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Abstract

Low dimensional transition metal oxides like o/-NaV,05 can adopt several
types of charge order: zig-zag order, inline order or valence fluctuations. We
present a mean field phase diagram which gives a simple picture of the tran-
sition between the different phases dependent on parameter ratios. Further-
more we investigate the charge order by calculating the optical conductivity
in the frame of both the ¢-J-V and the ¢-U-V model, because this observable
gives the main excitations of the system and one can determine the charge
order by considering these excitations.

The integrated optical conductivity (IOC) and its temperature dependence
reflects the changes of the kinetic energy. It provides a unique way to ex-
plore experimentally the kinetic properties of strongly correlated systems.
Numerical calculations by finite temperature Lanczos method showed quite
good agreement with experimental data. The strong low temperature de-
pendence of the IOC can be explained by the destruction of short range spin
correlations, which can be studied by considering a small system. Charge ex-
citations that where attributed to the low temperature decrease of the IOC
can only explain the high temperature behavior of the system.



Zusammenfassung

Niedrigdimensionale Ubergangsmetalloxide, wie z.B. o/-NaV,05 kénnen prin-
zipiell mehrere verschiedene Typen von Ladungsordnung annehmen: zick-
zack Ordnung, inline Ordnung oder Valenzfluktuationen. Wir berechnen
ein Mean-Field Phasendiagramm, das die einzelnen Phasen zu Parameter-
verhaltnissen in Beziehung setzt. Dariiber hinaus untersuchen wir die Ladung-
sordnung iiber die optische Leitfahigkeit im Rahmen des ¢-J-V und des t-U-V
Modells. Die optische Leitfahigkeit enthalt Informationen iiber die Ladung-
sordnung sowie iiber elementare Anregungen.

Die integrierte optische Leitfihigkeit (IOC) und deren Temperaturabhingig-
keit zeigt Anderungen der kinetischen Energie und gibt somit die Moglichkeit,
kinetische Figneschaften von stark korrelierten Systemen experimentell zu
untersuchen. Numerische Rechnungen mittels des Lanczos Algorithmus zeig-
en gute Ubereinstimmung mit den experimentellen Daten. Die starke Abhéng-
igkeit bei niedrigen Temperaturen kann durch die Abnahme von kurzreich-
weitigen antiferromagnetischen Spinkorrelationen erklart werden, die durch
Betrachtung eines kleinen Systems untersucht werden konnen. Ladungsanre-
gungen, die auch als Grund fiir diese starke Abnahme der IOC bei niedrigen
Temperaturen diskutiert wurde, konnen nur das Verhalten des Systems bei
sehr hohen Temperaturen erklaren.
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Chapter 1

Introduction

One main object of theoretical solid state physics is the description and
analysis of phenomenons found in experiments. As physician one is faced by
severe problems because one has to solve the Schrodinger equation, which is
in fact a many body problem. An exact solution is only in few cases possible
and hence one has to apply approximations, but the realistic description of
electron correlations is still very difficult.

One has to distinguish between weakly and strongly correlated electronic sys-
tems. For weakly correlated systems there is a famous approximation based
on the introduction of an effective potential that describes the influence of all
other electrons on a single one and has to be calculated self-consistently. In
other words one has a one electron Schrodinger equation where the correla-
tions are included in the effective potential. The local density approximation
(LDA) is a further development of this idea of a self consistent effective po-
tential. This method leads to very satisfactory results for weakly correlated
systems.

Starting point of the LDA is the homogeneous electron gas without correla-
tions, which means that one can use LDA only when correlations are weak.
Correlated systems for which the LDA does not work any more are called
strongly correlated. In solids the coulomb repulsions can get very strong,
if the distances between electrons or the electron density gets small. The
Hubbard model for instance shows a splitting of the energy band into two
bands, if the interaction is large enough. Application of standard methods of
quantum theory like perturbation theory is not possible in this case, because
the coulomb repulsion cannot be treated as small perturbation. Therefore
very often numerical methods like exact diagonalisation or quantum monte
carlo (QMC) methods are used.
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This work deals with the charge order and the optical conductivity of the
low dimensional transition metal oxide o/-NaV,05. This compound attracted
attention from experimental and theoretical point of view because of its very
interesting properties. Starting point was the observation that o/-NaV,05
can be described in a very wide temperature range by a one dimensional
Heisenberg chain. Moreover there is a phase transition at 34 K, which was
identified as Spin-Peierls transition but is still under discussion. If one wants
to study the kinetic properties of the system one can do that by calculating
the integrated optical conductivity (IOC) because it is proportional to the
kinetic energy of the system.

In the following chapter we introduce some basic theoretical elements like the
current operator, linear response theory and the optical conductivity, which
is a special case of the electric conductivity.

The calculations of the optical conductivity is done by exact diagonalisa-
tion of finite systems for both zero and finite temperature. The algorithm
that is used for this purpose is called Lanczos algorithm and is presented in
chapter 3.

In chapter 4 we investigate the charge order of ladder systems. By mean field
calculations we derive a phase diagram dependent on two parameter ratios.
In a next step we study the influence of the parameters on the charge order of
o/-NaV,05 by exact diagonalisation. We calculated the optical conductivity
for zero temperature and studied the shifting of the peaks in the spectrum
when the parameters are varied.

Chapter 5 deals with the temperature dependence of the optical conductivity,
where we first compare experimental and numerical results. Then we intro-
duce a pseudo spin model in order to investigate the influence of the charge
excitations on the temperature dependence. In the frame of this model it is
possible to calculate the kinetic energy of the system, which can be compared
to the IOC. In order to explain the low temperature dependence of the IOC
it is necessary to include spin correlations in the model. By studying these
spin correlations on a small two rung system it is possible to get an analytic
expression for the IOC, that can then be fitted to the numerical results for
the extended system.

In chapter 6 a conclusion is added summarizing all the results of our studies.

Some aspects of this work have already been published [1].



Chapter 2

Theoretical Preliminaries

In this chapter we first introduce the current operator in many-particle
physics, which will be needed in many aspects of this work. The connec-
tion between the electrical current in the system and the outer electrical
field will be defined next and is known as conductivity. The optical conduc-
tivity, of which we want to investigate the thermal behavior in this work, is
then a special case of that conductivity. Furthermore we will derive the so
called f-sum rule, which connects the optical conductivity with the kinetic
energy of the system.

2.1 Current Operator

We want to derive the current operator for the tight binding model, that will
be used throughout this work. The derivation starts from the definition of
the polarization operator [2]

P = /d37“ rp(r) (2.1)

where p(r) denotes the density operator, which is the sum over the positions
of all particles

p(r) = Z o(r — ;) (2.2)

The polarization operator is therefore again a sum over all particles and their
positions. It is now easy to prove that the time derivative of the polarization

3
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operator is just the particle current. First we differentiate equation (2.1)
with respect to time and get

0

0
—_— = 3 —_—
8tP /d r ratp(r, t) (2.3)

The time derivative of the density operator can be calculated using the con-
tinuity equation, which is well known from electrodynamics. It says that the
divergence of the current gives the negative time derivative of the density

0
ot
where j(r, t) denotes the current operator. Inserting this equation in equation
(2.3) and integrating by parts yields
2P = —/d?’r r(V-j(r,t))
ot ’

- /d37~j(r,t)(V 1) = /d?’rj(r, t)

where we have used V - r = 1 which is known from vector analysis.

p(r,t) = =V -j(r,1),

Let us now turn to the tight binding model. In this case the polarization
operator (2.1) is given by

i
where R, is the space coordinate of site 7 and n; = cgci is the density operator
at site 7. The current operator, i.e. the time derivative of the polarization op-
erator, can then be written using the Heisenberg equation for time evolution
of an operator
0

j=—P=1i{H,P 2.5

j= 5P = ilH.P) (25)
In the tight binding model the Hamiltonian has the form

H=— Z tij(C;rUng + hC) + ‘/,
(i5),0
where V' denotes an operator which consist only of terms of the density
operator. Therefore we have [V,P] = 0. The commutator of the hopping
term of the Hamiltonian and the polarization operator can be calculated
using the commutation relations
[n,—, C;r] = 5ijc;r-

[ni, ¢j] = =dijc;
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The different sign of these two commutation relations gives now a different
sign for hopping to the left and right in the current operator, which was
expected. The current operator is therefore given by

ja =1 Z tinij(CZUng - h.C.), (26)

(i),0

where R denotes the a-th component of the vector connecting neighboring
sites 7 and j. One has to be careful we choosing periodic boundary conditions.
In this case one has to set the correct value for the lattice vector when hopping
across the boundary, in other words one must set RY! = R!? = g with a the
lattice constant in « direction.

2.2 Linear Response Theory

The linear response theory [3] is a commonly used concept in both theoretical
and experimental physics. The main idea is that the response to a weak
external perturbation is proportional to the perturbation itself. The physical
question is now, what is the influence of this perturbation in linear order to
an observable A. In this section we will derive a general formula that gives

the connection between the change of the observable A and the perturbation
H'

The Hamiltonian we have to consider is
H=H-+H'

where H is the Hamiltonian of the unperturbed system. Let us now assume
that the perturbation H' is switched on adiabatically

H'=H'e™,

which means the perturbation is switched on at ¢t = —oo, rises slowly and
reaches it full strength at t = 0 with n a small real positive quantity. The
expectation value of an observable A is given by

(A4) = Tr(pA), (2.7)

where p = 2e7#% is the statistical operator and Z = Tr(e~#*) the partition
function.

We now turn to the interaction picture which is very useful when dealing
with perturbation. It is similar to the Heisenberg picture with the difference
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that for the transformation only the unperturbed Hamiltonian H is used.
The transformation for an operator O is therefore

OI — ethOe—th

The equation for the time evolution of the statistical operator in this picture
reads

pl(t) = —i [H", p"(t)] .
The initial condition for this differential equation can be readily obtained.
Without perturbation we have

1 _
p(—00) = po = Ee o
This gives in the interaction picture
1 imt L _pm it _ 1w
p(—o0)=¢e e e = e = po.

We now define the Liouville operator for the perturbation by L£'(1)O =
[H'T,0]. With this definition we can write

() = =il (t)p" (t).

This differential equation is formally solvable. We get

¢ ¢
p'(t) = poexp | —i /dTE'(T) =po—i /dTE'(T)po +---

Taking into account only terms up to first order and inserting the definition
of the Liouville operator one can write for the expectation value (2.7)

t

(A), = Tr(ppA”) — i / drTx ([H (), po] AL (1))

(A —i / ar ([A (), H' (7)]), (2.8)

—Q

This is already the general formula which gives the expectation value of A
when a weak perturbation H' is present. This equation is also known as
Kubo formula. All expectation values in the above formula are calculated
for the unperturbed Hamiltonian H, which allows us to drop the index I and
to regard the above equation as formulated in the Heisenberg picture.
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2.3 Conductivity

The conductivity tensor gives the response of a system to an external electric

field [2, 4], i.e.
w) - Zo-ul/(q’w)El/(q’w)’

where J, is one component of the electrical current density. When applying
an electric field one has

with the paramagnetic current density j(r) = >, =pao. The electromagnetic
field is determined by the scalar potential ® and the vector potential A by

B(r, ) = — Elouo 8Aa(;’ D _ grada(r, (2.9)

Without magnetic field it is always possible to choose a convenient gauge
such that ® # 0 and A = 0. Therefore we get

(—eju(@)(w) =Y owla,w)E,(q,w) (2.10)

With this gauge the Hamiltonian of the system is given by

Hit) = (QLpﬁv r. ) _ez<1> £, ?)

H H’

By applying Fourier transformation one obtains for the perturbation
e
—q Z O(q, t)n_q(t)e™,
q

where n_q(t) is the charge density operator. We insert the perturbation into
equation (2.8) and get

@e=ic Y / (', 7) ([l ), g (1)]) € (2.11)

94 oo
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where we have used (j,(q)) = 0 without perturbation. Assuming translation
invariance of the system we get only contributions from the sum for ' = q.
In order to evaluate the expectation value of the commutator in equation
(2.11) we use the Mori product [4], which is defined by

B
(A|B) = / dA%Tr (e P ATe~ M BeM) . (2.12)
0

Defining the Liouville operator for the unperturbed system by £LO = [H, O]
one gets

B
1 - d
(A|LB) = — / A Tr <e ﬂHA’fa e A*"Bew}).

The integral in the above formula can be evaluated and leads to the Kubo
identity
(AILB) = ([A", B]).
Using this identity equation (2.11) reads
t
: € .
Gl =gy [ drd(a,m) (7f(at)|Englr) e
In the Heisenberg picture one has

Nng =i [H,ng| = ilng.

In connection with the continuity equation Vj(r,t) = n(r,t) a Fourier trans-
formation yields

Ln_q(1) = Z qjn(—q, 7).

Thus one has
t
. € . . -
<]u(q)>t = flﬁ Z /quI/(P(qa T) (]H(_qa t)|]ll(_qa T)) e’ ;

where we have used jf(q) = j.(—q). In order to replace the scalar potential
® by the electric field E we apply a Fourier transformation to equation (2.9)

and obtain
E(qt)=—i) _ ¢®(qt).
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Therefore we can write

Centayi= 5 Y [arEian) (-0 nli-an) e

¢
dw e?

