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Abstract

In this thesis we apply the variational cluster perturbation theory (V-CPT) for the
investigation of ordering phenomena in strongly-correlated systems. For this purpose,
we first introduce the V-CPT, which is an extension of the cluster perturbation theory
(CPT), that allows to study symmetry-broken phases. The connection of this very
flexible cluster approach to the cellular dynamical mean-field theory is discussed.

After a brief glimpse on finite-temperature applications of CPT and V-CPT we
investigate the long-range antiferromagnetic ground state of the two-dimensional Hub-
bard model. Different to CPT, the V-CPT is able to give a correct description of the
low-energy magnetic super-exchange driven features of spectral functions.

For the application to extended long-range Hubbard models, a modification of the
V-CPT is necessary. We show that a consistent cluster approach can be constructed
by a mean-field decoupling of inter-cluster interaction bonds. For the one-dimensional
model we find good agreement with results obtained by other methods. For the
two-dimensional case, where other numerical methods fail, our calculations suggest
a first-order phase transition for onsite interaction U > 3¢. In addition we calculate
the spectral function, which deviates significantly from the Hartree-Fock prediction,
especially in the spin-density-wave phase.

Moreover we apply the developed methods to the compound NaV,0s5, a quarter-
filled ladder system. We investigate the influence of lattice degrees of freedom by exact
diagonalisation and V-CPT, and show that they have a strong impact on the charge-
ordering transition. Spin and charge suszeptibilities do rather depend on the value of
the order parameter and not on the driving force of the transition. The dependence of
the single-particle spectral function is much more pronounced, and by comparing to
infrared measurements one can conclude, that the coupling to the lattice must not be
neglected. Within V-CPT it is possible to study the effect of inter-ladder couplings,
and the calculated spectral functions along and perpendicular to the ladder direction
agrees very well with experimental results.
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Kurzfassung

In dieser Arbeit werden Ordnungsphinomene in stark korrelierten Vielteilchensys-
temen im Rahmen der variationellen Cluster-Stérungstheorie (V-CPT) untersucht.
Diese Theorie stellt eine Erweiterung der konventienellen Cluster-Stérungstheorie dar,
die es auch erlaubt, symmetriegebrochene Zustéinde zu beschreiben.

Nach einem kurzen Exkurs zu Anwendungen auf endliche Temperaturen unter-
suchen wir die langreichweitige antiferromagentische Ordnung im zweidimensionalen
Hubbardmodell. Die V-CPT ist in der Lage, die niederenergetischen Eigenschaften
der Spektralfunktion, die durch den magnetischen Superaustausch verursacht werden,
korrekt zu beschreiben.

Um die Methode auf das erweiterten Hubbardmodell anwenden und Ladungsord-
nungen studieren zu konnen, konstruieren wir durch eine Molekularfeldnéherung eine
konsistente Clustermethode. Fiir das eindimensionale Modell finden wir gute Ubere-
instimmung mit Ergebnissen anderer Methoden. Fiir den zweidimensionalen Fall,
wo andere Methoden versagen, zeigt unsere Methode einen Ubergang erster Ordnung.
Zusatzlich konnen wir die Spektralfunktion berechnen, die wesentlich von der Hartree-
Fock Vorhersage abweicht.

Wir wenden die Methoden auch auf das viertelgefiillte Leitersystem Natriumvana-
dat an. Wir zeigen, dass Gitterfreiheitsgrade eine starke Auswirkung auf den Ladung-
sordnungsiibergang haben. Spin- und Ladungs-Suszeptibilitdten hdngen vor allem von
der Grofke des Ordnungsparameters ab, wihrend die Einteilchen-Spektraldichte auch
von der treibenden Kraft des Phaseniibergangs abhingt. Die berechneten Spektren
parallel und normal zu den Leiterrichtungen stimmen sehr gut mit experimentellen
Daten {iberein.
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1. Introduction

Many strongly-correlated systems are at the forefront of experimental and theoretical
research in condensed matter physics because of their fascinating properties. The
spectrum reaches from one-dimensional conductors, quasi two-dimensional cuprates
exhibiting high temperature superconductivity, to three dimensional heavy fermion
materials such as uranium compounds. Other interesting classes of strongly-correlated
materials are the manganites with its very rich phase diagram, or the vanadates with
their intriguing low-dimensional properties.

The cuprate family of strongly-correlated systems has seen intense research for
the last twenty years, following the discovery of high-temperature superconductivity.
These studies have been able to bring clarity to some of the unusual features in, e.g.,
photo-emission spectra and spin response. Yet many questions, most of all the nature
of the pairing mechanism and, thus, the microscopic foundation for the high transition
temperatures are not answered in a satisfactory way. Hence, there is need for further
theoretical investigations that take into account, e.g., longer-range Coulomb repulsion
at sufficiently low temperatures.

A particularly interesting class of compounds widely investigated at present, ex-
perimentally and theoretically, is represented by the low-dimensional vanadates, where
the active spins are located at the vanadium sites. They can be realized in a variety
of crystal structures having quite different magnetic and electronic properties. The
vanadium-based low-dimensional compounds are a class of systems which demonstrate
coupling of charge, spin, and lattice degrees of freedom, and nevertheless can be de-
scribed with relatively simple theoretical models. However, despite of their simplicity,
solutions of these models are not available, especially for realistic parameters. For this
reason the investigation of these compounds within basic solid state physics models
and comparison with the results to experiment presents a problem of fundamental
scientific interest and a challenge for solid state theorists and experimentalists.

Experimentally, a wealth of information has been obtained on strongly-correlated
systems by powerful techniques including angle-resolved photo-emission spectroscopy
(ARPES), inverse photo-emission, Raman scattering, Neutron scattering, and electron-
energy loss spectroscopy (EELS).

On the theoretical side, strongly-correlated materials are described by simplified
theoretical models that in general contain an interaction term of the same order of
magnitude as the kinetic energy or even larger. This interplay of kinetic and interaction
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Figure 1.1.: Schematic representation of the one-dimensional Hubbard model. The
gray circles denote the lattice sites, up and down arrows indicate electrons
with up and down spin, respectively.

energy may give rise to rich phase diagrams with several different competing types of
short-range correlations and with different symmetry-broken phases, such as long-
range magnetic ordering, charge ordering, superconducting phases, and many others.

One of the most simple models that can be constructed under these assumptions
is the tight-binding Hubbard model. It consists of a kinetic energy part, where the
electrons can only hop between nearest-neighbor sites, and the Coulomb interaction
U which acts only locally on every site. A schematic representation of this one-band
tight-binding Hubbard model is shown in Fig.1.1. The system gains energy ¢ by
the hopping of the electrons between neighboring sites, and double occupied sites are
punished with an energy cost of U. Although this model looks quite simple, an exact
analytic solution is only known for the one-dimensional case by the Bethe ansatz [1].

There are some general problems that one has to face when treating models for
strongly-correlated systems. First of all the finding of analytic solutions is very dif-
ficult, since in general the kinetic part of the Hamiltonian is an operator diagonal in
momentum space, whereas the interacting part is diagonal in real space. Moreover
for the interesting case where the Coulomb interaction U is of the same order of mag-
nitude as the bandwidth W, the conventional perturbative approach must fail. This
is expected for weak-coupling perturbation theory as well as for the complementary
approach with exact treatment of the interaction part and perturbative treatment of
the kinetic energy. For this reason the application of numerical methods for the inves-
tigation of strongly-correlated system has attracted more and more attention in recent
years.

In this thesis we use the so-called Variational Cluster Perturbation Theory |2] in
order to study ordering phenomena in strongly-correlated systems that arise due to the
interplay of kinetic and interaction energy. Simply speaking, this method combines
the exact treatment of short-range correlations on a finite length scale with long-range
ordering on a mean-field level.

In chapter 2 we first introduce the cluster perturbation theory (CPT) of Sénéchal
et al. [3,4]. Tt provides an approximation for the single-particle Green’s function in
the thermodynamic limit by coupling clusters of finite size within strong-coupling
perturbation theory. But since it does not involve any self-consistent procedure it can
not account for true long-range order patterns, different to, e.g., the dynamical mean-
field theory. Nevertheless it is very powerful for the calculation of spectral properties
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of homogeneous systems, and the advantages compared to calculations based on the
exact diagonalisation of systems of finite sizes is shown in detail in chapter 2.

The shortcoming of CPT concerning symmetry-broken phases can be overcome
by a recently proposed extension of CPT, the variational CPT (V-CPT). As said
above, it does not only include short-range correlations like CPT, but in addition
long-range effects are incorporated.The main difference to the standard CPT is that
the single-particle parameters of the finite-size clusters are not taken to be fixed, but
are determined by a general variational principle. This can be achieved by putting
the (V-)CPT into a wider framework of cluster approaches, based on the self-energy-
functional approach (SFA) [5,6]. We will show in chapter 2 that this V-CPT is indeed
superior to CPT, and it allows for a very flexible construction of thermodynamically
consistent cluster approaches.

The second part of chapter 2 is subject to numerical exact diagonalisation methods,
since they are needed for the cluster approaches presented in this thesis. After a
detailed discussion of the ground-state Lanczos algorithm, we also introduce two finite-
temperature methods. To be specific we will show that a combination of the finite-
temperature Lanczos method (FTLM) [7] and the recently proposed low-temperature
Lanczos method (LTLM) [8] allows to calculate static and dynamical properties in the
whole temperature range with reasonable numerical effort. These algorithms are then
used in chapter 3 for the investigation of the spectral function of the Hubbard model
at finite temperatures.

In chapter 4 we investigate the long-range antiferromagnetic phase of the two-
dimensional Hubbard model at zero temperature. For this purpose we introduce an
fictitious symmetry-breaking field as variational parameter in V-CPT, and the optimal
strength of this field is determined by the general variational principle. We will show
that the V-CPT gives a long-range antiferromagnetic solution for the 2D system, but
not for 1D, where the system has a paramagnetic ground state. In addition we will
compare our results with some other previous studies in order to determine the quality
of the V-CPT approximations.

Chapter 5 deals with the application of the V-CPT method to models with non-
local interactions. After a short derivation of the necessary modifications of the V-CPT
for the investigation of such models, we study the charge-ordering transition in the
1D and 2D extended Hubbard model at zero temperature as function of the nearest-
neighbor repulsion. Although many results are known for the 1D model, V-CPT
allowed for the first time to calculate the spectral function of this system for both the
charge-ordered and charge-disordered phase. Different to other numerical methods,
the application of V-CPT to the 2D model is straightforward.

After chapter 4 and 5, where we have investigated model Hamiltonians for strongly-
correlated systems, we apply the developed methods to the compound NaV,05 in
chapter 6. To be specific, we study the effects of the lattice degrees of freedom on the
charge-ordering transition that occurs in this quarter-filled ladder system by means of
exact diagonalisation and V-CPT. We will show that this coupling has a significant



effect on both static and dynamical quantities such as charge order parameter, charge
and spin susceptibilities, or the single-particle spectral function. Whereas exact diago-
nalisation is only used for the investigation of single ladders, we study the implications
of the inter-ladder coupling on the spectral function by V-CPT. We will show that the
numerical results agree very well with experimental data.

At the end of this thesis we sum up the main results in chapter 7.



2. Methods

In recent years many numerical methods have been suggested and gradually improved
for the investigation of strongly-correlated electron systems, such as quantum Monte
Carlo (QMC) [9], exact diagonalisation (ED), and density-matrix renormalization-
group (DMRG) [10, 11]. They are able to give essentially exact results — at least for lim-
ited system sizes or (DMRG) for the one dimensional case. Another non-perturbative
approach is the mean-field method and, in the context of the Hubbard model, the
dynamical mean field theory (DMFT) [12], in particular. While DMFT directly works
in the thermodynamic limit of infinite system size and is exact in the case of infinite
dimension, it must be regarded as a strong approximation for low-dimensional systems
since spatial correlations are neglected altogether. Cluster generalizations of DMFT
include at least short-range correlations via the exact treatment of a small cluster
instead of considering a single impurity only. Both, a reciprocal-space (dynamical
cluster approximation, DCA [13]) and a real-space construction (cellular dynamical
mean field theory, C-DMFT [14-16]) have been suggested. These approaches improve
results for D = 1,2, 3, but they are no longer exact in the D = oo limit.

Essentially the same idea is followed with the cluster perturbation theory (CPT)
[3,4,17], which is a cluster extension of the strong-coupling expansion for the Hubbard
model. It has been successfully used to describe spectral properties of the high-T,
materials [18-21]. Moreover an extension of the original CPT, the variational CPT,
is presented, which allows to put the CPT in the context of a wider class of cluster
approaches. With this generalization the investigation of symmetry-broken phases is
possible, contrary to the original CPT.

2.1. Cluster Perturbation Theory

The CPT is a technique for calculating the single-particle Green’s function of strongly-
correlated electron systems. It takes into account short-range correlations on the
length scale of the cluster, and correlations beyond the cluster size are neglected. By
coupling of the clusters within strong-coupling perturbation theory' at leading order,
the Green’s function in the thermodynamic limit is recovered. In the following this
theory is discussed in detail.

LFor the strong-coupling perturbation theory see App. A
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1D ®&—%—e—9—8s o —p -8 --0—9--

2D —

Figure 2.1.: Dividing the lattice into clusters of finite size in one dimension (top) and
two dimensions (bottom). The solid lines indicate intra-cluster bonds
treated exactly, and the dashed lines are inter-cluster bonds.

2.1.1. Basic ideas

The basic steps of CPT can be summed up in the following way:

(i) Divide the original lattice into disconnected clusters of finite size.
(ii) Calculate the Green’s function on such a finite cluster.

(iii) Recover the Green’s function of the original lattice problem by treating the
hopping between clusters in strong-coupling perturbation theory.

A possible division of the lattice into clusters of finite size, step (i), is shown
in Fig.2.1. For one dimension, the division is straightforward, and several possible
clusters differ only in the number of sites within the cluster. In two dimensions the
situation is more complicated, because not only the number of sites, but also the shape
of the cluster can be chosen arbitrarily. In Fig.2.1 only the simplest tiling with 2 x 2
clusters is shown, but in general many other tilings including more sites are possible.
It seems quite natural that open boundary conditions (obc) are advantageous for the
clusters, but CPT cannot provide a proof for the advantage of this choice over, e.g.,
periodic boundary conditions. We will see later in Sec.2.2.3 that this question of
boundary conditions can be answered in a unique way by the variational CPT.

After division of the lattice the Hamiltonian can be written as

H=Y" [Héc)(R) + Hl(R)} +> B (R,R), (2.1)

R,R

where R denotes the individual clusters, Héc) (R) is the part of the single-particle term
that acts only inside a single cluster, H;(R) is the interaction part inside the cluster,
and the inter-cluster hopping is given by

R,R’
Y(R,R) = ZT ChaCr (2.2)
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where the hopping matrix ngRl is non-zero only for hopping processes across the
cluster boundaries. The indices a and b are general quantum numbers within a cluster,
e.g., position and spin index, and CTR,a creates an electron with quantum number a in
cluster R. Note that it is of crucial importance for the applicability of the method
that the clusters are connected by one-particle operators only.

The quantity of interest is the single-particle Green’s function

GRrr p(W) = <<CR,a§ CL’,b»w-

By decoupling the clusters, i.e., neglecting the second sum in Eq. (2.1), we have

GR,a,R’,b(w) = 5R,R’G'R,a,b(w)a

which means that the Green’s function is diagonal in the cluster indices, and G’ , ,(w)
is the cluster Green’s function. According to step (ii) this property is evaluated by
exact diagonalisation, which will be described in detail in Sec. 2.3.

The hopping between the clusters is then treated perturbatively. Using Eq. (2.2) as
perturbation, the strong-coupling perturbation theory yields for the Green’s function
in lowest order, Eq. (A.6),

G l'(w)=G ()T, (2.3)
where the bold symbols denote matrices with indices (R, a) and (R',b), respectively.

The above central expression of the CPT method can be derived in another non-
perturbative way [17]: Recall that the self-energy X of a system is defined by Dyson’s

equation
G (w) =Gy (w) — Z(w), (2.4)

where Gy(w) is the non-interacting Green’s function (U = 0)
G,'(w=w—-t=w—-t T, (2.5)

with ¢ the hopping matrix of the infinite system, and #' the intra-cluster hopping
matrix. Applying Dyson’s equation to the exact cluster Green’s function and using
Eq. (2.5) gives

G (W) =w—-t YW =G (w)+ T - ¥'(w) (2.6)

with the cluster self-energy X'(w). A substitution of G '(w) in Eq. (2.4) by Eq. (2.6)
yields .
Gl'w =G (W)-T-CEw) -2 (w). (2.7)

Above equation is equivalent to Eq. (2.3) if and only if 3¥(w) = ¥'(w). Thus the CPT
formalism is equivalent to an approximation of the full self-energy by the self-energy
of a finite cluster, and Eq. (2.3) can also be written as

G '(w) =Gyl (w) — Z'(w). (2.8)
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2.1.2. Restoring translational invariance

First of all it is obvious that the division into clusters breaks the translational sym-
metry of the lattice. However, translational invariance is preserved on a superlattice
I' produced by the clusters, with a reduced Brillouin zone BZr. Thus we can express
the hopping matrix be’R’ and the Green’s function G g, g p(w), Eq. (2.3), in terms of
a wave vector k belonging to BZr. For this purpose we start with the second term in
Eq. (2.1), but write it in a different way

0= H)R R)=Y H(R A
R,R R,A

= Z Z TféACIuA,aCR,b = Z Z Ta,b(A)cTR—i—A,aCR,b'

RA a,b RA a,b

(2.9)

The last equation holds since the hopping matrix is translational invariant with respect
to the superlattice I'. The superlattice Fourier transformation is defined as

1 .
C;u_A’u = ﬁ Z e 1k(R+A)CLa
k
1 .
cR,b = ﬁ Z elkRCk,b,
k

with L the number of clusters in ['; and k belonging to BZr. Applying this transfor-
mation to Eq. (2.9) one gets after a short computation

0=2.2.
k a,b\

Z Ta,b(A)e_ikA] C;rc,ack,b‘
A

-~

Ta,b(k)

The term inside the brackets is the superlattice Fourier-transformed hopping term
Tap(k). Note that A has to be given in units of the original lattice spacing and not of
the superlattice I', for instance for a L-site chain one has A = L and not £1. With
this transformation Eq. (2.3) reads as

1—1

G;,Il)(k’ U)) = Ga,b (U)) - Ta,b(k)' (210)

This equation is still in a mixed representation, quantum numbers a and b within a
cluster and momentum vector k with respect to the superlattice. In order to get a
fully momentum-dependent Green’s function one has to apply Fourier transformation
once more, but now within the cluster. Since translational symmetry is broken on
this level, the resulting Green’s function will not be diagonal in the momenta. More
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specifically, one has

1 : : y
G(k + K, k + K,,(A)) — ﬁ Z el(k+K)7'ae—l(k7+K )”'bGa’b(k’w)

C
TaTh

— Nic Z eik(ra_rb)eiKra_iKlTbGa,b(k,U)),
TasTh
with V. the number of sites in the cluster, and 7,/ the lattice coordinates according
to quantum numbers a/b. The non-diagonal terms K # K' arise due to the different
treatment of inter-cluster and intra-cluster bonds. Within the CPT, these terms are
neglected, and only the K = K' = 0 part of the Green’s function is taken into account.
Therefore one ends up with

Gk, w) = NL S Gk, w). (2.11)

TasTh

Eq. (2.11) together with Eq. (2.10) are the key ingredients of all CPT calculations.

2.1.3. Limiting cases of CPT

Obviously the CPT is exact in the limit N, — o0, i.e., for an infinitely large cluster.
Moreover it is exact in the limit T' — 0, since it is based on a strong-coupling expansion
in the inter-cluster hopping terms.

But in addition to the strong-coupling limit, CPT is exact in the limit U = 0, too.
At first sight this behavior looks paradoxical, but it follows straightforwardly from
Eq. (2.8). For U = 0 the self-energy of the system is exactly zero, and Eq. (2.8) is the
exact expression for the non-interacting Green’s function.

The fact that CPT is exact in the limit U = 0 is a useful test that is carried out
often in practice, since the spectrum in this limit is known.

2.1.4. Comparison with exact diagonalisation

At the end of this section on CPT, we want to demonstrate the capabilities of this
method. Here we want to investigate the convergence behavior of results obtained
from different cluster sizes, and compare them with results from exact diagonalisation
of finite size systems with periodic boundary conditions (pbc). For this purpose we
calculate the spectral function

1
Alk,w) = - %1_1)1(1) Im G(k,w +in), (2.12)

with 7 a small real number. As toy model the Hubbard model in one dimension is
used, with Hamiltonian

H=—t Z(c;{gciﬂ,a +H.e.)+ UZnian — ,uZni, (2.13)
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Figure 2.2.: Comparison of the spectral function of the Hubbard model at half filling
and U = 8t. Left: ED results from an 8 site cluster with pbc. Right:
Spectral function from CPT with N, = 8. A broadening of n = 0.1 was
used to give the delta peaks a finite width.

with n;, = c};cia and n; = n; +n;;. At half filling, were the further calculations have
been done, this model exhibits particle-hole symmetry, and therefore the chemical

potential is set to p = U/2. We used U = 8¢ for the Hubbard interaction.

In Fig. 2.2 we compare the possible k-resolution of ED and CPT, when diagonali-
sations are done on an 8 site cluster. Whereas ED is restricted to a small number of
momentum vectors, e.g., 5 independent vectors on the 8 site cluster, CPT can provide
the spectral function for any momentum vector. In Fig. 2.2, 31 momenta are shown,
but in general there is no limitation on the k-resolution.

Another interesting question is the dependence of the results on the cluster size N..
For this reason we calculated the spectral function at momentum k& = /2 for N, = 4, 8
and 12, and the parameters of the Hamiltonian were the same as given above. The
CPT calculations would allow the momentum 7 /2 also for N, = 6 or N. = 10, but for
these cluster sizes the momentum is not available in exact diagonalisation. The results
of the calculations are shown in Fig.2.3. As one can see, CPT converges rapidly with
increasing cluster size, and already for N, = 8 one can get well converged results. In
contrast the convergence of ED is rather poor.

10



Chapter 2. Methods
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Figure 2.3.: Comparison of the dependence of the spectral function at £ = 7/2 on the
cluster sizes. Left: ED results. Right: CPT results.

2.2. Variational Cluster Perturbation Theory

The CPT derived in the previous section is only one cluster approximation to strongly-
correlated systems among many others, like the DCA [13] or the C-DMFT [14-16].
In contrast to these cluster extensions of the DMFT, CPT does not involve any self-
consistency procedure, and thus does not allow for the occurrence of symmetry-broken
phases. In this section it is shown that both, the CPT and the C-DMFT, can be
considered as extreme limits of a more general cluster approach |2] which is based on
the self-energy-functional approach (SFA) proposed recently [5,6]. This answers an
open question for the relation between the different cluster methods [4], and unifies
two approaches which appear to be rather different at first sight. In the context of
this more general approach, termed variational cluster perturbation theory (V-CPT),
the investigation of symmetry broken phases is possible.

2.2.1. Self-energy-functional approach (SFA)

Consider a system of fermions on an infinite lattice with on-site Coulomb interactions
at temperature 7" and chemical potential p. Its Hamiltonian H = Hy(t) + H,(U)
consists of a one-particle part which depends on a set of hopping parameters ¢ and an
interaction part with Coulomb-interaction parameters U. The grand potential {2 can
be obtained from the stationary point of a self-energy functional

QU[Z] =Tr In(—(Gyt — )™ + F[Z) (2.14)

as has been discussed in Ref. [5]. Here Gy = 1/(w+p—t) is the non-interacting Green’s
function, and F[X] is the Legendre transform of the Luttinger-Ward functional ®[G].

11
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CPT SFT C-DMFT

direct DMFT

Figure 2.4.: Reference systems considered within various cluster approximations for
the 2D Hubbard model. Filled circles: on-site interaction. Solid lines:
intra-cluster hopping. Dashed lines: inter-cluster hopping. Open circles:
additional ny, uncorrelated bath sites. Big circles: bath with n, = oo.
Common to all methods is (i) the numerical solution of the system of
decoupled clusters and (ii) the subsequent coupling of the clusters via
an RPA-like or Dyson equation. Bath parameters are determined self-
consistently. The self-energy-functional approach (SFA) comprises the
extreme limits CPT (n, = 0) and C-DMFT (n; = 00).

As the latter is constructed as an infinite series of renormalized skeleton diagrams |22,
the self-energy functional is not known explicitly. Nevertheless, the ezract evaluation
of ¢[X] and the determination of the stationary point is possible on a restricted space
S of trial self-energies 3(¢t') € S [5]. Due to this restriction the procedure becomes
approximative.

Generally, the space S consists of ¢ representable self-energies. ¥ is termed ¢
representable if there are hopping parameters ¢’ such that ¥ = X(t') is the exact
self-energy of the model H' = Hy(t') + H,(U) (“reference system”). Note that both
the original system H and the reference system H' must share the same interaction
part. For any ¥ parameterized as X(t') we have [5]

Q) =UZE)) =9 +Tr In(—(Gy' = =)™ — Tr In(-G") 515

=Q' + Tr In(—-G) — Tr In(—-G"), (2.15)
where €', G', and X(t') are the grand potential, the Green’s function and the self-
energy of the reference system H', while Gy is the free Green’s function of H, and
G is the SFA approximation for the interacting Green’s function of H. Note that G
is given by the CPT formula Eq.(2.8). For a proper choice of ¢’ (namely such that
certain degrees of freedom in H', e.g., those in different clusters, are decoupled), a
(numerically) exact computation of these quantities is possible. Hence, the self-energy

12
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functional (2.15) can be evaluated exactly for this 3 = X(¢'). A certain approximation
is characterized by a choice for S. As X is parameterized by ¢', this means to specify
a space of variational parameters t. Any choice will lead by construction to a non-
perturbative and thermodynamically consistent approach. For a further discussion of
the general concepts of the SFA see Refs. |5, 6].

Fig. 2.4 illustrates the construction of cluster approximations within the SFA frame-
work. To be specific, H is taken to be the Hubbard model with nearest-neighbor hop-
ping. Subdividing the infinite lattice into identical clusters of finite size, H' is obtained
from H by switching off the inter-cluster hopping and switching on the hopping to
new uncorrelated (Upyn = 0) bath sites (Fig.2.4, middle). Both operations merely
change the one-particle part of the Hamiltonian, i.e. ¢ — #', while the interaction part
(U) remains fixed — as required. To search for a stationary point on this space S of
cluster-representable self-energies, one has to proceed as follows:

(i) Compute the self-energy X(¢') of the reference system for a given ¢'.
(ii) Use Eq. (2.15)) to evaluate ¢[X] at X = Z(¢).

