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You can’t wait for inspiration. You have
to go after it with a club.
(Jack London)

Richard Feynman and the polaron problem

One day, towards the end of August 1954, Feynman was feeling low, with nothing to do,
and felt like goofing off. At that time, there was a pretty librarian working at the Caltech
library, so he went to the library to look at her. There, as a cover, he just picked up a
journal in order to have something to do to appear busy, and it was an issue of Advances
in Physics: there was an article in it by Herbert Frohlich on slow electrons moving in a
polarizable crystal like sodium chloride. Frohlich described the problem, and said that if
this problem were solved it would go a long way toward understanding superconductiv-
ity, a remark which Feynman did not understand in the slightest; it was, in fact, not correct.

[.]

On 8 September 1954, Richard Feynman wrote to Herbert Frohlich: “We have very
pretty librarians. Last week I went to enjoy the scenery and picked up Advances in Physics
as a cover. I read your article. I became more interested in it than in the librarians and
resolved to accept your challenge to find a method uniformly valid over the entire range of
[the coupling constant|. Enclosed is my solution. ... What do we have to do to understand
superconductivity ¥’

From The beat of a different drum by J. Mehra [1].






Abstract

Strongly correlated electron-phonon models with dispersionless phonons and a coupling
term of the Holstein type are studied using quantum Monte Carlo (QMC), cluster per-
turbation theory (CPT), exact diagonalization (ED) and variational approaches. The
emphasis lies on the adiabatic regime, which represents a serious challenge and cannot be
accurately described analytically at intermediate or strong electron-phonon coupling. The
calculations focus on spectral properties, which contain a wealth of information about the
excitations of the systems.

The small-polaron cross over in the Holstein model with one electron is investigated
in one to three dimensions at zero and finite temperature. Using CPT together with the
Lanczos method, the one-electron spectral function is obtained at continuous wavevectors.
A novel QMC method is developed based on the canonical Lang-Firsov transformation. It
is free of any autocorrelations and employs an exact sampling of the phonon degrees of
freedom. Consequently, it can be used to study any phonon frequency and electron-phonon
coupling strength. It is found that the physics of the Holstein polaron can be described by
a simple variational approach, based on an extended Lang-Firsov transformation, which is
shown to yield surprisingly good results in parameter regimes where the standard strong-
coupling approach fails completely.

Furthermore, the one-electron spectrum of the Holstein-Hubbard model with two elec-
trons is studied by means of CPT. It reveals the competition between polaron and bipo-
laron states as the electron-phonon coupling and the Coulomb interaction are varied. The
dispersion of the bipolaron band is found to display significant deviations from a simple
tight-binding band, which may be attributed to next-nearest-neighbor hopping processes.
The one-electron QMC algorithm is extended to study the Holstein-Hubbard bipolaron in
the adiabatic regime. Investigating the evolution of bipolaron states with increasing tem-
perature, a thermal dissociation of the intersite bipolaron is found at high temperatures,
as predicted for the paramagnetic state of some manganites. A variational approach is
presented which reproduces qualitatively the effect of retardation on bipolaron formation.

Finally, the spinless Holstein model with many electrons is studied in one and two
dimensions using CPT in combination with the exact atomic-limit Green function, QMC
and the kernel polynomial method. The combination of an improved determinant QMC
method and ED calculations on shared-memory systems produces accurate results in the
adiabatic regime over the whole range of electron-phonon coupling. Most importantly,
starting from the low-density limit, we observe a cross over from a polaronic state to a
metallic state with increasing band filling in the intermediate coupling regime. Similar
effects are expected to play an important role in materials with strong electron-phonon
interaction and high carrier density such as, e.g., the manganites.
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Kurzfassung

Die Wechselwirkung zwischen Elektronen und Gitterschwingungen (Phononen) spielt eine
wesentliche Rolle in stark korrelierten Materialien wie, z.B. Manganaten. Da fiir den Be-
reich kleiner Phononenfrequenzen und mittlerer oder starker Elektron-Phonon Kopplung
keine verlasslichen analytischen Zuginge existieren, erfordert eine theoretische Beschrei-
bung dieser Systeme die Verwendung numerischer Verfahren. Die Komplexitit der zuge-
horigen Modelle schrinkt Rechnungen mit herkémmlichen Methoden oft stark ein, was
die Entwicklung neuer Zugénge motiviert. Im Mittelpunkt dieser Arbeit stehen eine neue
Quanten Monte Carlo Methode, sowie die Anwendung der kiirzlich entwickelten Cluster
Perturbation Theory auf Elektron-Phonon Systeme. Zusitzlich kommen einfache Vari-
ationsansidtze und exakte Diagonalisierung zum Einsatz. Gemeinsam erlaubt dies die
Berechnung von statischen und dynamischen Gréfen, sowohl bei endlichen Temperaturen
als auch im Grundzustand. Zur Vereinfachung beschriankt sich die vorliegende Arbeit auf
Modelle mit Holstein Phononen. Die obengenannten Methoden werden verwendet, um den
Ubergang von freien Elektronen zu Polaronen und Bipolaronen mit zunehmender Stirke der
Wechselwirkung, sowie den Einfluss von endlichen Temperaturen, der Phononenfrequenz,
der Coulombwechselwirkung und der Ladungstrigerdichte zu untersuchen. Insbesondere
richtet sich das Augenmerk auf die Berechnung von Photoemissionsspektren.
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Everything should be made as simple as
possible, but not simpler.
(Albert Einstein)

1 Introduction

The coupling of charge carriers to the lattice degrees of freedom is known to play an
important role in many strongly correlated materials, in which the strong mutual interaction
between electrons and electrons, on the one hand, and between electrons and phonons, on
the other hand, gives rise to new collective phenomena which cannot be described within
the approximation of independent electrons. Upon the most prominent members of this
family are the high-temperature superconductors, e.g., the cuprates. Despite the still hotly
debated key mechanism for the high transition temperature in these systems, electron-
lattice effects have been identified as a nonnegligible component for realistic models |[2].
Apart from this very active field, electron-phonon interaction is also of great importance
in more recently discovered transition metal oxides, namely the manganites [3] and the
vanadates [4].

As a result of the above discoveries, interest in electron-phonon models has revived.
Owing to the complexity of such systems, theoretical efforts usually rely on rather crude ap-
proximations. In fact, even for the simple and therefore widely studied Holstein molecular-
crystal model, no exact solution—valid over the entire range of parameters—exists except
for the case of a single electron with a relativistic band structure [5,6] or in infinite di-
mensions |7, 8]. As a consequence, a lot of numerical work has been devoted to an under-
standing of the effects of strong electron-phonon interaction. While the model with one
and two electrons is by today quite well understood, the many-electron case—realized in
experiments—is still in the focus of intensive research. Despite the known shortcomings of,
e.g., small-polaron theory [9], unjustified approximations are still widely used to explain
experimental data [3]. This often leads to inconsistent and confusing descriptions and
makes progress towards a more complete understanding of electron-phonon models highly
desirable.

In this work, numerical methods are employed to study the Holstein model, with and
without Coulomb interaction. To be more specific, we use quantum Monte Carlo (QMC),
which has contributed a lot to the advances in condensed matter theory in the last decades
[10], cluster perturbation theory [11,12] and exact diagonalization. In combination, these
techniques, which are reviewed in Chap. 2, will enable us to study the ground state as well
as finite temperatures by calculating static and dynamic properties.

As the complexity of the physics increases significantly with the number of electrons,
we shall first consider the one-electron case. To this end, we study in Chap. 3 the cross over
from a weakly dressed quasiparticle for weak electron-phonon coupling, to a heavy small
polaron in the strong-coupling regime. We then proceed to the case of two electrons in the



1.1. Some physics of the manganites

Crystal Field Jahn Teller
— —

Figure 1.1: Energy levels of Mn®* in the presence of crystal-field and JT splitting. Here
E;r is the JT splitting energy.

Holstein-Hubbard model (Chap. 4), which can form a bound state even in the presence of
strong Coulomb repulsion due to the phonon-mediated, attractive interaction. Although
theories of high-temperature superconductivity based on a condensation of bipolarons into
a Bose-Einstein state have been shown to exhibit several shortcomings [13,14], similar
to other approaches, they are capable of explaining several experiments. Some authors
also argue that bipolarons play a dominant role in the manganites, and may even account
for the metal-insulator transition and colossal magnetoresistance (CMR) [15]. Finally, in
Chap. 5, we study the spinless Holstein model with many electrons, which represents a
system of interacting polarons. In addition to the purely numerical methods, we present
simple variational approaches to the Holstein model with one and two electrons, as well
as a strong-coupling perturbation theory, based on the exact atomic-limit Green function,
for the spinless Holstein model at half filling.

In the remainder of this chapter, we first give a short review of the manganites (Sec. 1.1)—
focusing on the ferromagnetic regime—and briefly discuss angle-resolved photoemission
spectroscopy, which has proved to be extremely useful to obtain information about the
electronic states of strongly correlated materials (Sec. 1.2). Finally, in Sec. 1.3, we de-
rive the model Hamiltonians considered in this work, and motivate the study of Holstein
models.

1.1 Some physics of the manganites

Interest in manganites of the form R;_,A,MnOjs, where R is a trivalent rare-earth ion
such as La or Nd, and A is a divalent alkaline-earth ion such as Ca or Sr, has revived in
the 1990’s due to the discovery of CMR. Originally, these compounds have already been
studied by Jonker and van Santen in the 1950’s [16,17], and an extensive review of the
early work on perovskite manganites is by Coey et al. |[18]. Similar to the high-temperature
superconductors, the metallic state obtained by sufficiently large doping z is very different



Chapter 1. Introduction

Figure 1.2: The ideal cubic perovskite structure of LaMnOg [19].

from ordinary metals. In fact, the understanding of its properties was the starting point
for a lot of research activity which has recently been reviewed by Edwards [3].

Two of the most studied materials are La; (SryMnO3 (LSMO) and La; ,Ca;MnOj3
(LCMO). The parent compound LaMnOs (z = 0) is an antiferromagnetic insulator, in
which each Mn ion has four d electrons corresponding to a Mn®* configuration. As il-
lustrated in Fig. 1.1, the crystal field splits the 3d orbitals into a lower-lying to, triplet
of 2y, yz and zz symmetry, and a higher-lying e, doublet of z* — y* and 3z® — r? sym-
metry. Due to Hund’s rule, the d electrons align their spins to form a t3,e; state with
total spin S = 2. Upon doping, = electrons per Mn atom are removed, and a narrow
e, band—resulting from the overlap with the p levels of bridging O~2 ions—gives rise to
metallic behavior with n = 1 — x carriers per atom. The insulating state for x = 0 can be
understood within the Mott-Hubbard picture, with the strong correlations due to Hund’s
rule suppressing double occupation of sites. For > 0, the three ty, electrons are usually
regarded as forming a localized spin with S = 3/2 [3]. The itinerant e, electrons are com-
pletely spin-polarized, and align the local spins ferromagnetically via the so-called double
exchange (DE) mechanism. The latter involves strong Hund’s exchange interaction at two
neighboring lattice sites, and has first been proposed by Zener [20].

The crystal structure of LaMnQOj is based on the perovskite structure shown in Fig. 1.2.
In the manganites, the lattice is modified by two types of distortions of the oxygen octahe-
drons surrounding each Mn site (see Fig. 1.2). The first consists of a rotation and tilting
due to the smaller size of the La®" ions compared to the O?~ ions, and the second is a
tetragonal distortion due to the Jahn-Teller (JT) effect. The latter splits the degeneracy
of the e, orbitals (see Fig. 1.1), and gives rise to strong electron-phonon interaction. The
resulting distortions in LaMnQOj3 are large, with displacements of the oxygen ions from their
ideal positions of about 0.15 A, compared to a typical Mn-Mn spacing of 45 A [19]. The
JT effect will be discussed in more detail in Sec. 1.3.1, where we derive a model Hamil-
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Figure 1.3: Phase diagrams for (a) LSMO [21] and (b) LCMO [22]. The various states
are: paramagnetic insulating (PI), paramagnetic metal (PM), canted insulating
(CI), ferromagnetic insulating (FI), ferromagnetic metal (FM), antiferromag-
netic insulating (AFI) and charge-ordered insulating (COI). T¢, Ty are Curie
and Neél temperatures, respectively.

tonian for the manganites. As discussed by Edwards [3|, the Mn-O-Mn bond angle is a
very important parameter. Even small reductions from the ideal value of 180° as a result
of lattice distortions lead to a narrowing of the e, conduction band which dramatically
affects the physical properties.