= | 2rg 2B (aw) / dr (ju(—a,t)|ju(—q, 7)) e Fm

—0o0

The Mori product is only dependent on the time difference ¢ — 7. Setting
T =1— 7 we have

- AW it
(—eju(a)): =/%e (WHmES " B, (q,w)x

62

o
X5 /dT (Gu(—a, 7)| s (—q)) er et (2.13)
0
Comparing equations (2.10) and (2.13) one can see that the conductivity is
given by

o0
2

€ . . W(w+in)T
U;w(qa w) = ﬁ /dT (]u(_qa T)|.7U(_q)) €+ (o im) :
0

Inserting the definition of the Mori product (2.12) and interchanging the
order of integration one gets

¢ SAH ;o \AH
T Ju(=q)e™[n)

8
e? 1 B -
O (Q,w) = ﬁ/dx\g > (nle " ju(a)
0 n

where |n) and F, are Eigenvectors and Eigenvalues of H and w* = w + in.
Inserting a complete set of Eigenvectors |m) behind the fraction and using

1 1
— = P— —imd(w)
w1 w

we finally obtain

e21—e Pw
(6 0) = T T S e @) 0l () )3 = (B — )

n,m

(2.14)
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Using the representation of the d-function

o0

1 —
d(w) = —Re /dtez(‘*’“")t
7T
0

one gets the final result

e2l—e” T
U;w(q:w) Q Re/;ltezw t ju q7 jll(_q))

0

The optical conductivity is defined in the following way: One does not con-
sider the current perpendicular to q and takes the limit q — 0. Thus it is
given by

o

Re [dic™"(j,(t)5,) (2.15)

0

€21 — e P

ou(w) = a9 w

For completeness we give in addition the spectral representation of the optical
conductivity. Starting from equation (2.14) one can write

_ ePu
ouw) =m g e T nljum)[*0 (w = (Em — En)). (216

2.4 f-sum Rule

Starting from the spectral representation we will derive the f-sum rule [5, 6]
which connects the optical conductivity with the kinetic energy of the system.
From equation (2.16) one gets

o0

e’ 1 e Bbn _ e=BEm )
/dwau(w) R D D e (AL

0 n,m

Inserting the definition of the current operator (2.5) the matrix elements read
as

i((nlgulm) (m][H, Pl[n) + (ol [H, P.]jm){m]j|n) )

(B = En) ({alalm)ml Puln) = (| Pyl (m 7))

(nlgulm)(mljuln) =

N[ = DN =
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Inserting these matrix elements again in the above equation we get

o0

ime? 1 _ _ . .
Jawou(w) = 3755 37 (e = e En) ((Gulgalm) o Pl (o P ) )
0 n,m

We can apply now the distributive law to the first bracket in the sum, from
which we get two terms. In the second one we interchange now n and m and

can therefore write

o0

Jawow) = %52 30 e ((nliufmym|Bln) = (0] Pufm) min)

)

=]

= i%- D {nle s, PulIn)

n

Using the definitions (2.6) and (2.4) for the current operator and the polar-
ization operator one can calculate the commutator which leads to

o0

mela? 1 _BH t t
Qo) = 52 S e S () (el + clocio)n)

0 n (ZJ)M s

where we introduced the lattice constant a = R and (ij), connects neigh-
boring sites only in y direction. In other words, we have a direct connection
of the kinetic energy in a certain direction with the integral over the optical
conductivity in this direction, i.e.

o0

/dwou (w) o< (Hpin,pu) (2.17)

0
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Chapter 3

Exact Diagonalisation

In the last few years many numerical methods for dealing with strongly corre-
lated many-particle systems have been developed, for example the (quantum)-
monte-carlo methods or renormalization group methods. One very powerful
numerical technique is the exact diagonalisation (ED)[4, 7, 8] of finite sys-
tems. This method is based on a very simple idea: By choosing a suitable
basis we can transfer the Hamiltonian of the systems into a Hamilton matrix,
which has to be diagonalised.

This shows already one of the big disadvantages of the ED, because if we
enlarge the system the basis and Hamilton matrix will blow up in size,! and
therefore the ED is limited to rather small (up to 25 sites) systems. But
even for dealing this small systems we need powerful numerical algorithms
like the Lanczos-method, which will be presented in the sequel.

3.1 Theoretical Background, Krylov-Space

Let us assume we have chosen a basis and created the Hamilton matrix as
matrix elements of the Hamiltonian within this special basis. To understand
the way the Lanczos-method works we have to consider invariant subspaces
of the Hamilton-matrix.

Assuming the Hamilton-matrix is a (N x V)-matrix A, then a M-dimensional
subspace G defined as the linear span of the vectors |y1), [v2), - - ., |var) with

N

LThe number of basis states is given by < :i ) (m) which yields for example 784 basis

states for 2 spin up and 2 spin down electrons on 8 sites but already 3312400 basis states
for 4 spin up and 4 spin down electrons on 16 sites.

13
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M < N is called an invariant subspace, if

9)€eG=H|p)€G (3.1)

for every element |¢) of G. This definition implies, that every eigenstate of
‘H spans a one-dimensional invariant subspace. If we use an arbitrary basis
|71), - - -5 |Yar) we can write G as a (N x M)-matrix, where the columns |7;)
of this matrix are the basis vectors of the subspace. If G is an invariant
subspace of the Hamilton-matrix #, then the matrix product HG is again a
(N x M)-matrix, where the columns are linear combinations of the |v;). Now
we can define a (M x M)-matrix H,s by

HG =GHun (3.2)
Suppose we can find a solution of the eigenvalue problem

Hul) = elt) (3.3)

of H s, then a solution of the eigenvalue problem of H can be constructed.
If we use (3.3) in (3.2) we get

HIG[Y)] = e[g[¥)]- (3.4)

This means, that we can find eigenvectors and eigenvalues of the very high
dimensional Hamilton matrix H by solving the eigenvalue problem of the
smaller matrix Hyy, if G is an invariant subspace.

Let us now turn back to the discussion of the Lanczos-method. The idea of
this algorithm is to construct iteratively an approximately invariant subspace
of H, the so called Krylov-space

Ky = linspan {|¢o), H|¢o), H’|¢o), . .., H" ! o) }, M < N, (3.5)

where |¢g) is a normalized random vector. It has to be verified, that the
Krylov-space has the above mentioned properties, which can be seen as fol-
lows:

If we apply the Hamiltonian # to the basis vectors of the Krylov-space (3.5),
we get the set

{Hlo), H?|do), . .., HM|¢o) } , (3.6)
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which are elements of K, except the last vector. If we consider now a large
value for M, we find the following convergence behavior:

N

HM Hgo) = HM LY el

=0

N oo e\ M
. M-1 a (&
= cae} (Wo) £y 4 (2) w») SENEE)
=1
where ¢; and [¢);) are eigenvalues and eigenvectors of . Provided

leo| > e, >0, (3.8)

one can see that for large M the iteration HM !|¢,) converges to the ground
state [1g). In other words, for large M the vector HM 1@y} is dominated
by the eigenvectors of H with the largest eigenvalues, which implies that
HM 1| ¢y) is approximately proportional to H™ |¢) and consequently an ap-
proximately invariant subspace.

3.2 Lanczos-Algorithm

Starting point of the Lanczos procedure is a normalized vector |¢q), which
can be chosen at random. The corresponding expectation value of the energy
is

€0 = <¢0|H|¢0>- (3-9)
We now calculate the first new vector
|(51> = H|¢0> - 50|¢0>- (3-10)

It is readily verified that |¢;) and |¢,) are orthogonal:

<¢0|¢~51> = <¢0|7{|¢0> - 50<¢0|¢0>
=&p— &0 =0 (311)

After having normalized the new vector, the next iteration reads

|G2) = Hlp1) — erldr) — ki|do). (3.12)



16 CHAPTER 3. EXACT DIAGONALISATION
If we choose

e1 = (¢1/H|¢1) (3.13)
= (¢o|H|¢1) (3.14)

the new vector |@;) is orthogonal to the first two vectors. Moreover ky is real:

= (¢1H|do) = ($1|61) + €0 ($1]d0) =I| ¢1 € R. (3.15)
———

=0

Finally, we got the iteration rule:

|én+1> = %‘¢n> - 5n|¢n> - kn|¢n—1> (3-16)

= (n-1|H[dn) = ¢ | (3.18)
|<zn+1>

) = 2 3.19

|Pnt1) o | (3.19)

This set of vectors is orthogonal, which can be proved by induction:

|do), |¢1) and |py) are orthogonal, as calculated above. Let us now assume
that the set of vectors up to the n-th step is orthogonal. If we take into
account the iteration rules (3.16)-(3.19) we get

<¢n|q~5n+1> = <¢n|H|¢n> —<€n <¢n|¢n> —kn <¢n|¢n—1> =0
—_—— —— —_————

=€p =1 =0
<¢n—1|¢~5n+1> = $¢n—1|H|¢nz_5n Sgbn—l |¢nz_kn $¢n—1|¢n—lz =
=kn =0 =1
<¢Z|Q~5n+1> = <¢z|%|¢n> —&n <¢z|¢n> —kn <¢z|¢n—1>
—— ———

=0 =0

(¢n|H|0:))"
¢n|¢z+1 +5z ¢n|¢z> +k <¢n‘¢z 1>>

(
0,

where 7 < n — 1. This completes the proof. O

Therefore the Hamilton matrix represented in the Krylov basis is tridiagonal
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and has the form

co k1 O . . ; \
k‘l &1 k2 0 .
0 kQ £9 k3 0 .
/Hz‘j = . 0 k3 £3 k4 . (320)
0 k4 €4

As discussed in section 3.1 the eigenvalues of this matrix converge to the
eigenvalues of the original Hamilton matrix when M becomes large, especially
those at the edges of the spectrum. The ground state of the original Hamilton
matrix can be calculated by

W) = Gl4), (3.21)

where the columns of G consist of the basis vectors of the Krylov space and |t)
is the eigenvector with lowest energy of the matrix in Krylov-representation.
With this ground state one can — at 7" = 0 — calculate the static expectation
value (¥|A|U) of an observable A.

There is one thing left to be mentioned. The above procedure is based
on the fact, that the vectors in the Krylov space are exactly orthogonal.
But after a few iterations due to numerical limitations the vectors are not
orthogonal any more and have to be re-orthogonalized, which is numerically
rather exhaustive. For a detailed analysis of the influence of the loss of
orthogonality on the results see [7].

3.3 Dynamical correlations at T=0

The Lanczos algorithm allows us not only to calculate the ground state and
static expectation values and correlations but also dynamic correlation. To
every dynamical correlation function there exists a retarded Green “s function
[2, 3], which is defined for an operator O as follows

< O(t),0" > := —i0(1)([0(), 0],)
= —i0(t) ((0(t)O") + n(010(1))), (3:22)

where n = +1(—1) for bosons (fermions).
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After inserting the Heisenberg time evolution and applying Fourier transfor-
mation the Green’s function can be written as [8]

< 0,0 >,=—i <0 [ / ei(“’+_(%_E°))tdt} 0T>
0

—in <OT [/ ei(‘“++(%_E°))tdt] O> : (3.23)
0

where Ej is the ground state energy and w™ = w + i and § a small real
quantity. The integration can be done using the spectral theorem and leads
to

1

1 _ T
<< O)O >>w_<1/)0 ‘ Ow+ B (H o EO)O ‘ wo)
1
1.
+77<7/)0 ‘ O wt + (H _ E())O | w0>7 (324)

where [1) is the ground state. For the further calculation let us now consider
the first term of the right hand side of equation (3.24). At each side of the
fraction we insert a complete set of eigenvectors [1),) of H. It is now possible
to replace the Hamiltonian by its eigenvalues which leads to the following
formula for the first term of equation (3.24)

Hlaho) [2
(o | O (,}{ —50' L) =3 wﬁ‘”_”‘(%y“ﬂo) (3.25)

We can now expand the eigenvectors [1,) in a Lanczos basis |¢;)

)= e le),  a = (g,

where |¢,) = mOT\wO) is the initial vector of the procedure. Thus we get
for the numerator of equation (3.25)

0Ny = 37 () (801011 = 3= ()1 0w | (o
(0ulOTio) =3 () (80T =3 ) 110" | <¢5\¢0>
1,0

One can see from this formula that only the first term of the sum contributes,

whereas all other terms vanish. Therefore we have

(W10 ln) = ()" 110w |
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With this result we can write for equation (3.25)

1 _ ‘C(V)P
<¢0|Ow+_(%_E)OT|¢0) =|| Oy ||Z prry oy A S CED)

using only the first components c(()") of the expansion of the eigenvectors [1),).

This method, that we presented in this section is called spectral decoding
method.

3.4 Lanczos Method at Finite Temperatures

A major disadvantage of the method for calculating dynamical correlation
functions as presented in section 3.3 is the limitation to 7" = 0. Often there is
need to calculate dynamical correlations at finite temperatures, for example
if one wants to investigate phase transitions. This limitation can, however, be
overcome by calculating the thermodynamic trace by random sampling [9].
The matrix elements which are needed in this procedure are again calculated
using the Lanczos algorithm.

3.4.1 Static Expectation Values

The thermodynamic expectation value of an observable O is given by

1 N

(O) =7 > (nle=""O|n) (3.27)

n=1
Z nle #*|n) (3.28)

where § = 1/T denotes the inverse temperature and the sum runs over a
complete basis set of orthonormal vectors. Because it is quite impossible to
find all eigenstates and eigenvectors another approach is employed.

For calculating the matrix elements we first expand the exponential function
into its power series which is equivalent to the high temperature expansion

0y =233 E o) (3.20)
7=%"% (_]5) (n[HF ) (3.30)

1

El

=0

3
I
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In the next step we use the Lanczos algorithm to evaluate the matrix el-
ements. Therefore we start a Lanczos procedure with the initial vector
|gb(()”)) = |n) up to the order M. This leads to a tridiagonal representa-
tion of H defined in the (M + 1)-dimensional space spanned by the Krylov

basis functions |d)§”)),i =0...M. Let us assume this tridiagonal matrix has
the eigenvectors |1/J§")) and eigenvalues eg-n). Using the Krylov basis |q5§")> we
can define projection operators

P = 5" M) oM m < M (3.31)
n=0

which project on a Krylov subspace. Let us now consider the product of such
an projection operator with the Hamiltonian. We get

POH =Y 6™ (6" M = Zw ) (R (@0 + o™+ K (o)
i=1

where we have used the hermitian conjugate of the Lanczos iteration formula
(3.16). This formula shows, that the product P consists only of Lanczos
vectors up to the order m + 1. Therefore we can write

PMH = PMHP™ = POHPE . m< M. (3.32)

The last step can be done, because the operator Pjs/’;) projects onto the whole
Krylov space and naturally preserves all the states up to order m + 1.