(iii) Repeat steps (i) and (ii) for different ¢’ to compute the function Q(¢') = Q¢[3(¢')]
and the stationary point ¢, given by 0Q(t.)/ot' = 0.

The proof of causality of this approach is given in Sec. B.

The variational adjustment of the intra-cluster one-particle parameters ¢’ can be
looked upon as a (partial) compensation for the error introduced by the finite cluster
size. An inclusion of n;, bath sites per original correlated site enlarges the number
of variational parameters and thereby the space S. This is expected to (and does)
improve the approximation (see results below). In the limit of infinite cluster size
(number of correlated sites within a cluster N, — o0), the ezact self-energy becomes
t’ representable and therefore the cluster approximation itself becomes exact.

Evaluation of the grand potential

So far we did not discuss how the evaluation of Eq. (2.15) is done in practice. For zero
temperature, the quantities of the reference system, ' and G', are obtained by the
Lanczos algorithm discussed in Sec. 2.3.

More attention has to paid on the evaluation of the traces. In general the trace
consists of a sum over a full set of quantum numbers o and Matsubara frequencies
iw, =i(2n + )77, i.e.,

TrX =7 Xoaliwn)

Wn,,Q

for an arbitrary function X at temperature 7". For our purposes it is now convenient
to split the set of quantum numbers « into quantum numbers k according to the

13
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superlattice of the clusters, and quantum numbers a within a cluster. Therefore we
can write for the second term in Eq. (2.15)

Trin(-G) =T ) > [In(-G(k,iwy))],, (2.16)

where we used that G is diagonal in the super lattice quantum number k. The third
term in Eq. (2.15) can be further simplified, since G’ does not depend on k and the
summation is trivial, yielding

TrIn(-G) =TLY ) [In(—G'(iwn))],, » (2.17)

with L the number of clusters (or k-points, respectively). The sum over quantum
numbers a, e.g. site indices, can be computed as

D (-G (iwn))]aa = Indet[-G" (iwy)]. (2.18)
The sum over Matsubara frequencies can be evaluated by continuation to the real w
axis yielding
| 1T |
TZX(lwn) = —;7171&(1) dwf(w) Im X (w + in)

. (2.19)

1
2° _Zlim [dwIm X (w+1in)
T n—0

with the Fermi function f(w) = (exp(w/T) + 1)~!. By combining Egs. (2.18) and
(2.19) one can evaluate Egs. (2.16) and (2.17).

Note that Eq. (2.19) holds only, if the chemical potential is included in the Hamil-
tonian, i.e. X = H — uN. If it is not included, because it is for instance not known a
priori, then the upper boundary of the integration is shifted, 0 — u. The actual value
of 1 can be determined from the condition for the electron density n

I
2 . .
n=-— ;%1_1)% /dw Im G(k,w + in). (2.20)

—0o0
This means that for unknown p one ends up with a self-consistent procedure, consisting
of the following steps.

(i) Start with a certain (educated) guess for p.

(ii) Determine the stationary point of Q2 (Eqgs. (2.15) to (2.19)) with this guess for p
and calculate the Green’s function at this point.

(iii) Calculate a new value of u from Eq. (2.20). Back to step (ii) until convergence.

We will see later on how this self-consistent cycle can be avoided in special cases.

14
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2.2.2. CPT and C-DMFT

For a certain cluster approximation, it has to be specified which of the different intra-
cluster one-particle parameters ¢’ are treated as variational parameters. The simplest
idea is to consider the intra-cluster hopping as fixed at the original values, t;-j =t
(for 7, j in the same cluster), and not to switch on a hopping to bath sites (i.e., not to
introduce any bath sites). In this case there is no variational parameter at all. X(¢')
is calculated once, and the Green’s function G for the original model is obtained by
the (lattice) Dyson equation G™' = G;' — Z(¢'). By comparing this equation with
Eq. (2.8) one can see that the CPT is recovered, and the reference system is simply a
cluster of finite size.
The C-DMFT is obtained by introducing a hopping t;. to n, = oo bath sites
r = 1,...,ny, per correlated site i = 1,..., N, and taking this hopping (“hybridization”)
and the bath on-site energies ¢; . as variational parameters while for the correlated sites
ti; = tij is still fixed. Assume that bath parameters {t; , ¢} can be found such that
the C-DMFT self-consistency equation is fulfilled. In Ref. [14] this was given in k-space
representation (k from the reduced Brillouin zone). In the real-space representation
the self-consistency equation reads
(Go' = =({th, €, 1))y = G (2.21)

ij

where 7, j must belong to the same cluster. This immediately implies that 3({#},, € .})

satisfies the SFA Euler equation 0€2(¢')/0t' = 0 or, calculating the derivative,

1 N 0%g(t)
TZZ(W—G)jiT_O. (2.22)

w i

This holds since the “projector” 9%;;(t')/0t' = 0 if 4,5 belong to different clusters
as these are decoupled in the reference system. We conclude that the self-energy
functional is stationary at the C-DMF'T self-energy.

2.2.3. Intermediate approach, V-CPT

The C-DMFT self-consistency equation can generally be fulfilled for n, = oo only.
Within a cluster approach based on the SFA there are no formal problems, however,
if n, < oco. A finite ny, yields an approximation inferior as compared to n, = oo
(C-DMFT) and superior as compared to n, = 0 (CPT) as there are less or more
variational parameters, respectively. For 0 < m, < oo the parameters must be found
to satisfy Eq.(2.22). Since the convergence with respect to ny, appears to be rapid
for local physical quantities |5] and since the cluster Hilbert-space dimension increases
exponentially with n,, approximations with small n, (or even n, = 0, CPT) appear
advantageous. Anyway, the bath concept must become irrelevant in the limit N, — oc.
On the other hand, there are good reasons to introduce bath sites: Depending on

15
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Figure 2.5.: Grand potential €2 vs. #,, the hopping to uncorrelated bath sites at the
cluster boundaries. Reference systems with N, correlated sites and two
bath sites, as shown in the inset for N, = 4.

the dimensionality of the problem, it can be the description of the local (temporal)
correlations that needs to be improved in first place. Note that for N, = 1 and
np = 0o the DMFT is recovered which represents the ezact solution for D = oo [12].
Furthermore, bath sites can serve as particle reservoirs which will be essential for a
proper description of filling dependencies. Finally, the presence of bath sites may also
facilitate practical calculations to treat the reference system, e.g., by an attenuation
of the sign problem in the context of a Hirsch-Fye like QMC approach [23]. For any
np, the SFA provides the framework for a consistent cluster approach.

It is now possible to construct such a cluster approach by attaching uncorrelated
bath sites only at the boundaries of the respective cluster, in contrast to C-DMFT,
where n, = oo bath sites are attached to all correlated sites. This choice is motivated
by the expectation that here bath degrees of freedom compensate for the finite-size
errors most efficiently.

Fig. 2.5 shows results for the 1D Hubbard model, Eq. (2.13) at half filling. Because
of particle-hole symmetry the chemical potential is 4 = U/2, and the onsite potential
of the bath sites is fixed to €, = 0. For this reason we have to deal only with one
variational parameter, the hopping ¢}, between correlated sites and bath sites. Instead
of solving the Euler equation, Eq. (2.22), the grand potential is calculated directly from
Eq. (2.15). One can see that switching on t, to two bath sites in fact lowers the grand
potential (and the minimal energy Ey = Q + p(N)'). With increasing N, the energy
difference Ey(t, = tM") — Ey(0) decreases, and Ey(t,) becomes almost flat for small
ty, as expected. Note that the binding energy gain due to inclusion of two bath sites
| By (N, t0in) — Ey(N,, 0)| is always smaller than the gain |Ey(N, + 2,0) — Ey(N¢,0)]
due to a larger cluster: Introducing bath sites is less efficient as increasing the cluster
size, at least in one dimension.
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Figure 2.6.: Different hopping parameters as variational parameters. Left: (2 as func-
tion of the intra-cluster hopping ¢’. Results are shown for N, = 2,4, 6, and
8 (black, red, green, and blue line, resp.). The inset shows the deviation
of Q near ¢’ = t. Right: Hopping across pbc ¢, as variational parameter,
for N, = 4,6,8, and 10. The dotted line marks the exact result taken
from Ref. [1].

Within the framework of the V-CPT it is now possible to investigate the quality
of approximations done by CPT. For both the CPT and the C-DMFT the hopping
between correlated sites is fixed at ¢;; = ¢;; (for the C-DMFT, this is even a necessary
condition to satisfy Eq. (2.21) as can easily be seen from a high-frequency expansion).
Contrary, within the SFA there is a priori no reason to fix t;j.

The left plot of Fig. 2.6 shows Q(t') where ¢’ is the nearest-neighbor hopping within
the cluster, given in units of the original hopping ¢. Clearly, Q) is stationary for ¢’ very
close to t, but ¢ # t. The effect is most obvious for the smallest cluster size N, = 2
(see inset). We conclude that a variational determination of the hopping between
the correlated sites in fact improves the approximation. Surprisingly, however, the
improvement is almost negligible for reasonable N.. Note that the curves for different
cluster sizes cross at exactly ¢ = 0. This is not surprising, since this case refers to the
atomic limit, and thus the results are independent of NN..

As mentioned in Sec. 2.1 CPT does not give a proof for the proper choice of bound-
ary conditions. The question of the correct boundary conditions is decided a posteriori
by inspection of the respective results for the spectral density [4]. Here we introduce
a hopping parameter ¢, between the edge sites and let the method “decide” by itself.
As is seen in Fig. 2.6 (right), a minimum for 2 is obtained at ¢, = 0 (obc) while there
is no indication for a stationary point at ¢, = ¢ (pbc).
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2.2.4. Symmetry-broken phases

As discussed in the beginning of this chapter, the CPT cannot describe symmetry-
broken phases, since no self-consistent procedure is involved. This limitation can be
overcome by V-CPT, since in this framework we have a certain amount of freedom
for the choice of the reference system H'. We want to motivate the approach by
the following observation. Obviously the perturbation term in Eq.(2.1) need not
necessarily be restricted to the inter-cluster hopping term but can be any one-particle
operator. To be specific the decoupled Hamiltonian Eq. (2.1) is invariant under the
transformation

H{(R) — H(R) + O(R)

@) i) (223)
Hy’(R,R') = Hy'(R,R) — 6p rO(R),
with an arbitrary intra-cluster one-particle operator
O(R) = Agychcry (2.24)

a,b

with a and b general quantum numbers in the cluster. In terms of CPT this means,
that a one-particle operator is added to the cluster Hamiltonian, and subtracted again
perturbatively. The SFA interpretation is that the Hamiltonian of the reference system
H' includes additional one-particle terms with parameters A = A,;,, which are not
present in the original lattice Hamiltonian, similar to the addition of bath sites.

The reason for this inclusion of additional terms is that one may think of choosing
A such that the single-particle dynamics of the cluster problem is "as close as possible”
to the exact dynamics of the lattice. Depending on the problem under consideration,
this one-particle operator, Eq. (2.24), can be chosen to represent a fictitious symmetry-
breaking field, e.g., a staggered magnetic field. Thus, this approach allows for broken
symmetry already on a finite system instead of only in the thermodynamic limit.

The question of what choice for A will optimize the results can be answered by
the SFA, because the elements of A are nothing else than variational parameters in
the SFA-optimization procedure.

Note that all variational parameters of H' can be written as elements of A, since
Eq. (2.24) is a completely arbitrary one-particle operator. For instance let us assume
that the hopping in the cluster ¢' is a variational parameter. Then it can easily
be derived from Eq.(2.23) that the corresponding term in A for the 1D Hubbard
model would be A;;1; = A;;_; = —(t' — t), the difference between hopping of the
original model ¢ and intra-cluster hopping #'. As a matter of convenience, we therefore
parametrize the grand potential from now on as Q@ = Q(A), where A includes all
variational parameters under consideration.
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2.3. Exact diagonalisation

In the previous sections we introduced CPT and its extensions. Since one key element
of these approaches is the exact evaluation of properties on clusters of finite size, we
present the exact diagonalisation (ED) methods that we used for these purposes in
this section. ED methods are based on a very simple idea: By choosing a suitable
basis we can transfer the Hamiltonian of the systems into a Hamilton matrix, which
can be diagonalized.

This shows already one of the big disadvantages of the ED, because if we enlarge
the system the basis and Hamilton matrix will blow up in size. The number of basis

states is given by ( Tﬁ ) ( évi ) which yields for example 784 basis states for 2 spin up
and 2 spin down electrons on 8 sites but already 3 312 400 basis states for 4 spin up and
4 spin down electrons on 16 sites. Therefore the ED is limited to rather small (up to 25
sites) systems. But even for treating these small systems we need powerful numerical

algorithms like the Lanczos-method [24], which will be presented in the sequel.

2.3.1. Theoretical background, Krylov space

Let us assume we have chosen a basis and created the Hamilton matrix as ma-
trix elements of the Hamiltonian within this special basis. To understand the way
the Lanczos-method works we have to consider invariant subspaces of the Hamilton-
matrix.

Assuming the Hamilton matrix is a (N x N)-matrix H, then a A -dimensional
subspace G defined as the linear span of the vectors |v),|ve), ..., |ym) with M < N
is called an invariant subspace, if

¢y e G=Hl|¢p) € G

for every element |¢) of G. This definition implies, that every eigenstate of H spans
a one-dimensional invariant subspace. If we use an arbitrary basis |vy1),..., |ya) we
can write G as a (N x M)-matrix, where the columns |v;) of this matrix are the basis
vectors of the subspace. If G is an invariant subspace of the Hamilton matrix H, then
the matrix product HG is again a (N x M)-matrix, where the columns are linear
combinations of the |v;). Now we can define a (M x M)-matrix Hys by

HG = GHu (2.25)

Suppose we can find a solution of the eigenvalue problem

Huly) =ely) (2.26)

of Hy, then a solution of the eigenvalue problem of H can be constructed. If we use
Eq. (2.26) in Eq. (2.25) we get

HIG[Y)] = elGl)].
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This means, that we can find eigenvectors and eigenvalues of the high-dimensional
Hamilton matrix H by solving the eigenvalue problem of the smaller matrix Hy,, if G
is an invariant subspace.

As discussed below the idea of the Lanczos algorithm is to construct iteratively an
approximately invariant subspace of H, the so called Krylov space

KM:linspan{‘¢0>aH|¢O>aH2‘¢O>:'--aHM71‘¢0>}: M <Na (227)

where |¢y) is a normalized random vector. It has to be verified, that the Krylov-space
has the above mentioned properties, which can be seen as follows.

If we apply the Hamiltonian H to the basis vectors of the Krylov-space Eq. (2.27),
we get the set

{H|¢0>’H2|¢0>a . aHM|¢0>} )

which are elements of K, apart from the last vector. If we consider now a large value
for M, we find the following convergence behavior:

N
HY Y go) = HY1 Y " aife)
oo
= chﬁfw_lhﬁl)
=0

e (lwo> DIk (%) - M) |

=1 0
where ¢; and |¢;) are eigenvalues and eigenvectors of H. Provided
leo] > e, >0,

one can see that for large M the iteration H™~1|@,) converges to the ground state |1)y).
In other words, for large M the vector HY~!|¢,) is dominated by the eigenvectors
of H with the largest eigenvalues, which implies that HM~!|@,) is approximately
proportional to H™ |¢) and consequently an approximately invariant subspace.

2.3.2. Ground-state Lanczos method

Starting point of the Lanczos procedure is an arbitrary normalized state |¢g) of the
Hilbert space. It is necessary that this initial state has a non-zero overlap with the
ground state of the model under consideration. If no information about the ground
state is known, then this condition is usually satisfied by selecting an initial state
with coefficients chosen by random. However, if there is some information on the
properties of the ground state, like its momentum or spin, it is convenient to use an
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initial state already belonging to the subspace of these quantum numbers, again with
random coefficients in this subspace.

After selecting the initial state |¢g), the corresponding expectation value of the
energy 1s

g0 = (¢o|H o).

By applying the Hamiltonian and subtracting the overlap with the initial state one
constructs a new state

|61) = Hlo) — €olo)-
After having normalized the new state (|¢1) =|| é1 || -|¢1)), the next iteration reads

|€52> = H|¢1> - €1|¢1> - k1|¢0>-

If we choose

e1 = (¢1|H|¢1)
k1 = (¢o|H|¢1)

the new vector |(/32) is orthogonal to the first two vectors. Moreover k; is real:

ky = (¢1|H|do) = (¢1]1) + €0 ($1]00) =|| ¢1 [|€ R.
\—2,—/

=0

Finally, we got the iteration rule:

|</3n+1> = H|¢n) — €n|bn) — kn|bn_1)

€n = <¢n|H‘¢n>
kn = <¢n—1|H|¢n> :“ qgn ” (2'28)
_ ‘qzn-f—l)
|¢n+1> ” ¢n+1 ”

This set of vectors is orthogonal, which can easily be shown by induction.
By this construction the Hamilton matrix represented in the Krylov basis is tridi-
agonal and has the form
( o ki 0 . . . \

l{fl &1 kg 0
0 kQ ) kg 0
H,'j = . 0 k3 €3 k4 . (229)
. 0 k4 Eq
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2.3. Exact diagonalisation

As discussed in Sec.2.3.1 the eigenvalues E, of this matrix converge to the eigen-
values of the original Hamilton matrix when M becomes large, especially those at the
edges of the spectrum. The eigen state |1),) of the original Hamilton matrix can be
calculated by

W)u) = g|XU>a (230)

where the columns of G consist of the basis vectors of the Krylov space, |¢;), and |x,)
is the eigenvector with energy E, of the matrix in Krylov-representation. With the
ground state [1)y) one can — at T = 0 — calculate the static expectation value (1| A4|¢y)
of an observable A.

Dynamical correlations at 7 =0

The Lanczos algorithm allows not only to calculate the ground state and static expec-
tation values but also dynamic correlation. To every dynamical correlation function
there exists a retarded Green’s function [25], which is defined for an operator O as

< O(t); 0" > := —i0(t)([0(t), O'].)

= —i0(t) ((O(t)O") + (0'O(t))), (2:31)

where € = +1(—1) for fermions (bosons). After inserting the Heisenberg time evolution
and applying Fourier transformation the Green’s function can be written as

< 0;0" >,=—1i <0 [/ dt ei(“—(H—EO”t} OT>

0

— e <0T [ / oodt ei<w++<H—E°)>t] O> :
0

where Ej is the ground state energy and w™ = w +in and n a small real quantity. The
integration can be done using the spectral theorem and leads to

-Of = . T
< 0;0 >>w—(¢o|0w+_(H—Eo)O [ 4ol (2.32)
/ .
T
el | 01 gy O | o),

where [1)) is the ground state. By inserting a complete set of eigen states [1,) of H
it is possible to replace the operator H by its eigen values, yielding for the first term
of Eq. (2.32)

Floho) |2
(|0 gy O ) = 30 I IO (2.33)

22



Chapter 2. Methods

and a similar expression for the second term. We can now expand the eigenvectors
|4,) in a Lanczos basis | ;)

b =3 ale,  a” = (gilw),

where |¢,) = mOTWo) is chosen as the initial vector of the Lanczos procedure,

and the cz('/) are the elements of the Krylov eigen vectors |x,). Thus we get for the
numerator of Eq. (2.33)

W 10"} = 3 () (@i0) = 3 () 11 0"y || @i0)

2 1
9;,0

One can see from this formula that only the first term of the sum contributes, whereas
all other terms vanish. Therefore we have

(W 10Mo) = (c6) 11 Ot |1

With this result we can write for Eq. (2.33)

1 t _Il Ot |C(()V)|2
<1/}0 | OU)+ _ (H— EO)O | %) _” O % ||2 Zj:aﬁ _ (Eu _ EO)’ (234)

using only the first components c(()u) of the expansion of the eigenvectors [¢,). This

method that we presented in this section is called spectral decoding method.

Real-space Green'’s function

The spectral decoding method has a severe drawback, since it can only deal with
correlation functions < A; B > with AT = B. Unfortunately this condition is not
fulfilled when calculating the cluster Green’s function. The inverse photo-emission
(IPES) part is in general given by

G (W) = (Wolea—— cjlvo), (2.35)

1

(H — Eo)
with |¢)g) and Ej the ground state and its energy, respectively. Note that for a # b it
is not possible to use Eq. (2.33) for the further calculation. Instead one can proceed
with the following. One constructs the states |¢) = cf|vo) and |¢') = ¢, |1hy). After
being normalized, the vector |¢) is used as initial state for a Lanczos procedure in
order to construct an approximate eigen basis |1, ) of the Hamiltonian. Inserting this
eigen basis as approximate unity operator in Eq. (2.35) gives

M

GRS (W) = (¢|v) (1| 6)

v

1
wt — (E, — Ep)’
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2.3. Exact diagonalisation

with M the number of Lanczos steps. The dot products are most efficiently evaluated
by expanding the vectors [¢,) in terms of Lanczos vectors, Eq. (2.30), because then the
eigen states need not be calculated explicitly, and the dot products can be computed
during the Lanczos procedure.

2.3.3. Finite-temperature Lanczos method

A major disadvantage of the method for calculating dynamical correlation functions
as presented in the previous section is the limitation to 7" = 0. Often there is need
to calculate dynamical correlations at finite temperatures, for example if one wants to
investigate phase transitions. This limitation can, however, be overcome by calculating
the thermodynamic trace by random sampling [7]. The matrix elements which are
needed in this procedure are again calculated using the Lanczos algorithm.

Static expectation values

The thermodynamic expectation value of an observable O is given by

(0) = 2 Y (0l Oln)
=t (2.36)

N
Z =Y (ne”"n)
n=1

where § = 1/T denotes the inverse temperature and the sum runs over a complete
basis set of orthonormal vectors. If one could determine the full set of eigen states
of the Hamiltonian, the evaluation of the exponentials would be straightforward, but
because it is quite impossible to find all eigen states another approach is employed.

For calculating the matrix elements we first expand the exponential function into
its power series which is equivalent to the high temperature expansion

(2.37)

Z = ZZ (_kﬁ') (n|H*|n)

In the next step we use the Lanczos algorithm to evaluate the matrix elements. There-
fore we start a Lanczos procedure with the initial state |¢{”) = |n) up to the order
M. This leads to a tridiagonal representation of H defined in the (M + 1)-dimensional

space spanned by the Krylov basis functions \qﬁgn)},i = (0...M. Let us assume this
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tridiagonal matrix has the eigen vectors |1/)](-")) and eigen values sg-"). Using the Krylov

basis \¢§")) we can define projection operators

P =" oMY 6™, m < M
n=0

which project on a Krylov subspace. Let us now consider the product of such an
projection operator with the Hamiltonian. We get

Pr(nn)H = Z |¢z(n) (n)|H Z “ﬁ (kz(il ¢z+1| te <¢(n |+ k <¢(n) ) ’
i=1

where we have used the hermitian conjugate of the Lanczos iteration formula. This
formula shows, that the product Pr(n")H consists only of Lanczos vectors up to the
order m + 1. Therefore we can write

PMH=PMHPM, = POHP),  m< M. (2.38)

The last step can be done, because the operator P]g;) projects onto the whole Krylov
space and naturally preserves all the states up to order m + 1. With Eq. (2.38) and

(n| = ({| = (V| P™ we can write for the matrix element in Eq. (2.37) for k < M

(n|H*Oln) = (85| PV H*O|g")
= (¢ | PV HPMH - HP{MO|65Y)
= (M PMHPMEH ... HPIMO|6{M) (2.39)

The only projection operator used in this formula is Pﬁ), which can be seen as the

identity operator in the Krylov space. The projection operators can therefore be
constructed by the ei t () i jecti i
v the eigen vectors |@/)] ). Inserting the projection operators in Eq. (2.39)
yields
M k
(n[HEOIn) = 3 () (nlu™) @M Om), k< M. (2.40)
=0
This shows that we can calculate the matrix elements in Eq. (2.37) exactly using the
Lanczos algorithm provided £ < M. But we want to extend the power series to infinity,

i.e. k — oo. For this case we use Eq. (2.40) as approximation also for £ > M and thus
we can write for the expectation value Eq. (2.37)

1 N M e . .
0) ~ EZZ =" ™) (I |O|n) .
n=1 = 2.41

Z 2 () (5 )
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2.3. Exact diagonalisation

In Eq. (2.41) the trace still runs over all basis states |n) which is a huge number of
states and it is therefore impossible to evaluate the sum in this form. In this approach
[7] the trace is evaluated stochastically upon summing over suitable random vectors

defined by
N
)= aln),
n=1
(r)

where the o’ are random variables with zero mean and diagonal variance

(r) (r2) _ 5

Qn; " Ony n1n25T17"2
We estimate the trace Tr O of an operator O by
1 &
T:=Tr0=— r|O|r), 2.42
¥, 2ol (242)
where N, is the number of random vectors. The expectation value of the random
variable 7" reads

N N
> D alaly) (m|Oln:)
1 ni=1nx=1

Ni Z (1 |Olny) 21 - Z<n1|0\n1

ni=1

T—L
N,

ﬁMg

(2.43)

=

Therefore Eq. (2.42) represents an unbiased estimator. The variance of the random
variable T is given by var(T) := (AT)? = Tr O%/N,. If the operator O is represented
by a sparse band-like matrix the trace of this operator is of the order of the dimension
of the matrix, Tr O o« O(NN). When squaring such matrices the band-like structure is
conserved, i.e. Tr O% oc O(N). Therefore the relative error reads

var(T') 1
x
TrO NN,’
which means that for large N it suffices in general to use a quite small number N, of

random variables.
If we use Eq. (2.42) in Eq. (2.41) we get

0= 57 = ) (w0l
r=1 =0 (244)
1 r
SR ) MR UTLle
T r=1 i=0

In conclusion we have achieved to evaluate the expectation value Eq. (2.37) numer-
ically, because it is no longer needed to calculate the sum over all basis states but only
over a smaller number of random states.
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Dynamical correlations at 7' > 0

By using the same approximations as in the previous section it is possible to calculate
dynamical correlation functions. They are defined as
(A(t)B) = L i(n|e_’3HethAe_thB|n) (2.45)
7 n=1 .
with Z from Eq. (2.36). Similar to the procedure for evaluating the matrix elements for
the static expectation values we insert again projection operators which are built by
eigen vectors of H calculated by the Lanczos algorithm. One difference is that in this
case we need a double sum over these eigen states, since we expand the exponentials
e~ (B=iH and e~H*, Thus we get
1 enL & )y 5o _z(m) ~ ~
(AWB) = 2y > > e P ) (0| AIG) (87| Bln), - (2.46)

n=1 k=0 [=0

where él(") and |1Zl(")) are eigen values and eigen vectors from a Lanczos run starting
with the initial vector |7) o< B|n). Now we again replace the sum over all basis vectors
by a sum over random vectors which leads to the final formula

N, M M
1 4 e el _an) r r ~ )\, (r
(AW)B) ~ 77 > > Y el P00 D) (7| Al ) (97| Blr) - (247)
T r=1 k=0 1=0

with Z from Eq. (2.44). Here él(r) and \@l(r)> are eigen energies and eigen states gener-

ated with initial state 3
657) = Blr)/\/(r| BfBJr).