In Fig. 1.3, we show phase diagrams as a function of doping x and temperature 7', both
for LSMO and LCMO. At low temperatures, there is a transition from an antiferromagnetic
insulator near z = 0, to a ferromagnetic insulator up to z ~ 0.2, to a ferromagnetic metal
for x > 0.2. As we approach z = 0.5, charge and orbital order set in, but for x ~ 0.2—
0.4, such effects are expected to be negligible. At first sight, the diagrams for LSMO and
LCMO look very similar for z < 0.5. However, a closer look reveals important differences.
While LSMO remains metallic upon heating from the ferromagnetic state, LCMO exhibits
a metal-insulator transition with a relatively large resistivity in the paramagnetic phase
above the Curie temperature 7. The latter takes on a maximum near x ~ 1/3 in both
materials. The differences between LSMO and LCMO are better illustrated by the dc
resistivity data depicted in Fig. 1.4. For LSMO [Fig. 1.4(a), x = 0.3|, we see that the
resistivity R increases with temperature in the whole range of 7" shown. This is in strong
contrast to LCMO [Fig. 1.4(b)], for which the behavior of R changes from 0R/0T > 0 for
T < Tcto OR/IT < 0 for T > T. Additionally, T is significantly lower in LCMO (& 260
K) than in LSMO (= 370 K), and the value of p above the Curie temperature is about one
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Figure 1.4: (a) Resistivity versus temperature for La;_,Sr,MnOj; crystals. Arrows indi-
cate the Curie temperature T for the ferromagnetic phase transition [23|. (b)
Resistivity (solid lines) of Lag 5Cag.35MnOs3, acquired in applied fields ranging
from 0 to 5.5T, and the bulk magnetization in an in-plane applied field of 50
G (e), both as a function of temperature [24].

order of magnitude larger in LCMO. Keeping in mind the minimal size difference between
Ca and Sr ions, this is very surprising. A consistent analytical theory explaining many of
the observed phenomena has been proposed by Green [25]. It is based on the assumption of
a slightly stronger electron-phonon interaction in LCMO, caused by a reduced bandwidth
due to smaller Mn—-Mn bond angles [3].

For completeness, we would like to briefly discuss the CMR effect, which can be seen
in Fig. 1.4(b). In the vicinity of T¢, the resistivity of LCMO can be reduced by about
50% by applying a magnetic field of about 5 T, while no such effect occurs for LSMO. This
suggests that the underlying mechanism is closely related to the metal-insulator transition.
Actually, it was the CMR effect and its potential application in magnetic sensors used, e.g.,
in storage devices, which drove much of the recent work on manganites. However, despite
the fact that the CMR effect can be increased to relative changes in resistivity of up to
10° [26] by using thin films instead of bulk samples, the future use in, e.g., hard drives is
unlikely. The reasons for this are on the one hand the large required fields as compared
to giant magnetoresistance materials currently in use and, on the other hand, the high
sensitivity of CMR to small changes in temperature.
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1.2 Angle-resolved photoemission spectroscopy

In recent years, angle-resolved photoemission spectroscopy (ARPES) has emerged as one
of the most important tools for studying strongly correlated systems. The increasing popu-
larity of this method is a result of the continuous improvement of experimental techniques,
which has significantly increased the accuracy (energy and momentum resolution) and re-
liability. One of the main advantages of ARPES, which also makes it very attractive to
theoretical physicists, is the fact that results can often [27] be compared directly to the
one-electron spectral function, a quantity of great importance in the description of many-
particle systems. Here we shall only give a brief discussion of the physical ideas, without
going into details about the experimental setup. For more information, see, e.g., [28].

The principle underlying ARPES is the photoelectric effect. Using, e.g., a helium-
discharging lamp, light of a single frequency wq is emitted onto a small, thin specimen
of the material of interest. The incident photons cause emission of electrons, which are
then analyzed in terms of intensity, momentum and kinetic energy. This provides one with
information about the properties of the electron after it has left the specimen, which can be
related, for example, to the energy of the particle before the emission process by exploiting
the conservation of energy. This is expressed in the equation

fusg = Exin + ¢ + | Ex|, (1.1)

where hwy is the photon energy, Ey;, and Ep denote the kinetic and binding energy of
the electron, respectively, and ¢ corresponds to the so-called work function. The latter
is a property of the material, and equals the minimum energy required to emit a single
electron.

Similarly, the conservation of momentum, together with the measured angles at which
the electron leaves the sample, can be used to extract the momentum of the electron before
the emission from the specimen. We would like to point out that, owing to the discontinuity
of the surface of the sample, only the component of momentum parallel to the surface is
conserved. Moreover, the momentum of the photon can be neglected in the analysis.

Using these ideas, ARPES yields the intensity of electrons as a function of energy and
momentum. As a consequence of scattering processes, the peaks obtained with ARPES are
always broadened. Nevertheless, the results provide detailed information about the nature
and lifetime of quasiparticle states, which can be compared to theoretical calculations.

1.3 Microscopic models

As pointed out above, progress in condensed matter theory is often based on the use of
simplified models, which can be treated either by analytical or numerical techniques. To
illustrate the process of finding a microscopic model for a given material, we present here a
derivation of the model Hamiltonian for the electron-phonon interaction in the manganites.
Since an exact quantum-mechanical treatment of the lattice degrees of freedom is not yet
possible, we will then restrict ourselves to models of the Holstein type.
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Figure 1.5: The MnOg octahedron.

1.3.1 Electron-phonon interaction in the manganites

In general, the orbital states of electrons are strongly coupled to the lattice. In the man-
ganites, the double degeneracy of the e, orbitals gives rise to a JT effect, which consists
of the splitting of otherwise degenerate orbitals by lattice distortions, so as to reduce the
symmetry. This lowers the energy of the orbitals involved, since the energy cost is propor-
tional to the square of the displacement, while the gain in energy—given by twice the JT
energy Fjr (see Fig. 1.1)—depends linearly on the size of the distortion [29]|. Therefore,
for small enough displacements, the JT splitting always wins and the orbitals will be ener-
getically split. In the sequel, we shall derive the Hamiltonian for the JT effect in LaMnOs,
neglecting the dynamics of the lattice. The discussion follows closely the article by Allen
and Perebeinos [30].

The key structural element here is the MnOg octahedron, shown in Fig. 1.5. As dis-
cussed by Yosida [29], only vibration modes with distortions along the bonds between
neighboring Mn ions, corresponding to the z-, y- and z-axes in Fig. 1.5, couple to the e,
orbitals. To derive the form of the electron-phonon interaction, it is useful to work in the
following overcomplete basis of the e, subspace [30]

1/}1 = 31‘2 - T2 ) wy = 3y2 - T2 ) wz = 322 - 727 (12)

where 9, + 1, + ¢, = 0, and r? = 22 + y* + 2% = 1. We assume a harmonic restoring force
—Ku, for a distortion u, of an oxygen ion along the « direction, with a = x,y,2. The
distortion of the Og octahedron surrounding the Mn ion at lattice site ¢ along the a axis
can be described in terms of the variable Qo = uq (i + &) — us(i — 36). Here & denotes
a unit vector pointing along the « direction on the Mn lattice. For an undistorted lattice,
the positions of the oxygen ions around site ¢ are thus given by 7 + %d.

The change of energy associated with a distortion @, may be written as de,/0Qq =
—4g/+/3, where ¢, denotes the energy of the orbital o [Eq. (1.2)]. Neglecting any lattice
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| |
Q Q, Qs

Figure 1.6: The relevant phonon modes in the cubic manganites. Arrows indicate the
distortions of the MnOg octahedron.

dynamics, the electron-phonon Hamiltonian takes the form [30]

4q K . A
He*Ph = _% Z C}-aciaQia + 5 Z[UQ(’L + 0/2)]2 ’ (13)
1o e
where czTa is a creation operator for an electron at site ¢ in orbital state «, and spin indices

have been omitted for simplicity. The second term in Eq. (1.3) corresponds to the elastic
energy associated with distortions of the Og octahedrons. A more useful representation of

the electron-phonon interaction can be obtained by a transformation to the orbitals [30]
1 1
= (VB0 (VB-10] L= (V-1 (VB4 1y,

In terms of these states, the first term of the Hamiltonian (1.3) separates into JT and
breathing parts, i.e., Hel.ph = Hyr + Hpr, With

Qiz Qi “
—gXi: (CIX’CIY) < Q; _Qiz ) (Ci) |

Hy = —V2g Z Qi1 [CIXCz'X + CzTYCz'Y] : (1.4)

¥x

Hyr

Here, Q;1, Qi and @Q;3 denote the vibrational eigenmodes [30]

Qi = \/g(Qm + Qiy + Qiz)
Qiz = Qiz — Quy,

1

The JT modes @ and Q3 (we omit site indices) are of e; symmetry and have the same
frequency [29], while the @; distortion corresponds to a simple breathing mode.
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It is instructive to rewrite the complete electron-phonon Hamiltonian (1.4) in the form
Hoph=—-9) [Qis(ﬁiXa — five) + Qia(cliyCiv, + C;fygcz'xg)}
io

—V2g Z Qi1 (Nixo + Nive) + % Z (ke Q71 + kar(Q + Q3)] -

1

(1.6)

Here we have restored spin indices, and introduced spring constants ky,, kyr for the energy
associated with the breathing and JT modes, respectively. The density operator 7;x,,
measuring the number of electrons with spin ¢ in orbital X at lattice site 7, is defined as
NiXe = C;LXUCiXU. From Eq. (1.6), one can see that the coupling to the mode (), allows a
transfer of electrons between e, orbitals X and Y on the same lattice site. As we shall see
in the following section, the coupling to the breathing mode is exactly of the Holstein type.
Approximations inherent to Hamiltonian (1.6) are the restriction to static distortions, and
the neglect of the coupling between distortions of neighboring oxygen octahedrons, which
give rise to long-range orbital order in the manganites. The JT distortion in the latter is
predominantly of the Q) type. While static displacements have been observed in undoped
LaMnOs, there is no experimental evidence for such frozen-in distortions in the metallic
compounds with z > 0.2, and doped manganites therefore have a much more nearly cubic
crystal structure. However, dynamical JT effects—in which itinerant e, electrons cause
a local lattice distortion at the site they occupy—are likely to occur, and the compound
object consisting of an electron and the accompanying lattice distortion is often referred to
as a JT polaron. Although the Holstein models discussed in the following section only in-
clude a coupling of electrons to a breathing mode distortion, they do contain the important
dynamical lattice effects, in contrast to Eq. (1.6).

1.3.2 Holstein models

If lattice fluctuations are taken into account, even the simplified electron-phonon coupling
described by Hamiltonian (1.6) usually requires further approximations before numerical
methods such as QMC can be applied. While existing work on the manganites often treated
the phonons classically, or even on a mean-field level, here we wish to address the case of
quantum phonons. The importance of the lattice dynamics results from the fact that
the manganites fall into the adiabatic regime of small phonon frequencies, as compared
to the width of the conduction band. Therefore, substantial zero-point fluctuations of
the MnOg octahedrons around their equilibrium positions occur, which makes a static
treatment highly questionable. Moreover, the above-mentioned dynamic JT effects can
not be described using a model with classical phonons. Apart from the Holstein model,
several other models for electron-phonon interaction have been proposed. Among them
are the Frohlich model [31] with a long-range electron-phonon interaction, and the Su-
Schrieffer-Heeger (SSH) model [32], in which the phonons couple to the electronic hopping.
However, in the context of the manganites, a local coupling as in the Holstein model seems
to be most reasonable, since (a) long-range interactions are screened by the itinerant e,
electrons, and (b) the coupling to the charge density models well the JT effect.
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In principle, it is possible to study a model with dynamical phonons and a coupling
term as given in Eq. (1.6) using numerical methods. However, such calculations face severe
restrictions of the accessible range of temperature, phonon frequency, electron-phonon
coupling strength and system size. We would like to mention that a small cluster of four
Mn sites—including all relevant degrees of freedom—has been studied by Weife and Fehske
[33] using exact diagonalization. Moreover, the dynamic JT polaron and bipolaron have
been investigated by El Shawish et al. [34].

Many interesting phenomena such as, e.g., charge and orbital order, which have been
observed in experimental studies of the manganites, can only be described when the co-
operative nature of the lattice distortions is taken into account. Work along this line has
been done by Benedetti and Zehyer [35| using dynamical mean-field theory (DMFT), and
by Vergés et al. [36] using the Monte Carlo method. In both approaches, the phonon
degrees of freedom are treated in the static approximation. Furthermore, to understand
the magnetic phase diagram for z > 0.5 (see Sec. 1.1), it is crucial to take into account
the degeneracy of the e, band. Corresponding models, either with local or cooperative JT
modes, have been considered by Millis et al. 37|, Zang et al. |38|, Benedetti and Zehyer
[35], Allen and Perebeinos [30], and Hotta et al. [39]. Except for the work in [38], which
used a variational Lang-Firsov transformation to treat the lattice degrees of freedom, all
these studies were restricted to classical phonons.

In the doping regime z ~ (0.2-0.4, the only experimentally relevant phases are the
ferromagnetic and paramagnetic phases, which can be described even within a one-band
model [25]. Furthermore, the manganites fall into the regime JyS > t [3], where Jy =~ 1 eV
denotes the Hund’s rule coupling between local and itinerant spins, ¢t ~ 0.1-0.2 eV [19] is
the electron hopping integral, and S = 3/2. This leads to a splitting of the two e, orbitals
at each site, which is of the order of Jy(2S + 1). If JuS > kgT, t, double occupancy of a
site is strongly suppressed, and the use of a one-band model is reasonable. Moreover, the
degeneracy of the e, orbitals is also lifted by JT distortions for z < 0.4, and the distortions
of Q2 and @3 symmetry (see Sec. 1.3.1) may be modeled by one effective phonon mode of
the Holstein type [40]. As long as we are not interested in states with orbital order, this
does not represent a loss of generality.