With (3.32) and the fact that (n| = (¢{”| = (¢ |P™ holds we can write
for the matrix element in equation (3.29) for k < M

(n[HFOln) = (o3| PY HRO65™)
= (¢ | PSHPH - HP Oy
= (&5 |PSYHPH - HPLO|65V) (3.33)

The only projection operator used in this formula is P,f; ), which can be seen
as the identity operator in the Krylov space. The projection operators can
therefore be constructed by the eigenvectors |1/J } Inserting the projection
operators in equation (3.33) yields

(nipom) = 3 () ™y wlom), k<M. (330

1=0
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This shows that we can calculate the matrix elements in (3.29) exactly using
the Lanczos algorithm provided £ < M. But we want to extend the power
series to infinity, i.e. k£ — oo. For this case we use equation (3.34) as
approximation also for £ > M and thus we can write for the expectation
value (3.29)

N M
1 g™ W (n
O)pm -y D e P (nu™)(w"|0ln) (3.35)
n=1 =0
N M )
ZwY Y et ™) (4 In) (3.36)
n=1 =0

In equation (3.35 the trace still runs over all basis states |n) which is a huge
number of states and it is therefore impossible to evaluate the sum in this
form. In this approach [9] we evaluate the trace stochastically upon summing
over suitable random vectors defined by

ry=>_aln), (3.37)

(r)

where the oy’ are random variables with zero mean and diagonal variance

017(7,1 )(1’2;2) = 6n1n25r1r2 (338)

We estimate the trace Tr(O) of an operator O by

T := Tr(O = Z r|OrY, (3.39)

where N, is the number of random vectors. The expectation value of the
random variable 1" reads

Z\H

||F12 ”Mg

N N
Z Zanﬁl)am (n1|0|ny)

n1|0|n1 21 = Z (n1|0|ny) (3.40)

ni=1

1
N

Therefore (3.39) represents an unbiased estimator. The variance of the ran-
dom variable T is given by var(T) := (AT)? = Tr(O?)/N,. If the operator O
is represented by a sparse band like matrix the trace of this operator is of the
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order of the dimension of the matrix, Tr(O) o< O(N). When squaring such
matrices the band like structure is conserved, i.e. Tr(O?) oc O(N). Therefore
the relative error reads

var(7T) 1

T(0) © NN,
which means that for large NV it suffices in general to use a quite small number
N, of random variables.

If we use equation (3.39) in equation (3.35) we get

—,36() 7”) (r)
O)s ~ NZ,« > ruHwlon) (3.41)
ZZ&““” ™y w)r) (3.42)
r=1 =0

In conclusion we have achieved to evaluate the expectation value (3.29) nu-
merically, because it is no longer needed to calculate the sum over all basis
states but only over a smaller number of random states.

3.4.2 Dynamical Correlations

By using the same approximations as in the previous section it is possible to
calculate dynamical correlation functions. They are defined as

N
1 . .
= E (n|e PRt Ae™H Bn) (3.43)
n=1

with Z from equation (3.28). Similar to the procedure for evaluating the
matrix elements for the static expectation values we insert again projection
operators which are built by eigenvectors of H calculated by the Lanczos
algorithm. One difference is that in this case we need a double sum over these
eigenstates, since we expand the exponentials e~#~** and e="*. Thus we
get

1 en L& () (W) —e® . _
=2 > D e ) | A P B,

n=1 k=0 =0

(3.44)
where el ) and |1,b ) are eigenvalues and eigenvectors from a Lanczos run
starting with the initial vector |2) = B|n). Now we again replace the sum
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over all basis vectors by a sum over random vectors which leads to the final

formula
1] MM Q) (") _ _(® = 7
(A@0)B) 57 > D0 D e P @ D) | Al (w7 |Blr)
T r=1 k=0 1=0

(3.45)
with Z from equation (3.42).
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Chapter 4

Charge order in NaV-05 and
Ladder Systems in general

In this chapter we introduce the compound o/-NaV,0Os5. It is part of the very
interesting family AV,0O5 with A = Na, Li, Ca, Mg, ... of low-dimensional
strongly correlated electron systems. In the last few years there were many
experimental and theoretical studies in order to investigate and understand
the fascinating properties of this class of compounds, especially the unconven-
tional spin and charge excitation spectra. We studied the features of NaV,05
using numerical techniques. The experimental results are very important for
the correct understanding of this material.

In particular we investigate the charge order in ladder systems as NaV,0s5
depending on the different values for the hopping parameter and the coulomb
interaction. Mean field calculations were done and lead to a very simple phase
diagram, that shows the change form charge order to valence fluctuation.

4.1 Structure of NaV,0;

The first crystallographic structure analysis were done in the sixties and sev-
enties of the last century by means of x-ray scattering [10]. Several different
phases could be identified, which have in common the V4*QOj5 pyramids as
basic element of the structure and only differ on the amount of rare earth
atoms inserted in the compound.

Depending upon doping of the system Na, V505 one has the following phases:

25
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a-phase: 0 < x < 0.02

B-phase: 0.22 <z <04

o/-phase: 0.70 < z < 1.00

n-phase: 1.28 < x < 1.45

A-phase: 1.68 < z < 1.82

In our studies we investigated the properties of the o/-phase, in other words
at doping x = 1. Besides studies were done on the S-phase, showing quasi
one-dimensional electronic properties. Throughout this work we concentrate
on the o phase and therefore we drop the identification of the phase.

[* ]

o 1
v

‘%

Figure 4.1: Crystallographic structure of NaV,05. The pyramids are built
by oxygen atoms around a central vanadium site. The sodium atoms are
lying between the V505 layers.

The crystallographic structure of NaV,0j5 is schematically depicted in figure
4.1. It is mainly determined by the layers formed by the V,05 pyramids.
The sodium atoms, which are mainly acting as charge reservoir, form chains
that are lying between the layers. The coupling ¢ direction, i.e. between the
single layers, is very weak, and the properties of this compound are therefore
mainly determined by the quasi two-dimensional V505 layers, shown in figure
4.2. The black circles indicate the vanadium atoms and the yellow ones the
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Figure 4.2: One V,0;5 layer, where only the oxygen atoms of the ground
plane of the pyramids are displayed. Yellow circles indicate oxygen atoms
and black circles vanadium atoms.

oxygen atoms of the ground plane of the pyramids. The oxygen on top of the
pyramids is not important, because it does not couple two vanadium atoms.

The first x-ray studies indicated a non-centrosymmetric structure P2;mn
[10] with two different vanadium atoms in the unit cell, forming chains of
two kinds of VO3 pyramids. Analysis of the V-O bond length and of the Na-
V distance showed that these chains are possibly V4T O5 and V®*Os chains,
resp. Therefore this compound should behave like a quasi one-dimensional
spin system, because the magnetic V** ions are well separated by the non-
magnetic V>T ions.

Measurements of the magnetic susceptibility by Isobe and Ueda (figure 4.3)
[11] brought a first insight in this system. They found that NaV,0; behaves
like a S = % 1-D antiferromagnetic Heisenberg linear chain. The coupling
constant was determined to J = 560K by fitting the experimental results
to the theoretical formula. In addition they found a phase transition at
T. = 34K with a rapid decrease of the magnetic susceptibility, a spin gap
with A ~ 10 meV opens and the unit cell is doubled in a- and b-direction
and quadrupled in c-direction. They supposed that this could take place due
to a Spin-Peierls transition, where the linear chain dimerises below a critical
temperature. This dimerisation produces two different coupling constants
and the ground state energy can therefore be lowered by establishing coupled
spin-singlets. Hence NaV,05 would be the second inorganic compound beside
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Figure 4.3: Magnetic susceptibility of NaV,05 measured in a field of H = 17..
Solid line is the fit to the formula for the S = % 1-D Heisenberg model. Figure
taken from reference [11].

CuGeQ3, where this phase transition occurs.

But there were few hints, that this phase transition is no real Spin-Peierls
transition: The ratio between spin gap and critical temperature k%F ~ 6.5 is
approximately twice as large as the BCS mean-field value of 3.52 for a Spin-
Peierls transition. Furthermore the changes at T, of the dielectric constant
and the thermal conductivity differ significantly from the case of CuGeQOs,
and the magnetic field dependence AT, cx H? is only one fifth of what could
be expected for a Spin Peierls transition.

Recent x-ray studies [12, 13, 14] showed, that the crystallographic structure
of NaV,05 at room temperature is the centrosymmetric structure Pmmn,
indicating that all vanadium sites are equivalent with valence 4.5. The insu-
lating properties where therefore rather astonishing, but Horsch and Mack
could explain this behavior by taking the molecular orbital state of one elec-
tron on a rung as key element of the electronic structure [15]. NMR studies
[16] revealed that below the phase transition temperature 7, = 34K again
two different vanadium sites show up, which indicates that this phase tran-
sition is not of Spin-Peierls type but rather driven by charge ordering.

The low temperature phase is still under discussion. It is not yet justified
whether there is an inline charge order, i.e. V*" ions forming chains, or
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zig-zag charge order. A new crystallographic measurement even found three
different vanadium sites identified as space group F'mm?2 [17]. It was assumed
that this could occur due to three different valence states V4, V43t and V>t
resp. But this assumption is not compatible with the NMR measurements
and therefore the discussion about the charge order in the low temperature
phase and the driving mechanism for the phase transition is still going on
[18, 19, 20].

4.2 Model

The question is now, how to describe all these features found in experimental
studies by a theoretical model. Band structure calculations showed that the
density of states at the Fermi edge is mainly determined by the 3d,, orbitals
of the vanadium atoms. Therefore it is obvious to choose a one orbital model
on the vanadium lattice. As mentioned before the single V5,05 layers are only
weakly coupled and the model is therefore chosen to be two dimensional.

t2.Va

th, Vp

by Vxy

T

a
Figure 4.4: Lattice of the vanadium atoms in NaV,Os.

The lattice is shown in figure 4.4. It consists of ladders that are shifted in
b-direction with respect to the neighboring ladders. Many studies focus on a
quarter filled Hubbard-like model, specifically the ¢-U-V model

H=— Z tz’j (CIUC]'U + hC) + Z V;jninj + UzniTniJ, (41)
(ij),0 (4) 7

where U is the intrasite Hubbard repulsion and V;; is the intersite Coulomb
interaction. The density operators are given by n;, = c};cig and n; = njp+n;p.
The sum over all next neighbor pairs is indicated by (ij).
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In our model several different parameters are used. As one can see from
figure 4.4 three different hopping matrix elements ,, t, t,y, three coulomb
interactions V;, V4, V4, and the Hubbard intrasite repulsion U occur. The
values for these parameters are still controversially discussed in the literature.

The estimated values for the hopping matrix elements within one single lad-
der, i.e. t, and t,, agree in the different studies. Density functional theory
calculations (DFT) lead to a value of ¢, = 0.38" and ¢, = 0.17 [13], which is
similar to the value estimated by empirical rules of ¢, = 0.35 and ¢, = 0.15
[15]. The values for the hopping between the ladders differ. The DFT calcu-
lations found a relatively small value of ¢, = 0.012, whereas from empirical
rules the value ?,, = 0.3 was estimated. We will take a closer look on this
interladder hopping later on.

The values for the Coulomb interactions are quite unsure and differ in the
different studies. If one takes as starting point the bare coulomb interaction
1 e?

Yo 47T806,~ dij’

where d;; denotes the distance between two sites, the Coulomb interaction
depends on the choice of the anisotropic dielectric constant &,. If one takes
the isotropic value of €, & 11 from susceptibility measurements one gets V, =
0.37, V4 = 0.10 and V,, = 0.43, which is quite small. By comparing EELS-
experiments and optical conductivity one can find €, = 7 for a-direction and
e, = b for b-direction [21], which leads to V, = 0.8, V}, = 0.6 and V;, = 0.9.
In this work we chose the values V, =V, = 0.8 and V,,y, = 0.9. The value for
the intrasite Hubbard repulsion was chosen as U = 4.0.

U
and we use a different representation of Hamiltonian (4.1), which is defined
in the subspace of the Hilbert space with no double occupancies. This leads

to the ¢-J-V model

H=— Z tij (5,];05]'0 + hC) + Z Jij (Sz . Sj — in@) + Z V;jnz-nj,

(i5),0 (i5)

Due to the rather large ratio double occupancies are strongly suppressed

where & = ¢! (1 —n;_,) are constrained electron creation operators, that
forbid double occupancy of a site. The density operator n;, is defined equiv-
alently as for the Hubbard Hamiltonian (4.1). The exchange term in the
t-J-V model is given by
4t
U

!'From now on all energies are given in eV
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The advantage of the ¢-J-V model is that the Hilbert space is smaller than it
is for the full t-U-V model and therefore exact diagonalisation is a bit easier
to implement. The main disadvantage is that one cannot study any weight
transfer to high energy, because all these high energy states are projected
out.

4.3 Mean-field Phase Diagram

To get a first insight in the behavior and the nature of charge ordering in
ladder systems we study the simplified problem of one electron per rung.
This means that any interladder and interrung hopping in equation (4.1) is
set to zero, i.e. ¢, = t;, = 0. In addition no double occupancy of a site
or a rung can occur, therefore the Hubbard interaction term proportional
to U and the coulomb interaction term proportional to V, can be omitted.
Furthermore we can drop the spin index because we deal with one electron
per rung. The Hamiltonian for our simplified problem reads therefore

H=—t, (cch, + cicl> + Z Vijnin; (4.3)
(i5)

where [ and r denote the left and right position within a rung. We apply
now the Hartree-Fock(HF)-approximation to the interaction term in order to
decouple the density operators:

(A—=(A)) (B—(B)) = AB — (A)B — A(B) + (A)(B).

The HF-approximation consists of approximating the left hand side by zero,
in other words correlated fluctuations are neglected. This leads to

AB = (A)B + A(B) — (A)(B) (4.4)

Applied to the interaction term of our Hamiltonian (4.3) we get

H = —ta (cle, +cla) + 30 Vi ((nan; + nilny) = () (45)
(%)

The last term in the brackets of equation (4.5) presents only an energy shift
and can be neglected during the calculation. For calculating the ground state
energy it has to be included again afterwards. We now turn to the notation
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Figure 4.5: Structure of the single rung problem. The yellow circles indicate
the mean field - see equation (4.6).

shown in figure 4.5. The Hamiltonian (4.5) reads

H=—1t, (c;rcr + c}tcl>

+ Vi [u({n1) + (n6)) + nr({n2) + (n5))]
+ Vay [u((n7) + (ng)) + 10 ((n3) + (n4))] (4.6)

At this point one can see why the HF-approximation is also called mean-field
approximation. One solves the eigenvalue problem of the Hamiltonian for a
very small system, which is connected by the interactions to a mean field.
After solving the eigenvalue problem one inserts the solutions as new mean-
field values in equation (4.5) and solves the eigenvalue problem again. This
procedure has to be iterated until the calculated solutions are in agreement
with the given mean-field values. One can now determine the charge order of
the system by choosing the proper mean-field starting values and by setting
the right iteration rules from one step to the next. After simulating different
charge order patterns, in our case zig-zag and inline order, one can identify
the true ground state by comparing the different ground state energies.
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Figure 4.6: Zig-zag (left) and inline (right) charge order pattern simulated
in mean field.

4.3.1 Zig-Zag Charge Order

In order to get a zig-zag charge order (see figure 4.6 on the left) we choose
the following starting values for our HF-iteration:

(n1) = (n3) = (n) = (n7)
(n2) = (na) = (n5) = (ns)

One has to be careful to put the right number of electrons into the system,
that means in our case .