This choice of the initial state can be understood similar to importance sampling of
Monte Carlo approaches, because in the second Lanczos procedure only the part of
the Hilbert space is considered, where the operator B projects onto and hence the
terms (" |A[$\™) and ()| B|r) in Eq. (2.47) become sufficiently large.

Symmetry sectors

Symmetries of the Hamiltonian can be used in order to decrease the numerical effort in
the diagonalisation procedures. By identifying the corresponding conserved quantum
numbers, e.g., the number of particles, the projection of the spin 5%, or the momentum
k, one can write the Hamiltonian in block-diagonal form. Each of these symmetry
sectors s is then sampled separately, and the sum over random vectors has to be

modified to 1 N
S
- _> -
VT - TET
where N, is the number of states in sector s. This factor ensures, that the different
symmetry sectors are weighted correctly.
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2.3. Exact diagonalisation

2.3.4. Low-temperature Lanczos method

In recent years the Finite Temperature Lanczos Method (FTLM) presented above
has allowed the precise calculation of thermodynamic quantities of strongly-correlated
systems. It has been applied to the ¢-J model for the cuprates [26-32] and vanadates
[33, 34], orbital t-J model [35], Kondo lattice model [36], Heisenberg model [37] and
static properties of the Hubbard model [38]. In principle this method can be applied
at all temperatures, but at low temperatures the required number of random samples
is very large.

In this section we present the Low Temperature Lanczos Method (LTLM) [8] which
allows to calculate properties for large Hilbert spaces at low temperatures that are not
accessible by the FTLM.

Let us consider the behavior of Eq. (2.44) and Eq. (2.47) in the limit 7 — 0. In
this case only the ground state |t)) contributes and we get for Eq. (2.44)

> (olr)(rito)

and similarly for Eq. (2.47). Thus the ground-state result will suffer from severe sta-
tistical fluctuations, although the exact (Lanczos) eigen vector |t¢y) is reached with
every |r) and one random vector should be sufficient. Yet, FTLM gets worse with
decreasing temperature 7'.

The LTLM is designed to overcome this limitation. Let us introduce the method
for a static expectation value Eq. (2.36). We use a symmetric form

(0) = % S (nle 1O ). (2.49)

n

As before, we approximate the trace by random sampling, but now we insert the
approximate eigenbasis obtained by the Lanczos procedure twice, initially obtaining

(r)

1 N M 1 r T r T T
(0) = Z—Mzzle‘fﬂ(55 4 ) (1O (7 ) (2.50)

The partition function Z is calculated in the same way as in standard FTLM. The
behavior in the limit 7" — 0 is now different. If only the ground state |1y) contributes,
Eq. (2.50) becomes

S (o) ([ 4bo) (46| O3)o)
S (o) (T o)
= (10| Oltho). (2.51)

(0) =
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In agreement with the ground-state Lanczos method, one random vector suffices for
the ground-state expectation value.

If we compute the numerator in Eq.(2.50) and Z separately, both suffer from
pronounced statistical fluctuations, which however cancel exactly at 7" = 0 as shown
in Eq.(2.51). For finite T the fluctuations in numerator and denominator do not
cancel exactly, although they are still strongly correlated. Separate error analysis for
both terms would overestimate the statistical noise. These correlations are taken into
account by employing a Jackknife technique [39].

For dynamical correlation functions, a straight-forward variant of Eq. (2.47) suit-
able for low temperatures is

1 N N, M
(AB)B) = 3 2D e iAo G

Tl

(2.52)
(Y | AN By w7 |r)

In order to span the relevant subspace of the Hilbert space, we now choose initial
vectors |¢"") o« BJip\™) for the second Lanczos run. With M such second Lanczos
runs, the numerical effort would be much higher than for FTLM. For low temperatures,
it can be reduced, since only the low lying states contribute to the expectation values.
We consider only states below a cutoff energy E.., defined by

e*ﬂcut(Ecut*EO) < 5cuta (253)

where ., defines the accuracy of the approximation, (., is the minimal inverse
temperature considered and the calculation will be accurate for all 8 > [eus.

We thus proceed as follows. For each random start vector |r), we perform an initial
Lanczos run with M iterations. For each of the M, states W)Zm) with energies below
E.u, we then calculate an initial vector \q;(()r’i)) x B|1j)§r)) and perform a second run
with M Lanczos iterations, obtaining an approximate eigenbasis \1;](”)) Using these
basis sets, the final form of LTLM is the same as Eq. (2.50) and Eq. (2.52), with val[

and |@/~J](T)) replaced by Z%C“t and \&;T’i)), respectively. Note that the sum over j still
runs from 1 to M and is not affected by the cutoff.

Memory requirements of our method are the same as for standard FTLM, but
the CPU time requirements differ significantly. CPU time is mainly determined by
the number of matrix elements that have to be calculated. In the case of static
expectation values these are M for FTLM and M2, for LTLM for each random vector.

cut
Therefore both methods reach equivalent CPU time requirements per random vector
when M., ~ VM.

For dynamical correlation functions, the number of matrix elements to be calcu-
lated in the second Lanczos run is M? for FTLM and M2, for LTLM. For LTLM we

have to perform M, second Lanczos runs, but only one for FTLM. Thus we have sim-
. . . 2
ilar CPU time requirements per random vector for both methods when M., ~ M3.
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Figure 2.7.: Spin correlation function C; = (S7S7, ) for the 1D Hubbard model on a
12 site chain with periodic boundary conditions at U = 8t and n = 1.
Red: LTLM with B.yy = 1, ecut = 0.01, M = 100, and N, = 25. Black:
Two independent runs of FTLM with M = 100 and N, = 25. The red
arrow marks the result from the 7" = 0 Lanczos method. Inset: Deviation
of C'; in the high temperature region beyond ... Here N, = 50 in both

cases.

In the limit 77 — 0 we have M., = 1, and for R = 1 LTLM is comparable to the
ground-state Lanczos technique.

For both methods, CPU-time is proportional to I, the number of random vectors.
But, by design, far less random vectors are needed for the LTLM than for the FTLM
at low temperatures for a given accuracy.

For a demonstration of the method we calculate static and dynamical properties
of the one dimensional Hubbard model with Hamiltonian given by Eq. (2.13). As an
example we calculate the static spin correlation function C; = (S7S7 ;) on a 12 site
chain with periodic boundary conditions at half filling (n = 1, p = U/2). The number
of basis states for this problem is N = 2704 156. Symmetry sectors are specified by
momentum k and total spin S?, where the largest sector S* = £1 has 52272 basis
states. The sector S* = 0 is further reduced due to spin up/down symmetry.

In Figs. 2.7 and 2.8 the convergence and statistical errors of LTLM and FTLM are
compared at equal computational effort, with N, = 25 random samples per symmetry
sector each, corresponding to sampling of %—: ~ 0.05% of the largest Hilbert subspace.
At low temperatures, our method provides results which are orders of magnitude more
precise than from standard FTLM, and which connect smoothly to the ground state
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Figure 2.8.: Relative statistical errors Acc:l of LTLM (red) and FTLM (black) with
N, = 25 in both cases. Other parameters as in Fig.2.7. The error of

LTLM at T = 0.01¢ is Ayq = 1078.

properties. We checked that for larger /V,, there is no systematic drift for either
method, and the FTLM results converge towards those of LTLM. At intermediate
temperatures, the statistical errors of LTLM increase and become similar to those of
FTLM. Finally, considerably beyond the chosen cutoff-temperature 1/8.y;, LTLM is
no longer applicable, and begins to show a systematic deviation.

Both FTLM and LTLM provide results for a range of temperatures from a single
calculation. For FTLM this range is limited towards low temperatures by statistical
errors. For LTLM, it is limited by the chosen cutoff-temperature 1/8.,. Therefore
a combination of both methods provides precise results for all temperatures with
moderate effort.

As an example of dynamical correlation functions we calculate the regular part of
the optical conductivity, given by the current-current correlation function

1_ e—ﬂw o0 .
o'eE — 7Re/ dt el“’t(j(t)ﬁa
0

W

with the current operator j = it Zi,g(cgaciﬂ’g —H.c.). In Fig. 2.9, we show results with
approximately the same CPU time for both methods. Slightly above the ground state,
at 8 = 40, LTLM approaches the exact ground state result [40,41]. For intermediate
temperatures = 10,5, 3, slight statistical fluctuations occur. By comparison to
FTLM we see that 8 =1 < 3.y is indeed beyond the validity of this calculation. We
also checked the accuracy of the results by using M = 200 Lanczos steps instead of
M =100 yielding the same LTLM spectra within statistical errors.

In contrast, FTLM suffers from strong statistical fluctuations at small tempera-
tures. Errorbars are very large and regions occur where 0'*¢(w) becomes negative, a
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Figure 2.9.: Regular part of the optical conductivity of the 1D Hubbard model on a
12 site chain with periodic boundary conditions at U = 6t and n = 1.
Left panel: LTLM calculations with G.,; = 3, et = 0.01, and N, = 40.
Right panel: FTLM calculations with N, = 50. Number of Lanczos steps
Dots mark the zero

M = 100 and additional broadening of n = 0.1.

line. Only selected errorbars are shown. For curves without errorbars, the

errors are smaller than the line width.

clear indicator that we did not use enough random vectors for FTLM. As expected
from our consideration of static expectation values, errorbars of FTLM get smaller for
higher temperatures. As for LTLM we did calculations with M = 200, yielding the
same curves within errorbars but leading to a better convergence at the high frequency

side of the spectrum.

To sum up the LTLM gives an accurate connection of the exact ground state
Lanczos method and the established FTLM. Using LTLM at low and FTLM at higher
temperatures makes it possible to calculate static and dynamical properties of strongly-
correlated systems from 7" = 0 up to 7" = oo with very good accuracy and rather small

numerical effort.
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3. Cluster Perturbation Theory for
Finite Temperatures

The most commonly used method for numerical considerations at finite temperatures
are QMC approaches (for a review see Ref. [9]) on finite lattices, since they can natu-
rally be defined for finite temperatures. Because of the finite lattice size, the available
k-resolution is a priori limited. For this reason it is interesting, whether it is possible
to extend the ideas and advantages of CPT to finite temperatures.

The CPT was originally developed for the calculation of the ground state spectral
function. However, there is no conceptual limitation to 7" = 0. As can be seen from
Eq. (2.3), it is straightforward to investigate the finite temperature Green’s function, as
far as one can calculate the corresponding cluster Green’s function. Therefore one has
a certain amount of freedom for choosing an appropriate finite temperature method
for the cluster calculations.

Sénéchal et al. proposed [4] that one possible way to explore finite temperature
properties within CPT is to determine the cluster Green’s function by means of QMC.
However, one can come up with some disadvantages of this proposal. First of all QMC
algorithms have to be formulated in imaginary time 7 and cannot work directly on the
frequency axis. The reason for this is that otherwise the Suzuki-Trotter decomposition
cannot be performed. This implies that at some point of the calculation a continuation
to real frequencies has to be done, which is in general an ill-posed problem and requires
the Maximum Entropy method. This continuation can either be done right after the
calculation of the cluster Green’s function (G'(7) — G'(w)), or after the application
of the CPT equation (2.3) (G(7) — G(w)), since the formulation of CPT is not
restricted to real frequencies (for this point see also App. A). So far it is not clear at
all, whether a CPT algorithm driven by QMC is a productive method. Above all the
possible resolution of the Maximum Entropy method is rather poor and has problems
resolving finer structures of the spectral function.

Another possibility is to restrict the calculations to very small clusters, e.g., 2 x 2
clusters, where the determination of all eigen states and energies is possible by a full
diagonalisation. Of course these small system sizes will have an significant impact on
the quality of the Green’s function, although the convergence of CPT with the cluster
size is rather good in most cases.

In this section we propose the following approach. We apply the FTLM and LTLM
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Figure 3.1.: Finite temperature spectral function of the 1D Hubbard model at U = 4t,
calculated on a 8 site cluster. Red curves: LTLM algorithm. Black curves:
FTLM algorithm. Inverse temperatures as indicated in the plots.

algorithms presented in Sections 2.3.3 and 2.3.4 for the calculation of the cluster
Green’s function. Although the computational burden for these calculations is notice-
ably higher than for a full diagonalisation, considerably larger cluster sizes (1v/10x1/10)
can serve as reference system.

In Fig.3.1 the spectral function for the 1D Hubbard model at U = 4t is shown.
Calculations were done at half filling, where the chemical potential is known (u = U/2).
We used a cluster with N, = 8 as reference system. For low temperatures, g > 3t,
we used the LTLM algorithm with a random sampling of R = 25 and (., = 2t. For
higher temperatures the FTLM has been applied with R = 75. Using the FTLM for
all temperatures shown in Fig.3.1 would result in very time-consuming calculations,
particularly for low temperatures, as described in Sec.2.3.3. At 5 = 3¢, both methods
provide the same results within error bars (see Fig. 3.1), with reasonable computational
effort.

The spectral function at low temperatures, 8 = 10t, is very similar to the ground-
state result, Fig.2.2. The width of the peaks becomes a bit larger at § = 5¢, and
this effect increases when going to 8 = 3t. But note that one still finds a well defined
Mott gap, and from the spectral function one can assume that the system is still an
insulator.

This behavior changes drastically when going to even higher temperatures, 8 = 1t
and f = 0.5t, as shown in the bottom plots of Fig.3.1. At k = 7/2 a gap is still
visible, but the dispersion of the excitations has changed. For lower temperatures the
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Figure 3.2.: Finite temperature spectral function of the 2D Hubbard model at U = 4t,
calculated on a /10 x /10 cluster. Red curves: LTLM algorithm. Black
curves: FTLM algorithm. Inverse temperatures as indicated in the plots.

bands disperse with periodicity 7, because of short-range spin correlations manifesting
themselves in a doubled unit cell. Now the dispersion has period 27, similar to the non-
interacting dispersion. This behavior can be understood by considering the magnetic
super exchange given by |J| = 4t?/U = 1. Hence, at 8 = 1t the thermal fluctuation
can break up the spin correlations, and no doubling of the unit cell can be seen.

In Fig. 3.2 we plotted the spectral function of the 2D Hubbard model at U = 4t
calculated with a v/10 x /10 cluster as reference system. The parameters R and
B, were chosen as for 1D. Note that in the results of the FTLM at § = 3¢ small
oscillations of the spectral function around the zero line can be seen, which indicates
that more random vectors should have been used in the sampling. Nevertheless we
get good agreement of LTLM and FTLM at § = 3t. Similar to the 1D case the peaks
become broader with increasing temperature, except of the excitations at k = (0, 0)
and (m,7), which we cannot explain so far. An effect in connection with the magnetic
super exchange can actually not be seen in our 2D calculations.

To conclude we have shown in this section that it is possible to apply CPT to finite
temperatures by applying the FTLM and LTLM algorithms.

35



36



4. The ltinerant Antiferromagnet in
Two Dimensions

The low-temperature antiferromagnetic (AFM) phase of the 2D Hubbard model at
half filling represents an optimal playground to study the strengths and limitations of
the V-CPT method for symmetry broken phases. The reason is that both the effects of
short-range correlations and long-range antiferromagnetic order manifest themselves in
static thermodynamic quantities as well as in the single-particle excitation spectrum.

Different to one dimension, where no long-range AFM phase can be found due to
the Mermin-Wagner theorem [42], in two dimensions such a phase is realized at T = 0.
In this section we will apply the V-CPT in order to study the AFM phase between
one and two dimensions [43], and compare results with available previous work.

4.1. Hamiltonian and variational parameters

In this chapter we study the one-band Hubbard model with Hamiltonian

H=-t Z (cgacja +He)+U annu - ,uZnZ-. (4.1)
(ig),0 L i

Throughout this chapter, ¢ sets the energy scale, and p = U/2 because of particle-hole
symmetry at half filling. For the V-CPT optimization procedure one has to specify
a set of variational parameters A, see Sec.2.2.4. In principle, the “best” result is
obtained by using a completely general single-particle term A. However, this would
imply the computation of 2(A) for a too large number of parameters making the
problem numerically impractical. For this reason, it is more convenient to start with
a guess of the appropriate physical symmetry-breaking field. For half filling, a good
candidate is certainly a staggered field producing a Néel-ordered state. For simplicity,
we consider clusters containing an integer number of antiferromagnetic unit cells. With
the notation a = (i,0), the corresponding A has the form

Aa,b = héa,bzaeiQT“, (42)

with @ = (m,7), 7, the lattice coordinate of the site corresponding to a, z, = %1 for
o =1T,J, and h the strength of the fictitious staggered field. The optimal value of h
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4.2. Static quantities
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Figure 4.1.: Decomposition of the 2D square lattice into clusters of finite size. Left:
v/10 x /10 cluster. Right: /8 x /8 cluster. Full and empty circles denote
the staggered order.

will be obtained by minimization Q(A) = Q(h). Obviously, h = 0 corresponds to the
usual CPT approximation. We stress again that via the transformation Eq. (2.23), the
staggered field is strictly equal to zero in the original Hamiltonian. It only appears in
an intermediate step in the Hamiltonian of the reference system H' to parametrize the
trial self-energy. Thus, A is a variational parameter without a direct physical meaning
in the original lattice Hamiltonian H and must not be mixed up with a true magnetic
field applied to the system. However, it does introduce a true staggered field in the
reference (cluster) Hamiltonian H'.

For the numerical calculations we first considered a decomposition of the lattice
into v/10 x v/10 clusters as indicated in Fig.4.1 (left). As discussed in Sec.2.2.3 obc
are used, and the grand potential is evaluated according Sec.2.2.1. Here a Lorentzian
broadening w™ = w + in with finite n = 0.1 is used. For this choice typically 500 k
points are sufficient for convergence of the results. We have checked that the results
do not significantly depend on the Lorentzian broadening 7.

4.2. Static quantities

The grand potential 2(h) has been calculated at U = 8 at half filling and 7" = 0.
The result is shown in Fig.4.2. As anticipated, {2 depends on h, and three stationary
points are found: a maximum at A = 0 and two (equivalent) minima for non-vanishing
values h &~ +0.18. This means that the interacting system prefers a symmetry-broken
state with a non-vanishing staggered magnetization m, as one would have expected
physically.

The stationary point at h = 0 corresponds to the usual CPT. For h = 0 the ground
state of a single cluster shows antiferromagnetic correlations but is non-degenerate.
Hence, the cluster Green’s function and the self-energy are spin independent. This
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Figure 4.2.: Dependence of the grand potential ) (per site) on the fictitious staggered
field h as obtained by evaluating the self-energy functional. The lattice
is decomposed into v/10 x v/10 clusters (see Fig.4.1). Parameters: onsite
repulsion U = 8, temperature 7" = 0, half filling. The optimal staggered
field is found to be h = £0.18.

implies that there is no coherent continuation of the antiferromagnetic correlations
across the cluster boundaries within the usual CPT. Consequently, the order parameter
is m = 0. The binding energy per site that is gained by a coherent matching of
antiferromagnetic clusters for finite A can be read off from Fig. 4.2 to be A = 0.043.
This is small as compared to |J| = 4t?/U = 0.5 as there are contributions from bonds
connecting different clusters only.

From the value of the grand potential at the optimal field A the ground-state energy
is obtained as Ey = Q + u(N). Fig.4.3 shows E; as a function of U for the respective
optimal fictitious field A (V-CPT) and for h = 0 (CPT). The results are compared
with those of an exact-diagonalization calculation for the isolated cluster with N, =
10 sites (direct ED). Furthermore, the results of a variational Monte Carlo (VMC)
calculation [44] using a Gutzwiller-projected symmetry-broken trial wave function and
the results of an auxiliary-field quantum Monte Carlo (QMC) study [45] are displayed
for comparison. VMC and QMC data for different cluster sizes N, are extrapolated
[44,46] to N. = oo (and to T' = 0, in the latter case).

As compared to the ground-state energy that is obtained by diagonalization of
an isolated cluster (“direct ED”), the (usual) CPT result represents a considerable
improvement, as can be seen in the figure. Note that CPT (and V-CPT) recover
the exact result in the non-interacting limit. The gain in binding energy is due to
the (approximate) inclusion of the inter-cluster hopping. A comparison of CPT with
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1

Figure 4.3.: Left: U dependence of the ground-state energy per site Fy as obtained by
different methods: direct ED (squares), usual CPT (h = 0, diamonds),
and h-optimized V-CPT (circles) for /10 x /10 clusters. Variational
Monte Carlo results (crosses) [44] and a QMC simulation (error bars)
[45] are shown for comparison. VMC and QMC results are extrapolated
to N, = co. VMC error bars are smaller than the symbol size. Right:
Double occupancy d = (n;n;;), potential energy per site E,o = U d, and
kinetic energy per site Exin = Ey — Epot as functions of U via V-CPT.

Monte-Carlo results (VMC, QMC), however, still shows a sizable discrepancy. On
the other hand, our variational CPT method perfectly agrees within the error bars
with both Monte-Carlo results for Ej in the entire U range. This shows that a proper
description of long-range order is essential to get the ground-state energy accurately.
Note, however, that for the ground state itself and for dynamical quantities, the in-
clusion of short-range correlations is at least equally important (see below).

Let us discuss a few other static quantities. Fig.4.3 (right) shows the double occu-
pancy d = (n;n;;) as a function of U. The double occupancy is obtained by numeri-
cal differentiation of the grand potential d = 0Q(u, U)/0U (at its respective minimum
value). It monotonously decreases from the non-interacting value d = (n;)(n;;) = 0.25
and correctly tends to approach the strong-coupling limit d = 0. Already for U of
the order of the free band width, a strong suppression of d is found (d & 0.052 for
U = 8). This indicates a quick crossover from a Slater-type (itinerant moments) to
a Heisenberg-type antiferromagnet (local moments) with increasing U. The potential
energy F,o = U d and the kinetic energy Ey— E,o; with Ey = Q4 p(N) and p = U/2
are shown in addition. Despite the fact that local-moment formation is almost com-
pleted for U = 8, there is still a considerable kinetic energy FEyi, ~ —0.915. This has
to be attributed to the residual kinetic exchange.
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Figure 4.4.: Dependence of the grand potential Q (per site) on the fictitious staggered
field h. Left: Result for the 1D Hubbard model at U = 8, T' = 0 and
half filling. Reference system: decoupled set of Hubbard chains with 10
sites each. The inset displays (k) on a finer scale. Right: Results for the
one-dimensional Hubbard ladder. The reference system consists of finite
(2x2,4x2and 6 x 2) ladders. Arrows indicate the optimal value of the
fictitious staggered field.

4.3. From one to two dimensions

One may ask whether or not the variational procedure always yields an antiferro-
magnetic state, i.e., also in those cases in which this is not expected physically. For
example, an antiferromagnetic state is prohibited in one dimension as quantum fluc-
tuations break up any long-range spin order [47]. Mean-field methods, such as Hartree
Fock, however, often yield a Néel state also in one dimension. In a strict mean-field
theory, spatial correlations are neglected altogether. Due to the inclusion of short-
range correlations, the variational CPT is clearly superior as compared to mean-field
theory. For any finite N., however, longer-range spatial correlations are neglected.
Hence, the V-CPT may be considered as a mean-field approach on a length scale
exceeding the cluster dimensions. We therefore expect mild reminiscences of typical
mean-field artifacts.

To test this, we have performed calculations for the one-dimensional Hubbard
model. The reference system consists of a decoupled set of finite Hubbard chains with
N, sites each. Fig.4.4 (left) shows the grand potential  as a function of the fictitious
staggered field h for U = 8. As one can see, the minimum of €2 is given by h = 0,
i.e., the V-CPT predicts the system to be a paramagnet, as expected physically. We
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Figure 4.5.: ©(h) as in Fig. 4.4 but now coupling the finite ladders (4 x 2 and 6 x 2) to
a two-dimensional square lattice. Results using the decomposition of the
square lattice into 2 X 2, V8 x v/8 and v/10 x /10 clusters are shown for
comparison. Arrows indicate the optimal fictitious field.

conclude that for this case quantum fluctuations are taken into account in a sufficient
way to prevent the system from becoming antiferromagnetic.

The results are not so straightforward if one considers a one-dimensional two-leg
Hubbard ladder. The reference system consists of decoupled finite ladders with Nyyng
rungs, i.e. No = Nuung X 2. Results for Nyyng = 2, Nrung = 4 and Nyypg = 6 are shown in
the right plot of Fig. 4.4. Despite of the fact that the system is quasi one dimensional,
the calculations predict a finite value for the staggered field and for the staggered
magnetization. Clearly, this is an artifact of the remaining mean-field character on
a longer length scale. However, we can see from Fig.4.4 that the optimal value of
h rapidly decreases when improving the approximation, i.e., with increasing size of
the clusters in the reference system. This is consistent with the fact that no finite
magnetization is expected in the Ny, — oo limit.

It is interesting to see what happens if one uses the Nyy,g X 2 ladders in order to
build up a true two-dimensional system. The results are plotted in Fig.4.5. In this
case, the optimal value of A is much larger than in the right plot Fig.4.4, and the
order parameter (see below) remains finite and depends only weakly on the cluster
size. This signals that for the two-dimensional system the antiferromagnetic state is
genuine, in contrast to 1D.

Fig. 4.5 also shows the results for the two-dimensional lattice using different “square”
clusters, 2 X 2, V8 x /8 and /10 x v/10 (the latter two clusters are shown in Fig. 4.1).
The comparison shows that convergence with respect to the function Q(h) is not yet
achieved for the largest cluster size considered here. In the limit of very large clus-
ters the SFA becomes formally exact as the trial self-energy 3 is defined to be the
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Figure 4.6.: Local average occupation (n;) for U = 8. (n;;) =1 — (n;) (not plotted).

exact self-energy of H'. In this limit, we expect the location of the minima (+hg)
of the function 2(h) to go to zero, or the function 2(h) to become flat in a region
around A = 0. The reason is that in the infinite system a finite value for the staggered
magnetization will already be produced by an infinitesimally small field.