Double exchange model

While Eq. (1.6) approximately describes the electron-phonon coupling in the manganites,
several other relevant contributions are still missing. Among them is the DE interaction,
which is commonly believed to give rise to the ferromagnetism observed at low temperatures
in the manganites. The DE model is defined as

HDE: _tZCIUCjU_JHZUi'Si' (17)
(ij)o i
Here the first term describes the hopping of electrons with amplitude ¢ which gives rise to

a free band of width
W = 4tD (1.8)

10
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in D dimensions. The symbol (ij) in Eq. (1.7) stands for the hopping processes i — j and
j — i, and we have therefore dropped the usual hermitian conjugated term c;r-gcw. The
second term accounts for the (ferromagnetic) coupling between the itinerant e, electrons—
described by spin operators o;—and the local ty; spins of magnitude 3/2, denoted as S;.
The components of the spin operator o; = (07, 07, 07) of an e, electron at site i are defined
by

of =of +i0! = c;rTcu, o, =of —io! = CgiciT’ of = §(ﬁn — 7iy) - (1.9)
Within the DE model, the mobile carriers can maximize their kinetic energy by aligning
all local spins ferromagnetically. However, with increasing temperature, spin fluctuations
start to develop, and there is a transition to a paramagnetic state at a Curie temperature
Tc [3]. The disorder of the local spins leads to a narrowing of the e, band. However, in the
vicinity of T¢, an applied magnetic field will line up the local spins, thereby increasing the
bandwidth. In principle, this explains the decrease of resistivity in a magnetic field near
Tc, but the effect is much smaller than observed experimentally (see Sec. 1.1).

In addition to the DE term, there is an antiferromagnetic coupling of neighboring Mn
spins, which is responsible for the antiferromagnetic ground state of the undoped parent
compound LaMnQOgs. The corresponding term in a model Hamiltonian takes the familiar
Heisenberg form Jap Z(U) S;-S;. However, for doping z ~ 0.2-0.4, the regime in which we
are interested here, the antiferromagnetic coupling is much weaker than the ferromagnetic
DE interaction, and may therefore be neglected.

In the case of the manganites, Jy in the DE term in Eq. (1.7) is positive. For Jy < 0, the
antiferromagnetic coupling between local and itinerant spins gives rise to the Kondo effect,
and the Hamiltonian (1.7) is usually referred to as the Kondo lattice model. Although this
name is also used for the ferromagnetic case Jg > 0 by some authors, it is misleading since
there is no connection with the Kondo effect.

As discussed above, the manganites fall into the strong-coupling or DE limit JgS > t.
Therefore, low-spin states—with an e, electron having its spin antiparallel to the local
spin—are strongly suppressed. In a one-band model like Hamiltonian (1.7), this has the
same effect as strong Coulomb repulsion between e, electrons at the same site. For the
manganites, this onsite repulsion, which has been left out of the discussion until now, is
the largest energy (= 8 eV for both the repulsion of electrons in the same and different
eg orbitals [41]). As pointed out by Held and Vollhardt [41], a two-band DE model with
electron-electron interaction cannot account for, e.g., the CMR effect. Nevertheless, the
Coulomb repulsion between electrons at the same lattice site plays an important role. For
example, it gives rise to the Mott insulating state for x = 0, in which electrons cannot
hop due to strong correlations. In principle, the above-mentioned Hund’s rule coupling is
a direct consequence of the intraatomic Coulomb interaction [42]. However, while the one-
band DE model without Coulomb interaction and large Jy correctly describes the insulating
behavior for z = 0 [3], a two-band model without an onsite repulsion—as employed, e.g.,
by Millis et al. [43]—exhibits a spurious metallic state for z = 0 (n = 1) even for Jg = occ.

11
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Holstein double-exchange model

Whereas the pure DE model can explain the origin of ferromagnetism in the doped man-
ganites, as well as some properties of LSMO, Millis et al. [44] have pointed out the neces-
sity to include electron-phonon coupling. Green [25] has proposed the following Holstein
double-exchange (Holstein-DE) model

HHDE_—tZCzU ]o_ JHZUZSZ+waTbZ_anz bT+b (110)

(ij)o

The third and fourth terms in Eq. (1.10) describe Einstein phonons with frequency w,
created (annihilated) by operators b} (b, ), which couple to the local electron density 7; with
coupling strength g. Here 7; = ) _7,, and 7, = c;racw The description of the phonon
degrees of freedom in terms of an Einstein model with a constant dispersion w(k) = w
for all k is justified for optical phonon modes [42]. In contrast to acoustic modes, the
latter correspond to noncooperative, local distortions similar to the JT effects discussed
above. The electron-phonon interaction in Eq. (1.10) is of the @); breathing mode type [see
Eq. (1.6)], but in the context of the manganites it is regarded as an effective JT coupling
of Q)2 symmetry.

Green |25] developed a many-body coherent potential approximation for the model
(1.10), which can explain the differences between LSMO and LCMO discussed in Sec. 1.1
by assuming a slightly stronger electron-phonon interaction in LCMO. Moreover, it can
qualitatively account for the CMR, pressure and isotope effects, as well as for some spectral
properties observed experimentally [3,25,45]. At the moment, Green’s work [25| represents
the only theory which provides a satisfactory description of the cross over from quantum
to classical phonons, and from weak coupling to the small-polaron limit.

For the manganites, a common simplification consists in treating the local spins as
classical vectors of magnitude S = 3/2. Although this is only exact in the limit S — oo,
it is usually regarded as a reasonable approximation. Moreover, many authors also take
the limit Jgy — oo, in which double occupation of a given site is forbidden by the Pauli
exclusion principle. This is justified by the fact that in the manganites we have JgS > t,
as mentioned before. In the limit S = Jy = oo, the Holstein-DE model simplifies to

Hypg = —th c;cos(6;;/2) +wa}Lbi — gZﬁi(b;r +b,), (1.11)
() i i

where 0;; denotes the relative angle between the local spins S;, §;. The cosine factor
arises from the scalar product of two spin—% eigenstates with different axes of quantization.
Obviously, the assumption of classical spins and Jy = oo has reduced the problem to the
case of spinless fermions interacting with local phonons, and with a hopping amplitude
that depends on the orientation of the local spins. Our motivation for studying the pure
Holstein model in the context of the manganites comes from the fact that Eq. (1.11)
reduces to the pure Holstein Hamiltonian in the completely saturated ferromagnetic state
[cos(6;/2) = 1] or the paramagnetic state above T¢, in which the average over all spin

12
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orientations gives (cos(6;;/2)) = 2/3. Hence, in these cases, the coupling to the local spins
only manifests itself in terms of a uniform modification of the bare hopping integral t.
We shall see below that even the simple Holstein model—for parameters as realized in
the manganites—represents a serious challenge for numerical methods. Therefore, in this
work, we restrict our attention to pure electron-phonon models, not taking into account
the dynamics of the localized ty, spins.

Holstein model

As discussed in the previous section, the Holstein-DE model is equivalent to the pure
Holstein model if the local spins are either completely aligned or completely disordered.
The Holstein Hamiltonian, which has first been studied by Holstein [46] to understand the
effects of electron-phonon interaction in molecular crystals, takes the form

=ty d,c, Z ( ) - a’zi:ﬁi:zi. (1.12)

(if)o
Here k£ is the spring-constant, and M denotes the mass of the vibrating described by
coordinates #; and momenta p;. The phonon degrees of freedom in the Holstein model
are equivalent to independent harmonic oscillators at each lattice site, which couple to the
local electron density with coupling strength «'.
The second-quantized representation of the model can be obtained by setting Jy = 0
in Eq. (1.10), leading to

Hy=-t) d, W+wzb b =gy (b +b;). (1.13)

(if)o

The phonon operators in first and second quantization are related as follows (& = 1):

Y LY \/Mw ,/
(2 2 7 2waz Y ‘/EZ ()

or, equivalently,
1 Mw
b= 4/ —— (bl +b, p. = i1/ —— (bl — b,
Z; e (b, +b,) , pi=i 5 (b, —b;). (1.14)

o =vV2Muwg. (1.15)

For the QMC simulations presented in this work, it is more convenient to work with
Eq. (1.12), and to express the phonon variables in terms of their natural units

= (Mw) ™22, p— (Mw)'? p, (1.16)

Moreover, we have

Setting M = 1 and k¥ = w?, and defining oo = a’/\/_ = \/ig, the Holstein Hamiltonian

becomes
= —thch Z p; + a7 —azmii. (1.17)
i

(ij)o
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For future purposes, we introduce the dimensionless electron-phonon coupling constant

12 2

2
A= wO;W - waW - j?/V’ (1.18)
where W has been defined in Eq. (1.8), and the adiabatic ratio
w=w/t. (1.19)
In the sequel, we shall also use the polaron binding energy
Ep = AW/2, (1.20)

which emerges as a natural parameter from the Lang-Firsov transformation [47]. Further-
more, we take the lattice constant to be unity.

Holstein-Hubbard model
The Holstein-Hubbard model is defined by the Hamiltonian

w R N ~~ A~ A oA
Hin = coeso + 5 3208 +5) — oY i+ U (121
i %

(ij)o i

or, equivalently,
Hun = 1Y o w0 X0 o A0 40) U A (2
(ij)o i i '

It describes the competition between the attractive interaction between electrons mediated
by the coupling to phonons, and an onsite Coulomb repulsion between two electrons of
opposite spin.
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The purpose of computing is insight, not
numbers.
(Richard Hamming)

2 Numerical methods

In condensed matter theory, strongly correlated materials such as the manganites are de-
scribed using simplified models, which only contain the most important interactions. How-
ever, despite the approximations, exact solutions of the resulting models are usually not
attainable. Therefore, one has to resort to analytical treatments involving uncontrolled ap-
proximations, or based on perturbation theory which is bound to fail in certain parameter
regimes. Consequently, if calculations disagree with experiment, it is not clear whether the
discrepancies are a result of the approximations made, or if the model is not sufficient to
explain the actual physics. Moreover, a particular method can rarely be applied to other
problems in the field.

Recently, the combination of analytical and numerical techniques has led to consider-
able advances in the understanding of many aspects of condensed matter physics. While
analytical methods often give a rough overview of the properties of the system under con-
sideration, numerical calculations can be used to test the validity of the assumptions made,
and to investigate whether a given model contains all the physics that is seen in experiment.
Hence, numerical techniques are no longer regarded as mere tools to check analytical re-
sults, but represent an alternative way to predict new physics. In other words, numerically
exact approaches such as, e.g., QMC or exact diagonalization (ED), open up the possibility
of carrying out unbiased studies of different models, both at zero and finite temperature.
The price to be paid in many cases is the restriction to relatively small clusters, often in
low dimensions D = 1,2. This drawback can be overcome by combining analytical and
numerical techniques as, e.g., in the case of cluster perturbation theory and DMFT.

This chapter provides an introduction to the computational methods used here, and
is organized as follows. In Sec. 2.1, we present the principles of the QMC method, which
has experienced a tremendous development over the last decades. A review focusing on
the application to strongly correlated models has been given by von der Linden [10]. In
contrast, cluster perturbation theory, which is reviewed in Sec. 2.2, has been proposed
only a couple of years ago, and belongs to the so-called cluster methods [48]. The latter,
which also include DMFT and its various extensions, are in the focus of much recent
theoretical work, since they bridge the gap between numerical studies of small, one- and
two-dimensional systems, and realistic calculations for three-dimensional, infinite solids.
Section 2.3 introduces the Lanczos method for the diagonalization of very large sparse
matrices. Finally, in Sec. 2.4, we briefly discuss the kernel polynomial method which
allows one to perform accurate calculations of spectral functions.
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2.1 Quantum Monte Carlo

The first application of a Monte Carlo (MC) method dates back to von Neumann and Ulam
(1950), who used it so stochastically evaluate the inverse of a matrix [10]. Since a complete
review of the development of the MC approach is far beyond the scope of this work, here
we shall focus on those aspects which are necessary for an understanding of simulations of
coupled electron-phonon systems on a lattice. For a comprehensive overview of the field,
we refer the reader to the book by Landau and Binder [49], and to [10].

In the field of strongly correlated systems, the QMC method has been used extensively,
as it allows simulations on relatively large lattices and gives quasiexact results® also at finite
temperatures. This permits one to study fascinating phenomena such as high-temperature
superconductivity or CMR.

Despite some principle advantages, QMC methods are often limited by (a) the minus-
sign problem, which restricts simulations to high temperatures and/or small systems, (b)
the fact that the calculation of dynamical properties, e.g., the one-electron Green function,
requires analytic continuation to the real-time axis which is an ill-posed problem (see
Sec. 2.1.6), and (c) by strong autocorrelations and large statistical errors.

This section outlines the basic ideas behind MC simulations for quantum-mechanical
systems. Specific details concerning the application to the Holstein and Holstein-Hubbard
model will be discussed in the corresponding chapters.

2.1.1 Basic ideas and importance sampling

The partition function of a quantum-mechanical system is defined as
Z = Tre M = / dX (X] 8% |x) (2.1)

where 8 = (kgT')~"! denotes the inverse temperature, H is the Hamiltonian, and the integral
is over all possible configurations (states) |X). The expectation value of an operator O,
corresponding to a physical observable, can be obtained from?