> =

i=1

Let us now assume we have solved the eigenvalue problem for (4.6). From
the ground state one can now calculate the densities (n;) and (n,) on the left
and right position of the rung. We define now

1
0

Nmaz = Max({ny), (n,)) (4.7a)
Nmin = Min({ny), (n,)) (4.7b)

It is obvious that n,,.; + nmin = 1 holds, because we have one electron on
the rung. The iteration rules for zig-zag charge order are now

(n1) = (n3) = (ns) = (N7) = Naz (4.8a)
(ng) = (n4) = (ns) = (n8) = Ninin (4.8b)

With this definitions one can rewrite the Hamiltonian (4.6) as matrix for this
small system with only two states according to the left and right position of



34 CHAPTER 4. CHARGE ORDER IN NAV,05

the electron on the rung

H = ( 2VyNimaz + V;ny(nmam + nmzn) —la >
—t, 2Vimin + Vay(Nmaz + Nmin
2%nmaz + V;vy _ta
_ 4.9
( —1q 2V Nmin + wa ) ( )

The eigenvalue equation which has to be solved is
Hx = ex, (4.10)

with x = (2, z,). The densities for the left and right position on the rung
can then be calculated using the ground state vector by n; = 27 and n, = z2.
After choosing the right n,,,, and n,,;, one inserts them again in equation
(4.9) and starts the procedure again. We observe that V,, is irrelevant in
zig-zag charge order. As one can see from equation (4.9) it causes merely
a constant shift in energy. The physical reason for that is frustration (see
figure 4.6).

4.3.2 Inline Charge Order

The same procedure can be performed for inline charge order (see figure 4.6
on the right). The initial values for this iteration are

(n1) = (n3) = (na) = (ne)
(n2) = (ns) = (n7) = (ns)

Again we solve the eigenvalue problem for (4.6) and calculate the densities
(n;) and (n,). The iteration rules for inline charge order read

1
0

s
ng

<n1> = <n3> = <n4 — nG) = Nymazx (4113,)

<n2> = <7’L5> = <n7> = <n8> = Nmin (411b)
The matrix for the Hamiltonian (4.6) reads therefore
— 2%nmaw + Qwanmin —tq

H= ( —t, W ymin + 2VayMimaa ) (4.12)

The eigenvalue problem for this Hamiltonian is again solved iteratively.
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Figure 4.7: Charge density n, (solid line) and n,; (dashed line) on the left and
right position on the rung (see figure 4.5) calculated by HF-approximation
in zig-zag order.

4.3.3 Results and Phase Diagram

In a first step we want to find out for which values of % the zig-zag charge
order is stable For this purpose we set V, = 1 and vary the parameter t,. The
ratio Y2 V.- is not important, because the coulomb interaction V4, is frustrated
in zig-zag order, that means that 1, only contributes to the ground state
energy but does not produce any preference of the left or right position.

The results of this calculation are shown in figure 4.7. One can see, that
the zig-zag charge order is stable up to a value of tVa,, = 1, whereas for larger
values no charge order occurs. In this region the ground state is determined
by charge fluctuations where the valence of the left and right position on the
rung is equal to 0.5.

As one can see from figure 4.6 for large values of ” inline order should occur,
because in this case the large interladder coulomb interaction V;, does not
give any contribution to the energy, whereas in zig-zag order it does. In order
to determine the critical value for VVL: we perform the HF-iteration for fixed
Vs = 1 and several but fixed ¢, and vary the parameter V,,,. By comparing the

ground state energy, where the constant term in equation (4.5) is included,
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Figure 4.8: Comparison of the ground state energy Ey of zig-zag (solid line)
and inline charge order (dashed line) in the atomic limit, i.e. % = 0. Charge
density of the left position on the rung is shown in the upper panel for zig-zag

and inline order, resp.

one can find the ground state, i.e. zig-zag or inline charge order.

% = 0. As we have mentioned

above zig-zag order is not influenced by the ratio of ‘f” as one can see in
figure 4.8. When simulating inline order the situation is different. Up to
value of ‘(ﬁ” = 1 there exists no perfect inline order. The charge densities in
the upper panel in figure 4.8 show, that below that value the electron on the
central rung wants to avoid the inline order and sits on the wrong position
in the rung, in other words if we have started with charge density n; =1 on
the left position of the rungs in the mean field, the electrons on the central
rung is on the right position and vice versa. If the ratio ‘(ﬁ: is larger then one
perfect inline order is stable but lies energetically above the zig-zag order
(see figure 4.8). Only when VVL: gets larger than two zig-zag order breaks
down and inline order is established.

Let us first consider the atomic limit, i.e.

For 0 < % < 1 the situation is similar (see figure 4.9), but with the difference
that due to the finite ¢, valence fluctuations are possible. One can see this
in the charge density of the inline charge order. At small values of VVL: the
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Figure 4.9: Ground state energy and charge densities on the left position on
the rung for tV(Z = 0.5 for zig-zag (solid line) and inline charge order (dashed
line).

electron is at the wrong position on the rung, similar to the atomic limit.
But here we have no jump of the electron from one position to the other at

VVL: = 1 but this transition into the perfect inline order is rather smooth. In
the region VVL: — 1‘ < tV(Z we have valence fluctuations, because the energy

difference between the left and right position on the rung due to the coulomb
interaction is too small to induce charge order and the electron fluctuates.
Physically this is not really important, because for Vvilj’ < 2 zig-zag order is
lower in energy and therefore the ground state, and in zig-zag order these
features do not occur.

The case %‘; > 1 is different. One can see from figure 4.10 that for low values
of VVL;’ no charge order can be found and the ground state is determined by
valence fluctuations. But for large values of VVL: inline order again occurs,

more precisely in the region VVL: -1> % In this region the energy difference
between the left and the right position on the rung is again large enough to
induce charge order, namely inline order. In contrast to the case of 0 < tV(Z <1
this is now relevant, because in this region inline order is the ground state.
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Figure 4.10: Ground state energy and charge densities on the left position on
the rung for % = 1.2 for zig-zag (solid line) and inline charge order (dashed
line).

Summarizing all our results one can obtain the mean-field phase diagram for
the single rung problem shown in figure 4.11. The parameter on the x-axis
is denoted as 2‘%: and not as tV‘:, as before, because later on when studying
the Ising model in a transverse field we will see, that this is the relevant
parameter for the system. One point should be mentioned. By transforming
the Hubbard-like Hamiltonian to a pseudo-spin Hamiltonian, which will be
done in a later section, one can obtain the exact solution of the problem of
one electron per rung, which is solved here in mean field approximation only.
In this solution one finds the value of t“ = 0.5 as critical point for the phase

transition from the ordered state to the disordered state.

In recent studies an onsite energy has been added, which differentiates be-
tween the two positions on the rung. This onsite energy is not independent
of the interladder coulomb interaction V,,. One can therefore set V,, = 0
and control the charge order by varying the onsite energy.
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Figure 4.11: Mean-field phase diagram for the single rung problem.
4.4 Results from Exact Diagonalisation

In the previous section we investigated the charge order of ladder systems
by means of the Hartree-Fock approximation in the simplified model of one
electron per rung. Here we want to determine the charge order of the spe-
cial ladder system NaV;0j5 by exact diagonalisation presented in section 3.
Even without calculating the charge correlation function of the system one
can get information about the charge order by studying the optical conduc-
tivity, because this quantity shows the elementary excitations of the system.
The calculations in this sections were mainly done by means of the Lanczos
method for zero temperature, because the calculation for finite temperature
need much more computer power. It is therefore not very practicable to do
parameter studies with the finite temperature method.

4.4.1 No Diagonal Hopping
Starting point of our calculations for zero temperature is the full ¢+-U-V
Hamiltonian (4.1) introduced in section 4.2. At this point we exclude diag-

onal hopping within the ladders, in other words we have only three hopping
matrix elements ¢,, ¢, and t,,. We use the following parameter set:

e hopping matrix elements: t, = 0.4, ¢, = 0.2
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Figure 4.12: Shape of cluster simulated in exact diagonalisation.

e coulomb interactions: V, = 0.8, V, = 0.8

e intrasite Hubbard repulsion: U = 4.0

whereas the other parameters ¢, and V;, are varied to study their influence
on the optical conductivity and the charge order. The simulations were
done on a 16-site cluster consisting of two ladders with four rungs each, and

periodic boundary conditions were chosen. This cluster is shown in figure
4.12.

To begin with we investigate the influence of the interladder coulomb inter-
action V,, on the optical conductivity. For this purpose t,, is set equal to
zero and V, is varied. The results are shown in figure 4.13. One can see,
that the peak in the spectrum for b direction is almost independent of V),
whereas the peak in the spectrum for a direction shows a dramatic downward
shift. If the system was in a simple zig-zag charge order without valence fluc-
tuations, which should occur regarding our mean field phase diagram 4.11,
this behavior cannot be understood. In this case the interaction V,, was
frustrated (see figure 4.6) and there should be no energy shift at all, because
flipping one electron from the left to the right does not change the number
of frustrated bonds with energy ~ V,, and the excitation energy is 2V;. Let
us now assume we have valence fluctuations in the system. This means that
there are many defects of the perfect zig-zag charge order, i.e. the electron
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Figure 4.13: Left panel: Optical conductivity in a (black line) and b direction
(red line). Parameters are t, = 04, t, = 0.2, t5, = 0, V, =V}, = 0.8 at
T = 0K. From bottom to top: V,, = 0.0, 0.8, 1.2. Right panel: Peak
position of the peaks in @ (solid line) and b direction (dashed line).

is on the wrong position on the rung. This defects lead to a reduction of
the frustrated bonds with energy ~ V,, and the peak position of the op-
tical conductivity in a direction becomes dependent on V,, with excitation
energy approximately 2V, — V,,. If the system was in inline charge order
this behavior cannot be explained. In inline order the excitation energy is
given by kVg, — 2V}, with 1 < k < 2 depending on the amount of defects in
the system. This means that the peaks should be shifted to higher energies,
when V,, is increased, which is not observed in our calculations. In order to
investigate the charge order of the ground state directly we calculated the
density correlation function (nin;) (see table 4.1), which clearly indicates
zig-zag charge order with many defects, in agreement with our assumptions
above. With increasing interladder coulomb interaction V;, the zig-zag cor-
relations (nin4) and (nins) decrease, whereas the inline correlations (nins)
and (ning) increase. This means that due to the defects the ground state is
influenced by V3, favouring inline charge order.

The conductivity in b direction connects to excitation with two and zero
electrons on a rung, which is not influenced by valence fluctuations and by
Vzy since this interaction is still frustrated. In conclusion on can argue that
there must be many defects of the perfect zig-zag charge order in the system
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Figure 4.14: Left panel: Optical conductivity in a (black line) and b direction
(red line). Parameters are ¢, = 04, t, =02, V, =V, = 0.8, V,, = 0 at
T = 0K. From bottom to top: ¢, = 0.015,0.07,0.15. Right panel: Peak
position of the peaks in a (solid line) and b direction (dashed line).

Table 4.1: Density correlation function (nn;) for t, = 0.4, t, = 0.2, tz, =0
and V, =V, = 0.8 at T = 0 K. For the meaning of the indices see figure 4.12.

(ning)  (ming) (ning) (nins) (nine)
0.031 0.102 0.381 0.370 0.129
0.037 0.128 0.355 0.336 0.164
0.027 0.181 0.303 0.262 0.238
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in order to explain the dependence of the spectra on V,,. Later on we will
find by considering the Ising model in a transverse field, that the system is
close to its quantum critical point, where the transition from the ordered to
the disordered phase takes place. From the values of the parameter one can
easily see that this point is at 2‘%: = 1 and not at QVL: = 2 as shown in the
mean field phase diagram 4.11.

In a next step we want to determine the influence of the interladder hopping
tzy on the charge order. In order to separate this effects from the interladder
coulomb interaction we set V, to zero. The results are shown in figure 4.14.
One can see that there is a slight downward shift of the peak in a direction of
about 0.3 eV. In this case we cannot explain this shift by assuming the same
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Figure 4.15: Left panel: Optical conductivity in a (black line) and b direction
(red line). Parameters are t, = 0.4, t, = 0.2, V, =V, = 0.8, V,y = 0.9 at
T = 0K. From bottom to top: ¢, = 0.015,0.07,0.15. Right panel: Peak
position of the peaks in @ (solid line) and b direction (dashed line).

defects as above, i.e. where there is one electron on the rung but on the wrong
position, because V, was set to zero and these defects don’t give raise to any
shift of the peak. But there is another kind of defect that could explain the
shifting in this case. The interladder hopping allows the electrons to hop from
one ladder to a neighboring one. Therefore there is a small possibility to find
states with a doubly occupied rung and an empty rung in the neighboring
ladder. These defects can cause now a slight downward shift of the peak
in @ direction, because the excitation energy is not 2V}, any more but a bit
smaller. The position of the peak in b direction is again not influenced by
these defects (doubly occupied rung <> empty rung), as one can see from
figure 4.14, too.

In order to check our assumptions we calculated the optical conductivity for
the same values of ¢, as in figure 4.14 but for a finite interladder coulomb
interaction V,, = 0.9. Figure 4.15 shows again the slight downward shift of
the peak in a direction of about 0.3 eV, which is another hint that the defects
produced by finite ¢;, couple mainly to V; and not to V.
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Figure 4.16: Left panel: Optical conductivity in a (black line) and b direction
(red line). Parameters are ¢, = 0.375, ¢, = 0.08, t; = 0.095, t,, = 0,
Vo=V, =08 at T = 0K. From bottom to top: V,, = 0.0, 0.8, 1.2. Right
panel: Peak position of the main peaks in a (solid line) and b direction
(dashed line).

4.4.2 Including Diagonal Hopping

In the previous section the optical conductivity was calculated using only
three hopping matrix elements ¢,, ¢, and t,,. Density functional calculations
show, that there are in fact more matrix elements that should be taken
into account, above all the diagonal hopping within the single ladders. This
hopping, from now on called t;, connects the sites 1 and 4, 2 and 3 and
so on (see figure 4.12). In order to get the same LDA band structure as
without diagonal hopping one has to choose a smaller value for the interladder
hopping matrix element ¢,, whereas all other parameters remain the same.
For our calculations we took the values for the parameters from reference
[22]: t, = 0.375, t, = 0.08 and t; = 0.095. The parameter values for the
coulomb interaction are as before V, =V, = 0.8. We again vary t,, and V,,
to study their influence.