Note that for the series of 2 x 2, 4 X 2, 6 x 2,... clusters, the reference system H’
does not approach the original two-dimensional Hubbard model H.

4.4. Order parameter

While the staggered magnetization m for the one-dimensional ladder system rapidly
decreases with cluster size, m remains finite and depends only weakly on the cluster
size in case of the two-dimensional system. Differences in m are found to be less than
1-2% for the different cluster geometries considered in Fig.4.5. A relative difference
Am/m < 0.005 is found when comparing the result for the 10-site and the 8-site
clusters. The staggered magnetization is defined as

s
~ Oh

m
ext hext—0

where heyy is the strength of an external physical staggered field (not to be confused
with the fictitious field #). Adding a respective field term to the Hamiltonian H and
performing the derivative with respect to hey of the grand potential (at the optimal
fictitious field strength h), yields

m =5 3¢ ()~ (),
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4.4. Order parameter

where 7, runs over sites within a cluster, @ = (7, 7), N, is the number of cluster sites,

and
0

(njg) = —% 71713(1) 7oodw Im G, j-(w+1in).
This is the usual expression for the staggered magnetization, but averaged over the
cluster. For the two-dimensional Hubbard model at U = 8 we find m = 0.80.

Fig. 4.6 shows the local average occupation (n;;) for the sites j within the V10 x
V10 cluster for U = 8. As any cluster approximation (constructed in real space), the
V-CPT necessarily breaks the translational symmetries of the lattice. The approx-
imate self-energy is obtained from a translationally non-invariant reference system
which results from the decomposition of the original lattice into decoupled clusters of
finite size. This implies that the local Green’s function, which is computed from the
self-energy using the Dyson equation, and thus the local occupations cannot be ex-
pected to be homogeneous (within a sublattice). It is interesting to see, however, that
this is not a severe drawback: Fig.4.6 shows that the variations of the spin-dependent
local occupation and the local ordered moment are very moderate within a sublattice.

A much more inhomogeneous state with strongly varying local occupations is ob-
tained when coupling the fictitious field h to two sites within the cluster only. This
variant has been considered using the V10x+/10 and the v/8 x /8 clusters. In this case,
too, a finite optimal value for A and antiferromagnetic long-range order are found (not
shown). The grand potential §2 at the optimal field, however, is considerably larger
than in the usual case where h is coupled to all sites within a cluster. This shows
that despite the artificial breaking of translational symmetry, a homogeneous state is
restored as far as possible.

The U dependence of the staggered magnetization is plotted in Fig.4.7 in com-
parison with the VMC results [44| (Gutzwiller-projected symmetry-broken trial wave
function) and the results of auxiliary-field quantum Monte Carlo (QMC) [46]. Within
the QMC, the order parameter is obtained from simulations of the static spin-spin
correlation function at low temperatures. It is assumed that the system effectively be-
haves as if at 7' = 0 when the thermal correlation length exceeds the cluster dimensions
[46]. VMC and QMC data are extrapolated to N, = oo 44, 46].

As one can see from Fig. 4.7, the variational CPT yields a staggered magnetization
which strongly disagrees with QMC data. In the Heisenberg limit U — oo, the V-
CPT seems to predict the staggered magnetization to approach unity. On the other
hand, physically, one would expect a reduction of the staggered magnetization due
to transverse spin fluctuations. In the two-dimensional Heisenberg model, several
methods starting from the simplest spin-wave theory up to Monte Carlo methods,
predict a reduction of the magnetization to about 60% of its saturated value [49].
On the other hand, the V-CPT agrees well with the results of the variational Monte
Carlo study, where transverse spin fluctuations are not fully taken into account as
well. Furthermore, there is a very good qualitative agreement with respect to the size
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Figure 4.7.: Comparison of the staggered magnetization m as a function of U at half
filling obtained by different methods: variational CPT (V-CPT), varia-
tional Monte Carlo (VMC) [44] and quantum Monte Carlo (QMC), [46] see
text. The arrow indicates the result m = 0.62+£0.04 of a Green’s-function
Monte Carlo study [48] for the two-dimensional Heisenberg model.

of m and the trend of m(U), when comparing with the results of a dynamical mean-
field calculation [50] (as the DMFT calculation has been performed for the D = oo
hypercubic lattice, one has to rescale the energies by a factor four to obtain the same
variance of the non-interacting density of states which may serve as the energy unit).

This appears to be somewhat surprising since spatial correlations are neglected
altogether in the DMFT and also in the VMC calculation where local Gutzwiller pro-
jectors are used, while the V-CPT does include the coupling to short-range correlations
on the scale of the cluster size. One has to bear in mind, however, that the size of the
order parameter is strongly affected by the coupling to long-range spin excitations.
Recall that in two dimensions and for any finite temperature the Mermin-Wagner the-
orem [42,47| shows that antiferromagnetic long-range order is destroyed due to spin
waves with wave vector k — 0. Hence, the overestimation of the staggered magnetiza-
tion could be ascribed to the residual mean-field character of the V-CPT on a length
scale exceeding the size of the cluster. This view is also substantiated by our results
for the one-dimensional Hubbard ladder which have been discussed above: To achieve
a clear suppression of long-range order within the V-CPT, reference systems (finite
ladders) as large as 6 x 2 have been required (Fig.4.4). This is an indication that in
two dimensions a v/10 x v/10 cluster might be to too small to include non-negligible
effects of spin excitations on the order parameter.

There is another important point which has to be taken into account in this context:
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For a cluster of a given size, an optimal V-CPT calculation should not only consider
the fictitious staggered field h but any one-particle term in the Hamiltonian of the
reference system as a variational parameter. It is in fact reasonable to assume that
there is room for improvement: Consider, for example, the hopping between nearest
neighbors within the cluster as an additional variational parameter. Actually, this
has already been considered in Sec.2.2.3 for the 1D Hubbard model. There it was
found that the optimal intra-cluster hopping is increased as compared to the nearest-
neighbor hopping in the original lattice although the effect turned out to be rather
weak. Here, the situation is different due to the antiferromagnetic long-range order.
In the limit U — oo, an increased intra-cluster hopping implies an increased effective
exchange interaction |J|. Assuming the optimal fictitious field A to be unchanged, this
tends to decrease the order parameter m.

We have performed corresponding calculations which show that a variational ad-
justment of the intra-cluster hopping at a considerably increased value is very likely in
fact. However, for these calculations an extrapolation of the results for {2 to n = 0 has
to be done, because the variation of the hopping increases the impact of the Lorentzian
broadening on 2. After this extrapolation we found a stationary point at t' = —1.165,
h = 0.210. Note that not only the hopping has changed, but also the optimal value
of h is shifted to a considerably higher value, compared with h =~ 0.18 without op-
timization of ¢'. For this reason, the effect of the simultaneous optimization of ¢
and h on the order parameter is rather weak, and we found m = 0.78. We conclude
that not only the optimization of additional parameters, but also the inclusion of long
range (bosonic) magnons seems to be necessary for a proper description of the order
parameter in the large U limit.

4.5. Dynamical quantities

While the V-CPT must be considered as mean-field-like on a length scale exceeding the
cluster size, it does account for short-range spatial correlations as the cluster problem
is solved exactly. For the two-dimensional Hubbard model at half filling, short-range
spin correlations are known to manifest themselves in dynamical quantities such as
the local density of states.

Fig. 4.8 shows the spin-dependent local density of states (DOS) p,(w) for U = 8
which is calculated as a staggered average over the sites in a cluster:

1 § : iQr;
pU(w): N eQ]pjo-(LU),
€

where pj,(w) = (—=1/7) lim, o Im G, ; -(w+in). Roughly, the spectrum consists of two
broad peaks around w = +5 and two strong and narrow peaks at about w = £3. For
both the high- and the low-energy excitations a strong spin polarization corresponding
to m = 0.80 is clearly visible. There is also some finite but low spectral weight within
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Figure 4.8.: Spin-dependent local density of states (DOS) p,(w) (staggered average
over the sites in a cluster) obtained for the v/10 x v/10 system via V-CPT
for U = 8.

the insulating gap which, however, is an artifact of the finite Lorentzian broadening
(n=0.1).

The high-energy excitations in Fig. 4.8 are interpreted as charge excitations (Hub-
bard bands). While these are due to local correlations, the low-energy features (at
w = £3) result from (short-range) non-local correlations. The latter will be identified
as being due to the coherent propagation of a quasi particle, namely a “spin bag”.
Physically, this spin bag originates from the frustration induced by the motion of the
additional bare hole (electron) in the antiferromagnetic spin background. The differ-
ent spectral features can easily be identified: The high-energy features are due to the
bare particle “rattling around” within the spin bag. This gives rise to an incoherent
motion and broad energy bands, i.e., the incoherent lower and upper Hubbard bands
with a width set by the energy scale of the bare band width W = 8. The low-energy
features, on the other hand, correspond to the above-mentioned coherent motion of
the spin bag resulting in a strongly renormalized quasi-particle band with a width
essentially given by 2|J| = 8t*/U = 1.

Note that these peaks are absent in a mean-field approach where off-site correla-
tions are neglected altogether: A recent DMFT study [50] of antiferromagnetic order
shows a rather featureless DOS consisting of the two (polarized) Hubbard bands only.
Contrary, the effect of antiferromagnetic short-range correlations can be included in
a cluster extension of the DMFT. Additional structures appear in the DOS within
the dynamical cluster approximation (DCA), for example. Some indications of the
mentioned low-energy features can be found by using the non-crossing approximation
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Figure 4.9.: Density plot of the spectral function for the 2D Hubbard model at U = 8§,
half filling and 7" = 0 as obtained by the CPT with A = 0 (top) and by
the variational CPT with optimal fictitious staggered field A # 0 (middle).
The lattice is covered by V10 x /10 clusters. Bottom: QMC (maximum
entropy) result, taken from Ref. [52], for the same parameters but for a
finite low temperature 7" = 0.1 and an isolated 8 x 8 cluster. Dark (light)
areas correspond to large (small) spectral weight.

(NCA) to evaluate the DCA [51]. For a conclusive interpretation, however, the effects
are too weak — probably due to the limited cluster size (a 2 x 2 cluster in reciprocal
space) and the finite temperatures considered.

More elucidating is a comparison of the k-resolved spectral density with available
results from QMC simulations for isolated but larger clusters. In order to illustrate
this point, we have plotted in Fig. 4.9 the spectral function A(k,w) for U = 8 along
high-symmetry directions in the Brillouin zone of the chemical lattice. The result is
compared with the result from the usual CPT (h = 0) and with numerically exact
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QMC data from Gréber et al. [52] which are available for an N. = 8 x 8 isolated
cluster and finite but low temperature (I" = 0.1). The spectral function A(k,w)
obtained from the maximum-entropy method is shown in Fig.4.9 (bottom). Since the
spin-spin correlation length at 7" = 0.1 considerably exceeds the cluster dimensions,
the QMC result can be considered as a good approximation to the 7" = 0 limit. At half
filling the spectrum almost exactly respects the constraint A(k,w) = A(k + Q, —w)
with @ = (m,m) which is predetermined by particle-hole symmetry. This must be
considered as a strong check of the numerics. As for the finite system there is no
spontaneous symmetry breaking, the spectrum is spin independent and shows perfect
translational symmetry with respect to the chemical lattice (pbc have been used).

This must be kept in mind when comparing with the V-CPT. In the V-CPT the
real-space Green’s function Eq. (2.3), and hence the spectral function

1 .
ARaiaR”j;U(w) = _; %1_1)1’(1) Im Gll‘%fi,R’,jo'(w + 177)’

is spin dependent, and translational symmetry holds with respect to the super lattice
vectors R only. But the procedure described in Sec. 2.1.2 for obtaining a fully momen-
tum dependent Green’s function, Eq. (2.11), implies a spatial average over the cluster
sites. Due to this spatial average, the spectral function is spin independent — even
in the symmetry-broken state (an integer number of antiferromagnetic unit cells are
included in a single cluster).

The CPT spectral function is calculated accordingly but for A = 0 (Fig. 4.9, top).
This means that any signatures of long-range order are switched off in the spectrum,
and only short-range correlations (up to the cluster boundaries) are retained. Both,
the CPT and the V-CPT result, respect the condition A(k,w) = A(k + Q, —w) with
Q = (m, ) due to particle-hole symmetry. Note that in both cases the spectral function
is defined for any k point in the Brillouin zone, contrary to the “direct” cluster method
(QMC).

Roughly, the CPT and the V-CPT spectra appear to be similar but looking at
finer structures it is obvious that the CPT predicts a spectral function which is quite
different: First, and most important, there is no coherent low-energy band in the
CPT spectrum. This shows up when comparing with the V-CPT around I'" for w < 0
(or around M for w > 0). In agreement with the QMC result, the V-CPT predicts
a dispersive low-energy band which extends continuously with spectral weight from
I' to X and which is clearly separated from the more incoherent feature at higher
energies. On the other hand, in the CPT spectrum this is missing. In the I' — M
direction the low-energy features turn out to be too broad and are discontinuously split
into several branches in the CPT spectrum. The dispersion around X is at variance
with the QMC data. Finally, at higher excitation energies, several weak and almost
dispersionless bands can be found in the CPT spectrum while in the V-CPT there
is a comparatively smooth incoherent background. We conclude that the variational
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procedure is crucial to achieve a qualitatively correct reproduction of the single-particle
excitation spectrum and of the coherent quasi-particle band in particular.

The physical reason is as follows. From previous QMC studies [52] it is well known
that the quasi-particle band is the dispersion of a spin bag, i.e., an additional hole
(electron) which is dressed by the local distortions of the spin order that are produced
by the motion of the hole in the antiferromagnetic background. Since the linear
extension of the spin bag is about 3-4 sites only, this picture is already captured by
an exact diagonalization of an isolated small cluster. However, the emergence of a
coherent band requires more, namely a coherent motion of the spin bag on a larger
length scale. This is captured in the QMC results for a large cluster of 8 x 8 sites.
Of course, the perturbative treatment of the inter-cluster hopping within the CPT
framework carries out a part of the job. This results in a string dispersion in the
V-CPT spectrum with a bandwidth of about 2|J| = 8¢2/U = 1 as can be read off from
Fig.4.9. Also for the plain CPT the perturbative coupling of the clusters works into the
right direction: Although the spectrum more or less consists of a two-band structure,
there is a tendency towards the formation of a gap within each of the two bands,
i.e., a coherent band tends to split off. Within the plain CPT, however, the motion
of the dressed hole cannot be completely coherent as there is no definite alignment
of spins across the cluster boundary. Upon reaching the cluster edge, the spin bag
encounters a misaligned spin with 50% probability and is partly reflected back inside
the cluster. This partial loss of coherence explains the several bands at higher energies
in the CPT spectrum which are absent in the V-CPT. The variational generalization
of the CPT cures this problem by ordering spins antiferromagnetically with the help
of the fictitious staggered field not only within but also across the cluster boundaries
thereby allowing the coherent spin-bag propagation.
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5. Charge Ordering in the 1D and
2D Extended Hubbard Model

Realistic models that are used for the investigation of strongly-correlated electron
systems consist of a kinetic part which accounts for the electron motion and an inter-
action part which is of the same order of magnitude. The simplest model that can be
constructed under these assumptions is the tight-binding Hubbard model. It consists
of a kinetic energy part, where the electrons can only hop between nearest neighbor
sites and the Coulomb interaction U which acts only locally on each site. Although
this model was used with great success for the description of a wide class of materials,
there are interesting physical questions which require an extension. The inclusion of
the nearest-neighbor Coulomb interaction, for example, is necessary for the study of
inhomogeneous phases, such as the charge-density wave (CDW) phase. This leads to
the so called extended Hubbard model (EHM).

So far a consistent formulation of the V-CPT presented in Sec. 2.2 could be achieved
for lattice models with on-site interactions only. The reason for this restriction is that
within the SFA the reference system must be chosen to have the same interaction as
the original model. In case of the EHM the interaction couples the different sites of the
lattice. Thus, there is no reference system with the same interaction which consists of
decoupled subsystems of finite size.

In this chapter we extend the ideas of the CPT and V-CPT to the investigation of
the EHM including nearest-neighbor Coulomb interaction. It is shown that a mean-
field decoupling of the inter-cluster nearest-neighbor interaction yields a systematic
and reliable cluster approach [53].

5.1. Decoupling the clusters

We start from the Hamiltonian of the extended Hubbard model

H=2 Tjclc;, +UY nminy

15,0 %

-I—VZninj—uZni, (5.1)
(7) i
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5.1. Decoupling the clusters

where 4, j indicate the position in the lattice, and for convenience we use a constant
value V; ; = V for all nearest-neighbor bonds. According to Eq. (2.1) we decouple the
lattice into clusters yielding

H= Z [ch) (R) + Hy(R) + H&C)(R)]

+ Z [ (R,R) + HV(R, R')] , (5.2)

R,R

where the first row includes only terms of a single cluster and the second row cou-
ples different clusters. By comparing the second row with the corresponding term in
Eq.(2.1) one can see that the term causing problems in the case of the EHM is the
interaction term

HYR,R) = VZnRZnRIJ, (5.3)

which is of two-particle type. The symbol [2]] 1nd1cates that the sum runs only over
bonds connecting nearest neighbors in different clusters. For nearest-neighbor inter-
actions this means that the indices [ij] must belong to the cluster boundaries of two
adjacent clusters. For the application of the method derived in Sec.2.2 the coupling
term must be of single-particle type, which can be achieved by a mean-field decoupling
of the interaction term, Eq. (5.3). Hence we get

VMF (R,R) = VZ nri(nr;) (nRi)anj]

Due to the translational invariance with respect to the superlattice vector R, the
mean-field parameters (ng;) and (ng;) are independent of R and R' and will be
denoted by A; and \;, respectively. With these abbreviations we get

ZH\(II,)MF(Rﬂ RI) =

R,R
_VZZ nRi\; + nrjAi = Aidj]

R,R' [ij]
= VZZ [TLRZ'/\]' + TLRj i /\z)\]]
R [ij]
= Hiue(R). (5.5)
R

The double sum over R and R’ reduces to a single sum, because for fixed values of
R, i, and j only one term of the sum over R’ contributes due to the fact that two-site
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Chapter 5. Charge Ordering in the 1D and 2D Extended Hubbard Model

interactions couple at most two different clusters. One has to be careful in order to
avoid double counting of the bonds [ij]. For instance, for a one-dimensional cluster of
length N, Eq. (5.5) reduces to

VY [nmidy + nev A — Myl (5.6)
R

because the only decoupled bond connects sites 1 and N of different clusters.

By this mean-field decoupling, two parameters \; are introduced for each decou-
pled bond, e.g. A; and Ay in one dimension, and in general all these parameters \;
are independent of each other. But as we will see below, the number of mean-field
parameters \; can be strongly reduced in special cases.

The decoupled interaction, Eq. (5.5), is of single-particle type and can be included
in the intra-cluster hopping term Héc)(R), leading to a modified intra-cluster single-
particle term

ﬁéc)(R, Ai) = Héc)(R) + H\(fi,)MF(Ra Ai), (5.7)

where we explicitly denoted the dependence on the parameters );. After this mean-
field decoupling we finally get the Hamiltonian

Hye(N) = 3 [HO (R, ) + HY (R) + B (R)

+ Y H(RR), (5.8)
R,R

for which the method described in Sec. 2.2 is applicable.

From the decoupling of the clusters we have got additional parameters \; which
are external parameters to the Hamiltonian Eq. (5.8) and have to be determined in a
proper way. For this purpose we propose two different procedures:

(i) One can get the parameters from a self-consistent calculation on an isolated
cluster. That means that one starts with a certain guess for the \;, which are
the expectation values of the electron density on sites . Then the ground-state
wave function of an isolated cluster is calculated, giving new values for the );. In
this step open boundary conditions (obc) are used in order to be consistent with
the obc necessary for the calculation of the cluster Green’s function in Egs. (2.3)
and (2.15). These new values ); serve as parameters in the Hamiltonian for the
next determination of the ground state, and the whole procedure is iterated until
convergence of the \; is achieved. This procedure may work quite well for the
EHM in the case of a first order phase transition between a disordered and an
ordered phase, because (due to an avoided level crossing) the transition point,
i.e. the critical Coulomb interaction V, is almost independent of the cluster size
[54]. For second order phase transitions we expect that this method will not give
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5.2. Results for one dimension

satisfactory results, because here we face a discrepancy between the parameters
calculated on the isolated cluster and the parameters that would give the optimal
result in the thermodynamic limit.

(ii) The shortcoming in the case of second order phase transitions can be overcome
in the following way. As we show in App. C, the self-consistent calculation of
mean-field parameters is equivalent to the minimization of the free energy F'.
Since the relation 2 = F'— uN holds at T' = 0, this minimization can be done at
the same time as the optimization of the single-particle parameters A in the SFA
formalism, and we can use Eq. (2.15) for the determination of the parameters \;,
too. Note that all quantities in Eq. (2.15) which depend on the single-particle
parameters A are dependent on the mean-field parameters A\; as well. To keep
the calculations simple we consider only half-filled systems, where it is sufficient
to use only two different values for the \;, namely Ay =1—dand \g =1+6
on sublattices A and B, respectively. Under this assumption we have only one
mean-field parameter 0, and the grand potential is Q = Q(A,J). The general
procedure is now that for each value of § the stationary point with respect to A
has to be found as required by the SFA formalism, yielding a function §2 = (§).
By finding the minimum of this function one can determine the optimal value
for 4.

Conceptually, the latter method (ii) of determining the mean-field parameters is
superior to the procedure (i) described first as it uses information on the Green’s
function in the thermodynamic limit for the calculation of 6. However, one has to
keep in mind that for each choice of § the Green’s function G'(w) of the isolated
cluster has to be calculated many times to evaluate Eq. (2.15) which is much more
time consuming than the self-consistency procedure on the isolated cluster.

5.2. Results for one dimension

The Hamiltonian of the one-dimensional EHM is given by

H=- tz (CZ,UCH_LU + H.C.) + UZniTnu
2,0 A
+ VaniH — /LZni.
i i

Throughout this chapter we set ¢ as the unit of energy. Although this model has been
studied intensively [45,54-70], the ground-state phase diagram is still under some
discussion. We use this model as a testing ground for our method, because many
results are available for comparison. The chemical potential is 4 = U/2 + 2V due to
particle-hole symmetry at half filling.
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Chapter 5. Charge Ordering in the 1D and 2D Extended Hubbard Model
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Figure 5.1.: Schematic phase diagram of the one-dimensional EHM, following Ref. [55].
Similar phase diagrams have been reported in Refs. [54,57-59, 61, 70|, but
with different extensions of the BOW phase in the U-V-plane. The thick
line marks the first-order phase transition, and the dashed line marks
U=2V.

In one dimension at half filling, the phase diagram of the EHM includes spin
density wave (SDW) and charge density wave (CDW) phases. By weak-coupling
renormalization-group (RG) techniques (”g-ology”) [62,63] the phase boundary be-
tween SDW and CDW phase was determined to U = 2V, which actually coincides
with strong-coupling calculations for large U and V' using second-order perturbation
theory [62,64|. For intermediate coupling the boundary was found to be shifted from
the U = 2V line, enhancing the SDW phase, shown by QMC calculations [45, 54-56|
and strong-coupling calculations up to fourth order [65]. Moreover the nature of the
transition is different in the two coupling regions, with a second-order transition at
weak coupling and a first-order transition at strong coupling. The multi-critical point,
where this change takes place, was investigated intensively in the past. Cannon and
Fradkin [66] obtained U,, ~ 1.5 by field theoretical techniques, whereas QMC gave
Un = 3 [45,56] and Uy, = 4.7 — 5.5 |54, 55|, respectively. The latter value is in well
agreement with results based on bosonization and RG [59,61,67]. Other estimations
for the multi-critical point are Uy, =~ 3.7 (DMRG [60]) and Uy, = 3.5—5 from finite-size
extrapolations of Lanczos results [68].

Ounly recently Nakamura [57,58] has proposed an additional phase between the
SDW and CDW phases, the so-called bond order wave phase (BOW). The existence
of this phase has afterward been assured by several studies [54,55,59-61,70|. A
schematic phase diagram including Nakamura’s BOW is depicted in Fig. 5.1. There is
good agreement on the existence of the BOW phase, but its extension in the U-V -plane
has not yet been clarified in detail.
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Figure 5.2.: Grand potential {2 as a function of the mean-field parameter § at U = 8
calculated on a cluster with N, = 8 sites as reference system. Upper
panel: V' = 4.1. Lower panel: V = 4.2. Solid lines: With optimization
of a staggered field. Dashed lines: Without optimization of a staggered
field.

5.2.1. First-order phase transition

For a first test of our method we studied the one-dimensional EHM at U = 8, which is
well above the multi-critical point. The phase transition is of first order without any
BOW phase between SDW and CDW phases. As reference system H' according to
Sec. 2.2, we used decoupled clusters of different lengths consisting of N. = 8, 10, and
12 sites, respectively. For the determination of the mean-field parameter § we used the
method (ii) described in Sec. 5.1, where § is calculated from the minimum of the free
energy of the system. For the SFA optimization of the single-particle parameters, we
had to choose a set A of parameters which are varied in the optimization procedure.
In order to minimize the number of relevant parameters we use results of Sec. 2.2.3,
where it has been shown that at U = 8 the variation of the hopping in the cluster yields
only minor changes that can be neglected, and that open boundary conditions have
to be used. Moreover, for the one-dimensional Hubbard model it has been pointed
out in Sec.4.3 that the use of a fictitious staggered magnetic field as a variational
parameter gives a stationary point of the grand potential only for vanishing field,
yielding a paramagnetic phase without long-range magnetic order. Since it can be
assumed that these results are also valid in a similar way for the EHM, we did not use
the hopping in the cluster or a staggered magnetic field in the optimization procedure.
Here we studied charge-ordering effects and therefore we used as variational parameter
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Chapter 5. Charge Ordering in the 1D and 2D Extended Hubbard Model

a staggered field coupled to the charge densities given by Eq. (2.24) with
Aa,b = géa,beiQTaa (59)

where Q = 7 is the wave vector of the staggered order, r, the lattice vector of site
a, and ¢ is the staggered-field strength. The grand potential obtained in this way is
shown in Fig. 5.2 at two values of the inter-site Coulomb interaction. For comparison,
calculations without optimization of the staggered field are shown as dashed lines in
Fig.5.2. As one can see, the optimization gives only minor changes to €(J). The
optimal staggered-field strengths in these calculations varied between e, = 0.0 at
0 = 0.0 and eop, = 0.05 at 6 = 1.0 at both values of V.

