Fig. 8, labeledWSsT=10 K,vd]. Finally, the differ-
ences WNsv ,T=100 Kd−WSsv ,T=6 Kd (solid line) and
WNsv ,T=295 Kd−WSsv ,T=6 Kd (dash-double-dotted line)
are shown in this graph. We also included the theoretical
value for sp /2dlimv→0vs2sv ,T=6 Kd as a thin, solid hori-
zontal line found from a fit to experimental data. The first
difference is still far away from this limit but approaches it
from above, as expected from our previous discussion, while
the second approaches this limit from below. This analysis of

FIG. 9. Top frame: Experimental data for the real part of the
optical conductivity,s1svd vs v and various temperatures for an
optimally doped Bi2212 single crystal as it was reported by Tuet
al. (Ref. 33). The data has been augmented by theoretical data(Ref.
5) in the energy range 0,vø12 meV. Bottom frame: Optical
spectral weightWsv ,Td=e0+

v dns1sn ,Td vs v as calculated from
the experimental data shown in the top frame of this figure. The
dashed line is forT=6 K (superconducting state), the dotted line for
T=100 K, and the dash-dotted line forT=295 K. Presented are also
the differences WNsv ,T=295 Kd−WSsv ,T=6 Kd (dash-double-
dotted line) andWNsv ,T=100 Kd−WSsv ,T=6 Kd (solid line). The
thin, solid horizontal line represents the theoretical value
sp /2dlimv→0vs2sv ,T=6 Kd.
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experimental data supports our theoretical results in a rather
impressive way.

VII. CONCLUSIONS

In a pure BCS superconductor at zero temperature with no
impurities the entire optical spectral weight under the real
part of the conductivity will vanish as it is all transferred to
the superfluid density which contributes ad-function at v
=0 to the real part ofssvd. When impurities are present the
superfluid density atT=0 is reduced from its clean limit
value and some spectral weight remains unders1svd which
implies some absorption even at zero temperature. The situ-
ation is quite different for a superconductor which shows a
pronounced incoherent background scattering which can be
modeled reasonably well in Eliashberg theory, be its- or
d-wave. In both cases it is mainly the coherent part of the
electron spectral density which contributes to the condensate.
The electron spectral function still has ad-function part
broadened by the interactions at any finite energy away from
the Fermi energy but the amount of weight under this part is
1/s1+ld, wherel is the mass enhancement parameter for
the electron-boson exchange interaction. The remaining
spectral weightl / s1+ld is to be found in incoherent, boson
assisted tails. Another way of putting this is that at zero

temperature in a pure system the superfluid density is related
to the renormalized plasma frequency withm* replacing the
bare electron masssm* /m=1+ld in contrast to the total
plasma frequency which involves the bare massm. The in-
coherent, boson assisted tails ins1sT,vd do not contribute
much to the condensate and, in fact, remain pretty well un-
affected in shape and optical weight by the transition to the
superconducting state but they are shifted upwards due to the
opening up of the superconducting gap. This shift implies
that when one considers the missing optical spectral weight
under the conductivity which enters the condensate, the en-
ergy scale for this readjustment is not set by the gap scale but
rather by the scale of the maximum exchanged boson energy.
Also it is expected that the value of the penetration depth
which corresponds to the saturated value of the missing area
is approached from above when the conductivity is inte-
grated to high energies.
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