To begin with we set t;, equal to zero and vary V,, between 0 and 1.2. In
figure 4.16 one can see that the main message is the same in both cases, i.e.
with and without diagonal hopping. Again we have an immense downward
shift of the main peak in a direction, whereas the position of the peak in
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Figure 4.17: Left panel: Optical conductivity in a (black line) and b direction
(red line). Parameters are t, = 0.375, t, = 0.08, t; = 0.095, V, =V}, = 0.8
Vay = 0.9 at T' = 0 K. From bottom to top: ¢, = 0.01, 0.05, 0.1. Right panel:
Peak position of the main peaks in @ (solid line) and b direction (dashed line).

b-direction is not influenced by V,,. One difference is the occurrence of
additional excitations in a direction above 1.5 eV. One could try to attribute
these excitations to elementary excitations caused by the diagonal hopping 4.
In this case the diagonal hopping should contribute to both a and b direction
in the same way, but in b direction no additional excitations are observed.
Therefore the additional excitations in a direction could be some bonding-
antibonding transitions within a rung turned on by the diagonal hopping.
We again calculated the density correlation function (n;n;) indicating zig-
zag charge order and many defects as in the case without diagonal hopping
(see table 4.2).

Table 4.2: Density correlation function (nin;) for ¢, = 0.375, ¢, = 0.08,
tq = 0.095, t;y = 0and V, =V, = 0.8 at T = 0K. For the meaning of the
indices see figure 4.12.

(ning) (mans) (nans) (nans) (nine)
Vey =0.0 | 0.017 0.094 0.396 0.386 0.114
Vey = 0.8 0.018 0.123 0.365 0.347  0.152
Vey = 1.2 0.018 0.187 0.302 0.256 0.243
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When setting V;, = 0.9 and varying ?,, the picture is again very similar
to that without diagonal hopping, i.e. the b peak does not depend on the
interladder hopping, whereas there is a slight downward shift of the peak in a
direction (see figure 4.17). In this case we did the calculations for ¢,, = 0.01,
0.05 and 0.1, which means the range of variation of ¢;, is smaller than in the
previous section. Therefore it is not astonishing, that the downward shift of
the a peak is a bit smaller, too.

One difference between the two cases t; = 0 and ¢4 # 0 should be mentioned.
The ratio between the spectral weight of the peaks in a and b direction, which
means the optical conductivity integrated from 0.6 to 2 eV, lies between 1.5
and 2 in the case t; = 0, which is noticeably larger than in the case t; # 0,
where this ratio lies between 3 and 3.3. The loss of spectral weight in b
direction is due to the reduced value for ¢, because this hopping contributes
most to the optical conductivity in b direction. The experimental value for
this ratio is 2.2, which gives raise to the assumption that including ¢4 in the
calculation does not lead to an improvement of the results. One could now
argue that by including even more longer ranging hopping matrix elements
the results could be improved again. The problem is that our calculations
are done on a small cluster of 16 sites, where the inclusion of long ranging
hopping terms is not reasonable.

In conclusion one can say that the inclusion of the diagonal hopping t; in
the calculation gives the same dependence on the parameters Vg, and i,
as before, which gives raise to the assumption that the charge order is very
similar for t; = 0 and t4 # 0, resp, which can also be seen by comparing
tables 4.1 and 4.2.

4.4.3 Results for Finite Temperature

In this section we want to compare the numerical results for the optical
conductivity in the frame of the ¢-J-V model with the numerical results in the
frame of the t-U-V model. The calculations were performed using the finite
temperature Lanczos method (see section 3.4). Figure 4.18 shows the results
for T'= 100 K. For the t-U-V model the peak in a direction is considerably
larger than for the ¢-J-V model, whereas the spectral weight of the peak is
almost the same in both models, because for the ¢-J-V model the peak is
broader. Experimental data (see figures 5.1 and 5.2) at 7" = 100 K shows the
same ratio of the peak heights as the results from the ¢-U-V model. From
figure 4.19 one can see that for higher temperatures (in this case 7= 700 K)
this discrepancy nearly disappears and the spectra are very similar. The
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Figure 4.18: Optical conductivity for a (full line) and b direction (dashed line)
at 7' =100 K. Parameters are t, = 0.4, ¢, = 0.2, t5, = 0.15, V, =V}, = 0.8
and Vy = 0.9. Left panel: ¢-J-V model. Right panel: ¢-U-V model.
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Figure 4.19: Optical conductivity for a (full line) and b direction (dashed line)
at T'= 700 K. Parameters are t, = 0.4, t, = 0.2, t;, = 0.15, V, = V}, = 0.8
and V, = 0.9. Left panel: ¢-J-V model. Right panel: ¢-U-V model.
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oscillations that appear at high frequencies in the spectra calculated in the
frame of the ¢-U-V model occur due to our implementation that is not very
efficient at low temperatures.

We used for our calculation the parameter set used by Cuoco et al. [23],
for which they found the best agreement of calculations in the frame of the
t-J-V model with experimental results at room temperature [24, 25, 26].
From figures 4.18 and 4.19 one can see that the peaks of the conductivity
in b direction are the same for the ¢-J-V and the ¢-U-V model, whereas the
peak in a direction is for the ¢-U-V model at lower energies than in the ¢-J-V
model. One can overcome this difference by choosing a lower value for ¢,, for
the t-U-V model (see figure 4.15), which is consistent with literature. If one
chooses for example ¢,, = 0.08 then the peak is a bit below 1 eV as observed
in experiments.

A few words should be added regarding computational details. The Hilbert
space for the ¢-U-V model is much larger than for the ¢-J-V model, because
in the latter case no double occupancies are allowed. The computational
effort when applying the FTLM to the t-U-V model is therefore larger. On
this account we use the t-J-V model for the further calculations.



Chapter 5

Temperature Dependence of
Optical Spectra of o/-NaV,Os

In this chapter we want to investigate the temperature dependence of the
integrated optical conductivity (IOC). In order to describe the experimental
results of Presura et al. [27]. We calculated the IOC by FTLM (see section
3.4 for details) for several temperatures and found quite similar behaviour,
namely that spectral weight of the 1 eV peak decreases when temperature
raises. The reason for the decrease will be analyzed in detail in the sequel.

5.1 Experimental Results

Presura et al. measured the dielectric function and the optical conductivity
of NaV,0j5 for different temperatures by ellipsometric measurements of the
(001) surfaces of the crystals both with the plane of incidence of the light
along the a and the b axis [27]. The results of these measurements are shown
in figure 5.1 and 5.2. The 0.9-eV peak in o,(w) corresponds to bonding-
antibonding transitions within a rung, whereas the peak at 1.1 eV in o(w) is
attributed to transitions between neighbouring rungs along the ladder. The
peak at 3.3 eV in o,(w) was attributed to the transition from the 2p orbital
of oxygen to the antibonding level within the same V5,05 cluster.

Let us now turn to the discussion of the temperature dependence of the
spectra. As one can see from figures 5.1 and 5.2 the position of the peaks is
temperature independent, which suggests that the valence of the vanadium
ions above and below the phase transition at 7, = 34K is almost the same.

49
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Figure 5.1: Real part €'(w) of the dielectric function (a) and optical conduc-
tivity o(w) (b) for E || a. Figure taken from reference.

Presura et al. claimed that the changes in the valences of the V atoms are
smaller than 0.06e. If the changes were larger, then the equilibrium positions
of the V ions in the V5,05 pyramids and therefore the onsite energies would
be changed [19]. This rapid change of the onsite energy would shift the peaks
to lower energies, which has not been observed.

Although the peaks remain on the same position the intensity decreases dra-
matically with increasing temperature. The spectral weight of the B peak
seems to be transferred to energies up to and above 4 eV. The spectral weight
of the A peak is transferred to even higher energies of about 4.5 eV. Let us
now take a look at the temperature dependence of the integrated spectral
weight of the 1 eV peaks. For this purpose Presura et al. integrated the
optical conductivity from 0.75 eV up to 2.25 eV, results are shown in fig-
ure 5.3. A non-linear fit with the formula I(T) = I(0)(1 — fe #o/T) gave
f =035 and Ey = 286 K for the a direction and f = 0.47 and Ey = 370
K for the b direction. That means that the activation energy Ej is about
25 meV, which is very small regarding the rather large optical gap of ap-
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Figure 5.2: Real part €¢'(w) of the dielectric function (a) and optical conduc-
tivity o(w) (b) for E' || b. Figure taken from reference.

proximately 0.9 eV. Presura et al. claimed, that this low-energy scale results
from collective motions of the charge, which can actually be much lower in
energy than a single-particle excitation. Such a soft charge excitation can
be found in zig-zag charge ordering for momentum £ at the boundary of the
Brillouin zone k = (m, 7). These modes could only appear indirectly in the
optical conductivity, which is by definition restricted to £ = 0, by charge-
phonon or spin-phonon coupling. But before discussing this assumption in a
later section, let us first consider some numerical results for the temperature
dependence of the optical conductivity of NaV,Os.
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Figure 5.3: Integrated optical conductivity from 0.75 eV to 2.25 eV for a and
b direction. Solid line are fits to the formula I(T) = I(0)(1 — fe Fo/T).

5.2 Numerical Results for the Optical Con-
ductivity

For our numerical calculations we started from the ¢-J-V hamiltonian (4.2)
introduced in section 4.2. For the parameters we chose the values used in
figure 4.18 which gave the best agreement with experiments:

e hopping matrix elements: ¢, = 0.4, t, = 0.2, {5, = 0.15
e coulomb interactions: V, = 0.8, V;, = 0.8, V,, = 0.9

e intrasite Hubbard repulsion: U = 4.0

We calculated the optical conductivity for both directions for several temper-
atures. Temperatures below 100 K could not be handled properly, because
in this region the stochastic evaluation of the trace (see section 3.4) yields
significant statistical errors. With the present implementation we cannot ad-
dress the phase transition at 7T, = 34 K, which also leads to a decrease of
spectral weight in a direction, shown in figure 5.3.

The results of our calculations are shown in figure 5.4. The spectral weight
of the 1 eV peak in both directions decreases with increasing temperature
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Figure 5.4: Optical conductivity calculated by FTLM for a and b direction
for several temperatures. Parameters as in figure 4.18.

in agreement with the experimental spectra. But in our calculations the
decrease in b direction is much larger than the decrease in a direction. In order
to analyze the parameter dependence we calculated the optical conductivity
and the IOC, integrated from 0 to 2.5 €V, in the wide temperature region
of kgT' = 0eV to kT = 10eV for several sets of parameters. The IOC’s of
these calculations are shown in figure 5.5. One can see that for the standard
parameter set with ¢, = 0.2 the temperature dependence is almost the same
for ¢4, = 0 and ¢, = 0.15. The IOC shows qualitatively the same behavior,
constant value for low temperatures and the same onset of the decrease,
with only slight discrepancies, and at high temperatures the same tendency
to zero.

When choosing a lower value for ¢, the situation is different. In the case ¢, =
0 the behavior of the IOC is at least comparable to the results for ¢, = 0.2.
The temperature region where the IOC is constant is about a factor 4 smaller
and after the decrease there is no constant region as in the case ¢, = 0.2 but
the IOC increases again slightly. For high temperatures kg7 > 0.5eV the
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Figure 5.5: IOC for a (dot-dashed) and b direction (solid and dashed lines).
Results are given for both ¢;, = 0.15 (open) and t,, = 0 (filled symbols).
The set t, = 0.2 and t,, = 0.15 corresponds to the spectra shown in figure
5.4.

IOC (and therefore the kinetic energy) decreases exponentially to zero, a
behavior observed for all parameter sets.

In the case ¢, = 0.1 and t,, = 0.15 the IOC shows a quite different temper-
ature dependence. Here the constant region (up to =~ 0.01 eV) is followed
by a slight increase up to kg7 = 0.5 eV, beyond which the IOC decreases
again exponentially to zero. We assumed, that in cases when the intralad-
der hopping ¢, is smaller than the interladder hopping t,,, the excitations
are determined by interladder hopping, which is not valid for NaV,0s5, as
we argued above. Restricted to the case ?, > t;, one can see from figure
5.5, that the interladder hopping has no significant influence on the temper-
ature dependence of the IOC, which is consistent with the assumption stated
in section 4.4, that the coupling between two ladders in NaV505 is mainly
determined by V,, and not by t,,.

We also calculated the charge and spin correlation function of the system
for the standard parameter set ¢, = 0.2 and t,, = 0.15 (see figure 5.6). The
charge correlations reveal that the system is in zig-zag charge order up to a
temperature of about 7' = 0.4 eV, which is the same temperature where the
high temperature decrease of the IOC sets in. One is therefore prompted to
assume that the break down of charge correlations causes the decrease of the
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Figure 5.6: Spin (top) and charge correlations (bottom) Sy, = (SS?) and
Cin = (nin,) as function of temperature with the standard parameter set.
For the meaning of the indices see figure 4.12.

IOC at high temperatures, which will be analyzed in the next section.

The spin correlations, which actually show antiferromagnetic order, break
down at an even lower temperature of about kg7 = 0.03 eV which could be
the reason for the decrease of the IOC at this temperature. But let us first
concentrate on the charge correlations and their influence on the IOC. The
influence of the spin correlations will be discussed later on.

5.3 Ising Model in a Transverse Field (IMTF)

In order to understand the influence of the charge correlations on the I0OC
we turn to a different representation of the low energy degrees of freedom.
For large U and V, the relevant subspace of our Hilbert space is the one with
one electron per rung. These states can be represented by eigenstates of
spin S and pseudo-spin T operators, where the configuration with 7% = i%
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corresponds to the left/right position of the electron within a rung. In figure
5.6 one can see, that for low temperatures the charge correlation function
C'12, which gives the amount of double occupancies of a rung, is very small
and the assumption that there is only one electron per rung is valid. It is now
possible to project out the high energy states, which yields a spin-pseudospin
Hamiltonian [28, 29]. For a single ladder it is given by

2t2
l

l

8t2 1 _
+ Kb > (Sl -S4 — Z) (T 75, +he.) (5.1)
l

where [ stands for a rung consisting of two vanadium sites. The hopping ¢,
acts as a transverse field, while the coulomb interaction between electrons
on neighbor rungs [ and [ 4+ 1 in the ladder corresponds to the zz-coupling
in the Ising model. The third term is due to exchange between electrons in
different rungs along the b direction. The energy A scales between V, + V}
and 2t, depending on which value is larger.