From the shape of 2(0) one can directly infer the order of the transition. If three
minima occur at § = 0 and 6 = +dcpw, it is of first order, whereas it is of second
order if 2(9) has only two minima at § = +dcpw and a maximum at § = 0. As on can
easily see in Fiig. 5.2, we have clear evidence for a first-order phase transition at U = 8
with an SDW minimum at 6 = 0.0 and two degenerate CDW minima at 6 = +dcpw.
At V' = 4.1 the SDW phase is realized, Q(0) < Q(dcpw), whereas at V = 4.2 we have
Q(0) > Q(dcpw) and the CDW phase is the stable one. Thus we can state that the
critical value V, for the phase transition is located between V = 4.1 and V = 4.2.

For a more accurate determination of the phase boundary V., we have calculated
the grand potential at several values of V' and cluster sizes N, = 8, 10, and 12. In
addition to the grand potential and the ground-state energy Ey = 2 + uN, with N,
the number of electrons in the system, we calculated the order parameter

meow = 3 3 (ny = (n)) 97, (5.10)

where QQ = m, N, is the number of cluster sites, and the kinetic energy FEy;,. Both
properties can be extracted from the spectral function

Ak, w) = —~ TimTm G(k, w + in) (5.11)

m n—0

and the kinetic energy is given by
92 0
Fn= 2 [ dweao) (5.12)

with (k) the dispersion of the non-interacting system. Within our approach it is
necessary to use the Lehmann representation for the cluster Green’s function with
small but finite Lorentzian broadening . Whereas the grand potential Eq. (2.15) shows
only minor dependence on this broadening, the dependence of the order parameter and
the kinetic energy is considerably larger and one has to do an extrapolation to n =0
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Figure 5.3.: Ground-state energy Ey, kinetic energy Fii,, and order parameter m2py
of the one-dimensional EHM at U = 8 after finite-size scaling. Lines are
guides to the eye only.

[4]. Although the formalism applies to the thermodynamic limit, results show a finite-
size dependence due to the finite size of the clusters serving as reference system. We
found that the order parameter exhibits the strongest finite-size effects, which were
of the order mgpw n.—10/M&pw n.—12 = 1.02 at all values of V. Finite-size scaling
to N, = oo is easily done and the results for the ground-state energy extracted from
the minimum of the grand potential, the kinetic energy and the order parameter are
shown in Fig.5.3. Our results should be compared to Fig. 10 of Ref. [54] which shows
excellent quantitative agreement with a deviation of less than 2% for the calculated
quantities at all values of V. From our calculations we get V. = 4.140(5), again in
agreement with the previous studies Refs. [54,60].

In order to provide a complete picture of the method we also performed calculations
with mean-field parameters obtained by a self-consistent procedure on an isolated
cluster, see method (i) in Sec.5.1. For instance for N, = 12 and V' = 4.1 one finds
self-consistent solutions for § = 0 and for dsc¢ = 0.832, which differs only slightly
from the value extracted from the grand potential, dcpw = 0.822. For this reason the
calculation of the ground-state energy, kinetic energy, and order parameter using dsc
instead of dcpw gives practically the same results as in Fig.5.3. In the present case
it is therefore sufficient to calculate the mean-field parameter from an isolated cluster
which is much faster than finding the minimum of the grand potential.
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Figure 5.4.: Density plot of the spectral function A(k,w) of the one-dimensional EHM
at U = 8, calculated on a cluster of size N. = 12 with Lorentzian broad-
ening n = 0.1. Darker regions represent larger spectral weight. Coulomb
interaction V' as indicated in the plots. White lines are fits to a Hartree-
Fock SDW/CDW dispersion (see text).

Spectral function

Whereas the properties we have shown so far are well known for the one-dimensional
EHM, we additionally calculated for the first time the spectral function by Eq. (5.11)
for arbitrary wave vector k. In Fig.5.4 results are shown at U = 8 and selected
values of V' with a reference system consisting of N. = 12 cluster sites, and the mean-
field parameter ¢ calculated self-consistently by method (i), see Sec.5.1. We want
to mention that the ’striped’ structure, particularly visible in the regions marked by
'C’ in Fig.5.4, occurs because the decoupling into clusters breaks the translational
invariance of the system.

The spectral function at V' = 2.0 is very similar to the spectral function of the
Hubbard model (V' = 0) [3,4] with splitting of the low-energy band into a spinon
and an holon band, which are marked in Fig.5.4 by A’ and 'B’, respectively. This
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5.2. Results for one dimension

Table 5.1.: Fitted values for the hopping matrix element #g, gap Ag, and gap Agr of
the full Hartree-Fock approximation at U = 8. Fitted values from results
for the N, = 12 cluster.

Las Agy Aup
V =0.0 1.93 2.24 3.75
V=20 2.11 2.20 3.75
V =4.0 2.62 1.29 3.75
V=45 1.86 3.35 4.80
V =6.0 1.86 7.29 7.88

similarity could have already been expected based on the full Hartree-Fock solution—
decoupling of all interaction terms in the Hamiltonian—where one has no dependence
on V at all in the SDW phase. But this simple picture holds only away from the
transition point V. as can be seen in Fig. 5.4 in the plot for V = 4.0. At this point,
in the vicinity of the phase transition V. = 4.14, the gap is considerably smaller
than at V' = 2.0, a clear deviation from the Hartree-Fock prediction. This indicates
that charge fluctuations become very important in this regime, which are completely
neglected by the Hartree-Fock approximation, but are taken into account on the length
scale of the cluster in our approach. But although we found this deviation, one can
still see residuals of the splitting of the low-energy band, a signature for spin-charge
separation. For this reason we infer that spin-charge separation is present up to the
transition point. The white lines in Fig. 5.4 correspond to fits of the holon branch to
a Hartree-Fock dispersion F(k) = /A% 4+ ¢(k)?. The fitted values for the hopping
matrix element tg and the gap Ag, are denoted in Tab.5.1, where we included the
values at V' = 0 for completeness. One finds that the gap Ag; is almost constant from
V =0to V = 2 and, as mentioned above, considerably decreases near the the phase
transition (V' = 4). The hopping matrix element ¢g; shows the opposite behavior and
increases when approaching the transition point from below. This is due to the fact
that in the vicinity of V¢, doubly-occupied and singly-occupied sites become close in
energy, which enhances the movement of the electrons. The actual value of the matrix
element tg; is very large compared to the original value £ = 1 in the Hamiltonian. A
fit to the spinon band would give a smaller value closer to ¢ = 1, but whereas fitting
to the holon band is consistent over the whole range of momentum vectors k, the
spinon band is only present for k < 7/2 for w — u < 0 (and k > 7/2 for w — u > 0,
respectively).

The spectral function in the CDW phase shows a qualitatively different behavior.
At V = 4.5 we found a gap considerably larger than in the SDW phase, and this gap
increases very fast with increasing V', as can be seen in the plot at V' = 6. Moreover,
no evidence for spin-charge separation can be seen in the spectral functions. Within
the full Hartree-Fock approximation, where both the onsite and the nearest neighbor
interactions are mean-field decoupled, the gap Agr is the solution of the self consistent
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equation

1 QFQZ 1 ,
N & \/€(k)2+AHF

with Dspw = ¥ and Pepw = £ — 22V and z the coordination number of the lattice.
By comparing the fitted value Ag; with the Hartree-Fock solution Agxg, one can see
that the agreement at V' = 4.5 is better than at V' = 4, and that it becomes still better
with increasing V. For this reason we conclude that charge fluctuations, which are
neglected in the Hartree-Fock approximation, play a minor role in the CDW phase.

The values for t5; and Ag; given above are determined by calculations with a
N, = 12 cluster as reference system. An analysis of the finite-size dependence of
these properties showed that finite-size effects are almost negligible in the SDW phase
well below V.. However, in the vicinity of the transition point, these effects increase
considerably, especially for Ag;. For instance, at V' = 4.0 we found t5 = 2.49 and
Agy = 1.60 for the N, = 8 cluster. This means that the values given in Tab.5.1
underestimate the hopping and overestimate the gap in the vicinity of V.. In the
CDW phase, the finite-size effects become smaller again, but are still larger than in
the SDW phase (e.g., tg = 1.77 and Ag = 7.38 for V =6 and N, = 8).

5.2.2. Second-order phase transition

So far all calculations have been done at U = 8, where the system shows a first order
phase transition. In the following, we study the EHM at U = 3, where the model
exhibits a second-order transition into the charge ordered CDW phase [54,60|. In this
paper we do not consider the BOW, since it has been argued that the SDW-BOW
transition is of Kosterlitz-Thouless type [58]. For an analysis of this type of transition
the available cluster sizes are far too small and do not allow a clear distinction between
SDW and BOW phase.

We calculate the grand potential €(J) in the same way as in Sec.5.2.1 in order
to determine 6. The result of a calculation on a cluster consisting of N. = 8 sites is
shown in Fig. 5.5. One can easily see a striking difference between the grand potential
at U = 8, Fig. 5.2, and at U = 3. In the latter case there is only a single minimum
and it is located at 6 = 0 for V' < V.. With increasing V' the curve for {2(J) becomes
flatter in the region around 6 = 0 and finally two degenerate CDW minima occur at
0 = £écpw for V. > V.. Note that here § changes continuously when crossing V.,
whereas it shows a discontinuity in the case of a first-order phase transition.

We find that now it is indeed important to use a staggered field, Eq. (5.9), as a
variational SFA parameter. In Fig. 5.5, results are shown with such an optimization
(solid lines) and without (dashed lines). Whereas at V' = 1.6 both calculations show
only the SDW minimum at § = 0, they differ at V = 1.7 where the system should
already be in the charge-ordered phase [54,57,58,60]. Without optimization of the
staggered field, we would still find the SDW minimum at 6 = 0, but with optimization
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Figure 5.5.: Grand potential €2 as function of the mean-field parameter 6 at U = 3
calculated on a cluster with N, = 8 sites as reference system. Upper
panel: V = 1.6. Lower panel: V = 1.7. Solid lines: With optimization
of a staggered field. Dashed lines: Without optimization of a staggered
field. The arrow marks the CDW minimum at V = 1.7.

the minimum shows up for a finite value of § = +0.31 characteristic for the CDW
phase.

For the determination of the critical value V., we calculated the ground state
energy Fy, kinetic energy F\i,, and the order parameter mcpw at several values of
V shown in Fig.5.6. We performed no finite-size scaling like in Sec.5.2.1 since we
found that here the cluster sizes are too small for a systematic scaling. Different from
Fig.5.3, Exin, mcpw, and the slope of the ground state energy are continuous across
the transition point as required for a second-order transition. From the kinetic energy
and the order parameter calculated on a cluster of size N, = 12, we extract a critical
value of V, = 1.665(5), which is in good agreement with the critical value V. ~ 1.65
obtained by QMC [54] and diagonalization methods [57, 58, 68|, and with V, = 1.64(1)
from DMRG calculations [60]. The slight difference is likely due to remaining finite-
size effects. Moreover we made use of a single variational parameter only, namely the
staggered field Eq. (5.9), and it can be expected that including more single-particle
parameters in the SFA optimization procedure would give even more accurate results.

We would like to point out that in the present case of a second-order phase tran-
sition, the most accurate way of calculating the mean-field parameter ¢ is to find the
minimum in the grand potential including SFA optimization of single-particle param-
eters. Calculations on a cluster of size N, = 12 showed that without optimization
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Figure 5.6.: Ground-state energy Ey, kinetic energy Fi,, and order parameter mZpw
of the one-dimensional EHM at U = 3 for cluster sizes N, = 8 (dotted),
N, =10 (dashed), and N, = 12 (solid line).

Table 5.2.: Same as Tab. 5.1, but for U = 3.

T Agy Agr
V=0 1.38 0.29 0.93
V=1 1.59 0.29 0.93
V=2 1.40 1.13 2.12
V=3 1.59 3.71 4.28

the critical value would be V, = 1.685(5). Compared to V, = 1.665(5) this is further
away from the values obtained by other methods as given above. Calculations with
6 obtained self-consistently on an isolated cluster are insufficient. In this case one
would get V. = 1.735(5) for the N. = 12 cluster. This means that for a second-order
phase transition § should be determined by minimizing the grand potential, whereas
for first-order transitions the self-consistent determination was sufficient.

The spectral function A(k,w) at V = 1.0, 2.0, and 3.0, which has not been cal-
culated previously, is depicted in Fig.5.7. We found that the spectral function at
V' = 1.0 shows only minor differences to the spectral function of the Hubbard model
(V' =0). The white lines in Fig.5.7 are fits to a Hartree-Fock SDW/CDW dispersion.
The parameters tg and Ag; can be read off from Tab. 5.2. In the SDW phase at V =0
and V = 1.0, the gap Ay is constant. Similar to the case U = 8 the agreement be-
tween Ag, and Agr is better in the CDW phase than in the SDW phase. The hopping
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Figure 5.7.: Density plot of the spectral function A(k,w) of the one-dimensional EHM
at U = 3 calculated on a cluster of size N, = 12 with Lorentzian broad-
ening 7 = 0.1. Darker regions represent larger spectral weight. From
top to bottom: V = 1.0, 2.0, 3.0. White lines are fits to a Hartree-Fock
SDW /CDW dispersion (see text).

parameter tg; increases when approaching the phase transition from below, similar to
Tab. 5.1, but the fitted values for tg are considerably smaller than in the case U = 8.
For the finite-size effects of these properties the same behavior was found as for U = 8.
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Figure 5.8.: Possible tiling of the two-dimensional square lattice into a super cluster
with N, = 48 that allows for staggered order.

5.3. Results for two dimensions

The two-dimensional Hubbard model is one of the most intensely discussed models
for strongly-correlated electron systems, especially in the context of high-temperature
superconductivity. But different from the one-dimensional case, where many sophisti-
cated methods have been used to investigate the extended Hubbard model as described
in Sec. 5.2, only few studies have been done for the two-dimensional EHM. One reason
for this is that many modern methods such as DMRG or fermionic loop-update QMC
are difficult to apply to more than one spatial dimension. However, within our present
approach, the extension to two dimensions is straightforward.

The two-dimensional EHM is defined by the Hamiltonian

H=-t Z (c;-r,(,cj,a + H.c.) + UZ”M”N
bire Z (5.13)
+V2nmj —MZTLZ',
(i7) L

where (ij) connects nearest neighbors and the chemical potential is p = U/2 + 4V
at half filling. Early QMC studies [71]| showed that this model has a SDW-CDW
transition similar to the one-dimensional case with transition point V, ~ U/4. But
due to numerical difficulties it was impossible to determine the exact position and
the order of the phase transition. For repulsive interactions, calculations within the
Hartree-Fock approximation |72-74] showed two stable phases for the Hamiltonian
Eq. (5.13) at half filling, the SDW and CDW phase, separated by a phase boundary at
Ve = U/4. The same value for the critical interaction was obtained by the fluctuation-
exchange approximation (FLEX) [75].
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Figure 5.9.: Grand potential calculated on a cluster of size N, =8 at U =8,V = 2.1
(upper panel) and U = 3,V = 0.76 (lower panel).

For the application of the V-CPT method, the two-dimensional square lattice has
to be decoupled into clusters of finite size. Some care has to be taken concerning the
staggered order. Whereas for clusters with N, = 8 and N, = 10 shown in Fig.4.1, the
staggered order indicated by open and full circles is commensurate over the cluster
boundaries, a straightforward decoupling into clusters of size N, = 12 is not possible.
As one can easily see in Fig.5.8, a super cluster with N, = 48 consisting of four
N, = 12 clusters has to be constructed in order to take into account the staggered order
correctly. The Green’s function of the super cluster can be calculated by switching
off the hopping processes that connect the single N, = 12 clusters, in other words
on bonds across the dotted lines in Fig. 5.8. This gives a block-diagonal Hamiltonian
which can be treated by the Lanczos algorithm. The switched off hopping processes
are then incorporated again perturbatively, that means by including the corresponding
hopping terms in the matrix 7’ fb’R’ in Eq. (2.3). Note that here the vectors R and R’
denote the super clusters and not the single N. = 12 clusters. Of course there are
many other possible tilings like the 4 x 3 cluster used in Refs. [3,4,21], but also in
that case a super cluster of N, = 24 has to be used.

We start the analysis of the two-dimensional EHM with the determination of the
order of the phase transition. For this purpose we use the N. = 8 cluster shown
in Fig.4.1 and calculate the grand potential (d) in the vicinity of the transition
point at U = 8.0 and U = 3.0 as described in method (ii) in Sec.5.1. Here we did
not use a staggered field as variational parameter, because it does not change the
qualitative shape of Q(4) (see Figs. 5.2 and 5.5) and is therefore not necessary for
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the determination of the order of the transition. The result of this calculation is
shown in Fig.5.9. At both values of U we found three minima, located at 6 = 0 and
0 = +dcpw, which indicates a first-order phase transition, different from the one-
dimensional EHM, where at U = 3.0 the transition is of second order. We checked
that this different behavior is not likely to be a finite-size effect due to the small
linear dimension of the two-dimensional N, = 8 cluster by calculating Q(4) for the
one-dimensional model with N, = 4 which still shows clear evidence of a second-order
phase transition at U = 3.

The fact that the system shows first-order transitions at both U = 8.0 and U = 3.0
simplifies the subsequent calculations. As discussed in the previous section, one gets
good results in the case of a first-order transition by using a mean-field parameter ¢ de-
termined self-consistently on an isolated cluster, as described in method (i) in Sec. 5.1.
This procedure is much faster than the calculation of the grand potential for many
values of §, which makes it possible to use the N. = 48 super cluster shown in Fig. 5.8.
We want to mention at this point that the calculation of the grand potential for the
two-dimensional system is much more time consuming than for one dimension because
of the larger number of k points required for the evaluation described in Sec.2.2.1 (see
Eq.(2.16)). For one dimension L = 40 is sufficient for convergence, whereas L = 500
is necessary for two dimensions. Nevertheless it is of crucial importance to use a
cluster as large as possible, because the ratio of bonds treated exactly to mean-field
decoupled bonds increases with increasing cluster size, especially pronounced for the
two-dimensional square lattice. After having determined the mean-field parameter
0 for the CDW phase self-consistently, we also performed an SFA optimization of a
staggered field, Eq. (5.9).

A few more words have to be said about calculations in the SDW phase (6 = 0).
In Sec. 4.2 it has been shown that it is important to take into account the long-range
magnetic order for the accurate description of salient features of the system. This
has been achieved by using a staggered magnetic field as variational parameter, given
by Eq.(4.2). Additionally it was argued that due to the connection of the hopping
parameter ¢t and the magnetic exchange constant J, results are further improved by
letting the hopping in the clusters be of strength ¢ and optimizing the staggered
magnetic field and ¢’ simultaneously. Therefore we use

Aa.,b = hda,bzaeiQTG - T(S(ab)’a (514)

where the symbol d.4p is equal to one for nearest-neighbor bonds inside the cluster
and zero otherwise. The field strength h and 7 = ¢’ — ¢ are the variational parameters
in the optimization procedure.

To sum up, the following steps are performed in the analysis using the N, = 48
super cluster:

(i) First we determine the mean-field parameter dcpw in the CDW phase self-
consistently on an isolated cluster.
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Figure 5.10.: Ground-state energy Ej, kinetic energy Eyi,, and order parameter mQCDW
of the 2D EHM at U = 8.0 (left) and U = 3.0 (right). Calculations were
done on a N, = 48 super cluster.

(ii) We use a staggered field Eq. (5.9) for an SFA optimization procedure.

(iii) In the SDW phase (0 = 0) the staggered magnetic field and the intra-cluster
hopping t', Eq. (5.14) are optimized simultaneously.

(iv) After determination of the SFA variational parameters we calculate the quanti-
ties we are interested in.

The results for the ground-state energy, kinetic energy, and order parameter are
shown in Fig.5.10. At both U = 8.0 and U = 3.0, the behavior of a first-order
transition can be seen, where the change in the slope of Fj is much stronger at U = 8.0
than at U = 3.0. This change at U = 8.0 is even more pronounced than for the one-
dimensional model at U = 8.0. From Fig.5.10 we can extract the critical value V, of
the phase transition by fitting Fy to a straight line in the vicinity of the transition
point, and for the N, = 48 super cluster we find V, = 2.023(1) at U = 8.0, and
Ve = 0.770(3) at U = 3.0. These values of V. are much closer to the Hartree-Fock
result V, = U/4 than for one dimension. Within our approach we cannot clarify
whether this is an intrinsic feature of the two-dimensional model or it is an artifact of
the approximation due to the larger number of mean-field decoupled bonds.

The SFA variational parameters in the SDW phase near the phase-transition point
are found to be almost independent of the interaction V. At U = 8, the optimization
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resulted in ¢ &~ 1.1 for the intra-cluster hopping and h = 0.14 for the staggered
magnetic field. The optimization of just one single parameter leads to ¢’ ~ 1.03|,-¢
and h ~ 0.12|y—;, and the value of 2 also differs significantly from the value obtained
by the simultaneous optimization of ¢ and h. This means that due to the strong
connection between the magnetic order and the hopping matrix element it is important
to optimize ¢’ and h simultaneously in order to get the best approximation for the
physics in the thermodynamic limit. In the charge-ordered phase the dependence of
the variational parameter, Eq. (5.9), on the interaction V is larger with ¢ = 0.08 at
V =2.01 and € = 0.22 at V = 2.1. A similar behavior can be found at U = 3: In the
SDW phase the variational parameters ¢’ =~ 1.61 and h ~ 0.15 are almost independent
of V. In the CDW phase we get ¢ = —0.03 at V =0.76 and ¢ = —0.18 at V = 0.84.

Whereas the application of the staggered magnetic field exhibits the symmetry
h — —h, this is not the case for the staggered field Eq. (5.9), because the symmetry is
already broken by the mean-field decoupling. We found no stationary point of {2 for
finite A in the CDW phases.

The spectral function at U = 8 in the SDW phase (V' = 1.0) and in the CDW
phase (V = 3.0) is shown in the left plots of Fig.5.11. We found that the spectral
function at V' = 1.0 is very similar to the spectral function of the Hubbard model
(V =0), see Fig.4.9. One can see that the spectrum mainly consists of four features,
two high-energy Hubbard bands and two low-energy quasi-particle bands, separated
by a gap in the spectrum. The dispersion of these low-energy excitations in the SDW
phase differs significantly from the Hartree-Fock shape shown as white lines in the
left upper panel of Fig.5.11, which does not account for the splitting into coherent
low-energy bands and high-energy Hubbard bands. The fit parameters were t5; = 1.34
and Ag; = 2.51. The width of the coherent bands |w(X) — w(I")| ~ 1.25 is rather set
by the magnetic exchange J, consistent with QMC calculations at V = 0 [52,76]. The
black lines are fits to the t-J-like dispersion

E(k) =+ [-A + J/2(cos k; + cos ky)?] ,

which accounts better for the dispersion of the low-energy bands than the Hartree-
Fock dispersion [76]. The fit parameters were Ag, = 2.69 and Jg, = —0.63, which is in
good agreement with the second-order perturbation-theory result J = —4t?/(U—V) =
—0.57. In the CDW phase the white lines correspond to Hartree-Fock dispersions with
fit parameters Ag; = 7.69 and t5; = 1.16, and different from the SDW phase they agree
well with the excitations of A(k,w).

The plots on the right hand side of Fig. 5.11 display the spectral function at U = 3
at interactions V = 0.5 and V = 1.0, respectively. The white lines again correspond
to Hartree-Fock dispersions with fit parameters 5 = 1.06, Ag; = 0.64 at V = 0.5,
and tg = 1.07, Az = 1.82 at V = 1.0, respectively. As in the case U = 8 the
dispersion of the coherent low-energy bands in the SDW phase differs from the Hartree-
Fock prediction, but in this case the deviation is much smaller. We did not find an
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Figure 5.11.: Density plot of the spectral function A(k, w) of the two-dimensional EHM
calculated on a N, = 48 super cluster with broadening n = 0.1. Darker
regions represent larger spectral weight. Left top: U = 8.0,V = 1.0. Left
bottom: U = 8.0,V = 3.0. Right top: U = 3.0,V = 0.5. Right bottom:
U = 3.0,V = 1.0. White lines are fits to Hartree-Fock dispersions. For
the meaning of the black lines at U = 8.0,V = 1.0 see text.

accurate functional form in order to fit the low-energy excitations, but nevertheless
we can extract the value of J from the band with of the coherent bands yielding
J = —(1/2)|w(X) —w(T")| & —1.57. This value is again in good agreement with the
perturbation-theory result J = —4t?/(U — V) = —1.6.

We would like to mention that our results at U = 3 in the SDW phase are quali-
tatively different from QMC results at U = 3, V' = 0, and inverse temperature 5 = 3t
[77], where the spectral function shows metallic behavior with no gap around the Fermi
energy. This difference may be due to temperature effects or due to poor resolution
of the Maximum-Entropy inversion of QMC correlation functions.

At both U = 8 and U = 3, one can easily see that the agreement of the Hartree-
Fock dispersions with the low-energy excitations of A(k,w) is better in the CDW phase
than in the SDW phase. In addition the gap Agp calculated within the Hartree-
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Fock approximation is much closer to the fitted gap Ag; in the CDW phase (e.g.,
Agr = 7.76, Agy = 7.69 at U = 8, V = 3) than in the SDW phase (e.g., Agr = 3.57,
Ag = 251 at U = 8, V = 0). Therefore we conclude that in the CDW phase
charge fluctuations play only a minor role compared to the SDW phase, similar to the
one-dimensional system.
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6. Charge Ordering and Lattice
Coupling in NaV,0Og

The formation of an ordered pattern of ion charges is a rather general type of phase
transition which occurs in three- as well as lower-dimensional solids. It has been
known for more than six decades [78| since its discovery in magnetite Fe;O4. Even in
that compound this phenomenon still attracts a lot of attention due to the interesting
physics of the transition. Since the charge ordering causes changes in the interaction
between the ions, it drives a lattice distortion, which, in turn, influences the order pat-
tern. The quarter-filled ladder compound NaV,0Oj5 [79] is another interesting example
of a system which shows charge ordering.