(0) = %Tr (O =01y = % / dX (X|0 e |X) (2.2)

Upon identifying the inverse temperature S with a so-called imaginary time ir, statistical
mechanics can be directly related to Feynman’s path-integral formulation of quantum me-
chanics [50], which is the starting point of many QMC simulations. The expectation value
in Eq. (2.2) is then given by

(0) = % / DXeSMO(X) , Z= / DXe 50 (2.3)

I That is, exact apart from statistical errors which can, in principle, be made arbitrarily small.
2Throughout this work, we will denote an operator associated with an observable, matrix or scalar variable
O by O.
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Here S denotes the action defined in Euclidean (imaginary) time, and the integrals are over
all possible configurations X of the classical “auziliary’ fields on which O and S depend.
Using the path-integral approach, any quantum-mechanical problem in D dimensions can
be mapped onto a classical problem in D 4+ 1 dimensions, with the additional dimension
being the imaginary time. The difficulty consists in finding an appropriate set of basis states
for this mapping, as the choice strongly depends on the problem under consideration.

For many-particle systems, the dimensionality of the integrals in Eq. (2.3) is far beyond
anything that can be handled using standard integration techniques, and an illuminating
discussion of these difficulties is given by Negele and Orland [51]|. The basic idea of (Q)MC
is to exploit the fact that from the whole of phase space, usually only a very small number
of configurations contributes significantly to the average in Eq. (2.3). Hence, one sets
out to sample an ensemble of configurations X;, labeled by ¢ = 1,2, ..., Nyeas, which are
distributed according to

eiS(Xi)
Using this importance sampling, the expectation value in Eq. (2.3) becomes
1 Nmeas
(O) = lim 0(X;) .- (2.5)

Nmeas—+00 Nmeas —1
i=

For a finite number Np,e,s of samples, an estimate for (O) is given by

1 Nmeas

N D 0(Xi). (2.6)

=1

0=

Owing to the limited number of measurements, the random variable 9 will fluctuate around
the true expectation value as O = (O) = AO. The statistical error AO depends on the
(unknown) intrinsic variance

—9 —
05 =(0") —(0)*. (2.7)
If the Npeas configurations X; are all statistically independent, AO can be obtained from

_2 1 Nmeas

2 _ 90 —2 _ N _71?
(AO) B Nmeas » 0% Nmeas(Nrneas - 1) ; [O(XZ) m - (28)

Equation (2.8) reveals one of the most important features of MC methods. The statistical
error decreases with the number of measurements, so that, in principle, one can obtain
results of arbitrary accuracy. Moreover, the number of configurations required for a certain
accuracy does not explicitly depend on the dimensionality of the problem, in strong contrast
to the necessary number of grid points in standard integration methods [51].
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2.1.2 Markov chains and updating schemes

From the above discussion, it becomes clear that it is not necessary to sample configurations
from all regions of phase space. Instead, one can restrict the simulation to those states
of the system which have a significantly large probability. Given a physically relevant
configuration, we are confronted with the question of how the system should be evolved
so that subsequent configurations are also distributed according to p [Eq. (2.4)]. A very
common way to sample new configurations is the Metropolis algorithm [52]. Starting from
the current state of the system, denoted as X, a new configuration X' is proposed by
making a small change AX, i.e., X' = X + AX, and calculating the ratio

p(X')
p(X)’

where p is given by Eq. (2.4). We next draw a random number r from a uniform distribution
between 0 and 1, and accept the state X' if r < P. Hence, a new configuration is always
accepted if it has a larger weight p than the current state (P > 1). Otherwise, it is accepted
with the probability P < 1, given by Eq. (2.9). This procedure generates a sequence of
states X1, X, ... distributed according to Eq. (2.4), which is called a Markov Chain if the
probability P(X,, — X,1) exclusively depends on the current configuration X, but not
on the previous states X1, ..., X,, ;. The initial configuration is usually chosen at random,
and a warm-up phase is required to allow the system to reach thermal equilibrium before
measurements can be made.

The reason for the restriction to small changes is that, according to Egs. (2.4) and (2.9),
the acceptance is determined by the change of the action S. Since large changes in the
state of the system are usually accompanied by large variations of S, such moves in phase
space are very unlikely to be accepted. On the other hand, depending on the structure
of p, it may take a large number of attempts to leave a given region of phase space and
traverse to other important states. This gives rise to autocorrelations between successive
configurations, and to the phenomenon of critical slowing-down in the vicinity of phase
transitions. The issue of autocorrelations, which are particularly pronounced in the case
of electron-phonon systems, will be addressed in Sec. 2.1.5. Here we would like to mention
that physically motivated global updates can often be used to increase the efficiency of MC
simulations [53].

Finally, there exist two necessary conditions for sampling procedures to produce exact
results. First, the algorithm has to be ergodic, i.e., all states of phase space must be
accessible within a finite time period, and second, the sampling has to fulfill detailed balance,

ie., P(X > X') = P(X' > X).

P(X = X') =

(2.9)

2.1.3 Sign problem

To move from one state of the system to the next using, e.g., the Metropolis algorithm,
we have interpreted p(X) as the probability of the configuration X. Clearly, this requires
p(X) to be nonnegative. Unfortunately, in QMC simulations, this condition is sometimes
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violated. In fact, negative values of the weight p often occur in the most interesting param-
eter regimes, making accurate simulations difficult or even impossible. This is referred to
as the sign problem. Although the latter can sometimes be overcome by, e.g., appropriate
transformations of the Hamiltonian, a general solution has not yet been found. Despite
the occurrence of a sign problem, simulations can often be carried out using the modified
weights

" p(X)]
pX)= . (2.10)
/DX |p(X)]
Thereby, the sign of p is absorbed in the observables, which are calculated as
DX i 7 i
0y = DX Oxsign(px) px _ (Osign) (2.11)

J DX sign(px) px

with the notation Ox = O(X), et cetera. While this approach can be expected to work
well as long as (sign) ~ 1, it will clearly break down if (sign) — 0, due to the large
fluctuations caused by the denominator in Eq. (2.11). As illustrated in [10], the number of
measurements for a given relative error of an observable increases as (sign)~2. In practice,
simulations can usually be carried out down to (sign) 2 0.1.

(sign)

2.1.4 Suzuki-Trotter decomposition

While the weight of a given configuration X can easily be evaluated for classical systems,
such as the Ising model, the calculation of p(X) is much more difficult for quantum-
mechanical problems. The reason is that the different parts in the Hamiltonian do not
commute, so that the latter can in general not be diagonalized. Let us denote the kinetic
and interaction parts as K and V, respectively, so that H = K+ V. Clearly, for [K, V] #0

we have
e BEFY) o o=BK =BV (2.12)

For general operators A, B , Suzuki and Trotter have proved the following identity [10]

A > 1 4 145 L
e = lim [efAefB} , (2.13)

L—oo

where L is an integer number. For a finite value of L, one finds
- : 1 41L
P = [e%Ae%B} +O(L?). (2.14)

Equation (2.14) is often used in the context of QMC simulations to separate the kinetic
and interaction terms in H. To this end, we divide the imaginary time interval [0, 4] into
L intervals of size

At = B/L, (2.15)

so that for each interval we obtain

efATH — 6*AT(K+V) — efATKefATV —+ O(AT2) . (216)
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2.1. Quantum Monte Carlo

Since each of the exponentials can be diagonalized separately in an appropriate basis,
Eq. (2.16) represents a very useful starting point for the evaluation of the path integral in
Eq. (2.3) for quantum-mechanical systems.

The error associated with the approximation in Eq. (2.16) can be systematically reduced
by using smaller values of A7. In practice, there are two strategies to handle this so-called
Suzuki-Trotter error. Owing to the large numerical effort usually required to perform
QMC simulations, A7 is often chosen such that the systematical error is smaller than the
statistical errors for observables. A second, more satisfactory, but also more costly method
is to run simulations at different values of A7, and to exploit the A72 dependence of the
results to extrapolate to A7 = 0. Finally, in some variants of QMC, the Suzuki-Trotter
approximation can be avoided completely by working in continuous imaginary time [53].

2.1.5 Autocorrelations and the Jackknife method
Autocorrelations

We have pointed out above that the use of small changes to move through phase space
causes statistical correlations between successive configurations. Since the relation (2.8)
is only valid for statistically independent samples X;, it is crucial to check any results
for autocorrelations. This can be done, for example, by looking at the time-series of
measurements obtained in the course of a simulation. Typically, there occur visible periodic
transitions between values characteristic of different regions of phase space, and the number
of MC steps between two such cross overs gives a measure for the autocorrelation time. To
quantify these ideas, we follow [10] and [54] by defining the autocorrelation function

Nmeas _k Nmeas ?

Po(k) = 5 : (2.17)
e S0 - |5k S 0(X)|

Nmeas Nmeas

2
s ST O(X)O(Kign) — [ X 0(X) |

For large time separations k, ®o(k) decays exponentially,
®o(k) "25° const.eHo" (2.18)

where 7,% is the exponential autocorrelation time for the observable O. For practical
purposes, one usually defines the integrated autocorrelation time

Nmeas

: 1
int __
o' =gt > (k). (2.19)
k=1
As discussed by Janke [54], one can show that 3% < 75, The integrated autocorrelation
time governs the statistical error of the expectation value O via

int —=2
275 72 = 90
O — I
N, meas Neff

AO =

(2.20)
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where the effective number of measurements Neg = Npeas/(275%). A comparison with
Eq. (2.8) reveals that in the presence of autocorrelations, the statistical error of an observ-
able O for a given number of measurements N,.,s increases with the integrated autocor-
relation time 73%. In particular, the neglect of autocorrelations yields too small statistical
errors, and therefore incorrect results. Once the longest autocorrelation time has been
identified, correct statistical errors can be obtained by skipping a large enough number
N of MC steps between successive measurements so that ®(N) < 0.1 [10]. This way, the
computationally expensive calculation of observables in each step can be avoided. Never-
theless, a possibly significantly larger number of steps will be required to obtain a certain
accuracy compared to uncorrelated simulations.

Jackknife

Equations (2.8) and (2.20) for the statistical error only hold for observables which can
be measured directly in each MC step and with no autocorrelations. In contrast, the
calculation of the error of a nonlinear quantity of the form

«D:%ﬁ (2.21)

can be rather cumbersome. Observables of this structure occur quite frequently, e.g., in
simulations with a sign problem [cf. Eq. (2.11)].

A very elegant way to deal with such situations is the Jackknife method |55]. For
simplicity, we restrict the discussion to the special case of Eq. (2.21). Given a set of
Npeas measurements of A and B, we employ Eq. (2.6) to calculate the expectation value

" = A/C, using all available data. We then divide the measured values of A and

B into k groups of length | = Npeas/k, where | must be large compared to the longest
autocorrelation time to ensure correct results. We proceed by evaluating the quantities

~—

é(j) for j =1,2,...,k, by using all data except those in group j. The Jackknife estimate
for the expectation value of (C) is then given by [53]

C =0 - Bias, (2.22)
where

v 1
Bias = (k— 1) -C7) , ¢~ =Y 0. (2.23)

Finally, the corresponding statistical error can be calculated via

1/2

AT = VE=1 %g{(ﬁ(“) — vy (2.24)
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2.1.6 Maximum entropy method

An instructive review of the maximum entropy method has been given by Jarrell [56]. Here
we only discuss the most important ideas, as necessary for the applications in this work.

It has been pointed out earlier that an important limitation of many QMC methods is
that dynamical quantities such as, e.g., the energy- and momentum-dependent one-electron
Green function G(k,w), can only be calculated in imaginary time, usually at discrete points
7 =1lAT, 1 =0,...,L. In order to compare results to experiment, a continuation to real
frequencies is required. Here we are mainly interested in the one-electron spectral function,
which is related to G by

1
Alk,w) = ——Im G(k,w). (2.25)
T
Conversely, the time-dependent Green function can be obtained from
G(k,7) = /_ dwd(k @K (r), K(re) = - (2.26)

In principle, if G(k, 7) is known from a QMC simulation, an inversion of Eq. (2.26) yields
A(k,w). However, difficulties arise owing to the form of the kernel K(7,w), which becomes
exponentially small for large w. For a finite number M of points w;, © = 1,..., M, on the
energy axis, the integral in Eq. (2.26) can be written as a matrix equation

Gt = ZKtwAw ) (227)

where G, A correspond to vectors of length L+1 and M, respectively, and K isa (L+1)x M
matrix. Clearly, a calculation of A(k,w) requires a solution which, if inserted in Eqs. (2.26)
or (2.27), reproduces the Green function G(k,7) within the errorbars of the QMC data.
The inversion of Eq. (2.27) leads to the system of linear equations

K'G=A. (2.28)

The matrix K~! is usually extremely ill-conditioned, i.e., the ratio of the largest to the
smallest singular value—referred to as the condition number—is very large [57]. Conse-
quently, Eq. (2.28) cannot be solved using standard methods. It can be shown that small
changes in G (within the statistical errors) are magnified by the condition number, thereby
leading to large variations in the solution for A.