The coupling between neighboring ladders is given by

1 1
Hintertadder = — V;cy Z (Tf — 5) (Trzn + 5)

{I,m)
412 1 1
ry Sy — = T?T? — 2
+Alz(sls 4><,m+4> (5.2)

(t;m)

where (I, m) connects two next-neighbor rungs on neighboring ladders and
Ay = 2Vy+V,—V,y. In order to simplify this Hamiltonian we do the following
approximations:

e The system should be in zig-zag charge order, this means, that the
interladder coulomb interaction V, does not have big influence on the
ground state and on the spectral weights of the 1 eV peaks of the optical
conductivity (see figure 4.13). Therefore we set V,, = 0.

e The ground state is mainly determined by configurations with one elec-
tron on a rung. We now assume, that the interrung hopping ¢; can be
neglected, i.e. we neglect all second order corrections oc ¢2. The in-
terladder hopping ¢,, can be set to zero, because its influence is very
small (see figure 5.5).



5.3. ISING MODEL IN A TRANSVERSE FIELD (IMTF) o7

These assumptions lead to a simpler Hamiltonian only consisting of the trans-
verse field ¢, and the zz coupling constant Vj, which has the form of an Ising
model in a transverse field (IMTF) [30, 31, 32, 33].

5.3.1 Hamiltonian of the IMTF

Starting point of our calculation is the Hamiltonian

H=—2t, ) TF+2V, > TiTi, (5.3)
l

l

where we have chosen periodic boundary conditions T, = T{*. The eigen-
values of the pseudo-spin operators 77 = j:% correspond to the left/right
position of the electron within a rung. This Hamiltonian can be rewritten
by setting H := H/V; and h := 2t,/V

H=—h) Tr+2> T/T. (5.4)
l l

If we rotate the coordinate system around the y-axis, i.e. 2z >z, = — —z
we get

H=h) TF+2) TFT7, (5.5)
I !
It is now useful to introduce the raising and lowering operators
T =17 +I) (5.6a)
T, =1¢ - iT} (5.6b)

With these two operators the product 7;*7}%, in the Hamiltonian can be
rewritten and leads to

- L1 _ _ S
H=h) T+ (GTL+ T+ T+ T Th)  (67)
l l

Let us now consider the behavior of the operators 7" and 7,”. Directly from
the definition one can obtain the commutation relations

[T, T;] = 2Ty (5.8a)

[T7, T, = T, 0 (5.8b)
[T7,1;7] = =17 4 (5.8¢)



o8 CHAPTER 5. TEMPERATURE DEPENDENCE OF SPECTRA

where we have used the well known commutation relations for spin one-half
operators [2]

[T, T}] = iT} by (5.92)
[T7, T7] = iT}°6y (5.9b)
(17, T7] = i1}y (5.9¢)

If one looks at the commutation relation (5.8) for different sites, i.e. I # j,
one finds that the raising and lowering operators obey a bosonic commutation
relation

T T1=0, 145 (5.10)
For the same site, i.e. [ = j, there is no such bosonic commutation relation,
which means on the right hand side of equations (5.8) stands an operator
and no complex number. Instead we find for [ = j

LT+ 1T =2 | (1) + (1) = 2 |7 T — (1))

J

—9 [T(T +1)— (Tj)2] (5.11)
For spin one-half we have to use 7' = 1/2 and (T7)* = 1/4, which leads to
the anticommutation relation

{T;, T} =2 B (g) — ﬂ =1 (5.12)

Thus we have found that the spin one-half operators behave like fermions
on the same site and like bosons on different sites. Because of that they are
sometimes called hard-core bosons, which means that one cannot create two
bosons of the same type on the same site.

This peculiar behavior of the spin operators causes severe difficulties when
dealing with Heisenberg-like Hamiltonians.

5.3.2 Jordan-Wigner Transformation

When treating spin problems one is facing severe difficulties because of the
fact that the spins are neither bosons nor fermions. In one dimension, how-
ever, there is a famous way to overcome these problems, because it is possible
to map the spin operators exactly into fermion operators [2]. This transfor-
mation was introduced by Jordan and Wigner (1928).
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In one dimension the spins are located along a chain. We define new operators
by multiplying the spin operators by a phase factor depending on the spin
site:

o ="M (5.13a)
of = 7o (5.13b)

The phase ¢; counts the number of spin-up sites to the left of position [

-1
<m:§:(%+ﬂﬂ, 1> 1. (5.14)

k=1

This definition implies that in the Jordan-Wigner transformation (5.13) the
phase factors commute with the spin operators, because the ¢; do not depend
on the spin at site [ itself. Therefore the phases can be put either in front
of the spin operators or behind.

From equations (5.13) we obtain for the density n; = ¢/ ¢

1
m=cdo=TT =T(T+1) - (7)) +T; = 5 + 17 (5.15)

This implies that the density n; measures the number of spin up at site [.

Our claim is that the operators defined by (5.13) are fermion operators. On
the same site we get the anticommutation relation quite simple, because the
phase factors cancel each other:

{ad}={1. 17} =1, (5.16)

where we have used the fermionic behavior of spins at the same site. At
different sites we have to calculate the anticommutator explicitly:

{Cl; C;} — ez'7r¢z Tl—e—intﬁj Tj+ + e—imz:j Tj+6i7r¢lTl_

Without loss of generality we may assume that [ > j. Consequently we can
split the phase factor ¢; into two terms, one with [ = j and one with [ # j:

-1
1 1

n; nk

Thus we get for the anticommutator

{cl, c;f} = ¢m(91=¢3) (Tl_TJ?L + e_i”"jTj“Lei“"jTl_) (5.17)
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Let us now focus on the second term of the right hand side of above equation.
The operator TJ?L must raise the magnetic quantum number. This implies
that n; to the right of this operator has to be zero, while to the left it is
equal to one, i.e.

e—z’ﬂ'njjﬂj-f—eiﬂ'nj — e—z’ﬂ'T'-f— — _TIJ—I—
Inserting this result into (5.17) we obtain for the anticommutator

J

{Chct} — tm(di—95) [Tl_vTjﬂ =0, (5.18)
because spin operators commute on different site. In other words, clT and ¢
are fermion creators and annihilators, resp.

Summarizing all our results we have shown that the Jordan-Wigner trans-
formation (5.13) leads to a fermionic formulation of one-dimensional spin
problems.

5.3.3 Application to the IMTF

In order to solve the eigenvalue problem of the IMTF we apply the Jordan-
Wigner transformation to the Hamiltonian (5.7) [30]. In order to do this we
rewrite equations (5.13) in the form

T, = e~k ke, (5.19a)
T+ = eim Cicimic] (5.19b)

To begin with we transform the first term of Hamiltonian (5.7) into Jordan-
Wigner fermions, which is rather simple:

ZTZ—Z<clcl——) :——+chc,, (5.20)

where N denotes the number of sites. In the next step we transform the
interaction part of (5.7). For the first term we obtain

T—|—T—|— _ emzk lncheZﬂ'Ek lnkcl—{—l

+1 —
QZWZ ng imng .t
k= 1 C e Cl—|—1
_ bt
=aCn

In the last step we used that 22;11 ny is an integer and n; has to be zero,
because it stands right of a creation operator.
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Similar one can calculate the other terms of the interaction part leading to

T'T5, = C;rcl+1
-t 1
7T = —ac,
T, T,

+1 = —GCi+1

At last we have to look at the periodic boundary conditions, which are defined
by T, = T{. Applying the Jordan-Wigner transformation to the first term
of the interaction part leads to
TiT,, = ThT; = e Si=i el of
— ei'/rnNefiwnN ei7r Ziv:}l Nk C}LVCI
= —¢im i el el

where ny = 1 because of the creation operator c}rv. Similarly one gets for the
other terms

R e . DAY N,
TNTN+1 = —e" &r=1They 0
. N
-t AT Y Nk t
TNTH,, = e™Zi=1cyel

: N
— — 1T —_1n

We now define a constant L as number of Jordan-Wigner fermions in the
whole chain, which is equivalent to the number of spin up,

L= ng

M-

Finally we can write the Hamiltonian (5.7) in terms of Jordan-Wigner fermions

N X 1o
A==t dats ) (d -a) (dateon)

- % (c}rv - cN> (c{ + cl> (e”L + 1) (5.21)
One must mention here that the number of fermions L within the chain is
no constant of motion, but its parity is conserved and therefore exp(iwL) is
a constant of motion which is equal to +1 or —1 for an even or odd number
of fermions, resp. Hence we have to choose antiperiodic boundary conditions
for an even number of fermions and periodic boundary conditions for an odd
number.
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If the number of fermions L is odd then the last term of (5.21), which is
the correction term due to the periodic boundary conditions, equals zero.
But if L is even, then it gives corrections of the order 1/N, which can be
neglected in large systems. In addition we will drop the constant term in the
Hamiltonian (5.21) in the following calculation, because it gives only a shift
in the energy. The Hamiltonian that we have to diagonalise is

N N
~ 1
H = hl_zl C;Cl + § l_zl (CzL - Cl) (C;_H + Cl+1) (5.22)

This Hamiltonian is quadratic in the fermion creators/annihilators and there-
fore diagonalizable. This can be done using the Bogoliubov-Transformation
[30].

5.3.4 Bogoliubov Transformation

The Bogoliubov transformation is a general way to diagonalise Hamiltonian
which are quadratic in the fermion operators. The main idea is to rewrite
the Hamiltonian in a diagonal form using new fermion operators constructed
by a linear transformation of the old ones.

First we write the Hamiltonian in the general quadratic form
~ 1
H= Z C;[AijCj + 5 Z (C;[Bijc;( + hC) (523)
ij ij

‘H has to be hermitian, which means in this case that A has to be symmetric
and B has to be antisymmetric.

Our aim is to rewrite the Hamiltonian using variables 77}; and 7, in the diag-
onal form
H = Z qu;nq + const, (5.24)

q

where w, are one fermion energies. The 7)2 and 7, are obtained via a linear
transformation

Mg = Z <ng'0z' + hqu;r) (5.25a)

n=> (gqic} - hqici> (5.25b)

K3
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If the Hamiltonian exists in the form (5.24) then one can calculate the fol-
lowing anticommutator

{1 H} = wyny (5.26)

We insert now the definitions (5.25) and the quadratic Hamiltonian (5.23)
into equation (5.26) and find

walgi = D, (9ajAji — haj Bji)

j
waohgi = (94 Bji — hejAji)
J
These are two coupled equations to determine wy, g, and hy;. One can rewrite

these equations by adding them or by subtracting the second one from the
first one in order to get

®,(A - B) =w,Y, (5.27a)
U, (A+ B) =w,?, (5.27b)
The 2N components of the vectors ®, and ¥, are given by

((I)q)i = Gqi T hqi
(\I’q)i = Gqi — hqi

If one inserts the first equation of (5.27) into the second one and vice versa
one gets

®,(A— B)(A+ B) = w}®, (5.28a)
V,(A+ B)(A-B)=w}¥, (5.28b)
There are now two possibilities: Either one solves the first equation to get

®, and calculates U, from equations(5.27) or the other way round. The
quasiparticle dispersion relation w, is obtained both times.

We apply this results now to our original problem, namely diagonalising
(5.22). For this Hamiltonian the matrices A and B are given by

1

Aii = h, Az‘,z‘+1 = Ai—|—1,z’ = 5
1 1

Bi,i+1 = 5; Bi—l—l,i = —5

We need the sum and the difference of these two matrices. But because A
is symmetric, which means A = A”, and B is antisymmetric, which means
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B = —BT,| the relation (A — B) = (A + B)” holds and we have to calculate
only (A + B) explicitly. Finally we get

1+h% h : . h
h 1+h* h
(A—B)(A+B) = : h  1+h® "-. : (5.29)
. . - - h
h . . h 1+h?

where the dots indicate zeros. For this matrix we can solve the eigenvalue
equation (5.28) using the ansatz ®, = €'“. The quasiparticle dispersion
relation is given by

w; =14 h®+2hcosq (5.30)

where the wave vectors are g = QWT"‘ with

N N
m_ _?’...,07...’7
- N-1 0
_T caey 9 - .

1 N even
L N odd

2

)

v ‘

and the eigenvectors, which can be chosen to be real and orthogonal, are

2singj ¢>0
d, = \/; (5.31)

v \/zcos' <0
N q) 494 =

The second set of vectors ¥, can now be obtained from equation (5.27a).
The left hand side gives for ¢ > 0

h - -1
2 1 h
@, (A—B)j, = N(sinq,sin?q,---,sian)
1 h
2 . .
= N(---,hsmnq+sm(n+1)q,---)

2
=V (---, (h+ cosq) sinng + sin g cos(—ngq), - - - )

Similar one can calculate ¥, for ¢ < 0 which leads to

2
U, = ”N (+++, (h+ cos q) cos(nq) + sin gsin(—ngq), - - - )
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3

25

Figure 5.7: Elementary excitation energy as function of momentum ¢ for
different h.

Adding the two parts of the vector ¥, one can write

1
lI]qj = — [(h —+ cos q)@qj + sin q (I)—qj] (532)

Wy

In conclusion we diagonalised the original Hamiltonian (5.3) which reads in
its diagonalised form as

H=1V, Z wenim, + const. (5.33)

q

where the one-fermion energies are given by

wg = /1 +h?+2hcosq (5.34)

The energy of elementary excitations is shown in figure 5.7. As one can
see there is a energy gap in the spectrum that goes to zero at ¢ = 7 for
h=h.=1as A(h) = V,|1 — h| = |2ty — V3|

5.3.5 Magnetization and Kinetic Energy

In order to apply the f-sum rule (2.17) we calculate now the kinetic energy
of the system. In the formulation of the IMTF the kinetic part of the Hamil-
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tonian 1s

Hpin = —2t 3 TF = -Vih ¥ 1T}, (5.35)
l l

where we have again introduced the parameter h = 2t,/V}, and additionally
we rotated the coordinate system as in section 5.3.1. One can see that one
gets the kinetic energy by calculating the transverse magnetization of the
IMTF

1
Erin = ~Hein)s = ~hViM? (5.36)

where we have defined the magnetization as

= <%2le> (5.37)
l 8

and (-)g means the thermodynamic expectation value. We use again the
Jordan-Wigner transformation (5.15) to express this term in fermion opera-
tors

()~ RS (e (re), B

In order to evaluate this expectation value we apply the inverse Bogoliubov
transformation (5.25) to get an expression written by the fermion operators
77}; and 7,, because for this representation we know already the one fermion
energies w,. We express the g,; and hg; by the vectors ®,; and ¥,;. Because
of the orthogonality of these vectors the inverse transformation is simply
given by

c;r _ Z (Dg5 + \Ijqa Z (5.39a)

q

a=)y L Z (Do + ¥oy) + % (5.39b)

q q
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Using this inverse transformation in (5.38) we get
! qq’
- v 2 X vt ((ad =) (1),
aq
— % ;Z\Ilqj@qj (<77(];77q>,3 - <77q77(];>,3>
q

The expectation values in this formula can now be calculated directly using
the well known fermion distribution function of statistical physics

B

(nimg) 5 — (nanl) 5 = (nima) 5 — (1 = g 4
=2 <77;77q>ﬂ -1

=2 (P 1) —1

= — tanh (%ﬁ%a@)

This is a quite simple equation which contains all the temperature depen-
dence of the system. All other terms, that have to be calculated in the sequel,
are temperature independent. Thus we can write for the thermodynamic ex-
pectation value of the magnetization

i 1 1
M = — o leIfql@q, tanh (551/,,%) (5.40)
7q

To evaluate the sum over the momentums ¢ we assume that our system is
very large and we can therefore replace the sum by an integral over ¢

1 1

- s = [a

N Zq: 2m / 1
In order to insert the expression for ®, (5.31) and ¥, (5.32) we split the
interval of integration [—m, 7] into the intervals [—m,0) and [0,7]. The re-

sulting expression is independent of [ and the sum over [ is equal to N. In
the end we find for the magnetization

1 r h + cosq 1

M? =—— [dg————tanh | = 41

O I
0
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From equation (5.36) we get with equation (5.41) for the expectation value
of the kinetic energy

h r h + cosgq 1
0
1 T I T T T
S T/Vb=0
L TV, =025
—T/V, =05
)
> — T/Vb=1
\'505—
]
84

Figure 5.8: Kinetic energy as function of parameter h = 2t,/V}, for different
temperatures.