6.1. Introduction to the compound NaV;05

The crystallographic structure of NaV,05 is depicted schematically in Fig.6.1. It is
mainly determined by the layers formed by the V,O5 pyramids. The sodium atoms,
which are mainly acting as charge reservoir, form chains that are lying between the
layers. The coupling in ¢ direction, i.e., between the single layers, is very weak, and
the properties of this compound are therefore mainly determined by the quasi two-
dimensional V5,05 layers, shown in Fig.6.2. The black circles indicate the vanadium
atoms and the yellow ones the oxygen atoms of the ground plane of the pyramids.
The oxygen on top of the pyramids plays only a minor role, since it does not couple
two vanadium atoms of the layer.

The first X-ray studies at room temperature indicated a non-centrosymmetric
structure P2ymn [80] with two different vanadium atoms in the unit cell, forming
chains of two kinds of VO35 pyramids. Analysis of the V-O bond length and of the
Na-V distance showed that these chains are possibly V4*Os and V°+Os chains, resp.
Therefore this compound should behave like a quasi one-dimensional spin system,
because the magnetic V** ions are well separated by the non-magnetic V>* ions.

Several years later this quasi-one-dimensional behavior was found experimentally
in measurements of the magnetic susceptibility by Isobe and Ueda (see Fig.6.3) [81].
They found that NaV,0O5 behaves like a S = % 1D antiferromagnetic Heisenberg linear
chain with a coupling constant of approximately J ~ 560 K. In addition they found
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Figure 6.1.: Crystallographic structure of NaV,05. The pyramids are built by oxy-
gen atoms around a central vanadium site. The sodium atoms are lying
between the V4,05 layers.

Figure 6.2.: One V5,05 layer, where only the oxygen atoms in the ground plane of the
pyramids are displayed. Yellow circles indicate oxygen atoms and black
circles vanadium atoms.

a phase transition at 7T, ~ 35K with a rapid decrease of the magnetic susceptibility
and an opening of a spin gap with A &~ 10 meV, and the unit cell is doubled in a and
b direction and quadrupled in ¢ direction. They supposed that this is due to a spin-
Peierls transition, where a dimerization of the lattice results in alternating coupling
constants, and hence in the opening of a spin gap.

Recent X-ray studies [79,82,83| showed, that the crystallographic structure of
NaV,05 at room temperature is the centrosymmetric structure Pmmn, and the vana-
dium ions are all in the same valence state V™45, The one-dimensional behavior at
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Figure 6.3.: Magnetic susceptibility of NaV,05 measured in a field of H = 17". Solid
line is the fit to the formula for the S = % 1D Heisenberg model. Figure
taken from reference [81].

room temperature was therefore rather surprising, but this puzzle could be resolved
by Horsch and Mack [84], who showed that a rung consisting of two vanadium sites is
the key element of this compound.

Nuclear magnetic resonance (NMR) experiments [85] found a charge-ordering tran-
sition at Tco =~ 35K which occurs at the same [86] or at slightly lower temperature
than the opening of the spin gap. In NaV,0s5, where one d,, electron is shared by two
Vions in a V-O-V rung, the ordering occurs as a static charge disproportion ¢ between
the V ions, which obtain charges 4.5 + ¢ with a zig-zag pattern of d’s. Most prob-
ably, the main driving force for the transition is the Coulomb repulsion of electrons
on the nearest-neighbor sites within one leg of the ladder. For half the ladders the
apical oxygen ion is located below the ladder and for the other half above. Therefore
the crystal environment of the V ions is asymmetric, and the d,, electron is subject
to a strong Holstein-like electron-phonon coupling [87]. As a result, the transition is
accompanied by the displacement of ions from their positions in the high-temperature
phase (T > Tco). They then form a larger unit cell, as clearly seen directly in the X-
ray diffraction experiments [88], where displacements of V ions of the order of 0.05 A
were observed, and indirectly in the appearance of new phonon modes in the infrared
absorption [89] and Raman-scattering spectra [90].

The importance of the coupling to the lattice for phase transitions in quarter-filled
systems was shown in Refs. [91,92]. The low-energy excitations of the zig-zag order
parameter are also strongly influenced by the lattice [93].
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The static properties of the ground state of the quarter-filled ladders without cou-
pling to lattice distortions were extensively investigated using mean-field approaches
[94-97|, the density-matrix renormalization-group (DMRG) [98-100], bosonization
and renormalization-group techniques [101]. The DMRG studies show that at strong
enough onsite interaction the ladders exhibit a zig-zag charge order if the repulsion
between the electrons on the nearest-neighbor sites exceeds some critical value V..
The corresponding phase transition is of second-order as a function of V. For a very
strong intersite repulsion, phase separation becomes possible [99]. Dynamical proper-
ties were studied with exact numerical diagonalization [33, 34,102, 103] without taking
into account the coupling to the lattice. They were quite successful in understanding
NaV,05 dynamical properties above the transition temperature.

The investigation of the ordering of electrons interacting with the lattice requires
the knowledge of electron-phonon couplings and lattice-force constants in addition to
electronic parameters such as hopping matrix elements and electron correlations. For a
given compound almost all of these parameters can be extracted from first-principles
band-structure calculations. The force constants and electron-phonon coupling can
be obtained by comparing the total energies and the inter-ionic forces in distorted
and undistorted lattices. The phonon frequencies required for studies of dynamical
lattice distortions are given by experiment [90], while the necessary knowledge of their
eigenvectors can be obtained from first-principles calculations [79,104]. Here we will
concentrate on the strongest electron-phonon mode present in NaV,Os, which is a
simple Holstein-type interaction [104].

We therefore investigate a model which takes into account the main interactions,
i.e., the Hubbard and intersite repulsions and the coupling to the lattice. We study the
ground-state properties of a quarter-filled ladder coupled to static lattice distortion
with the Lanczos algorithm, and moreover we apply the V-CPT method in order to
investigate the spectral features of this compound, which can be compared to angle-
resolved photo-emission experiments [105, 106].

6.2. Model

The quarter-filled ladder compound o/-NaV,05 can be described microscopically by
an extended Hubbard (or ¢-U-V') model (EHM). For the description of the distorted
low-temperature phase we also include the coupling of electrons to the lattice, yielding
the model

H = Hgyy + H + He (61)
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Figure 6.4.: Schematic picture of single ladders, with hopping matrix elements ¢, on
the rungs, and ¢, along the chains. The darkness of the circles corresponds
to the charges on the sites of the ladder. The upper ladder is shown
without charge order, the lower ladder with zig-zag charge order.

where H, is the lattice deformation contribution, and H,_; the electron-lattice inter-
action. These terms are given by

Heun = — Z tij (czo_cja + H.c.)

(i),0

+U Z U + Z Vijnz-nj, (6.2&)
g (ig)
22
Hi=x) 7, (6.2b)
H_,=-C Z Zin;, (6.2¢)

with the effective lattice force constant x and the Holstein constant C'. The sites are
labeled by the indices 7, j, and z; is the distortion on site 7. The hopping matrix
elements ¢;; connect nearest neighbor sites (ij) (see Fig. 6.4) with occupation numbers
Ng = Nyp + Ny .

The first-principles calculations done in Refs. [79] and [104] yield the intra-rung
hopping t, ~ 0.35 €V, which we will use below as the unit of energy. For the hopping
along the ladder we use t, = t,/2, again in agreement with the band structure results,
whereas previous DMRG studies [98,99] were mostly done at t,/t, < 1.4. For the
onsite Coulomb interaction we use U = 8.0 as estimated in Ref. [79]. We assume
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|

Figure 6.5.: Zig-zag distortions on a single ladder. Top: Undistorted lattice. Bot-
tom: Distorted lattice. The gray scale of the circles indicates the charge
disproportion.

Vij = V to be the same for all bonds, and take V' as a free parameter since there is no
unique procedure of extracting it from the band-structure calculations.

The lattice distortions are expressed in units of 0.05 A since the ion displacement
below Tco are of this order of magnitude [88]. For the pattern of the zig-zag dis-
tortions see Fig.6.5. With the chosen units of energy and length the comparison of
the band structure and lattice force calculations done on distorted and undistorted
lattices give the dimensionless constants k = 0.125 and C = 0.35, respectively [104].
The effective coupling parameter C?/k is close to unity, and, therefore, the lattice
plays an important role in determining the properties of NaV,0Os.

6.3. Results from exact diagonalisation

The Hamiltonian in Eq. (6.1) will be used for calculations with both static and dy-
namical lattice distortions [107]. At first we restrict ourselves to single ladders, which
enables us to do simple finite-size scaling, and calculate the quantities of the system
at zero temperature by the ground-state Lanczos method (see Sec.2.3.2). The largest
Hilbert space for the eight-rung lattice considered in this study was of dimension
Nstates = 1656 592, which could be reduced in special cases by exploiting translational
invariance and S* conservation to Ngates = 103820. The next lattice size admitting
charge order would consist of ten rungs, which is so far beyond our computational ca-
pabilities. The restriction to a single ladder is a considerable simplification compared
to the structure of NaV,0j5, but since the inter-ladder interactions are frustrated their
effect in the zig-zag ordered state is supposed to be of minor importance. Later on
(Sec. 6.4) we will study the influence of inter-ladder couplings by means of the V-CPT
method, too.
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6.3.1. Static properties
Charge order

To investigate the connection between the lattice distortion and charge ordering we
calculated the static charge structure factor

So(@) = 5 S0 ((niny) — (n)?), (6:3)

where N is the total number of sites in the system. The zig-zag charge order parameter
mco can be expressed in terms of this structure factor as

2 _ 1 = (m,m
Mgo = N(,n)gSC(Q)v Q ( ) ) (64)

The term (n)? in the denominator ensures that the order parameter is equal to unity
for full ordering, which in NaV,Oj5 corresponds to the charges of V ions within a rung
to be equal to +5 and +4, respectively.

At this point the lattice distortions z; in the Hamiltonian are external parameters
of the model and not dynamical variables. Therefore they have to be fixed in a proper
way, for which we chose a mean-field approach. Considering the distortions as the
mean-field parameters one can extract the optimal value for the z; by looking for the
minimum in the ground state energy with respect to z;. This procedure could be
done within the unrestricted Hartree-Fock approximation, but this complicates the
calculation because of the larger number of variables for which the minimum has to
be found. Instead we restrict ourselves to a single order pattern, the zig-zag order
[94, 96], which was observed experimentally [88],

2 = 2el@Ti, (6.5)

and investigate the total energy as a function of z. The optimal values of z, where the
total energy reaches the minimum for several values of the nearest neighbor Coulomb
interaction V' determined in this way are indicated by arrows in Fig.6.6. In the
following we denote the position of the minimum in the ground-state energy by zmin-

For interaction strengths of V' = 1.5 up to V = 3.0 a clear minimum occurs at
z &~ 1. Additionally one finds a maximum at z = 0, which results from the z — —z
symmetry of the system. We also found a small distortion for V' = 1.0, but it is
strongly size-dependent and rapidly decreases with increasing length of the ladder,
whereas the distortions marked by arrows in Fig.6.6 are almost independent of the
system size. Therefore we argue that the finite value of z at V = 1.0 is due to finite-
size effects and disappears in the thermodynamic limit. For this reason we did not
mark it with an arrow in Fig. 6.6.
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Figure 6.6.: Ground-state energy per site as a function of the distortion z calculated
on an 8 X 2 system with periodic boundary conditions along the ladder,
and C' = 0.35. From bottom to top: V = 1.0, 1.5, 2.0, 2.5, 3.0. The
arrows indicate the position of the minimum.

This behavior gives a first idea about the charge ordering of the system with
and without coupling to the lattice. From Fig.6.6 one could expect that the charge-
ordering transition in the presence of static mean-field-like lattice distortions occurs
in the region between V' = 1.0 and V = 1.5. In order to investigate this transition we
calculate the order parameter given by Eq.(6.4). This quantity shows strong finite-
size effects, which makes it necessary to apply finite-size scaling. We calculated the
order parameter for systems of four and eight rungs, respectively, the largest system
size available. Although higher-order corrections to the scaling behavior are expected
for these small systems, we performed a 1/Nyyngs extrapolation to 1/Npyngs = 0. This
procedure does not give the exact value of the order parameter in the thermodynamic
limit and does not allow to extract an exact value for the critical Coulomb interaction
V., but it provides the possibility to obtain a rough estimate of the interaction V at
which the phase transition occurs as well as the approximate m (V) dependence.

To study the effects of the lattice distortions we also calculated the order parameter
without coupling to the lattice, that is for C = 0. The results are shown in Fig.6.7.
As one can see in the upper panel where no lattice distortions are present, the order
parameter changes rather smoothly when going from the disordered phase into the
ordered one. A different behavior can be found for finite lattice distortions. Here the
charge ordering sets in at a much lower value of V' than in the absence of distortions. In
addition the transition sharpens considerably. For both zero and finite distortions the
finite size scaled order parameter is slightly negative for small interactions V', which
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Figure 6.7.: Charge order parameter for several values of V. Upper/lower panel: Cal-
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Figure 6.8.: Optimal distortion z.p as a function of the Holstein constant C' for dif-
ferent values of the Coulomb interaction V', calculated on a 8 x 2 cluster.
The horizontal line indicates the experimental result.

is due to the fact that higher order corrections in the scaling have been neglected.
The optimal distortions z for different values of the Holstein constant C' and re-

pulsion V' are presented in Fig.6.8. In our units the distortion found experimentally

in the charge-ordered phase is at approximately z = 0.9 [88], indicated by a horizontal
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Figure 6.9.: Contribution of the lattice energy Eq.(6.2b) (dashed) and the electron-
lattice energy Eq. (6.2¢) (solid) to the ground state energy as a function
of the distortion z, at C' = 0.35. The lattice energy is independent of
V. Electron-lattice energy, from top to bottom: V = 1.0, 1.5, 2.0, 2.5,
3.0. The arrows are drawn where the total energy has its minimum, as in
Fig. 6.6.

line in Fig.6.8. For V = 1.5, close to the charge-order phase transition, this value of
z = 0.9 is reached near C' = 0.33. The distortion close to z = 0.9 is realized also for
other interactions, e.g., deep in the ordered phase at V = 3.0, C' = 0.24. Since, how-
ever, NaV,0j5 is close to a quantum critical point of charge ordering [33], and because
of the value for C' obtained from the band-structure calculations, we conclude that the
system can best be described in the ordered phase using V' = 1.3 and C = 0.35.
When calculating the ground-state energy of the system, the question arises how
the terms in Eq. (6.1) contribute to the total energy, i.e., whether some sort of virial
theorem holds. In Fig. 6.9 the behavior of the two contributions Eq. (6.2b) and Eq. (6.2¢)
is shown. One can easily see that the crossing points of the curves are at the same
value of z at which the ground-state energy reaches its minimum, Fig.6.6. Therefore
we find that a virial theorem, like that for the one-electron polaronic states [108], is

fulfilled in the form .
(Hi) = = 5 {He),

with a relative numerical accuracy of better than 10~%. For large Coulomb interactions
well above the phase transition this high accuracy is likely achieved since the ion

charges depend very weakly on z. Therefore, compared to H, | and H),, Hggy is

almost independent of z
dHgnum

dz

(Zmin) & 0.005,
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Figure 6.10.: (a) A schematic plot of a nonlocal kink-like excitation in an ordered
ladder. The darkness of the circles corresponds to the charges on the
sites of the ladder. (b) Local kink excitation with a sharp change of the
order parameter. The electron states for one of the electrons moving
between sites u and d are degenerate in this case. (c¢) Twisted ("M6bius”)
boundary conditions which produce a kink excitation. The numbers label
the sites in the 8 x 2 cluster from 1 to 16.

and the dependence of H,_(z) in Fig.6.9 is close to a straight line. Then the virial
theorem follows from the functional form of H)(z) and H. ;(z). For smaller values
of the interaction, e.g., V = 1.5, the dependence of the ion charges and Hgmy is
considerably larger

dHgam

dz
Yet also in this case the virial relation is satisfied. The contribution of the sum of the
lattice terms (H) + H, ) to the total energy varies between 19% at V' = 1.5 and 30%
at V = 3.0.

(Zmin) =~ 0.03.

Kink excitations

So far we have considered the perfect zig-zag charge order pattern described by
Eq. (6.5). This ordering can be destroyed by local in-rung excitations where an elec-
tron hops from the site with minimal energy to that with maximal energy, as marked
by black and white circles in Fig.6.4. The excitation energy of this process is 2V,
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Figure 6.11.: Ground-state energy per site as a function of the kink length L, Eq. (6.6).

provided the system is totally ordered, that is mco = 1.0. Another type of excitation
is the formation of a local pair of doubly-occupied and empty rungs, which has the
same energy 2V at mco = 1.0. In addition, there are nonlocal kink-like excitations,
where the order parameter smoothly changes along the ladder between two degener-
ate patterns as shown in Fig.6.10. The nonlocal character of the excitation leads to
a decrease of the excitation energy. Since the lattice is coupled to ion charges by the
Holstein interaction, the kinks couple to the lattice, too.

In order to investigate kink excitations we used the largest system size available,
which is a single ladder consisting of eight rungs, and imposed twisted "Md6bius” bound-
ary conditions [109] as shown in Fig.6.10. The zig-zag distortions of Eq.(6.5) are
modified to a kink distortion

z; = 2697 tanh [7(,” _ ro)ea} , (6.6)
L

with the center of the kink 7 located in the middle between the rungs, L being its

length in units of the lattice spacing, and &, the unit vector in ladder direction.

For interactions up to V' = 1.0 the ground-state energy strongly decreases with
increasing kink length L without a minimum, implying that at this weak coupling
we have no kink excitations in the system. For larger interactions we found a clear
minimum in the ground-state energy. The kink length at V = 1.5is L ~ 2.15, and it
shrinks to L ~ 1.33 at V' = 3.0.

The kink excitation energy is defined as the difference between the ground-state
energy with twisted boundary conditions at the optimal value of L and the ground-
state energy with periodic boundary conditions and static distortions z = zp;,. It is
shown in Fig.6.12. In the fully ordered state and in the atomic limit where V > ,,
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Figure 6.12.: Kink excitation energy as a function of the interaction V. It is zero for
V < 1.0. The lines are guides to the eye.

the kink potential energy AF is close to V' (see Fig.6.10). The actual total energy
is considerably smaller since the kinks are extended and since at the kink boundary
the electron energy on the upper (u) and lower (d) legs become degenerate as shown
in Fig.6.10, and therefore the intra-rung hopping becomes more likely. The hopping
kinetic energy of the order of —#, decreases the total energy of the system, leading to
the result shown in Fig. 6.12.

For weak interactions, where the kinks are well extended and m%, < 1, our results
can be compared with a model calculation in a classical ¢* model for infinite ladders
[93] which gives

1
L= (6.72)
V-V,

AE =2V (V = V)%, (6.7b)

where V, is the critical value of the Coulomb interaction for the phase transition. To
make a connection to our results, we estimate V. from Egs. (6.7a) and (6.7b) for the
distorted lattice at V = 1.5 and C' = 0.35 independently and compare them. From
L and AFE we obtain V, = 1.28 and V., = 1.05, respectively. These values are in
reasonable agreement with each other and consistent with the behavior of the order
parameter, see Fig.6.7.

At all values of V' the kink excitation energy with lattice coupling is larger than
the excitation energy without coupling shown as dashed line in Fig. 6.12. This can be
understood since at a fixed value of V' > V, the charge order parameter is larger for
the distorted lattice. Since the ordering is more complete, the kink lengths are smaller
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Figure 6.13.: Charge susceptibility calculated on an 8 x2 ladder. Upper panel: without
lattice coupling. Lower panel: With lattice coupling (C' = 0.35). The
wave-vector scan consists of the two ranges (¢q,¢)/m = (0,0) — (0,1)
and (1,0) — (1, 1), separated by a tick mark on the horizontal axis. An
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additional broadening of width n = 0.1 was used.

which increases the excitation energy. Note that without lattice coupling we have no
parameter L like in Eq. (6.6) for the determination of the kink length.

6.3.2.

In the previous section we only considered static properties. However, enlightening
insight into the physics of the system can be extracted from dynamical correlation
functions showing the spectra of charge and spin excitations. The corresponding sus-

Dynamical properties
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Figure 6.14.: Charge gap A¢ at ¢ = Q of the charge susceptibility as a function of
V. Solid lines: 8 x 2 ladder. Dashed lines: 4 x 2 ladder. Open symbols:
Without lattice coupling. Full symbols: With lattice coupling (see text
for case V = 1.0).

ceptibilities are given by
Xel@.0) = [t ng(t)n ) (6.82)
xslaw) = [de(S;057,), (6.8b)

where ng(t),n_q and Sj(t),S?, are the the Fourier transforms of the charge and of
the z-component of spin densities, respectively.

We calculated the charge susceptibility Eq. (6.8a) on a ladder consisting of eight
rungs with pbc along the ladder. The results are shown in Fig.6.13. We define the
charge gap A¢ as the energy at which the lowest-lying excitation of the charge sus-
ceptibility occurs. The corresponding momentum is always g = Q. In the disordered
phase we have no gapless charge excitation. When increasing the Coulomb interaction
V', the gap at ¢ = @ decreases as shown in Fig.6.14, and all other charge excitations
become insignificant. The charge gap does not vanish exactly for C' = 0, i.e., without
coupling to the lattice, but appears to go to zero as Nyyngs — 00. When the coupling
to the lattice is switched on, the gap is exactly zero in the ordered phase where the
symmetry is broken explicitly. The charge gap behaves in a similar way as the order
parameter (Fig.6.7), namely: without electron-lattice coupling it changes smoothly
across the phase transition, whereas the changes for finite coupling are significantly
sharper.

In Fig.6.13 at V' = 1.0, a gapless excitation at ¢ = Q can be seen, which occurs
due to a small but finite distortion. As already discussed in Sec.6.3.1, this distortion
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Figure 6.15.: Spin susceptibility calculated on an 8 x 2 ladder. Upper panel: with-
out lattice coupling. Lower panel: With lattice coupling (C' = 0.35).
Presentation like Fig. 6.13.

is finite only due to the finite-size effects and should be zero in the thermodynamic
limit.

We note that the gap Ac in the charge spectrum is different from the one commonly
used in DMRG calculations, A := [Ey(N + 2) — Ey(NV)]/2, where Ey(N + 2) and
Ey(N) are the ground-state energies for systems consisting of N 4+ 2 and N particles,
respectively. Indeed, as a function of V, A shows a behavior opposite to Ac, with
A = 0 in the unbroken phase and A > 0 at large V' [99].

The spin susceptibility (Eq.(6.8b)) calculated on the same system is shown in
Fig.6.15. The momentum scan consists of two ranges, from (g4, ) = (0,0) to (0,7),
and from (7,0) to (7, 7). In the first range (¢, = 0) one can clearly see the disper-
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Figure 6.16.: Effective magnetic exchange interaction Jeg in ladder direction in units
of Jo (V' = 0.5) as a function of V, extracted from the spin susceptibility
Eq. (6.8b). The interaction is shown with (solid line) and without lattice
coupling (dashed line).

sion of an effective one-dimensional Heisenberg model, as predicted by perturbation
theory [84]. The main change of the spin susceptibility as a function of V in this
range is a decrease of the effective magnetic exchange interaction J.g with increasing
charge order. It can be extracted from the spin dispersion using Jog = 2w(0,7/2)/7
(Ref. [110]), and is shown in Fig.6.16. According to magnetic susceptibility measure-
ments [111], Jes in the low-temperature phase is approximately 0.8 of the exchange
in the disordered phase. Our results are in a good qualitative agreement with these
data in the sense that an increase in charge order goes together with a decrease in
Jet [112]. However, a quantitative comparison cannot be made since in the experi-
ment the ordering and, correspondingly, J.g, are traced as a function of temperature
for given other system parameters while we investigate the ordering at 7" = 0 as a
function of the extended Hubbard repulsion V. Our calculation also agrees well with
the analytical results of Refs. [99] and [113], where it was shown that the exchange
rapidly decreases with increasing V. Quantitatively, at V = 3,C = 0 our results give
Jet & 0.06 while perturbation theory [99,113] predicts Jog ~ 0.04. Moreover, for
V =1.3,C = 0.35, which give a lattice distortion close to the value observed exper-
imentally (see Fig.6.8), the exchange parameter in Fig.6.16 is about 67 meV which
is very close to the experimental 60 meV observed in the inelastic neutron scattering
measurements of Ref. [114].

The second range in the spin spectrum (Fig.6.15), with g, = 7, shows only high-
energy excitations at small V', but again an effective Heisenberg dispersion at large V.
For small V' the gap in the spin spectrum is very close to the charge gap, indicating
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Figure 6.17.: Spin susceptibility in the disordered phase at V' = 0.5 for hopping along
the ladder ¢, = 0.5 (left) and ¢, = 0.3 (right). Momentum scan as in
Fig.6.13.

that it is due to charge excitations. To verify this conjecture, we calculated charge and
spin susceptibilities in the non-interacting limit V' = 0, with ¢, = 0 (isolated rungs). In
this case charge and spin susceptibilities are equal for g, = 7 and the gap is exactly the
difference between the bonding and the anti-bonding state given by 2t,. Secondly, we
analyzed the dependence of the spin susceptibility on the hopping ¢, along the ladder
in the disordered phase at V = 0.5 (Fig.6.17). Whereas the dispersion for g, = 0 scales
as t2, which is clear evidence of the magnetic origin of these excitations, the difference
between the maximal and minimal excitation energy for ¢, = 7 scales as t,. These
observations show a direct interplay between the spin and the dipole-active charge
excitations, which is similar to the "charged" magnons introduced in Ref. [115,116]
for interpretation of the infrared absorption spectra of NaV,Os.

It is interesting to note that the spin spectra in the ordered phase appear to possess
a mirror symmetry with respect to the central tick mark in Fig.6.15. To quantify
this observation, the dispersions of the low energy excitations at V' = 3.0 have been
depicted in Fig.6.18 The dispersions for ¢, = 0 and g, = 7 are indeed very similar.
Without lattice coupling the dispersion with ¢, = 7 is shifted upward compared to
¢o = 0 because of the small but finite charge gap at V = 3.0 (see Fig.6.14). With
lattice coupling and at interactions where no charge gap occurs the agreement is even
better. This behavior can be understood in the following way. In the disordered phase
where each electron on a rung occupies a molecular orbital consisting of two sites,
momenta ¢ = (0,7) and ¢ = (7,0) are not equivalent (same spin on the two sites
of the rung, versus opposite spin on two sites of neighboring rungs). In this phase
pure spin excitations with g, = 7 are not possible since they require different spins
on different sites within a rung. This could be achieved only by exciting another
electronic state within the rung, which has the energy 2¢,. In the totally zig-zag
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Figure 6.18.: Spin dispersion in the ordered phase at V = 3.0 extracted from Fig.6.15.
Bottom: with lattice coupling, top: without lattice coupling. Direction
of momentum scans: Solid lines: (0,0) — (0,7), dashed lines: (7,7) —
(m,0).

ordered state where the electrons are located on one site of the rung, these momenta
become equivalent. The same holds for momenta ¢ = (0,0) and ¢ = (7, 7).