The maximum entropy method represents a consistent and reliable way of performing
the inversion of Eq. (2.26). It is based on the rules of probability theory, and yields the most
probable spectral function A(k,w), compatible with the measured Green function G(k, 7)
and all other available information about A(k,w), such as sum rules, nonnegativity, et
cetera.

Denoting the QMC result for the time-dependent Green function by G, obtained by
averaging over Np,q,s measurements for each time slice, Bayes’ Theorem yields the following
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result for the probability of a certain solution A for the spectral function

P(A|G) = %. (2.29)

Here P(A|B) denotes the conditional probability for a proposition A provided B is true.
For a given G, P(G) is a constant and may thus be ignored. P(G|A) is referred to as the
likelihood function, and P(A) is called the prior. Skilling [58] proposed a prior of the form

P(Alm,a) ~ e, (2.30)

where S is the entropy defined as

M
S=>"A;—m; — Ailog(A;/m;) (2.31)

=1

with the default model m; = m(w;). In the absence of any data for G, the entropy is
maximized by the choice A = m. In practice, one usually choses m to be a small constant,
corresponding to no previous knowledge about the structure of the spectrum. Alternatively,
it is possible to use, e.g., exact limits of the spectral function as a guiding function [56]. As
pointed out by Jarrell [56|, the regularization parameter o governs the competition between
the entropy and the misfit of the data, and is determined by maximizing the probability
P(a|G,m). The misfit x* enters via the likelihood function

1 )
P(G,|4) = e 2Xi (2.32)
2ro
and is defined as [56]
2= L@ ) 2 = ! Nmeas@ G’ 2.33
=g @-G). STy @@, )

Equation (2.33) only holds for uncorrelated data. For the more general case of nonnegligible
autocorrelations, we refer the reader to [56]. We would like to emphasize that a detailed
analysis of autocorrelations, both between measurements for the same and different time
slices, is crucial to ensure reliable results. Finally, the maximum entropy algorithm used in
this work incorporates an improved evidence approximation [59], which generally reduces
ringing and yields more stable results with respect to statistical errors.

2.2 Cluster perturbation theory

While the first ideas similar to cluster perturbation theory (CPT) in the form used here date
back to Gros and Valenti [60], the widespread use of this method was initiated by the work
of Sénéchal et al. [11,12]. Since then, it has been applied to a variety of models, including
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(extended) Hubbard models [11,12,61-63] and the ¢—J model |64, 65]. The following review
is largely based on the article by Sénéchal [66].

The principle idea behind CPT is to divide the infinite crystal lattice into identical
clusters of N sites. While the model Hamiltonian is then solved exactly on one of these
clusters, the hopping between different clusters is treated within strong-coupling pertur-
bation theory. As a detailed derivation can be found in [12], we restrict the discussion to
the resulting equations.

To settle the notation, we consider a Hamiltonian of the form

H= ZtijC}Ung + H1 ; (234)
ijo
where H; denotes a local interaction, e.g., a Hubbard term. We set out to calculate the
one-electron Green function

G(k,2) = (\I’o\ckm

- vl -

1
CL |\IIO> + <\IJO‘ Cl:m

Ge Gp

Cr |\IIO> ) (235)

where G, and G}, represent the photoemission and inverse photoemission part, CL creates

an electron with momentum k, and we have omitted spin indices for simplicity. Fy denotes
the energy of the ground state |¥y), and z = e +in. The most interesting observable which
can be calculated within CPT, namely the one-electron spectral function, is related to G
via

1
A(k,€) = —— lim Im G(k,e +1in), (2.36)

T n—0t
the negative-frequency part of which can often be directly measured in ARPES experiments
(see Sec.1.2).

Typical cluster sizes in CPT range from N =1 to N < 16, depending on the available
computer resources and the model under consideration. Examples for the simplest cluster
shapes in one and two dimensions are shown in Fig. 2.1. In more than one dimension, it is
often advantageous to choose more complicated tilings (see, e.g., Fig. 1 in [12]), although
different tilings may lead to slightly different results. This possibility has been investigated
for the Hubbard model, and the effect of the cluster shape on A(k, €) was found to be rather
small [12]. The hopping integrals in Hamiltonian (2.34) can be labeled as 7", where the
superscripts correspond to different clusters, and the subscripts denote sites inside a given
cluster. For an isolated cluster (m = n), the Hamiltonian (2.34) can be solved using, e.g.,
the Lanczos method (Sec. 2.3). To this end, we have to calculate the cluster Green function

1 1
¢ = (v S ——T Yolel———— ¢ |@ 2.37
ab(z) f 0|Caz_(H_EO)Cb| Oz+f 0|Cbz+(H_E0)ca| O)J ( )
ng,e Gg;h

for all nonequivalent pairs of cluster sites (a,b). While G¢, contains all the information of
the model defined on a single cluster, the hopping between different clusters is taken into
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Figure 2.1: Examples of possible cluster tilings in one (left) and two (right) dimensions,
with N =4 and N =9, respectively. Filled circles represent lattice sites within
the cluster, while empty circles correspond to sites of neighboring clusters. Solid
(dashed) lines indicate intracluster (intercluster) hopping processes.

account in an approximate manner. It may be written as

T = 0+ V" (2.38)

a

where t;, is the amplitude for hopping within a cluster. CPT treats the remaining in-
tercluster hopping V' using a strong-coupling perturbation expansion in orders of |V |/|U]|,
with |V| and |U| denoting the strength of the hopping and the local interaction H; in
Eq. (2.34), respectively. To obtain a tractable algorithm, only the lowest order terms are
kept. In matrix notation, this can be expressed as

Glt=[GT!'-V. (2.39)

As discussed by Sénéchal [66], this may also be interpreted as approximating the self-energy
of the full problem by that of a finite cluster, i.e.,

Gl=Gy'-x°. (2.40)

Here, Gy corresponds to the Green function of the noninteracting system, and 3¢ is the
self-energy for a single, isolated cluster.

The Lanczos procedure to obtain the cluster Green function (2.37) will be described in
Sec. 2.3. Once G¢, is known, we can proceed to calculate the CPT approximation to the
full Green function G. Owing to the different treatment of inter- and intracluster hopping,
translational symmetry is broken and has to be restored in some way. We begin by Fourier-
transforming the intercluster hopping matrix V', which can be reduced to a N x N matrix
Var(K), where K is a wavevector of the Brillouin zone of the superlattice of clusters. The
result reads [66]

Van(K) = el (2.41)
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2.2. Cluster perturbation theory

Here 7, is the position of the nth cluster relative to the base cluster having n = 0. Using
the above expression, Eq. (2.39) becomes

G K,2) =[G(2)] - V(K), (2.42)

which is equivalent to

G(2)
Gu(K,z) = ) 2.43
o:5) = (=), 249
The Green function G in Egs. (2.42) and (2.43) is in a mixed representation—real space
within a cluster and reciprocal space between clusters. To obtain the energy- and momen-
tum dependent Green function defined in Eq. (2.35), and to restore translational symmetry,
the following procedure has been proposed [11,12]

N
Gk, 2) = % S Guplk, z)e ko) (2.44)

a,b=1
In practice, the method proceeds as follows.

1. calculate the poles and corresponding weights of the cluster Green function G¢,
[Eq. (2.37)] using the Lanczos method,

2. insert the Lehmann representation of G¢, with a smearing parameter 7 in Eq. (2.43)
to obtain Gy,

3. carry out the Fourier transformation (2.44).

Since CPT is based on a perturbation expansion in the intercluster hopping, the method
can be expected to work especially well in the strong-coupling regime, i.e., if H; dominates
[see Eq. (2.34)]. This is also illustrated by the fact that it becomes exact in the atomic limit
ti; = 0. On the other hand, for weak or intermediate coupling, the electronic kinetic energy
is not small compared to the local interactions. Consequently, the size of the cluster has
to be large enough in order to obtain accurate results. In fact, from previous applications
of CPT, e.g., to the one- and two-dimensional Hubbard model [11,12,61], the cluster
size N emerged as the main control parameter of the method. For the one-dimensional
Hubbard model, for example, N = 1 is identical to the Hubbard I approximation [67],
while N = 2 already gives a spectral function that contains most of the relevant features
such as short-range antiferromagnetic ordering [12]. With increasing N, the CPT Green
function approaches systematically the exact result for the infinite system. Finally, CPT
also becomes exact for H; = 0 since in this case X° = 0 so that Eq. (2.40) yields the correct
Green function.

For identical clusters, the CPT spectrum contains many more poles with significant
residues than the corresponding results of ED. This is a consequence of the Dyson-like

3 A nonzero smearing parameter is necessary in order to render the matrix inversion in Eq. (2.43) numer-
ically stable.
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equation (2.43), which corresponds to a summation of all diagrams consisting of one-
particle Green functions to infinite order. We shall see in Sec. 2.3 that one drawback
of using Lanczos to calculate spectra is the relatively small number of poles compared to
more advanced methods such as, e.g., Chebyshev recursion techniques (Sec. 2.4). However,
in combination with CPT, this disadvantage is largely compensated since the real-space
Green function obtained with Lanczos only serves as an input to Eq. (2.43). An additional
advantage of CPT is the possibility to evaluate G(k,¢) at continuous wavevectors k, in
contrast to ED which restricts k to the N vectors of the first Brillouin zone of the cluster,
of which only N/2 + 1 are physically distinct. While other methods such as DMFT also
yield results for any k, CPT does not rely on the approximation of a local self-energy,
which only becomes exact in the limit of infinite dimensions. Finally, finite temperature
Lanczos methods may also be combined with CPT to calculate thermodynamic properties
[68].

We want to point out that CPT does not, in principle, rely on the Lanczos method.
The cluster Green function may be calculated using any suitable technique [12|. Indeed,
we will see in Sec. 5.2 that it is possible to combine the exact analytic solution for the
atomic-limit Green function with CPT to obtain results which agree surprisingly well with
the many-body coherent potential approximation [45] for the spinless Holstein model.

A drawback of CPT when used in combination with ED is the fact that the diagonal-
ization has to be performed using open boundary conditions. It is therefore not possible
to exploit translational invariance to save computer memory (Sec. 2.3). Attempts have
been made to use periodic BC’s and subtract the corresponding terms afterward in the
perturbative treatment of the intercluster hopping, but it has been found that the accu-
racy of the results is much better for the case of open BC’s [66]. Other symmetries, such
as the inversion group, can be incorporated in principle, but are usually not as effective
at reducing the dimension of the Hilbert space. At this point we would like to mention
that most of the CPU time for applications of CPT in combination with Lanczos goes into
the calculation of the cluster Green function. For example, the number of Lanczos runs
required to determine G, increases proportional to N2. In contrast, the effort for the
subsequent evaluation of the Green function according to Egs. (2.43) and (2.44) for the
infinite system is negligible, with typical run times of less than 100 seconds.

In addition to the spectral function considered here, other physical properties of the
system can also be calculated with CPT. This includes, e.g., the ground-state energy of
the infinite system, the electronic kinetic energy, or the Fermi surface [12]. However, the
strength of CPT lies in the calculation of the one-particle Green function and related
quantities such as the density of states.

Concerning the shortcomings of CPT, we would like to mention that, within the current
formulation, two-particle Green functions cannot be calculated. Consequently, it is not
possible to compute, for example, optical conductivities. On top of that, the method is
in principle restricted to models with local interactions, although it has been applied with
some success to the ¢t—J model [64,65|. Moreover, an extension of CPT to Hubbard models
with nearest-neighbor interaction has recently been proposed by Aichhorn et al. [63].

Finally, CPT may also be compared to other cluster methods, such as the cluster DMFT
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(CDMFT) or the dynamical cluster approximation (DCA). The main difference to CPT is
that, in the latter, the surroundings of the cluster are not treated self-consistently, as is the
case, e.g., for the bath in DMFT. Attempts to include self-consistency in the CPT lead to
the same results as for periodic boundary conditions [66], which are further away from the
exact solution than the approach presented here. An important advantage of CPT over
CDMFT and DCA is that it can use larger clusters, since no bath sites are required. For a
detailed discussion of the relation between these different approaches, we refer the reader

to [48,69].

2.3 Lanczos method

The Hilbert space of typical cluster problems which can be treated numerically has dimen-
sion 10°-10%. As a result, it is not possible to calculate all eigenvalues and eigenstates of
the corresponding Hamiltonian matrix. The Lanczos method represents one of the most
popular algorithms for the diagonalization of very large sparse matrices. In this work, it
is used, e.g., to calculate the real-space cluster Green function required for CPT. More-
over, the method by itself allows one to calculate static and dynamic properties of strongly
correlated systems. This section gives an overview of the most important ideas, while a
general discussion can be found in [70].