Figure 5.9 shows the temperature dependence of the kinetic energy from
equation (5.42). Obviously, the temperature dependence of Ej;, is dictated
by the coulomb interaction V,, provided ¢, » Vj, or in other words, h » 1.
If h increases the argument of the hyperbolic tangent in equation (5.42)
becomes %ﬁwaq & %ﬁ(Qta), which shows that for A > 1 the relevant energy
scale is twice the hopping matrix element within a rung ¢,. In the high
temperature limit (8 < 1) one can approximate the hyperbolic tangent by
its argument. The integration can now be done analytically and one finds

There is one peculiar behavior of the kinetic energy which should be men-
tioned. For h < 1 the transverse magnetization and therefore the kinetic
energy is not strictly monotonic. One possible explanation is that for A < 1
the leading term in the Hamiltonian is the interaction term and not the trans-
verse field. Therefore at low temperature there are rather large z-correlations.
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Figure 5.9: Kinetic energy as function of temperature for different values
of h.

When temperature increases this correlations get weaker and weaker and the
transverse field can produce more correlation in z-direction. At high temper-
ature the magnetization drops again, as it should. For larger A the leading
term in the Hamiltonian is already the transverse field, which means that it
cannot profit of the weaker z-correlations when temperature increases.

Let us now compare our results from the IMTF and the results obtained by
the numerical calculations for the ¢-J-V model (see section 5.2). We have to
compare one of the red curves for ¢, = 0.2 in figure 5.5 and the red curve for
h =1 in figure 5.9. If the assumption of Presura is correct and the decrease
of spectral weight with characteristic energy of about 30 meV is driven by
charge excitations then the two curves should show at least qualitatively the
same temperature behavior, because the IMTF represents the charge degrees
of freedom of the system. When considering very high temperatures above
0.3 eV, which actually cannot be investigated experimentally, we find almost
the same behavior. There is a huge decrease of the spectral weight starting at
about 0.4 eV both in the IMTF and in the results from exact diagonalisation.
But the decrease of the integrated optical conductivity in figure 5.5 starting
at about 0.03 eV cannot be found in the analytical result of the IMTF in
figure 5.9. Therefore we concluded that the low energy charge excitations of
the IMTF at the boundary of the Brioullin zone have nothing to do with the
decrease of the spectral weight with characteristic energy of about 30 meV,
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as Presura argued. Obviously the reason is, that this low energy excitations
cannot couple directly to the optical conductivity because of the different
values of momentum vector q. In the end we can say that charge degrees of
freedom alone cannot describe the behavior of the IOC properly.

5.3.6 Correlation Functions

In order to investigate the electronic structure of the ladder system we are
going to calculate the correlation functions for the pseudo-spin operator 77.
If this correlations are mainly antiferromagnetic then the groundstate is zig-
zag ordered. Because we have rotated our coordinate system we have to
calculate the correlation function

Ci; = (T7T})s, (5.43)

where ()3 again denotes the thermodynamic expectation value. Inserting
the ladder operators (5.6) one can write

1 _ _
€3 = L (T +T) (I + 7)),

In terms of Jordan-Wigner fermions this expression can be rewritten as
1 -
Ci = 1 <<cj + c,-) exp (—’iﬂ' Z c;'cl> (c; + cj)> )
=1 B

provided ¢ < j. The exponential function can be evaluated using a represen-
tation where c;-rci is diagonal, because in this representation one can verify
that

exp (—iﬂczfcl) = (] +&)(d — @)

Using this identity the correlation function reads as

05 = 7 ((d + el +e)lel —e)els o) (o — el +e)

N

We define now the abbreviations A; = c} +¢; and B; = cg —¢;. It is easy to

check that A? = 1 holds. Therefore we get for the correlation function

- 1
Cij = Z(BiAi—l—lBi—l—l - Bj_14;)
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Figure 5.10: Temperature dependence of the longitudinal correlation function
of the IMTF given by equation (5.44). Negative curves are for r = 1, positive
for r = 2.

This complicated expression can be simplified using Wick’s theorem. We
first calculate the contractions

(AiAj)g = (65 — cles + cles)s = 0y
(BiBj)s = (= + cle; — cle;)p = =6y

Because these two contraction are always equal to zero provided i # j the
only contractions which contribute are (B;A;)p and (A4;B;)s. Defining now
Gj_i == (BiA;)p = —(A,;B;)s one can write the correlation function as de-
terminant of the form

Gi Go - Goyp
1 Gy, G G3
Clin = 7det co T (5.44)
Gn Gn—l e Gl

The contractions Gj_; can be calculated using the same method as in section
5.3.5, i.e. applying the inverse Bogoliubov transformation. Denoting the
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Figure 5.11: Longitudinal correlation function for different transverse fields
at T'=0eV.

distance between two sites 2 and j by » = j — ¢ this leads to

G, = (Bid;)s = ((c] — ;) (ch + ¢;))p
e Z\inéqj tanh (%5%%)

q

with ¥, and ®,; from equations (5.32) and (5.31). After replacing the sum
by the integral and inserting equations (5.31) and (5.32) we get for the con-
traction

G, = 1 /dqi [h cos gr + cos g(r — 1)] tanh (15%%) (5.45)
T Wq 2

Let us now consider first the pure Ising model, that means A = 0. In this case
the quasiparticle dispersion relation (5.30) gives w, = 1 and the integration
in (5.45) can be done analytically. Thus we have

™

1 1
G, = —— tanh (55%) /dqcosq(r - 1)

™
0

— tanh (%5%) r=1
0 r#1

(5.46)
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Figure 5.12: Longitudinal correlation function for different transverse fields
at T'=0.5eV.

This result is quite satisfactory, because all off-diagonal matrix elements in
(5.44) are equal to zero and the determinant is therefore simply the product
of the diagonal elements, which are actually G;. The longitudinal correlation
function for the pure Ising model (h = 0) reads therefore

1 1
€7 = (1) tanh’ <§5v;,>

_ (_41)7« exp <7~ In tanh (%ﬁ%)) (5.47)

For finite temperature the hyperbolic tangent lies between zero and one and
the logarithm is therefore negative. We can now define o = | In tanh (3V3) |
and write

This means that the longitudinal correlation is controlled by an exponential
decrease and no long range order can be expected in the case of the pure
Ising model. At 7" = 0 the situation is different. In this case the hyperbolic
tangent is equal to one and therefore we have o = 0o, i.e. long range order.

When the transverse field is present (kA > 0) one has to distinguish whether
the system is in the ordered phase (h < 1) or in the disordered phase (h > 1).
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In these two regions one can find for the longitudinal correlation function at
T =0 [34]

h>1

T—>00

lim €7 = {iu—hw h<l

indicating the absence of long range order for ~ > 1 and long range order for
h < 1. The only thing left is the behavior at the transition point A = 1. In
this case one finds at T = 0 [34]

C* = l (g)r 227"(r—1) H(T)4

"4 \nr

where H(r) =1"7'2""2...(r — 1). Therefore there is no long range order at
T =0 and h =1 as shown in figure 5.11.

At finite temperature there is no long range order, because our model is
one-dimensional and there is no phase transition in such models at finite
temperature (see figure 5.12).

Let us now discuss the results of these analytical calculations. In figure 5.10
the temperature behavior of the nearest neighbor (r = 1) and next nearest
neighbor (r = 2) pseudo-spin correlation function is shown. In order to
compare these results with the numerical results in section 5.2 we need the
relation that connects the correlation functions. Let us denote the correlation
function of the IMTF by C, and the correlation function calculated by exact
diagonalisation in section 5.2 by C\,. If one assumes that there is one single
electron on a rung one can derive the very simple relation

Cr =Cior41 — % (5.48)
In other words the nearest neighbor correlation function for A~ =1 in figure
5.10 should be equal to ém-i in figure 5.6, whereas the next nearest neighbor
correlation function should be equal to 6’15—5 Keeping this relations in mind
one can see that figure 5.10 shows the same temperature behavior as figure
5.6, which means zig-zag charge order up to a temperature of about 1 eV
and tendency to zero at higher temperatures.

Summarizing our results in the previous two sections one can say that the
IMTF gives a quite good description of the charge degrees of freedom of the
system. But the experimentally found decrease of the spectral weight with
characteristic energy of about 30 meV can not be explained by these charge
excitations.
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5.4 Influence of Spin Correlations

In the previous section we found that charge degrees cannot explain the de-
crease of the spectral weight experimentally observed by Presura. By compar-
ing the integrated optical conductivity 5.5 and the spin correlation function
in figure 5.6 one can see quite clearly, that the low temperature decrease in
the spectral weight is due to the loss of short range antiferromagnetic spin
correlation. Thus the characteristic energy for this decrease should be con-
trolled by the magnetic super-exchange parameter J. In order to investigate
the influence of spin correlations we use a very simple approach similar to
the approach by Horsch and Mack [15]. They explained the insulating be-
havior of NaV,05 by assuming that the basic elements of this compound are
two sites connected by hopping t, which form a rung. All other hoppings,
i.e. hopping along the ladders and between different ladders can be taken as
virtual excitations.

5.4.1 Two Rung Model

As mentioned above we use a very simple approach to understand the low
temperature behavior of the I0OC. Figure 5.6 shows that there are no long
range spin correlations but only short ones. Therefore it should be possible
to get the main information about these short range spin correlations by
considering a very small system. Horsch and Mack treated the problem by
second order perturbation theory but without coulomb interactions. For our
purpose this ansatz is not very useful because we want to calculate the optical
conductivity, for which we need to know all eigenstates and eigenenergies of
the system.

As Hamiltonian we use the t-U-V model, but we do not include doubly
occupied states in our calculation, because the system is at quarter filling
and the magnetism is therefore controlled by the nearest neighbor coulomb
interaction. We also neglect interladder couplings t,, and V;,. It should now
be possible to separate a singlet and a triplet channel in our two rung system,
whose energy splitting Eg; gives the magnetic super exchange constant J. In
figure 5.13 the possible states in our two rung model are shown. The second
and third row results from the first row by hopping due to ¢, and t;, resp.

We define now bonding/anti-bonding operators, that create one electron in
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Figure 5.13: Possible two electron states with S, = 0 in our two rung model.
Doubly occupied states are not taken into account. Up and down arrows
indicate spin up and spin down electrons, resp.

a bonding/anti-bonding orbital on a rung.

1

b}; = \ﬁ(czw + czm) bonding operator (5.49a)
1

= —(c;.'la — c;-fm) anti-bonding operator (5.49b)

Qa
10 \/5

The index ¢ denotes the rung, [ and r denotes the left and right position
in the rung, resp. Using this definition one can define an operator, which
creates a singlet state of the two electrons on different rungs by

1

V2

Inserting the definition (5.49a) and expanding the brackets one gets

(bL.bE, — bl bh)

.l.
Dy 05 — Y391

1
T A ot A ot
Dg = G \/g(cmcju + CiptClry = Cipy Citp = Cip ) Clrp
oot {A oot \BAl
+ CiyCir Tt CipgCliy — Cigy Cirp — Cmcm) (5.50)

For the further calculation it is convenient to split the above equation into two
parts, in other words we split the operator qu into two new singlet operators
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SLH and SLLQ, where SLH is given by the second row and SLLQ by the first
row of above equation. The indices (++1) can be understood as follows: The
first plus sign indicates, that this operator creates a state with even parity
in a direction, whereas the second one indicates even parity in b direction.
The additional numbers 1 and 2 enumerates the creation operators. One
can easily see that the operator SL 41 is a linear combination of the states
in the first row of figure 5.13, whereas Si 42 is a linear combination of the
states in the second row. These two new operators create zig-zag (S]LF +1)
and inline charge order (S]LF 42), Tesp. Motivated by the definition of these
two symmetrized states we define a third state with parity (4++) as linear
combination of the states in the third row of figure 5.13. It is given by

1
Si+3 = §(CLTCL¢ + C;nc;m - CzTuC}LrT - C}uc;r'm)-

So far we have considered only states with parity (++). In order to expand
the full Hilbert space, that is of dimension 12, we have to define additional
three singlet states. We choose again linear combinations of the states in the
rows of figure 5.13, but now with parities (——), (—+) and (+—). The cor-
responding singlet creation operators are st st + and SL_. An additional
index that enumerates the operators is in this case not necessary, because we
have only one operator per parity.

So far we have only taken into account singlet states. The same considera-
tions as above can be done starting with the operator

1
V2

which creates a triplet state of two electrons on different rungs. One difference
between singlet and triplet states is that there is no triplet state with parity
(++) because of the Pauli principle. Thus we get the symmetrized triplet
creation operators Tjr_l, T}:_Q, TLLl, TLFQ, Ti_l, Ti_z. Summing up we got
12 symmetrized states, 6 in the singlet channel and 6 in the triplet channel.
These states are given in table 5.1. It is easy to check that all these states
are orthonormal. The Hamiltonian that we have to diagonalise is given by

H=—1, Z(c%lac,gm +hc)—1 Z(c;faocjw +h.c.)