The overall effect of charge ordering on the dynamical susceptibilities can best be
seen by comparing the plots for V= 2.5,C = 0.0 and V = 1.5, C = 0.35, where the
values of the order parameter are similar, see Fig. 6.7. The spin and charge excitations
shown in these plots are qualitatively the same and the susceptibilities differ only
slightly on a few points. From these figures we conclude that the dynamical spin and
charge susceptibilities of the system mainly depend on the order parameter but not
on the way in which the order has been achieved.

6.3.3. Hubbard-Holstein model

So far we have only considered static distortions of the lattice. Although this is
a good approximation if the dynamic fluctuations around these equilibrium positions
are small, quantum phonon effects can play an important role, especially in the critical
region. In this section, we therefore consider the Extended Hubbard-Holstein model
(EHHM)

1 K
H = Hpmi+ Y [mﬁ? + 523 — Cznil, (6.9)
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with Hgyy defined in Eq. (6.2a) and M being the mass of the local oscillators. The
operators Z; and p; are the coordinate and momentum of the ion on lattice site ¢, and
all other quantities are defined in Eq. (6.1). When expressed in phonon creation and
annihilation operators, it reads (up to a constant)

H = Hgpy +wo Y _blb; —g > (b + ;). (6.10)
% %

Here b} (b;) creates (annihilates) a phonon of frequency wy (with & = 1) at lattice site
1, and the phonons are locally coupled to the electron density with coupling strength
g = C\/ CLJ()/QKZ.

We would like to point out that the nature of the local phonon mode in Eq. (6.10)
is not specified and could correspond to one of several phonon modes in the vanadates.
Clearly, the use of dispersionless Einstein phonons neglects any coupling between
lattice distortions of neighboring sites. However, a coupling of the Holstein type is
the strongest phonon mode in NaV,Oj [104]. It also represents the simplest model for
electron-phonon interactions, and has been successfully used to describe the physics
of other transition metal oxides such as the manganites [117].

Compared to exact diagonalization of the model described by the Hamiltonian in
Eq. (6.1), an additional difficulty arises in the case of the EHHM since the number of
phonons is not conserved. Consequently, even for a finite number of lattice sites, the
Hilbert space contains an infinite number of states, and has to be truncated in some
way in order to apply the Lanczos method. For this reason the size of the systems
which can be investigated is also considerably reduced. We restricted ourselves to a
lattice with four rungs and chose a subset of the phonon states as [118, 119]

N v

o =TT —— ()" 0} (6.11)

where 1) denotes the number of phonons at lattice site i and |0)ph is the phonon
vacuum state. Alternatively, the basis states could also be formulated in momentum
space as in Ref. [118].

Now the truncation of the Hilbert space consists of restricting the total number of

phonons in the |r),, subset as:
N

> v < Non (6.12)

i=1

leading to (Nph+N —1)!/(Npn! (N —1)!) allowed phonon configurations for N sites. We
would like to point out that the set of basis states in Egs. (6.11) and (6.12) consists of
all possible phonon states with up to /N, phonons excited. In particular, the Hilbert
space includes all linear combinations of such states.
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Usually, Ny, is increased until convergence of an observable of interest O is achieved.
The latter can be monitored by calculating the relative error
[O(Nph + 1) — O(Npn)|
|O(Npw)|

Due to the complexity of the EHHM and the value of parameters, it is not possible
to include enough phonon states to obtain converged results. Nevertheless, as in the
case of the pure Holstein model [120] it is still possible to deduce the tendency of
the results as Ny, is increased and thereby obtain information about the exact results
(corresponding to Npp = 00).

To reduce the required number of dynamical phonons, it is expedient to introduce
static distortions z; as a coordinate transformation 2; = z; + Z; so that quantum
fluctuations Z; take place around the position z;. Applying this transformation to
Eq. (6.9) yields

+> [—ﬁ? + g:ﬂ + (k2 — Cni)ii] , (6.13)

which in second quantization results in an expression analogous to Eq. (6.10). Note
that the first line in the above equation is the same as Eq.(6.1). For the static
distortions z; we again use the zig-zag order pattern, Eq.(6.5), and determine the
optimal value of z by minimizing the ground-state energy in the presence of phonons
yielding a static distortion zg,;, which is related to zy;, introduced in Sec.6.3.1 by
“Zmin = <stat (Nph = O)

Note that we perform this coordinate transformation only because the number of
phonons accessible in our calculations is very small, and in this case it is better to start
from a different equilibrium position z = zg,¢ and not from z = 0. If it were possible to
use [Npp = 00, this coordinate transformation would have no influence on the physical
results and the actual lattice distortions would be produced by the dynamical phonons
as a coherent state of oscillators associated with the ions, independent of any initial
coordinate transformation. Of course the broken symmetry would only occur in the
thermodynamic limit, while correlations of the phonon positions exist already on finite
lattices.

The effect of dynamical phonons on the charge order parameter is shown in Fig. 6.19.
We did calculations for several values of V' at phonon frequencies wy = 60meV and
wo = 125 meV, the two most relevant modes in NaV,Os [104]. The smaller frequency
belongs to a collective vibration which includes displacements of the vanadium and
oxygen ions, whereas the larger one corresponds to a vibration of the apical oxy-
gen along the z axis. From the upper panel of Fig.6.19 one can easily see that
for the nontransformed coordinates (circles) the inclusion of dynamical phonons with
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Figure 6.19.: a): Order parameter m2g, calculated on a cluster with four rungs.
Phonon parameters are C = 0.35, k = 0.125, and wy = 125 meV. Pa-
rameters are chosen as shown in the caption. b): AmZ, = miy(Npn =
3)—méo (N = 0) for two phonon frequencies wy = 60 meV and 125 meV.
Upper two curves: Without static distortion. Lower two curves: with
static distortion. The dotted line marks Amé, = 0.

wo = 125meV considerably increases the charge order. Calculations with Ny, = 1
and 2 (not shown) revealed that the increase is monotonic in the number of phonon
states and we conclude that for convergence many more phonon states would be nec-
essary. For the distorted lattice (diamonds), the dynamical phonons actually decrease
the charge ordering for V' > 1.0, and the strongest effect occurs in the vicinity of the
phase transition at V = 1.0 and V = 1.5. The reason for this decrease is that zga; is
shifted downward with increasing number of dynamical phonons. At V' = 1.0, where
a finite zya at Npp = 0 is a finite size effect (Sec.6.3.1), 2sa is reduced to zero for
Npn = 3. At V > 1.5 the relative change in zg,, is similar to that in m%, (Fig.6.19).
We want to mention that the two solid curves in the upper panel of Fig.6.19 give an
upper and a lower boundary for the actual value of the order parameter on the four
rung lattice, since for Ny, — 00 results for z = 0 and 2 = 2z, become equivalent, as
discussed above.

In the lower panel of Fig. 6.19 the difference AmZ of the order parameter in the
presence of dynamical phonons to Ny, = 0 is shown including data for wy = 60 meV.
For z = 0 (upper two curves) this deviation is positive and the effect is always larger
for wy = 125meV, which corresponds to a larger value of g. For z = 2y, (lower two
curves) it is negative for V' > 1.0. The crossing at V = 1.0 is due to the small finite
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Figure 6.20.: Correlation function C, as defined in Eq. (6.14) without static distortions
for wg = 125 meV. The number of phonons is given in the caption.

value of zg,y for Ny, = 0, i.e., a finite-size effect.
It is interesting to study the order pattern of the dynamically induced distortions.
For this purpose we define the correlation function

C, = % Xij:eiQ(m—rj)<(2i — (&)) (2]- — (2]>)>, (6.14)

which measures the zig-zag ordering of the lattice distortions, similar to Eq. (6.4) for
the charge densities. For the nontransformed coordinates it is depicted in Fig.6.20
for wy = 125meV and different numbers of dynamical phonons. From this figure
it is clear that dynamical phonons induce zig-zag lattice distortions which strongly
increase around the phase transition point. Note that the correlation function C) is not
normalized to the interval [0, 1] since lattice distortions are not conserved quantities,
different from, e.g., charges.

For the transformed coordinates we can calculate the dynamically induced zig-
zag distortions zqy, directly from the expectation values (Z;) since the symmetry of
the system is broken explicitly. Results show that the sum 2y = Zstat + 2ayn Of the
static distortion and the dynamically induced distortion is always smaller than the
value zmin determined in section Sec.6.3.1, and this effect is most pronounced near
the phase transition. For V' = 1.5 and Ny, = 3 we got zgar = 0.889 and 24y, = 0.013
yielding a total zig-zag distortion of 2y = 0.902, which is noticeably smaller than
Zmin = 1.001 for Ny = 0. Well above the transition point the dynamically induced
distortions are very small, for instance for V' = 3.0 and N,, = 3 calculations gave
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Figure 6.21.: Clusters used for the V-CPT calculations. The diagonal hopping t; is
indicated only once, but is present equivalently between other sites. De-
coupled bonds treated perturbatively are marked by dashed lines, and
the boxes show the clusters of finite size. Left: Single ladder with 6 x 2
cluster. Right: Super cluster consisting of two 12 sites clusters.

Zayn = 0.0005, and 2z, = 1.290 is only slightly smaller than 2y, = 1.294.

From this analysis we conclude that using just static distortions gives qualitatively
correct results but overestimates the lattice distortions, in particular in the vicinity of
the phase transition. The value of the order parameter in the full dynamical model
with Npy, = oo will therefore be somewhat smaller than in Sec.6.3.1, as discussed
above.

6.4. Spectral properties of NaV30s5

So far all calculations have been done using the ground-state Lanczos method. In this
section we study the single-particle properties of NaV,05 by means of V-CPT [121].
Since the inclusion of nonlocal Coulomb interactions is of crucial importance in this
compound, we have to apply the extension of V-CPT presented in Sec.5.1.

In this section we do not only investigate single ladders but also the inter-ladder
coupling. The clusters necessary for these studies are shown in Fig.6.21. On the left
hand side a cluster for single-ladder calculations is shown, consisting of Nyypes = 6
rungs and N, = 12 sites, respectively. Of course the number of rungs can be varied,
and we used up to eight rungs for the forthcoming calculations. The right plot shows
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the N, = 2 x 12 super cluster used for the investigation of the inter-ladder coupling.
The super cluster has to be used, because otherwise the charge-order pattern would
not fit into the clusters of finite size, similar to the super cluster used in Sec.5.3.
In addition the hopping parameters used in the Hamiltonian Eq. (6.1) are indicated
in Fig.6.21. The parameters ¢, and ¢, have already been introduced in the previous
sections, and again we use ¢, as the unit of energy. The additional hopping parameters
tq¢ and t,, will be discussed in the according sections.

Before turning to the results we want to mention a technical difficulty that arises
in these calculations. Since calculations are not done at half filling, the chemical po-
tential p is not known a priori. Note that the Hamiltonian (6.1) does not include
1, different to the Hamiltonians used in the previous chapters. In general the chem-
ical potential has to be determined from the self-consistent procedure described at
the end of Sec.2.2.1. However, here this cycle can be avoided. One can infer the
chemical potential directly from the energies of the excited states obtained by exact
diagonalisation. An approximate value for the chemical potential is then given by

Bt + B
pep = s, (6.15

with EEES the minimal energy of inverse-photo-emission (IPES) states and ELES the
maximum energy of photo-emission (PES) states. This value only weakly depends
on the mean-field and variational parameters, and as discussed below we found in
all our calculations a well established gap between the PES and IPES states yielding
a constant density n in a reasonably large neighborhood of the physical chemical

potential u. Therefore pugp gives a reasonable approximation for our calculations.

6.4.1. Results for single ladders
Critical interaction

We start our investigations with decoupled ladders, i.e., ¢z, = 0 and V,, = 0 (see
the left sketch of the lattice structure in Fig.6.21). Before we turn to the spectral
function, we study the charge-ordering transition as function of V. Since we apply a
mean-field decoupling of the nonlocal Coulomb interactions across cluster boundaries
as described in Sec.5.1, we first study the effect of this approximation. For this
purpose we treat the EHM without coupling to the lattice in the limit of exactly one
electron per rung and ¢, = 0, and the Coulomb interaction between different rungs is
taken into account within the mean-field approximation. This consideration gives a
second-order phase transition between a disordered state and a zig-zag ordered state
at a critical interaction of VMF = 1.0. On the other hand this special limiting case
is exactly solvable by a mapping to an Ising model in a transverse field 96|, yielding
a critical interaction of V&2 = 2.0 [122-124]. That means that we expect strong
mean-field effects, since in this special limit we found V&t = 2VMF_ Since it can
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Figure 6.22.: Grand potential Q(d) as function of mean-field parameter § with a 6 x 2
cluster serving as reference system, and without coupling to the lattice.
Upper panel: V = 1.5. Lower panel: V = 1.7.

be assumed that a finite value of the hopping between adjacent rungs ¢, weakens the
charge ordering, the actual critical value V. is presumably located slightly above 2.0
when ¢, is finite.

In order to determine the order of the transition within the framework of V-CPT it
is sufficient to calculate the grand potential 2, Eq. (2.15), as function of the mean-field
parameters. Since our system is quarter filled we consider only one parameter § giving
mean-field electron densities (n) + ¢ and (n) — ¢ on sublattices A and B, respectively.
It was argued in Sec. 5.2 that for second-order phase transitions it might be important
to include a fictitious staggered chemical potential, Eq. (5.9), as variational parameter.
Our calculations showed that in the present case the inclusion of such a field does not
have any significant effect and the relative change in €2 is at most of the order of
10=%. For this reason all further calculations are done without a staggered chemical
potential.

We found that the spectral function is gapped around the chemical potential, which
means that the frequency integrations, which are necessary for the evaluation of (2 do
not strongly depend on u.

Fig.6.22 shows the dependence of Q(4) on the mean-field parameter § calculated
with a 6 X 2 cluster as reference system, and the hopping parameter along the ladder
was t, = 0.5. One can easily see that the system undergoes a continuous phase
transition, which is located between V' = 1.5 and V = 1.7. For simplicity we set
V, =V, = V. This value for the critical interaction is considerably smaller than the
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Figure 6.23.: Finite-size dependence of the critical Coulomb interaction V. without
lattice coupling. Error bars are due to the finite step AV = 0.01 in
the calculations. Dotted line: Linear extrapolation of the 8 and 6 rung
cluster. Dashed line: Quadratic extrapolation of the 8, 6, and 4 rung
cluster.

above mentioned value of the analytical solution, but the agreement is much better
than the result of a purle mean-field consideration.

In order to study the finite size dependence of the critical Coulomb interaction we
did calculations on clusters of different length, and the results are depicted in Fig. 6.23.
The steps in V' in our calculations were AV = 0.01, which results in error bars of
AV, = 0.005. As expected V, is too small for all considered cluster sizes, and it is
strongly finite-size dependent. From Fig. 6.23 we can expect that for larger cluster sizes
the critical interaction V, increases further and reaches the assumed value of slightly
above 2.0, but for a more sophisticated finite-size scaling our cluster sizes are too small.
Nevertheless it is possible to study the spectral function both in the disordered and
the ordered phase, although the critical Coulomb interaction is somewhat different
from the value in the thermodynamical limit. Since the calculations for the 8 x 2
ladder are very time consuming, all single-ladder spectra presented in the following
are determined with a 6 x 2 ladder as reference system.

Disordered phase

We start our investigations of the spectral function with the disordered high-temperature
phase. Since the system is supposed to be near a quantum critical point between or-
dered and disordered phase, we choose the nearest-neighbor interaction to be slightly
below the critical value. To be specific we set V =V, = V, = 1.3, t, = 0.5.The
result of this calculation is shown in Fig.6.24. An additional Lorentzian broadening
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Figure 6.24.: Single-particle spectral function A(k,w) calculated on a 6 x 2 ladder in
the disordered phase at V, = V, = 1.3. Top panel: Momentum &k, = 0
perpendicular to the ladder. Bottom panel: k, = w. The dashed line
marks the chemical potential calculated by Eq.(6.15), the dotted line
marks the result obtained from Eq. (2.20).

of n = 0.1 is used for all spectra shown in this section. The dashed vertical line marks
pep calculated from Eq. (6.15), and the dotted line denotes pucpr determined from the
condition Eq. (2.20). For the latter quantity the sum over momentum vectors had to
consist of about 80 k vectors in order to get a well converged result. It is easy to see
that ugp = 1.71 lies exactly in the middle of the gap, whereas pucpr = 1.23 is located
at its lower boundary. But since there are no ingap states both values of i give approx-
imately the same average density n, and the ground-state energy Ey = 2+ u/N hardly
depends on whether we use pugp or pcpr. These facts confirm that our approximation
to use 4 = ugp as chemical potential gives correct results, and in addition the numer-
ical effort for this procedure is much less than for the above described self-consistent
determination of p.

As one can easily see in Fig.6.24 the spectral function exhibits a well defined gap
around the chemical potential, a clear indication of insulating behavior. In order to
check if the insulator is only stable above some critical intersite Coulomb interaction,
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Figure 6.25.: Gap A in the spectral function as function of V,. Squares: V, = 0.
Diamonds: V, = V.

we calculated the gap A at (k,, k») = (0,7/2) as function of the intra-rung interaction
V,. We studied two cases with V, = 0 and V}, = V,, respectively, and the results are
shown in Fig.6.25. Note that for V;, = 0 no mean-field decoupling is needed, since
there are no interaction bonds between different clusters. At V, = 0, where both
cases are equivalent, we found a finite value of the gap, A ~ 0.55. We checked the
finite size dependence by calculating the gap on a 4 x 2 cluster giving A = 0.59. By
applying a 1/Nungs extrapolation to Nyyngs = 00 one gets A & 0.47, indicating that
the curves in Fig.6.25 somewhat overestimates the value of the gap for the infinite
ladder. Nevertheless we conclude from our calculations that the system is insulating
already for small values of V,,. This is consistent with DMRG calculations [98-100],
where for ¢, > t, a homogeneous insulating phase is found for V' = 0. The behavior of
the spectral function is also in agreement with ED calculations on small clusters for
V = 0, where for large enough ¢, an insulating state has been found [103]. Similar
results have been obtained by Kohno for the U = oo Hubbard ladder [125].

In the case V, = 0, which means that there is no Coulomb interaction between
adjacent rungs, we found that A increases linearly with V,. For V, = V, the gap
is slightly larger and the deviation increases with increasing V,,. Here the system
undergoes a phase transition at V, &~ 1.625, which results in the kink in A around this
critical value. Note that for V, = 0 such a phase transition is not possible.

Let us now discuss the spectral features as shown in Fig.6.24. For k, = 0 the
spectral function looks very similar to that of the half-filled one-dimensional Hubbard
model with a totally filled lower and an empty upper Hubbard band. Different to the
1D Hubbard model the gap between these two bands is not determined by the onsite
interaction U, but mainly by the intra-rung interaction V,, as discussed above. At
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Figure 6.26.: Magnetic properties of a single ladder at V, = V, = 1.3. Upper panel:
Spin correlation function S, = (S7S7,,) calculated on an isolated 6 x 2
cluster. For the meaning of r see text. Lower panel: Grand potential {2
as function of the strength of the fictitious magnetic field Eq. (6.16).

ky, = 0 one can see signatures of spin-charge separation, where the band is split into a
low energy spinon band (at approximately w — u &~ —1.5) and a holon band at slightly
higher energy (w — p &~ —2.0). This splitting has not been seen in experiments [105],
since they are very narrow in energy and temperature effects did not allow a high
enough experimental resolution. However, by studying the temperature dependence
of ARPES spectra, it was argued that subtle spectral-weight redistributions can be
related to spin-charge separation [106]. Some spectral weight can be found at very
high energies of about (w — u) & 8.5, which is close to the onsite energy U = 8 and
can thus be related to doubly occupied sites.

As shown by LDA calculations [104], infrared (IR) experiments probe transitions
near the I' point, that is between even (0,0) and odd (0, 7) states in the language
of single ladders. From Fig.6.24 one can extract an excitation energy of roughly
3t,, which is in well agreement with the experimentally found 1eV absorption peak
[115,126].

The lower and upper Hubbard band disperse with period 7 indicating a doubling
of the unit cell in real space, similar to the 1D Hubbard model. In order to determine
the origin of this doubling we calculate the real-space spin correlation function S, =
(S7Si.,) within the cluster by exact diagonalisation, where S} and S7 . are the z-
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components of a spin on the cluster boundary and on a rung with distance r to the
boundary. In the upper panel of Fig.6.26 this correlation function is shown for two
different paths, where the solid line is S, along one leg of the ladder, and the dashed
line is S, on a zig-zag path through the ladder. Both correlation functions show
clear antiferromagnetic correlations along the ladder similar to results obtained by the
finite-temperature Lanczos method [34]. By applying a fictitious symmetry-breaking
magnetic field via the operator O(R), Eq. (2.24), we can determine whether this order
is of long range type or not. Similar to Eq. (4.2) we choose for this field

Agp = hbapz,e @7, (6.16)

where z, is £1 for spin projection 1,, h is the field strength, and r, is the lattice
vector of site a. The wave vector Q is set to (0,7) yielding a staggered field along
the ladder. The dependence of {2 on this fictitious field is depicted in the lower panel
of Fig.6.26. Similar to the one-dimensional Hubbard model at half filling discussed
in Sec.4.2, there is only one stationary point at A = 0, which means that the system
does not show long-range antiferromagnetic order, but is rather in a paramagnetic
state with short-range antiferromagnetic correlations.

The above considerations show that the system exhibits short-range antiferromag-
netic spin correlations along the ladder, which can produce the doubled unit cell.
Nevertheless it is also possible that the doubling of the unit cell is due to short-range
charge correlations and not due to spin correlations. In order to clarify this point we
calculated the spectral function at V, = 0 and finite V,, where no charge ordering is
possible. Also in this case the periodicity of the bands with largest spectral weight
was m at k, = 0 and 27 at k, = m. This shows that the doubling of the unit cell is
mainly due to short-range spin correlations, and charge correlations play only a minor
role in this context.

When turning to k, = 7 the spectral function looks totally different. As on can
easily see in Fig. 6.24 there is hardly any spectral weight below the chemical potential,
which means that there are no occupied states in the channel k£, = 7. This can be
understood, because k, = 7 corresponds to a antibonding state within a rung, which
has energy 2t, relative to the bonding orbital and is therefore not populated in the
ground state.

An obvious difference between the spectra for k£, = 0 and k, = « is that in the latter
case the excitations with largest spectral weight located between w ~ 3 and w ~ 4.5
disperse with periodicity 27 instead of w. Qualitatively this can be understood as
follows. When inserting a particle with k, = 0, this electron will occupy a state in
the bonding orbital. Since one of the two states in this orbital is already occupied,
the additional particle must have opposite spin, and thus this particle is connected
to the antiferromagnetic background. A particle with k, = 7 occupies a state in
the antibonding orbital, and since this orbital is not occupied, both spin directions
are of equal possibility. Therefore an electron with k, = 7 is not influenced by the
antiferromagnetism in the ground state.
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Figure 6.27.: Spectral function A(k,w) when the diagonal hopping is included, t, =
0.25, tg = 0.25. The Coulomb interaction was V,, = V;, = 1.3. The dotted
line marks the chemical potential.

Disordered phase including diagonal hopping

So far we studied single ladders only with hopping parameters ¢, and ¢, and neglected
additional hopping processes. By including the additional hopping term ¢; in a massive
downfolding procedure Mazurenko et al. [127] found ¢, ~ 0.38 €V, which is consistent
with the value given in Sec.6.2, but the values ¢, = 0.084 and t; = 0.083 differ
considerably from previous studies. These hopping processes were important in first-
principle calculations in order to fit the LDA bands correctly [128]. Moreover t, was
important in C-DMFT calculations in order to describe the insulating state in the
disordered phase correctly [127]|. In this section we study the effect of ¢; within the
V-CPT framework.

In Fig.6.27 the spectral function is shown for V, =V, = 1.3, t, = 0.25 and t; =
0.25, where the hopping parameters are chosen similarly to Ref. [127]. Whereas the
spectrum at k, = 0 is almost indistinguishable from Fig. 6.24, we see a big difference at
ko = m. There is still hardly any spectral weight below the Fermi energy, but the band
with largest spectral weight above the Fermi level is now located at approximately
w — i~ 2.0 and is almost dispersionless.
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From a qualitative point of view this can be explained by the dispersion of non-
interacting fermions on a two-leg ladder in the presence of diagonal hopping, which is
given by

e(k) = — tycosk, — 2ty cos ky,

6.17
— 2tqcos kg cos ky, ( )

where the values for £, are restricted to 0 and 7, and in these two cases the dispersion
can be written explicitly as

e(ky = 0,kp) = —ty — 2(ty + tq) cos ky
E(k‘a =T, k‘b) = +t, — 2(tb — td) COS k'b.

This means that for k£, = 0 the bandwidth is determined by the sum of ¢, and g,
whereas for k, = 7 it is set by the difference of these two hopping processes. Since
we used t, = tg = 0.25, this fits perfectly to the spectrum shown in Fig.6.27. The
sum is equal to the value of ¢, used for the calculations without diagonal hopping (see
above), and the difference is equal to zero, which explains the dispersionless band at
ko, = .

The picture that evolves from our calculations is somewhat different to that ob-
tained in first-principle and C-DMF'T calculations. To begin with the bands obtained
from the LDA all disperse with periodicity 27 and not 7 along the b direction, as
observed experimentally. Moreover we could not find any signature of a flattening
of the upper d,, bands in the direction k = (0,0) — (0,7) when a diagonal hop-
ping is included. The main difference of our calculations to C-DMF'T results is that
C-DMFT finds a metal-insulator transition at some finite value of V', and this transi-
tion point is shifted downward significantly when ¢4 is included [127]. In contrast we
find an insulating state at reasonable values of U already for V = 0 consistent with
DMRG calculations, which does not depend on the inclusion of ¢;. The discrepancy
to C-DMFT calculations are very likely due to the fact, that the cluster used in the C-
DMEFT calculations consisted only of a single rung, and fluctuations along the ladders,
which seem to be very important in this system, have been neglected altogether.