2.3.1 Basis states and Hilbert space truncation
Basis states

For electron-phonon models of the Holstein type considered here, the Hilbert space is
spanned by the set of basis states |71]

{|®u) = ) @ [0) 1} (2.45)
with
N
wa = TTTIE) ™ 10),  nicu € {0,1},
i;l o
)y = 11 i' (bf)vie 0),r > Viw €{0,1,...,00}. (2.46)
Here u=1,...,Dg and v =1,..., Dy, are labels for the basis states of the electronic and

N) (N—NU
N\ N_,
The total number of electrons N, = > N, and the z component of the total spin

S?% are conserved quantum numbers. The basis states can therefore be restricted to given
values of N, and S?, which reduces the dimension of the Hilbert space. Furthermore, one

phononic subspaces with dimensions Dy = ( ) and D,;, = oo, respectively.*

“N_ denotes the number of electrons with spin o.
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can exploit the point group symmetries of the cluster, or translational symmetry—given
periodic boundary conditions. As pointed out above, the latter possibility does not exist in
the context of CP'T due to the need for open boundary conditions in the calculation of the
cluster Green function (2.37). Finally, we would like to emphasize that the symmetrized
basis states, which can be obtained by applying suitable projection operators [71], may
still be written as a tensor product of electronic and phononic states.

Hilbert space truncation

In principle, an infinite number of phonons can be excited at each lattice site, as expressed
by Eq. (2.46). Since a diagonalization can only be carried out for finite dimensions, a
truncation of the phonon subspace is required. Following previous work [72], we use the
the basis states

{‘U ph’ Zl/zv = (247)

leading to Dﬁﬁ’h = (Npn + N)!/(Npn!N!) allowed phonon configurations [73]. This scheme
takes into account all possible dynamical phonon modes, i.e., we do not make any assump-
tions about the distribution of the N,, phonons either in real or momentum space. This
ensures a correct description of both local polaron effects and long-range order.

The convergence of the results with NV, can be monitored using the ground-state energy
Ey. To this end, we define the relative error

|EO( ph + 1) - EO(Nph)|

ANon) = [Eo(Non)|

(2.48)

Typical values for the results of this work are A ~ 10~*-107".
For the ED calculations in Chap. 5, an additional condition has been used to ensure
convergence. It it based on the phonon distribution function

Nph

(W, Zl Z [ (2.49)

{VU—V}

for which we require that it becomes independent of N, and |[c(»»)| < 1076. Here the
cuy denote the coefficients of the ground state in the basis {|®,,)} with maximally Ny
phonons.® Equation (2.49) corresponds to the weight of the state with v phonons in the
ground state.

°In Eq. (2.49) we have not taken into account a possible reduction of the electronic Hilbert space D, —
D, < D, due to symmetry operations.
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2.3.2 Ground state and static properties

In a first Lanczos iteration, the Hamiltonian matrix is transformed into a tridiagonal
representation, while a second Lanczos run yields the actual ground state. In the (n+1)th
iteration step, one calculates the vector

|bnt1) = H [6n) = an |¢n) = ) |$n-1) (2.50)
with the coeflicients
n— "7 1 L\ ) bn = 7 T\ .
= o 6] (Gt 1602 (251

and the initial conditions by = 0, [¢_1) = 0. The initial state |@¢) can be chosen as a random
vector having finite overlap with the true ground state. In every step, it is sufficient to
keep only three vectors in memory. After L steps, the Hamiltonian, represented in the

basis consisting of the states |n) = |¢n) /+/{(Pn | #n), becomes

Qg bl 0 0o --- 0
bl (05} b2 0o --- 0

H=]| 0 b ag bg --- 0 | (2.52)
0o 0 0 0 -+ an

There exist three different criteria to stop the Lanczos iteration:
1. convergence has been achieved for the lowest eigenvalue of H,

2. the latest off-diagonal element b2 in Eq. (2.50) is identical to zero within the finite
accuracy available on a computer,

3. the number of iterations has reached an upper limit (typically 50-500).

The ground state ‘\113> corresponds to the eigenvector belonging to the lowest eigenvalue
E}. At the end of the first Lanczos iteration, ‘\IIOL> is known in the basis |¢,), n =1,..., L.
However, since the vectors have not been stored in the course of the iteration process, a
second run is required to obtain the desired representation of the ground state in the original
basis (2.45), using the known coefficients (¥{ | ¢,) in each step. Once |¥{) has been
calculated in the basis (2.45), the ground-state expectation value of any static observable
O may be obtained from

(0) = (5| O |¥5) (2.53)

using the matrix representation of the operator 0.
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2.3.3 Dynamic properties

The Lanczos method also permits the calculation of dynamical correlation functions. Let
us consider a general Green function of the form

1 A - 1 .
O(z) = (¥ M) + (Wo| O ————~0 | 2.54
G(2) f olO = 5y?"| 0>J+§ IO T Em =) 0>J, (2.54)

where z = € + in as before and O is a fermionic operator. In the sequel, we restrict the
discussion to GO. Inserting a complete set of eigenstates {|+,)} of H, it may be written as

| (1| OF ) 2
ZV: A (2.55)

The eigenstates {|1,)} can be expressed in the Lanczos basis {|¢;)} obtained from a further
Lanczos run with the start vector

ot wg)

o) = —
V(WEIO OF [wE)

(2.56)

yielding |71]

‘CVO‘Q

—Ef)’

=(T§|0 Of

(2.57)

where ¢y = (¢, | §). A similar expression can be derived for Gf in Eq. (2.54).

While this so-called spectral decoding method works well for Green functions of the
form (2.54), it cannot directly be used to calculate the real-space cluster Green func-
tion (2.37) since the latter generally involves two different operators ¢! # [c]T for a # b.
Consider the first term Gabe in Eq. (2.37). In order to proceed in this case, we construct
the states @) = ¢} |U}) and |¢') = ¢, |UE). After normalization, |¢) serves as the initial
state for a Lanczos run which gives an approximate eigenbasis {|1/)L )} of H. The latter can
be inserted in Eq. (2.37) in the form of an approximate unity operator so that we obtain

abe Z<¢ |¢L> L |¢> ” — (E;l’ _ Eé,) . (258)

The scalar products in Eq. (2.58) are best calculated by expanding the eigenstates in the
basis of Lanczos vectors.

From what has been said so far it is evident that the Lanczos Green function contains
L poles, while the true Green function consists of D = DelDﬁf‘“ delta peaks. The positions
and weights of the peaks in the Lanczos spectrum converge to the true values as L —
oo. Problems associated with the Lanczos method are (a) the nonuniform convergence of

31



2.4. Kernel polynomial method

eigenvalues and eigenvectors over the whole energy range, (b) the occurrence of so-called
ghost states which appear and disappear in the course of the Lanczos run, and (c) the need
for time-consuming reorthogonalization of the Lanczos vectors for large values of L.

We conclude with a discussion of the numerical effort of the Lanczos method. The
main limitation is the available computer memory, since three Lanczos vectors have to be
stored for the calculation. As the dimension of the Hilbert space depends exponentially on
the number of lattice sites, even shared-memory systems only allow one to include a few
additional sites compared to standard personal computers. Moreover, the computer time
also increases significantly with the size of the vectors as DIn D.

2.4 Kernel polynomial method

The shortcomings of the Lanczos method pointed out in the preceding section have led
to the development of improved algorithms to calculate dynamical properties of strongly
correlated systems. One of these approaches, belonging to the general class of Chebyshev
recursion techniques, is the so-called kernel polynomial method (KPM) used here. Follow-
ing |71], this section reviews the basics of KPM, while a much broader discussion can be
found in |74, 75].

We define the spectral function associated with an operator O as

1 A R
A%e) = —;nligg Im [(‘I’o| 0 m(ﬁ W)
D-1
= | (| OF [Wo) |8 — (B, — Ev)]. (2.59)

Il
)

v

The general idea of Chebyshev recursion techniques is to expand the ¢ functions in Eq. (2.59)
in a series of Chebyshev polynomials 7;,(x),

1 [e%e)
A = ——— | 9 42 or. , 2.60

with the coefficients or moments

1
10 = / T () A° (&) = (O[T (X)O1 o) (2.61)
-1
and (e—b) (B — Eoni) (B + Eon)
€ — max ~ min max + min
_ _ — Pmax & Pmin) 2.62

Since the T, (z) are defined on the interval [—1,1], the Hamiltonian H has to be replaced
by the rescaled operator X = (H —b)/a with eigenvalues x, € [—(1 —7),1—17]. The small
constant 7 has been introduced to circumvent convergence problems near the endpoints of
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Chapter 2. Numerical methods

the interval. For typical values of 7 ~ 0.01 the impact on the energy resolution is merely
1% [75].

The infinite series in Eq. (2.60) is truncated at Ng, ,- From the resulting L moments,
the spectrum can be reconstructed in different ways. Within the KPM, which represents
a linear approximation of the spectrum, we set A° ~ A(L?, where A(L‘) is given by Eq. (2.60)

with oo replaced by L — 1. The cutoff of the series gives rise to Gibbs oscillations, which
can be minimized using properly chosen damping factors [76].
The actual procedure of the KPM is as follows:

1. use the Lanczos method to calculate the smallest and largest eigenvalues Fiuin, Fmax
as well as the ground-state vector |¥y),

2. determine the initial conditions

[Bo) = OF[),  [B1)=X|d),
pe = (®o|®o), uf =(®o|P1), (2.63)

3. exploit the recurrence relations for Chebyshev polynomials to calculate the L mo-
ments via

|(I)m> = 2X |(I)m—1> - |<I)m—2> )
Pt = 2(Pp [ @) — pf (2.64)

The algorithm only requires the simultaneous storage of two (large) vectors, and L/2 + 1
matrix-vector multiplications yield L moments for the spectral function. The KPM is
numerically very stable, allowing calculations of thousands of moments with good accuracy
[71].

To further enhance the energy resolution, we make use of the maximum entropy method
to calculate from the L moments obtained with the KPM a representation of the recon-
structed spectral function A9 (¢) = A9(z)sin ¢ with z = cos ¢ [75]. The resulting spectral
function corresponds to a Chebyshev series with Leg = FL moments, where typical values
of F range from 4, ...,32. Within the maximum entropy method, the Leg moments

o= [ do cos(me) 4°(0 (2.65)

are determined by maximizing the entropy [cf. Eq. 2.31]

5 = /O " [AO(¢) — A9(6) — A%(¢)n (j;gg)] . (2.66)

The constraints or boundary conditions are that the first L moments have to be identical
to the L moments of the default model A§, which in our case is the spectral function from
the KPM.
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2.4. Kernel polynomial method

Similar to the continuation of QMC dynamical correlation functions from imaginary
time to real frequencies (Sec. 2.1.6), the computationally expensive part here is the KPM,
as it involves matrix-vector multiplications with very large arrays. Finally, for a comparison
of spectra obtained with the KPM, Lanczos and the maximum entropy method we refer
the interested reader to [71,75].
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All science is either physics or stamp
collecting.
(Ernest Rutherford)

3 Holstein polaron

The Holstein polaron problem—corresponding to the Holstein model with a single electron—
is one of the most studied problems in condensed matter theory, and dates back to the
original work of Holstein [46] in the 1950’s. Despite the restriction to a single fermion, one
is still confronted with a complex many-body problem, due to the coupling to the phonon
degrees of freedom. The term polaron, first coined by Landau [77], describes an electron
dressed by a phonon cloud or, equivalently, a distortion of the surrounding lattice.

Obviously, in connection with materials such as the cuprates or manganites, we are
ultimately interested in studying the many-electron system. However, the one-electron
case represents an important first step towards an understanding of more general situations.
Moreover, this chapter introduces several important new ideas which will be used for the
QMC methods in later chapters.

In this chapter, we use three different approaches. After a review of existing work on the
Holstein polaron in Sec. 3.1, we apply CPT to calculate the one-particle spectral function
of the Holstein polaron (Sec. 3.2). Section 3.3 describes canonical transformations of the
Holstein Hamiltonian, which will be the starting point of both the variational polaron
approach (Sec. 3.4) and the QMC method presented in Sec. 3.5. While both the CPT and
VPA are restricted to ground-state properties, the QMC approach permits calculations at
finite temperature.

3.1 Holstein polaron

The Holstein model has been defined in Egs. (1.13) and (1.17), and can be described using
the dimensionless parameters A [Eq. (1.18)] and @ [Eq. (1.19)]. Moreover, we express all
energies in units of the hopping .

The polaron problem has been investigated intensively in the past, using a great variety
of methods. Here we focus the discussion on recent progress in the field, and on numerical
methods. A comprehensive overview of earlier work can be found, e.g., in the books of
Alexandrov and Mott [78] and Mahan |[9].