Bo oo

+ Va Z ngingyr + V;) Z nianja (551)
B «a

) (@%+@%%

Because of the introduction of symmetrized states the Hamilton matrix de-
couples into several blocks and the diagonalisation can be done analytically
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Table 5.1: Symmetrized creation operators in the two rung problem.

S-Tf--l-l = %( ZlTng + Cmc;ru ;‘ruC;rT - CLW;M
51+2 = %(CI G+ CirTc;rN - Cguc;m - CIwC}rT)
S-Lra = %(CZlTCsz + C;nc;m - CzTuC;LrT - ;ruC;rT)
St = %(c;f”c;'-w - CITTC;u C;'rucjm + szcm)
SLr = %(c;f”c}u - C;'rmc;r'm ;rucm + sz ]rT)
St = 5(clych, - ;nc;m Zucm + o)
Tl—l = %( ZlTQynL + Cmcgu + Czu m + szc;n)
T{ 5 = 5(chych, + CerCm + Czu lT + ey chys)
Ti+1 = 5( ;rncm tc lTCJm + Czucm tc ucjm)
! 5 = §(clhchey = chnchy + clycln — chicliy)
T' = 5(chnchy = chclyy + eyl = zmcj +)
T , = %(ancjm ;lTCJm + Czucjm gu, Jr )

except of one case. We define the basis states of our Hilbert space for singlet
and triplet channel in the following order:

{16$)} = { 814110}, 81 12/0), S1 15[0), SL_10), 5. [0), 51 _jo) }

{1600} = {10100, T{o[0), T, 0), T2 J0), 71, 0), 71 oj0) }

With this basis we can calculate the matrix elements very easily, because
there is hardly any mixing of states. In the singlet channel the Hamilton
matrix is given by

0 -2, -2, 0 0 0
—2t, Vi 0 0 0 0
| o2ty 0 V., 0 0 0
Hs = 0 0 0 0 0 0 (5.52)
0 0 0 0V, 0
0 0 0 0 0 V,

One can see that this matrix has a 3 x 3 block, whereas all other matrix
elements are diagonal elements and therefore eigenvalues of the Hamiltonian.
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The diagonalisation of this 3 x 3 block can be done analytically, but it is not
possible to give a simple equation for the eigenvalues. In the triplet channel
the situation is a bit different. The Hamilton matrix is given by

0 =2, 0 0 0 0

—2, V, 0 0 0 0

_ 0 0 V., —2t, 0 0
Hr = 0 0 -2, 0 0 0 (5.53)

0 0 0 0 V, 0

0 0 0 0o 0 V,

In this case we have two blocks of dimension 2 X 2 which can be diagonalised
analytically very easily, and two diagonal elements that are already eigenval-
ues of the Hamiltonian. We derived this Hamiltonian for the triplet channel
in the case S, = 0, in other words for one spin up and one spin down elec-
tron. If we start with S, = 1, i.e. two spin up electrons, and define the
symmetrized states in the same order of parity as in the case S, = 0 we get
the same Hamilton matrix for the triplet channel. Thus it is possible to do
all calculations with S, = 0 and multiply the triplet channel by 3 in order to
take account of the threefold degeneracy of the triplet channel. One can see
from equations (5.52) and (5.53) that the Hamiltonian conserves the parity
of the states. Except of the block with (++) parity in the singlet channel we
can give analytic expressions for the eigenvalues:

0 —2t, —2t

ES,=EV | =2t, V, O (5.54a)
-2ty 0 V,

ES_=0 (5.54b)

ES, =V, (5.54c)

ES_=V, (5.54d)

)

1

ET_ = 3 (V,, + /1612 + Vf) (5.54e
1
7\ Vat

ET = ( o £ 1/1682 + Vf) (5.54f)
ET =V, (5.54g)
ET ,=V, (5.54h)

where E'V (-) stands for the calculation of the eigenvalues of the matrix (-) and
ES and ET are eigenvalues in the singlet and triplet channel, resp. The level
system for different parameter values is shown in figure 5.14. Next we want
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Figure 5.14: Level system of the two rung problem for different parameter
values. + and — indicates the parity of the level (see equations (5.54)).

to investigate the singlet-triplet splitting in this two rung cluster. For this
purpose we need to know the lowest singlet and triplet state of the system,
which are actually given by the lowest eigenvalues of equations (5.54a) and
(5.54e), because t, is greater than ¢,. To get an analytical approximation we
make the assumption V, =V, = V which is in fact not far away from reality
because so far we set V, = V, = 0.8 in this work. Thus we get for the singlet
and triplet eigenvalues

v 16t2 161,
BS =< (1 - \/ 2 et 1) (5.55a)
v 1612
T a
E'=3 (1 —\ 3=+ ) (5.55b)

Because 1, is a small quantity in our calculations we do a Taylor series ex-
pansion around ¢ = 0 and cut the series after the linear term. Thus the
singlet energy reads

1% 162 1 16t2
ES = 5| 1- \/ V; +tl-—— V2b +O(ty) (5.56)
2/ 41
V2

When calculating the singlet-triplet splitting ET — E° one can see that the
first two terms of equation (5.56) cancel with equation (5.55b). Therefore we




5.4. INFLUENCE OF SPIN CORRELATIONS 81

can write for the singlet-triplet splitting

4¢2 1
E,=E" -F= % (5.57)
Vo
V2

Now we replace again the parameter V' in the above equation in the following
way: In the fraction where ¢, occurs we set V' =V, and in the fraction with
t, we set V =1V}, because the relevant parameters are % and %, resp. In a
next step we expand the formula from the small two rung cluster to a whole
ladder. Considering an extended ladder hopping from the left to the right
position in the rung (e direction) causes an excitation energy of 2V} and
not V, as in the two rung cluster. Similarly hopping from one rung to the
neighboring one (b direction) causes an excitation energy of V, + V}, and not
V.. Therefore we have to set V, — V, + V}, and V, — 2V}, in order to get the
correct excitation energies. Finally we get the formula for the singlet-triplet
splitting for a single ladder

4t2 1
E, = b : (5.58)
(Va+ W) ‘%/cht 41
b

With parameter values of £, = 0.4, t, = 0.2 and V, = V,, = 0.8 we obtain
E ~ 70 meV. As mentioned at the beginning of this section this energy E;
is in this small system equal to the magnetic super-exchange constant J. We
conjecture that in extended systems the optical excitations are governed by
these local singlet-triplet excitation energies.

5.4.2 Optical Conductivity

In our small system we can calculate the optical conductivity analytically.
This enables us to determine the relevant states that contribute most. Start-
ing point of the calculation is the spectral representation of the optical con-
ductivity (2.16). After integration over w we get for the IOC

]_ — e_ﬂ(Em _En)

e? 1
_ —BEn : 2
1,(T) = a7 E B _E e [(m|ju|n)|*. (5.59)

For evaluating the IOC we have to calculate the matrix elements (m/|j,|n),
where the current operator is given by equation (2.6). From figure 5.14
one can see, that at low temperatures only the lowest singlet and triplet
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level is populated, whereas the thermal population of all other levels can be
neglected. These two states are given by

InS) = (kaL L+ ESST, +ESS +3) 10) (5.60a)
nT) = (KT, + K71 ,) [0), (5.60b)

which follows from diagonalisation of the Hamilton matrices (5.52) and (5.53).
The energies of these two states are denoted by E° and ET. We use now the
definition of the symmetrized creation operators in table 5.1 and calculate
the matrix elements of the current operator for the relevant initial states
ST 110), ST.510), ST.400), T _,|0) and T ,|0). We find that there are only
three non zero matrix elements whereas all others vanish, i.e.

(0[S 17,5t .110) = 2it, (5.61a)
(0]T__1j,TT_,|0) = 2it, (5.61b)
(0[S 7St 110y = 2it; (5.61c)

There is one big difference between the conductivity in a and b direction.
As one can see from above equations there is a matrix element from the
singlet and the triplet channel in a direction, whereas in b direction only the
singlet channel contributes. The reason for that can be found by considering
the effect of the current operator on the parity of the states. It does not
change the total spin, which means that there is no mixing of the singlet
and the triplet channel. But the current operator changes the parity of
the states in the direction of the current, in other words the operator j,
changes for instance (++) to (—+). When the operator j, acts now on the
lowest lying triplet state with parity (+—) it changes the parity to (——), but
in b direction the operator j, wants to change the parity to (++), which is
actually forbidden for a state with total spin S = 1. With the matrix elements
(5.61) we can now evaluate equation (5.59). Denoting the excitation energy
E?  — E% by AE® we get for b direction

AES s 9
Avy e e ——— L

where |k7|> comes from the initial state [n). The partition function Z can
be calculated straight forward and yields

Z =7 (nle”[n) = (n®|e”"¥|n®) + 3(n"|e~"¥|n")

= ¢ PB4 3¢ PF" (5.62)
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where we inserted the factor 3 due to the threefold degeneracy of the triplet
states. With this result the IOC I,(T") can be written as

_ 52 ,2€
Ib(T)_ﬂ—4|k1‘ tba AES 6_’6ES+36_ﬂET

[1 — ¢—BAES 1 ]

2 "1 _ o BAES o—BES ]

2
= ra |k5)” tg% (5.63)

AES 14 3e BFs

with E,, = ET — E9 the singlet triplet splitting. In a direction the sum
over the initial states |n) consists of two terms, |n°) and |n’). Denoting the
triplet excitation energy EZ_ — ET by AE? and using the same definitions
as above we get (Z is the same as in b direction)

I (T) _ 4t26—2 ‘ks‘Q 1 — g BAE® e—BES
N — e | 1M AFES e BES 4 3¢—BET
1 — ¢~ BAET —BET
+ KT —2 c (5.64)

AET  ¢=BES 4 3¢—BET

We can now divide the last fraction in the first row by e PE% and the last
fraction in the second row by e ##". Additionally we set x = (kT /k%)2. Thus
we get

1 — e PAE° 1
AES 14 3¢ BB
1—ePAET
AET 3+ ehBst |

2
L(T) = m48 \kf|2%

+3k (5.65)

The factor 3 in the second row comes again from the threefold degeneracy
of the triplet states. By comparing equations (5.63) and (5.65) and can see,
that the additional contribution of the triplet states to o,(w) is the reason for
the smaller decrease of the IOC that we found in our numerical calculations
(see figure 5.5).

The aim of these calculations was to explain the decrease of the IOC at low
temperatures found both in experiments and numerical calculations. As-
suming that we have no long range spin correlations and the excitations are
governed by local singlet triplet excitations we can use equations (5.63) and
(5.65) to investigate the extended system. Because we are not interested in
the high temperature regime we can do the following approximation. The
excitation energies AE® and AET are at energies of about 1 eV, which is
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much larger than the onset of the decrease of the IOC which we are inter-
ested in. We argue that for this low temperature decrease the characteristic
energy is given by E,; which is at energies of about 70 meV. Therefore we set
the fractions consisting of terms of AES/T constant. Moreover we normalize
equations (5.63) and (5.65) to one because of convenience. Taking account
of all these assumptions we get formulas for the IOC in a and b direction
depending only on two parameters Ey; and «:

~ 1 1

Ia(T) = m + Sﬁm (566&)
~ 1

W(T) = 75 m (5.66b)

with I4(T) = I,(T)/I4(0). We can test the validity of these formulas by
fitting our numerical data in the low temperature region of 0 to 0.6 eV by
using the parameters E, and k as fit parameters. The result of this fit is
shown in figure 5.15. One can see that there is reasonable agreement of the
solid lines with the numerical data for the ¢-J-V model. For a direction we
get kK = 0.54 and Ey; = 76 meV, and for b direction Ey; = 61 meV. Moreover
the value for the singlet-triplet splitting of about 70 meV calculated in the
previous section coincides very well with the fitted data.

The final test for our formulas is now the comparison to the experiment. We
tried to fit the experimental data of Presura in the temperature region 0 K to
300 K. The results are shown in figure 5.16. The fit for a direction could be
done quite easy and lead to a characteristic energy J ~ 39 meV and x = 0.68.
For b direction we had to include another fit parameter in order to have good
agreement with the experimental data. For this purpose we replaced the
factor 3 in the denominator of equation (5.66b) by a parameter . With this
formula we got J ~ 34 meV and a = 0.6. This modification could be justified
by restricting ourselves to S, = 0, where we havo no degeneracy of the triplet
channel. Fitting the data for a direction with formula (5.66a) modified in
the same way leads to J ~ 35meV, k = 0.41 and a = 1. The values for
the characteristic energy J coincide again very well for both directions and
are consistent with other experiments, i.e. J ~ 48.2 [11] and J &~ 37.9 meV
[35, 36]. Considering our formula for the singlet triplet splitting (5.58) one
could now argue, that the value for hopping along the ladders ¢, should rather
be 0.15 like in [15] than 0.2 used in this work.
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Figure 5.15: I0C in a and b direction. The circles and triangles indicate
numerical data (see figure 5.5). Solid lines are fits to the formulas (5.66).
Parameters are ¢, = 0.2 and ¢, = 0.15.
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Figure 5.16: Experimental data for the IOC for a and b direction, see figure
5.3. Solid lines are fits to the formulas (5.66).
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Chapter 6

Conclusion

The aim of this work was to investigate the charge order and to explain the
temperature dependence of the integrated optical conductivity of the low
dimensional transition metal oxide o/-NaV,0Os5. For this purpose we applied
both analytical and numerical methods.

By mean field calculations we were able to construct a phase diagram, that
indicates that the charge order should be rather of zig-zag type and not of
inline type. Results from exact diagonalisation in the frame of a ¢-J-V and
a t-U-V model showed tendency to zig-zag charge order, too. In addition we
found that o/’-NaV,0Os is near to the quantum critical point where the transi-
tion from zig-zag charge order to disorder takes place. Modifying our model
by including diagonal hopping matrix elements yielded very similar results,
but the peak in b-direction is considerably smaller than without diagonal
hopping. The charge order, however, is not influenced by this modification.

For the temperature dependence we found good agreement between experi-
ment and numerical calculations in the frame of the ¢-J-V model. In order
to explain the behavior of the integrated optical conductivity we studied the
effective Ising model in a transverse field, which describes the charge degrees
of freedom of the system. Our calculations showed that this model cannot
explain the decrease of the spectral weights at low temperature observed in
experiments. By investigating the short range spin correlations we could at-
tribute this behavior to the destruction of short range antiferromagnetic spin
correlations. Hence the characteristic energy of this decrease is given by the
super exchange constant J. In addition we derived a fit formula which en-
abled us to calculate J from the experimental data for the integrated optical
conductivity. This value for J is in good agreement with values obtained by
other methods.
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