Ordered phase

In the previous sections we studied the spectral function only in the disordered phase.
Now we turn our attention to the charge-ordered low-temperature phase. Similar to the
calculations in Sec.6.3 we cannot describe the charge-ordering transition as function
of temperature, because some very subtle effects are not included in our simple model
Hamiltonian, Eq. (6.1). Similar to Sec.6.3 we investigate two different driving forces
for the occurrence of a charge-order pattern, (i) the coupling of the electrons to lattice
degrees of freedom, and (ii) nearest-neighbor Coulomb interaction.
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Figure 6.28.: Spectral function A(k,w) in the ordered phase driven by coupling to the
lattice. The Coulomb interaction was V, = V, = 1.3. The dotted line
marks the chemical potential.

Let us start our investigations with possibility (i), the coupling to the lattice. In
order to keep the calculations simple, we consider only static lattice distortions. The
incorporation of dynamical phonon effects would results in an infinitely large Hilbert
space, similar to Sec.6.3.3. In order to get well converged results for the spectral
function, many phonon states are necessary, and calculations could so far only be
done for the polaron [129] and bipolaron problem [130].

A few words have to be mentioned about the determination of the static distortions
z; in the Hamiltonian Eq. (6.1). First we did not treat the distortions on different sites
independently, but we assumed a zig-zag charge order pattern, Eq. (6.5). In Sec.6.3
the optimal value of z was determined by the minimum in the total energy. Here we
use a very similar approach, but instead of the total energy we use the SFA grand
potential, Eq. (2.15). That means that the grand potential is now a function of two
external parameters, the mean-field parameter § and the static distortion z. The
proper choice for these two parameters is given by the minimum of €(d,2) on the
two-dimensional manifold. In order to keep the calculations simple and the number
of independent variables low, we did not consider an additional variational parameter
like a staggered chemical potential.
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Figure 6.29.: Spectral function A(k,w) in the ordered phase driven by intersite
Coulomb interaction, which was V, =V, = 2.05. The dotted line marks
the chemical potential.

We set V, =V, = 1.3, since for this choice we expect the distortions to be close to
the experimental value of 2., ~ 0.95, see Fig.6.8. Indeed we found z = 0.911, which
is close t0 zexp, and the mean-field parameter was § = 0.338. The spectrum calculated
with these values is shown in Fig. 6.28.

The spectral function shows similar features as in the undistorted phase. For
k., = 0 the bands disperse with periodicity 7w, whereas for k£, = 7 no evidence for a
doubling of the unit cell can be found, and the periodicity is 27. Nevertheless, the
gap at k = (0,7/2) is considerably larger than for V' = 1.3 without distortions, see
Fig.6.24.

An interesting quantity when considering charge-ordering phenomena is the charge
order parameter, which we calculate as

Mmcpw = n; — (n)) Q. .
7 2 (s = () (6.19

The above equation differs from Eq. (5.10) by the factor (n) in the denominator,which
assures that the order parameter is normalized to the interval [0, 1]. For V, =V, = 1.3
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and static distortions we got mcpw = 0.65, which means that the disproportion of
charges is rather large.

Let us now consider possibility (ii), where the coupling to the lattice is switched off,
C =0,k = 0, and the charge ordering is driven by the nearest-neighbor Coulomb inter-
action. In order to make a connection to the results obtained with lattice distortions,
we calculate the spectral function at a similar value of the charge order parameter.
We found that for V, = V,, = 2.05 the order parameter is mcpw = 0.66, which is close
to mepw = 0.65, as given above.

The spectral function is shown in Fig.6.29. The spectral features again look very
similar to Fig.6.24. One can see that in both cases, Fig.6.28 and Fig. 6.29, the gap
at k = (0,7/2) is larger than in the disordered phase, see Fig.6.24. To be specific we
found a gap size of approximately 2.6, in the presence of lattice distortions and 3.4%,
without lattice distortions, whereas in the disordered phase the gap was 1.8¢,. It is
interesting that the momentum-resolved spectral features do depend on the driving
force of the transition, which was much less pronounced for, e.g., spin and charge
susceptibilities.

The excitation energy near the I' point, relevant for IR experiments, can be read
off from Fig. 6.28 to be roughly 4¢, with lattice distortions and 5¢, without distortions.
Although this excitation energies are not constant compared to the disordered phase,
calculations including the lattice degrees of freedom give a better agreement to exper-
imental IR absorption data [126], which show neither a shift of the 1eV peak nor the
appearance of new peaks related to electronic transitions.

6.4.2. Results for coupled ladders

So far we studied only single ladders and neglected the inter-ladder coupling, since
they are frustrated and one might assume that they are only of minor importance.
Nevertheless our approach allows to include these inter-ladder couplings by choosing
an appropriate cluster geometry, as indicated at the right side of Fig. 6.21. Note that it
is necessary to use a 2 X 12 super-cluster which allows for a commensurate charge-order
pattern across the cluster boundaries.

The parameter values for the inter-cluster coupling were chosen in the following
way. First-principle calculations |79,104] have shown that the effective hopping be-
tween different ladders is very small, so we set ?;, = 0.1¢,, and longer-ranging hopping
processes have been neglected since the linear dimensions of the cluster are rather
small. The values for the other parameters were the same as used for the calculations
in Sec.6.4.1 (with ¢4 = 0).

In Fig. 6.30 the spectral function for V, =V}, = V,, = 1.3 is shown for to special
paths trough the Brillouin zone. In the upper panel the momentum vector k is oriented
parallel to the b axis, corresponding to momentum transfer in ladder direction, and in
the lower panel k is parallel to the a direction.

For Ek parallel to the b axis one can easily see that the spectrum looks very similar
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Figure 6.30.: Spectral function A(k,w) in the disordered phase at V, =V}, = V,,, =
1.3 calculated on the 2 x 12 super-cluster. Top: Momentum £ along b
direction. Bottom: & along a direction.

to the spectrum of a single ladder, see upper panel of Fig.6.24. The main difference
between single and coupled ladders is that the chemical potential is much larger in the
latter case (u = 3.0), which is due to the frustrated inter-ladder bonds.

When turning to k parallel to the a axis the spectral function looks very different.
The most striking feature is that there is hardly any dispersion of the bands, and the
filled low-energy band can actually be considered as dispersionless. The spectral weight
of this excitation, however, decreases significantly away from k£ = 0 and is obviously
transfered to unoccupied states above the Fermi level at approximately w — p ~ 1.5.

Let us now compare our numerical results to experimental data. Kobayashi et al.
|105] performed angle-resolved photo-emission spectroscopy (ARPES) at room tem-
perature, where the system is in the disordered phase. They did measurements for
momentum transfer along the a axis and the b axis, respectively, and for transfer par-
allel to a they found no dispersion of the V 3d bands, which fits perfectly well to our
results. For k along the b axis a band dispersion of a 1D antiferromagnetic quantum
system has been found with experimental band with of approximately 0.06-0.12¢V.
This value is rather large compared to the band width in our calculation of approxi-
mately 0.35eV, see Fig. 6.30. We checked that the band width scales with the hopping
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6.4. Spectral properties of NaV,0s5

along the ladder ¢, (not shown), and therefore this discrepancy between calculations
and experiment can be shortened by choosing a smaller value for t,, which does not sig-
nificantly affect the charge ordering of the system. Nevertheless the strong difference
between spectra along a and b direction are well described by our calculations.
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7. Conclusions

Strongly-correlated electron systems show a variety of fascinating properties and rich
phase diagrams, which arise due to the interplay of kinetic and interaction energy.
Since these two energy scales are in general of the same order of magnitude, strong
short-range correlations occur, accompanied by several competing long-range ordered
phases. Since many standard methods known from theoretical solid-state physics
fail for these systems, we further developed and applied cluster perturbation theory
approaches, in order to study ordering phenomena in strongly-correlated systems.

Since the cluster perturbation theory proposed by Sénéchal et al. is a one-step
method and is, thus, not based on a self-consistent procedure, it is not able to describe
symmetry-broken phases. Nevertheless, it takes into account short-range correlations
on the length scale of the clusters. On the other hand, the dynamical mean-field
theory is a self-consistent method, but neglects spacial correlations altogether. For this
reason, some intermediate approaches are the methods of choice for low-dimensional
systems, where spatial correlations are supposed to be important.

In chapter 2 we introduced such an intermediate approach, which is termed vari-
ational cluster perturbation theory (V-CPT). It can be seen as a combination of the
CPT and the self-energy-functional approach (SFA). In terms of the SFA the cluster of
finite size serves as reference system, and the single-particle parameters of this system
are determined by a general variational principle. We showed that such an optimiza-
tion does indeed improve the results, although the changes between V-CPT and CPT
results decrease fast with increasing cluster size. In addition to the optimization of
the intra-cluster single-particle parameters given by the original Hamiltonian, one can
introduce additional fictitious parameters, such as symmetry-breaking fields, which
allows to construct very flexible cluster approaches.

The second part of chapter 2 dealt with the exact diagonalisation methods, which
are used for the calculation of the finite cluster properties necessary for V-CPT. For the
ground-state calculations the standard Lanczos algorithm has been used, and for finite
temperatures we proposed a combination of the finite-temperature Lanczos method
(FTLM) and the recently developed low-temperature Lanczos methods (LTLM). The
latter methods is constructed for low temperatures, where the application of the FTLM
is numerically very time-consuming, and it converges naturally to the ground-state
method for zero temperature.

Chapter 3 gave a very short discussion of the application of the CPT to finite
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temperatures. By combining FTLM and LTLM we could calculate the spectral func-
tion of the Hubbard model in one and two dimensions with reasonable effort. The
results for one dimension showed that the occurrence of the shadow bands, related
to the doubling of the unit cell, disappears at a characteristic temperature equal to
the magnetic super exchange, although the lower and upper Hubbard bands are still
present.

In chapter 4 we applied the V-CPT to the Hubbard model at half filling to study
the antiferromagnetic phase at zero temperature. The diagonalization of the clusters
of finite size (typically N, = 10) was performed using the ground-state Lanczos algo-
rithm. In comparison with results from variational Monte Carlo and quantum Monte
Carlo studies, the V-CPT predicted the ground-state energy and related static quanti-
ties with high accuracy. While long-range antiferromagnetic order has been obtained
for the 2D model, the V-CPT yielded a paramagnetic state for 1D. This indicates
that quantum spin fluctuations which inhibit an ordered phase in the 1D case have
been included properly. For one-dimensional Hubbard ladders the method in principle
predicted incorrectly antiferromagnetic order; however, the staggered magnetization
was small and tended to vanish when increasing the number of rungs in the cluster (up
to 2 X 6). The finite but small m for the ladder system should be considered as a mild
reminiscence of a typical mean-field artifact which shows up because longer-range spin
correlations exceeding the cluster dimensions have been neglected. A similar effect was
seen for the 2D system: Here the approximation was even stronger because the linear
dimension of the cluster had to be reduced even more to keep the number of cluster
sites IN. constant. For the 2D system, antiferromagnetic order is expected physically
and has also been found in the calculations. However, longer-ranged spin correlations
give rise to a considerable reduction of the order parameter which has not been seen
in the V-CPT for the maximum cluster size that has been considered.

As mentioned above an important advantage of the V-CPT method is that local
and off-site short-range correlations within the ordered phase can be treated exactly.
This showed up when looking at dynamical quantities, such as the spin-dependent
local density of states or the spectral function A(k,w). The spectral function calcu-
lated from our self-consistent cluster approach agreed extremely well with the QMC
(maximum-entropy) result for an 8 x 8 Hubbard lattice at finite but low temperatures.
In particular, it was possible to reproduce the dispersions, widths and weights of the
different spectral features. This is due to the fact that the typical four-band structure
arises not only from local correlations which are captured in dynamical mean-field
theory, for example, but also from a strong coupling to off-site spin correlations. The
formation of a spin-bag quasi-particle as a hole which is dressed by the distortions
of the antiferromagnetic spin structure that are introduced due its motion, has been
contained in the exact treatment of the cluster. In addition, the mean-field coupling
of the individual clusters mediates the information on the spin order across the clus-
ter boundaries and thereby gave a qualitatively correct description of the coherent
propagation of the quasi particle. This was essential to reproduce the low-energy

112



Chapter 7. Conclusions

quasi-particle band in the spectrum.

A generalization of the V-CPT method to extended Hubbard models at half filling
has been presented in chapter 5. For this purpose, a mean-field decoupling of the
inter-cluster part of the nearest-neighbor Coulomb interaction was performed first.
After this step, one is left with a Hamiltonian which couples the different clusters via
the hopping only and which can be treated by the known V-CPT procedure. The
mean-field decoupling yielded effective onsite potentials on the cluster boundaries as
external parameters of the Hamiltonian. These parameters have been determined
either self-consistently on an isolated cluster (sufficient for the study of first order
phase transitions) or by determination of the minimum of the SFA grand potential.

In order to test the accuracy of our approach we applied the method to the ex-
tended Hubbard model in one dimension, because results from other methods like
QMC and DMRG are available for comparison. At U = 8 the results for the critical
interaction V., the ground-state energy, kinetic energy, and charge order parameter
showed excellent quantitative agreement with previous QMC studies. At U = 3 our
method predicted a second-order phase transition with transition point V, = 1.665(5)
again in good agreement with previous studies. In addition we calculated the spectral
function for several values of the interaction V', which has not been done previously.
At both U = 8 and U = 3, we found evidence for spin-charge separation in the SDW
phase, but not in the CDW phase. By fitting the bands by Hartree-Fock dispersions we
found that the hopping parameter is strongly renormalized. The agreement between
the fitted value of the gap and the value within the Hartree-Fock approximation was
much better in the CDW phase than in the SDW phase giving rise to the conclusion
that charge fluctuations play a minor role in the CDW phase.

Whereas the application of sophisticated methods like DMRG or fermionic loop-
update QMC to more than one dimension is difficult, this extension is straightforward
within the V-CPT approach. We found first-order transitions at both U =8 and U = 3
with transition points V; = 2.023(1) and V; = 0.770(3) for an N, = 48 super cluster,
respectively. The spectral function in the SDW phase showed coherent low-energy
quasi-particle excitations with band width set by the magnetic exchange constant J,
and an incoherent background, consistent with previous QMC studies for the Hubbard
model at V' = 0. The Hartree-Fock prediction differed significantly from the low-
energy feature and did not describe the splitting into coherent quasi-particle bands and
incoherent background. In the CDW phase the Hartree-Fock dispersions accounted
much better for the excitations, and no additional low-energy features caused by a
magnetic origin could be found. Similar to one dimension the agreement between the
Hartree-Fock approximation and the low-energy excitations obtained by the present
method was much better in the CDW phase, confirming that charge fluctuations are
less important in the charge-ordered phase than in the SDW phase.

The charge-ordering transition in the transition-metal compound NaV,05 was sub-
ject of chapter 6. In the first part, Sec.2.3, the influence of lattice effects on the
charge-ordering transition, the spectrum of kink excitations and dynamical charge
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and spin susceptibilities of this quarter-filled ladder system have been studied by the
ground-state Lanczos algorithm. For this purpose we modified the Hamiltonian of the
extended Hubbard model by terms which take into account the coupling of electrons
to lattice distortions. The lattice rigidity x and the Holstein coupling constant C' used
in our model were determined by first-principles band-structure calculations. The re-
sults for the ground-state energy and the order parameter showed that by including
static distortions, the phase transition is shifted significantly downward to lower values
of the nearest-neighbor Coulomb interaction V. The calculated displacements of the
vanadium ions due to the electron-lattice coupling in the charge-ordered phase were
in good agreement with experimental measurements. We also found a virial theorem
to be fulfilled to high precision for the terms in the Hamiltonian that couple to the
lattice.

As low-energy excitations of the distorted ground state we considered kink exci-
tations, where the charge-order pattern changes smoothly along the ladder between
two degenerate configurations. These kinks are long when m2, is small, and be-
come shorter with increasing order. The kink lengths and energies at small m2, were
comparable with those of a classical ¢* model.

Moreover, we studied the extended Hubbard-Holstein model to investigate the ef-
fect of dynamical phonons. Results showed that they have a strong influence on the
charge order parameter in the vicinity of the phase transition. An analysis of the
correlations of the dynamically induced distortions revealed that phonons indeed fa-
vor zig-zag lattice distortions. We showed that using just static distortions somewhat
overestimates the actual value of the lattice distortion, but well away from the tran-
sition point this dynamical effect is very small and a description by static distortions
gave already accurate results.

In addition to these static properties we also calculated the dynamic charge and
spin susceptibilities. The main features of these quantities are determined by the
value of the order parameter and not by the way this value is achieved. From the
spin susceptibility we extracted the effective magnetic exchange interaction along the
ladder, which exhibited a pronounced decrease with increasing charge order. The
magnitude of this parameter taken at V = 1.3, C' = 0.35 was in good agreement with
the experimental inelastic neutron scattering data.

The second part of chapter 6, Sec. 6.4, dealt with the spectral features of NaV,O5.
For single ladders in the disordered high-temperature phase we found that in the
channel k£, = 0 the system behaves like a one-dimensional antiferromagnetic insulator,
and the gap is mainly determined by the nearest-neighbor Coulomb interaction on a
rung. In addition our calculations suggested that the system is in an insulating phase
for all values of V', and no metallic phase could be found.

This picture still holds, when a diagonal hopping ¢, is included in the Hamiltonian,
which was suggested to be important by LDA and C-DMFT studies. We could show
that for k, = 0 hardly any changes can be seen in the spectral function, whereas for
ko, = 7 the bands become flat. These findings do not agree with LDA considerations,
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where a finite value of #; resulted in a flattening of the upper Hubbard band for k£, = 0,
but on the other hand this LDA study was not able to describe the antiferromagnetic
order along the ladder, and discrepancies are therefore not surprising.

For the transition into the charge-ordered low-temperature phase we again sug-
gested two possible driving mechanisms, the coupling to the lattice and the nearest
neighbor Coulomb interaction, similar to the first part of chapter 6. With lattice
coupling we found that for V' = 1.3 on all bonds the distortion is close to the ex-
perimentally found value, in agreement with the exact-diagonalisation study done in
Sec.6.3. The order parameter showed that the disproportion of charges is rather large
in this regime. In order to get the same value of the order parameter by Coulomb in-
teractions we had to use a rather large value of V' = 2.05, which resulted in a large gap
in the spectral function, considerably larger than in the disordered phase and in the
ordered phase with lattice distortions. Therefore we suggest that for the description
of the ordered phase lattice distortions cannot be neglected.

Within the V-CPT approach it was straightforward to study the effects of in-
terladder coupling on the spectral function. We found that the spectra along ladder
direction are not significantly affected by these couplings. Perpendicular to the ladders
the calculated bands were almost dispersionless, in good agreement with experimental
data.

Outlook

We have applied V-CPT for the investigation of several models for strongly-correlated
sytems, but there are still some open ways to explore. First of all the problem of
continuous filling, important for the investigation of, e.g., high-temperature supercon-
ductivity, has not been adressed in an accurate way. It is a task for the future to
apply, and possibly modify, V-CPT in this context.

Our method is in general able to deal with any symmetry-broken ground state.
Therefore it would be interesting to study other ordered phases, such as the supercon-
ducting phase, by means of V-CPT.

Last but not least the V-CPT can be used for many model Hamiltonians for realistic
materials, from now on also for models including inter-site interactions. From the
experimental point of view, many compounds are waiting for a proper theoretical
understanding, and V-CPT can be a very powerful method for these purposes.
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A. Strong-Coupling Perturbation
Theory

In this section we briefly present the strong-coupling perturbation theory for the Hub-
bard model [131,132], from which the (V-)CPT methods can be derived. Starting
point is the formulation of the partition function using coherent states and Grass-
mann numbers yielding

7 =Tre " = / [ dédéae e tate(—gle P M), (A.1)

For convenience we set ;1 = 0 in the following. Defining 7y — 7; := 8 and introducing

M Trotter time slices
_TF T T

T M
we can write for the matrix element in Eq. (A.1)
(=€le™?7]€) = (=gle™e™ - 7 M]g)
(—€le~ M 1e~ 1 - - - 1e~=H¢) (A.2)

Using coherent states the unity operator in above equation can be written as
1= [ [aedee =50 g)(el
«

Inserting this operator in Eq. (A.2) yields

M—-1 M
(—€le|g) = / TT TT A€ xdbnpe EH5" Setite T (e e 1)
k:l 6] k:l

Collecting all terms in the exponential and considering the boundary condition &, =
—&a,m We get after a short computation

M-1
2= [ T] T d€hstarexo (S(€)

k=1 «
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with the action S(&*, &) given by

N

—¢ [Zé-;,lw_*—}[(gaka gak 1)]

Defining trajectories £(7) by interpolating the set {&1,..., &y}, the action can also be
written as

S(E.€) = / ML (——u)5a(T>+H(s:;(T>,5a(T>> (A.3)

For completeness we inserted again the chemical potential y. With this notation the
partition function reads as
7= / D [£*¢] 5E78) (A.4)
£a(B)=—£a(0)

For the evaluation of the partition function Eq. (A.4) we split the Hamiltonian into
two parts, H = Hy + Hy, where H, is diagonal in a certain variable (for instance the
site variable) and has the general form

1 t
Zh CioCix) Ucncmcucua

where the last term is the according expression for the Hubbard Hamiltonian. We
suppose that the perturbation H; is a one-particle operator:

= § : T’UC'LJC]U’

15,0
with 7" a Hermitian matrix. With this Hamiltonian the action Eq. (A.3) takes the
form

5(6°.6) = /dT[Zs ) (5 - 1) &)
+ Zh (&(7), &(7) +2Tab§;(r)§b(7)].

From now on the indices a and b include site and spin indices, respectively. In order
to lighten the notation we use the bra-ket notation

/ dr Y Tt ()6 = E[Tle)

(A.5)
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Chapter A. Strong-Coupling Perturbation Theory

Introducing auxiliary Grassmann fields 4{” (7) one can write the exponential of the
perturbation as a result of a Gaussian integral over these auxiliary fields

det(T~")e(€TE) — / D [y el Wi+ €]

In terms of the auxiliary field the partition function becomes, up to a normalization

factor:
=/D[£*5]D[w*¢]exp{—/o dr Z& 1)éa + Ho }

x exp [(W|T~"|v) + b i) + (€lv)] -

The first exponential involves only Hj, and therefore the path integral over the original
Grassmann fields £*) can be written as expectation value

Z =7, / D [yhep] eVl 19) (Wi HED)

where (-)o is the expectation value of the unperturbed Hamiltonian Hy and Zj is the
according partition function. This expectation value can be expanded in terms of
Green’s functions in the cluster calculated using the unperturbed Hamiltonian. Thus,
the final form of the partition function reads as

ZOC/D[qﬁweXp{ SO¢¢ Zlnt }’

where the action has a free (Gaussian) part Sy(v*, %) = —(|T![1)) and an infinite
number of interaction terms

mt (

ot Ul G
Byl

Nl”l

where G(ff)..,,R is the R-particle Green’s function. For more details and the derivation
IR

of diagrammatic rules see Ref.[132]. Standard CPT is now restricted to R = 1, the
first non-trivial term in the perturbatlon expansmn In other words, the self energy of
the auxiliary fermion field is equal to Guu, the single-particle Green’s function. The
one-particle Green’s function G of the original fermions is related to the self energy of
the auxiliary fermions = by the simple relation

Gl=="1-T (A.6)

For R = 1 the self energy is given by only one term, = = @, with G the one-particle
Green’s function in the cluster.
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B. Causality of the SFA

This proof of causality closely follows the proof in Ref.[6]. For any ¢’ the self-energy
Y = X(t') is causal since it is defined to be the exact self-energy of H' = Hy(t') +
H(U). The same holds for G'. Thus, causality problems could only be caused by the
term

Tr In(—(Gy' — () ™h).

It has to be shown that G = (G,' — X)! is causal provided that X(¢') and Gy are
causal. Causality of G means that

(i) Gij(w) is analytical in the entire complex w plane except of the real axis.

(i) Gret(w) = G(w +10T) = Gr — iGj for real w with Gr and G7 Hermitian and
G positive definite.

Condition (i) is easily verified. To show (ii) we need the following Lemma: For Her-
mitian matrices A, B with B positive definite, one has (A +iB)~! = X FiY with
Y positive definite. Then, since Gy is causal, we have G iet = P, +1iP; with P, P,
Hermitian and P; positive definite. Since X is causal, X, = Xg — iX; with X, ¥
Hermitian and 3; positive definite. Therefore,

Gyt = (Pr +iP;— Xg + i21)71 = (Qgr + iQI)ila

with Qr Hermitian and @ Hermitian and positive definite. Using the lemma once
more shows G to be causal.

121



122



C. Mean-field Solution and Free
Energy

In this section we show that a mean-field solution obtained self consistently is directly
connected to a minimum in the free energy. For simplicity let us assume that we have
only two different mean-field parameters Ay =1 — 6 and Ag = 149, see also Sec.5.1.
We can write the mean-field decoupled Hamiltonian Eq. (5.8) as

Hyr(6) = Hgp + Y Hh (R, 6), (C.1)
R

where Hls,?% includes all terms independent of the mean-field parameters. According
to the third line in Eq. (5.5), Hﬁ)F(R, J) is given by

Hl&%‘(Ra 6) = VZ [nRiAB + NRjAA — AaAB]

[#4]
=V Y [nri(1 +6) + ngj(1 = 6) — (1 - 6°)] (C.2)
[i4]

where we assumed without loss of generality that the bonds [ij] connect sites ¢ on
sublattice A with sites j on sublattice B. The free energy of the system is given by

1 1
F=——InZ=——InTre #Hur@®
B B
1
=3 InTr exp [-51{&2 - B3 H{)(R, 5)] . (C.3)
R

Taking the derivative with respect to § yields

oF

a5 :Vz<Z[nRi—nRj+25]>. (C.4)
R\ [if]

All clusters are equivalent, therefore we suppress the index R in the following. Setting

this derivative to zero we get the self-consistency condition

> [ns) — (ny) +26] = 0. (C.5)

(7]
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For one dimension, Eq. (C.5) is given by
(ny) — (n1) = 26, (C.6)

because in this case we have only one decoupled bond [1N] with site 1(N) belonging
to sublattice A(B), respectively. To conclude, one can state that if self consistency,
Eq. (C.5), is fulfilled, then the free energy has an extremum with respect to the mean-
field parameter 0. By thermodynamic stability arguments this extremum always has
to be a minimum.
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