Weak-coupling perturbation theory has been found to be accurate only for very small
coupling strengths A when the phonon frequency is low [79]. In the strong-coupling regime,
an adiabatic small-polaron approximation [46, 80| works very well for small values of @ [81],
while a perturbation theory based on the Lang-Firsov transformation [47] gives accurate
results for w > 1 [79,81]. More recently, the Holstein polaron has been investigated us-

35



3.1. Holstein polaron

ing weak- and strong-coupling perturbation theory (SCPT) [82,83|. Discrepancies remain,
however, in the regime of intermediate coupling and phonon frequency [9]. To bridge this
gap, a lot of numerical work has been done using ED, DMRG, QMC and variational meth-
ods. ED is limited in the accessible parameter range, since it requires a truncation of the
Hilbert space associated with the phonon degrees of freedom (Sec. 2.3). With increasing
electron-phonon coupling strength, for example, an increasing number of phonon states
have to be included to obtain converged results [72,79,81,84-89], which makes it difficult
to study clusters of reasonable size in the strong or even intermediate coupling regime,
especially for small phonon frequencies. The same is true for finite-cluster SCPT [90] and
CPT (Sec. 2.2), which exactly diagonalize small clusters—for which enough phonon states
can be included in the calculation—and extrapolate the results to the thermodynamic limit
by treating the rest of the system as a perturbation. The application of CPT to the Hol-
stein polaron will be discussed in Sec. 3.2. DMRG, in particular when implemented on
shared-memory systems |91], allows to study large systems by using an optimized phonon
basis to reduce the size of the Hilbert space [92-95]. Moreover, several variational methods
have been developed which yield very accurate results over a wide range of parameters
[96-105]. Nevertheless, it is important to keep in mind that such approaches often rely
on assumptions about the ground-state wavefunction, and are therefore not as reliable as
exact numerical techniques. Various QMC methods have been developed for the Holstein
model, as discussed in Sec. 3.5. The polaron problem considered here has been investigated
by Hirsch et al. [106,107], de Raedt and Lagendijk [108-110], Kornilovitch [111-113], Ko-
rnilovitch and Pike [114], and Mishchenko et al. [115]. Finally, the Holstein polaron has
also been studied in the infinite-dimensional limit using DMFT [7,8,89,116,117|, which
allows an exact analytical solution.

From all this work, many properties of the Holstein polaron are well understood. A
cross over occurs from a quasiparticle (QP) with slightly increased effective mass to a heavy
small polaron as the electron-phonon coupling strength increases. The two conditions for
the existence of a small polaron' are A > 1 and \/Ep/w > 1, expressing the fact that a
“localized” state? is formed if (a) the gain in potential energy of the electron exceeds its
loss in kinetic energy, and (b) a large enough lattice distortion exists so as to trap the
carrier [88]. We will first discuss the weak-coupling state. Concerning its nature in higher
dimensions, there exist two different views. From calculations based on the adiabatic
approximation, i.e., taking the limit @ — 0, one expects a qualitatively different behavior
in one dimension compared to D > 1, also for @ > 0. Wellein et al. |85 distinguish
between the adiabatic (w < 1) and the nonadiabatic (w > 1) regime. In the adiabatic case,
and for D > 1, the electron is expected to remain quasifree with an almost unchanged
effective mass and kinetic energy for A < 1, corresponding to a QP with infinite radius.
This contrasts strongly with one dimension, where the electron is always self-trapped by

LA small polaron corresponds to an electron surrounded by a lattice distortion which only extends over
a single site.

2In this work, we mean by a localized state a polaron (or bipolaron) wavefunction with small spatial
extent. Such a state is still Bloch-like, i.e., the quasiparticle moves in a coherent band, in contrast to
localized carriers which are pinned, e.g., by impurities.
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the surrounding lattice distortion and forms a polaron with finite radius for any A > 0.
On the other hand, in the nonadiabatic regime w > 1, the behavior is very similar in
all dimensions, and a very gradual decrease of the kinetic energy (or increase in effective
mass) is observed as the coupling strength increases. Due to the large energy of the phonon
excitations, only the zero-phonon state contributes significantly. Moreover, the phonons
are fast and react almost instantly to the motion of the electron. Consequently, a lattice
distortion only persists in the immediate vicinity of the electron, and this rather small QP
is sometimes called a nonadiabatic Lang-Firsov polaron [85]. Romero et al. [83] take on a
slightly different viewpoint. Based on results from their variational Global-Local method,
they argue that the large polaron state is essentially the same in any dimension, and that
the only effect of increasing the dimension of the system is the observed sharpening of
the cross over. For A > A, the critical coupling being determined by the aforementioned
conditions A > 1 and /Ep/w > 1, both views agree on the existence of a a small-sized
so-called Holstein polaron [85]. The latter is a heavy QP with a strongly reduced mobility.
The cross over at ). is very sharp, especially for W < 1, but it does not represent a real
phase transition [118], as expected for a translational invariant system. Even though the
electron is trapped in the potential well originating from the response of the lattice to its
motion, the ground state is still Bloch-like.

3.2 One-particle spectral function

3.2.1 Introduction

Spectral properties, such as the one-electron spectral function, provide valuable insight
into the complex physics of strongly correlated systems. However, reliable results for such
quantities are generally difficult to obtain. Analytical methods are often restricted to very
simple limiting cases, and results usually cannot be extended to more general situations.
Two remarkable exceptions are the Holstein model with a linear electron dispersion |[5, 6]
and the Hubbard model [119], both in one dimension (1D), which have been solved exactly.
Additionally, an exact solution of the polaron problem can be obtained in infinite dimen-
sions [7,8,89,116,117]. Numerical methods such as ED and QMC have received much
attention over the last decades, since they can be used to study more general models.
ED methods allow very accurate calculations of ground-state as well as finite-temperature
spectral properties, but are restricted to rather small clusters due to the large dimension
of the corresponding Hilbert space. QMC can be used to obtain results on large clusters
even in higher dimensions, but here the sign-problem and the ill-posed analytic continua-
tion required to obtain dynamic correlation functions for real frequencies (Sec. 2.1.6) are
detrimental for many interesting applications. The recently developed CPT [11,12], which
has been reviewed in Sec. 2.2, marks an important improvement of the situation.

For coupled electron-phonon systems, such as the Holstein model and its extensions—
e.g., the Holstein-Hubbard or the Holstein-DE model (Sec. 1.3)—the application of ED
methods is hampered by the infinite number of possible phonon configurations, which gives
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rise to a rapidly growing requirement of computer memory and /or CPU time as the number
of lattice sites or phonon states increases. Improved methods such as DMRG, or the use of
variational phonon bases allow one to extend the accessible parameter range. Nevertheless,
as electron-phonon interaction has been identified as an important ingredient in, e.g., high-
temperature superconductors [2] and manganites [3] (Sec. 1.3.1), further progress along
these lines is highly desirable.

In this section, we show that CP'T can be successfully applied to electron-phonon models
with a (local) coupling of the Holstein type [46]. The results for the one-electron spectral
function of the Holstein polaron in one and two dimensions reveal that the use of CPT
strongly reduces finite-size effects, as compared to ED.

3.2.2 Application of cluster perturbation theory
Following other authors |72, 81,84, 87,120, 121], we calculate the Green function

G(k,€) = (0| cx ck 10y, (3.1)

e—H
where |0) represents the ground state of the phonons and the vacuum state for the electrons.
Spin indices can be suppressed owing to the symmetry of the problem. The corresponding
one-electron spectral function is given by Eq. (2.36).

To obtain the cluster Green function (2.37), we apply the Lanczos recursion method as
described in Sec. 2.3. As discussed in Sec. 2.3, the Hilbert space of the electron-phonon
problem has to be truncated to permit a numerical diagonalization. Here, the convergence
with the maximal number of phonon states Ny, is monitored according to Eq. (2.48) using
the ground-state energy Eg of the the cluster with open boundary conditions and one
electron.® For the results presented in this chapter, Ny, was chosen such that A(Npp) <
10~°. We find that convergence of Eg also ensures a well-converged spectral function.
Moreover, the influence of the number of phonons kept in the calculation is much larger
for the incoherent part of the spectrum than for the coherent, low-energy QP peak which
determines E] (Sec. 3.2.3).

Before we come to a discussion of the results obtained with CPT, we want to comment
on some of the existing work on spectral properties of the Holstein polaron. As indicated
before, the most reliable method to calculate dynamic quantities, such as A(k,¢), is ED
which has been used extensively in the past [72,81,84-87,101,120, 121|. Most of this work
has focused on the polaron band structure, denoted here as E'(k), instead of the spectral
function, since it is often easier to interpret, especially in the strong-coupling regime where
the structure of A(k,e¢) is rather complicated. However, as pointed out by Wellein et
al. [85], the two quantities are closely related. In fact the position of the lowest-energy
peak in A(k,¢€), obtained from the Green function (3.1), follows exactly the polaron band
structure for different k. Moreover, the integral over this first peak is equivalent to the

3The convenience of this notation will emerge in Chap. 4. Owing to the spin symmetry of the one-electron
case, here we have E} = Ej.
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Figure 3.1: Comparison of the one-particle spectral function A(0, €) of the one-dimensional
Holstein polaron obtained with ED (left column) and CPT (right column) for
various numbers of lattice sites N in the cluster. The plot is for w = 2.0,
A = 0.5, and Ny, = 6. An artificial smearing parameter 7 = 0.02¢ has been
used.

QP weight z(k) = \(w((),l,)c|c£|0)|2, where 7,08,)6 denotes the lowest-energy single-polaron state
in the sector with total momentum k [86]. Other numerical methods which have been
used to calculate spectral properties include DMRG (in one dimension) [92,94], finite-
cluster strong coupling perturbation theory (1D, 2D) [90], QMC (1D-3D) [112,113|, and
variational methods (1D-4D) [96-98|.

3.2.3 Comparison with exact diagonalization

As noted in Sec. 2.2, the critical parameter of CPT is the number of sites in the cluster.
To demonstrate the advantage of CPT over the Lanczos method we present in Fig. 3.1 the
spectral function A(0, €) in one dimension for different cluster sizes N. We chose @ = 2 and
A = 0.5, which is the regime where an extended polaron exists (Sec. 3.5.3). Consequently,
significant finite-size effects can be expected for small clusters, which is exactly what we
see in the ED results for periodic boundary conditions. Figure 3.1 clearly shows that the
shape of the large QP peak at € & —2.4 changes very little with increasing N for both ED
and CPT, but a noticeable shift can be observed in the ED spectra as we go from N = 2 to
N = 4. The influence of N is much larger for the incoherent part of the spectrum, which
lies about a distance w above the QP peak. The ED spectra display sharp, well-separated
peaks, whereas the corresponding CPT data—containing many more poles—resemble much
closer the expected results for an infinite system. The latter has been investigated by
Marsiglio [72]| using Migdal-Eliashberg theory. For the same parameters, he found that the
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Figure 3.2: Left: One-particle spectral function A(k,¢) of the one-dimensional Holstein
polaron calculated with CPT for N = 14, N, = 6, and = 0.02¢. Right:
Density plot of the same data for 100 points in k£ space. Symbols represent
results of Bon¢a et al. |96].

QP peak remains almost unchanged as N — oo, while the incoherent part evolves into a
continuous band that fits well to the CPT results even for rather small clusters N 2 6. We
have also compared A(k,¢) for k& # 0, and the observed finite-size effects agree perfectly
with previous work [86]: As k increases from £ = 0 to k = m, the size of the polaron
increases, and the deviations of the ED data from the CPT results become larger. In the
strong-coupling or small-polaron regime, not shown here, finite-size effects are known to be
small. Consequently, even for very small clusters, ED and CPT both give well-converged
results for the QP peak which determines, e.g., the ground-state energy. However, in
the case of ED, the incoherent part of the spectrum for wavevector k, corresponding to
excitations of an electron with momentum ¢ and a phonon with momentum k& — ¢, still
exhibits the typical multipeak structure of a finite system, whereas the CPT results again
reproduce much better the incoherent band found in the thermodynamic limit. Moreover,
as mentioned in Sec. 2.2, CPT allows us to calculate A(k,¢) for continuous k, while ED on
a N-site cluster is restricted to N/2 + 1 physically nonequivalent wavevectors.

A closer look at the CPT results in Fig. 3.1 reveals small additional peaks—not present
in the ED spectra—which move from the incoherent part of A(k,€) towards the QP peak
with increasing N. Calculations for larger clusters have shown that these peaks vanish
systematically with increasing N, so that the CPT spectrum approaches the exact result
in the thermodynamic limit N = oo, as expected. Consequently, these peaks are not a
defect of CPT, but represent finite-size effects which arise from the approximate treatment
of intercluster hopping. The latter, in combination with the open boundary conditions
used to calculate the cluster Green function, leads to a system which does not have perfect
translational symmetry. The situation is equivalent to ED with open boundary conditions:
For N — oo the spectrum approaches that of an infinite cluster. However, in contrast
to CPT, the effects for finite N are much more significant. Moreover, these finite-size
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Figure 3.3: Left: One-particle spectral function A(k,¢€) of the one-dimensional Holstein
polaron calculated with CPT for N = 12, N, = 6, and n = 0.02¢. Right:
Density plot of the same data for 100 points in k£ space. Symbols represent
results of Bon¢a et al. [96].

effects manifest themselves in a slightly different way than in the case of periodic boundary
conditions, where no additional peaks—showing the aforementioned behavior—are found.
In CPT, already for the small cluster sizes shown in Fig. 3.1, the spectral weight of these
peaks is extremely small compared to the rest of the spectrum. For other values of @ and A,
a similar behavior has been found. Although not discussed by the authors, similar effects
can also be expected for the Hubbard model [11,12,61], although they may be larger for
the Holstein polaron due to the higher sensitivity of phonon excitations to the boundary
conditions.

3.2.4 Results in one dimension

The physics of the one-dimensional Holstein polaron—as it emerges from existing work—
has been discussed in Sec. 3.1. In Fig. 3.2 we present results for A(k,e) for @ = 0.8,
A =0.25 and N = 14 as well as a density plot of the same data. As mentioned before, the
spectrum consists of a low-lying QP peak and an incoherent part at higher energies. The
physics behind the observed behavior of A(k,€) has been discussed, e.g., by Stephan [90],
and is typical for electronic systems weakly interacting with dispersionless optical phonons.
For small k£, most of the spectral weight resides in the QP peak which corresponds to a
weakly dressed electron. For the case considered here, in which the phonon energy lies
inside the bare electron band, electron and phonon hybridize and repel each other near
the point where they would be degenerate, i.e. for |[ET(k) — ET(0)| ~ @. This coincides
with the region where the flattening of the polaron band occurs and, in fact, for larger &
the phonon becomes the lowest-energy excitation. However, most of the spectral weight is
contained in the broad, incoherent band which follows the free-electron band dispersion.
The density plot in Fig. 3.2 also contains data for the polaron band structure ET(k) which
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Figure 3.4: Left: One-particle spectral function A(k,¢) of the one-dimensional Holstein
polaron calculated with CPT for N = 8, Ny, = 9, and n = 0.02¢. Right:
Density plot of the same data for 100 points in k£ space. Symbols represent
results of Bon¢a [122].

have been obtained by Bon¢a et al. [96] using their variational diagonalization method.
The latter has been shown to give very accurate results for the infinite system, although
it becomes somewhat less accurate in the strong coupling regime and for large values of &
[96]. As mentioned before, ET(k) corresponds to the lowest-energy band in A(k,€) and we
find a very good agreement with our data throughout the Brillouin zone.

Figure 3.3 shows results for a similar phonon frequency @w = 1.0 but for stronger
electron-phonon coupling A = 0.5 and N = 12. Compared to the weak-coupling case
discussed above, the polaron band is separated more clearly from the incoherent part of
the spectrum and, as expected, the bandwidth is further reduced. Additionally, even more
spectral weight has been transfered to the high-energy, incoherent band. On top of that, a
gap shows up in the upper band at about & = 7/2. Again the polaron band fits very well
the results for ET(k) [96].

We next consider intermediate coupling A = 1.0, with @ = 1 and N = 8 (Fig. 3.4). For
these parameters, an extended polaron exists which still has a relatively large bandwidth,
compared to the small-polaron case discussed below. Moreover, the incoherent part of the
spectrum has split up into several subbands separated in energy by w, which correspond
to excitations of an electron and one or more phonons. As before, we find a very good
agreement between the low-energy band in A(k, €) and the polaron band dispersion ET(k)
[122].

Finally, in Fig. 3.5, we report the spectral function for @ =1 and A = 2.0. The results
have been obtained using only a four-site cluster, which is sufficient to get a very good
agreement with Bon¢a’s data for E'(k), with only minor deviations at large values of k
where finite-size effects are most pronounced. This is a consequence of the predominantly
local effects in the strong-coupling regime, which also manifest themselves in terms of a
very narrow polaron band.
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Figure 3.5: Left: One-particle spectral function A(k,¢) of the one-dimensional Holstein
polaron calculated with CPT for N = 4, N,;, = 25, and n = 0.02¢. Right:
Density plot of the same data for 100 points in k£ space. Symbols represent
results of Bon¢a [122].

3.2.5 Results in two dimensions

To illustrate the applicability of CPT, we also calculated the spectral function of the
Holstein polaron on a two-dimensional cluster of size v/8 x /8, i.e., with eight sites, which
has the shape of a tilted square. The influence of the cluster geometry has been discussed
in Sec. 2.2. For the Holstein polaron, where the physics is dominated by local correlations,
it is expected to be very small.

The two-dimensional Holstein polaron has been reviewed in Sec. 3.1. Here we simply
aim to demonstrate the possibility of calculating the 2D spectral function with CPT.
Therefore, we restrict ourselves to one set of parameters, namely w = 2.0 and A = 0.945,
which has also been treated using finite-cluster SCPT [90]. In contrast to standard SCPT
based on the Lang-Firsov transformation, the latter has been shown to give reliable results
also for intermediate A and @, which is a consequence of the inclusion of longer-ranged
effects [86,90]. While in the one-dimensional case the density plot of A(k,€) contains
all 100 values of k£ used in CPT, in two dimensions we have used 400 points in k space.
However only 60, lying along I'MXT', are shown in Fig. 3.6.

From the above discussion, and for the parameters considered here, we expect a rather
wide polaron band. This is clearly confirmed by the spectral function shown in Fig. 3.6,
and the lowest-energy band in our data resembles closely to the findings of Stephan (Fig. 2
of [90]). In particular, as in the one-dimensional case considered in Sec. 3.2.4, a flattening
of the polaron band near (7/2, ) is found which has also been noted by Wellein et al. [85].
Above the polaron band, also similar to 1D, there lie several other incoherent bands which
correspond to multiphonon excitations.

In summary, the results of this section clearly demonstrate that CPT is applicable not
only in the strong-coupling regime, but also for weak and intermediate electron-phonon
interaction. The quality of the resulting spectra is superior to ED data for the same
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Figure 3.6: Left: One-particle spectral function A(k,¢€) of the two-dimensional Holstein
polaron calculated with CPT for N = /8 (see text), Nyp = 9, and = 0.02¢.
Right: Density plot of the same data (see text).

cluster size, and a very good agreement has been found with the variational method of
Bon¢a et al. [96] in one dimension. Moreover, we have shown that CPT also permits
accurate calculations in two dimensions.

3.3 Transformed Hamiltonians

In this section, we present the canonical extended Lang-Firsov transformation of the Hol-
stein Hamiltonian. The original Lang-Firsov (LF) transformation [47] has been used ex-
tensively to study Holstein models of various kinds. A well-known approximation due to
Holstein [46] consists of replacing the transformed hopping term by its expectation value
with respect to a zero-phonon state, thus neglecting phonon emission and absorption during
the hopping process. This approach, which we shall call the Holstein-LF (HLF) approx-
imation, yields reliable results only in the nonadiabatic strong-coupling limit* [85, 86, 94],
while more refined approaches based on strong-coupling perturbation theory provide an
accurate description of the Holstein polaron over a larger range of parameters [79,81]. In
the limit A = oo, the hopping term in Hamiltonian (3.2) can be neglected, and the LF
transformation permits an exact solution of the resulting single-site problem [9]. The trans-
formation has also been used in combination with numerical methods [87,101,121]. While
the extended LF transformation will be the starting point for the variational approach of
Sec. 3.4, Sec. 3.5 discusses, to the best of our knowledge, the first QMC method based on
the LF transformation.

*This limit corresponds to w, g = co with g/w — 0 and g?/w = Ej, finite [cf. Eq. (1.13)].
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Chapter 3. Holstein polaron

The Holstein Hamiltonian (see also Sec. 1.3.2) can be written as

H=-t Z CipCjo T Z p; + 7) ozszci, (3.2)
(ij)o i .,
. P=P,+P, T

with the abbreviations K for the electron hopping, P for the kinetic (P,) and elastic (P;)
energy of the lattice, and I for the electron-phonon interaction.
We define the unitary operator

D= elXi vitibi = o5 (3.3)

where ¢ and j run over all N lattice sites, and with real parameters 7;;. 7 as defined
in Eq. (3.3) has the form of a translation operator, and we have ?f = ?~!. Given an
electron at lattice site 7,  mediates displacements -;; of the harmonic oscillators at all sites
j=1,...,N. Hence the transformation describes a nonlocal phonon cloud surrounding an
electron, corresponding to an extended (large) polaron

Operators have to be transformed according to A = pAD'. Introducing the function
f(n) = e" Ae™ we obtain

1) = e[S, Ale ", (3.4)
where f' = 0f/0n. A straight-forward calculation leads to
[S,cio) = =1 vabicie , [S,el]=1> rapcl,. (3.5)
I I

Inserting these results in Eq. (3.4), integrating with respect to n and setting n = 1 gives
E;.ra = C;La el 225 YiiPj ’ Civ = Cig e 12205 iibj (3.6)

For the bosonic operators, the relation

x N N PN 1
A:eSAe_5:A+[S,A]+§[S, (S, Al +---, (3.7)
yields
Ty =2 + Z Vi Di = Di- (3.8)

With these results, the transformed Hamiltonian becomes

— _tzc C. 6121 Yil — 'le)pl +P

0 jo
(if)o

vl

&
. o fw
+ g (wyi; — adi) + Y iy (5 D Wi — a%’j) - (3.9)
ij Z !
oo fes
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Figure 3.7: Illustration of the energy shift Ep and lattice displacement ~ described by the
LF transformation (3.11).

y >

Here the term fep describes the coupling between electrons and phonons, while I, repre-
sents an effective electron-electron interaction. Hamiltonian (3.9) will be the starting point
for the variational polaron approach presented in the following section.

For QMC simulations, however, it is more suitable to require that the electron-phonon
terms cancel. This can be achieved by setting ~;; = vd;; with

y=1/—, (3.10)

with the bare bandwidth W given by Eq. (1.8). Using the definition (3.10), we obtain the
standard LF transformation with the transformation operator

iy = el Litibi (3.11)
Following the same steps as above, we find for the transformed operators

~ 1I~ND - ~ _] 0.
d, =c e, &, =ce (3.12)

and 5 5

Ti = Ty + Yy, Di = Di - (3.13)
In contrast to the nonlocal transformation defined by Eq. (3.3), now only the oscillator

at the site of the electron is affected, as illustrated in Fig. 3.7. The transformed Hamiltonian

reads .
T { iv(pi—p;) A2 72
H, = tgciacjge7p Pi) + P 57 wZni . (3.14)
ij i

i

-~

Ko i
In the HLF or small-polaron approximation, the ground state of the transformed Hamilto-
nian is approximated by assuming that no phonons are excited. It has been shown [94] that
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Chapter 3. Holstein polaron

the small-polaron wavefunction becomes exact in the strong-coupling, nonadiabatic limit,
and agrees qualitatively with the exact results also in the intermediate coupling regime. As
discussed by Zhang et al. [94], the HLF approximation gives an overestimated shift -y of the
equilibrium position of the oscillator in the presence of an electron, and does not reproduce
the retardation effects when an electron hops onto a previously unoccupied site. Never-
theless, the local lattice distortion at the site of the electron contains the crucial impact
of the electron on the lattice. Consequently, the transformed Hamiltonian (3.14) should
be a good starting point to perform QMC simulations, which merely need to account for
the rather small fluctuations around the new equilibrium positions. In principle, it would
also be possible to develop a QMC algorithm starting with Hamiltonian (3.9), with the
parameters 7;; being determined by the variational method discussed in the following sec-
tion. However, we will see that the simple (local) LF transformation is already sufficient
to obtain a very efficient QMC method.

From Eq. (3.14) it is obvious that the LF transformation (3.11) on the one hand removes
the electron-phonon coupling term, but on the other hand introduces complex-valued hop-
ping integrals which depend on the phonon momenta at the lattice sites involved in the
hopping process. Moreover, as we shall see in Chap. 4, for more than one electron in the
system the last term I introduces a Hubbard-like attractive interaction. In the case of
the extended transformation, the electron-phonon interaction term cannot be eliminated
entirely, the hopping term involves all phonon momenta p; as well as the parameters -;;,
and the electron-electron interaction becomes long ranged [Eq. (3.9)]. For these reasons it
is expedient to base the QMC simulation on the Hamiltonian (3.14).

For a single electron considered here, we have n;7; = 7,;0;;, so that the electron-electron
interaction term in Hamiltonian (3.9) becomes

= . [w
Ie =" i (5 > k- a%i) : (3.15)
i !
while the corresponding term in Hamiltonian (3.14) reduces to
I=—Fp. (3.16)

Equations (3.15) and (3.16) both describe a shift in energy resulting from the original
electron-phonon interaction. The polaron binding energy Ep [Eq. (1.20)] corresponds to
the energy shift of the oscillator potential in the presence of an electron (see Fig. 3.7). For
two electrons occupying the same site, corresponding to a small bipolaron (Chap. 4), we
have n; = 2 and Eq. (3.14) yields an energy shift of 4Ep.

3.4 Variational polaron approach
Here we present a simple variational method which is based on the extended transforma-

tion (3.3). Similar work along these lines using different transformations of the Hamiltonian
as well as physically motivated wavefunctions can be found, for example, in [102-105]. As
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noted above, the zero-phonon ansatz of the simple HLF approximation gives reliable re-
sults only in the limit of large w and A\. Whereas in HLF the parameter v of the LF
transformation is chosen such that the electron-phonon coupling term fep vanishes, in the
variational polaron approach (VPA), we treat the ;; as variational parameters which are
determined by minimizing the ground-state energy in a zero-phonon basis. Like the HLF
approximation, the VPA becomes exact in the noninteracting limit (A = 0) and in the
nonadiabatic strong-coupling limit. We will see in Sec. 3.4.1 that the VPA also gives very
accurate results for w > 1 and finite A. This can easily be understood keeping in mind the
discussion of the validity of the HLF approximation given in the preceding section. While
the HLF ansatz overestimates the displacement of the local oscillator in the presence of an
electron, the VPA determines this shift variationally. Moreover, the missing retardation
effects in the response of the oscillators to the motion of the electron become negligible as
w — oo. Therefore, in addition to the cases stated above, the VPA also becomes exact
in the nonadiabatic limit w — oo. Furthermore, it yields the exact solution for classical
phonons (w = 0). Although the limitations of the VPA in or near the adiabatic regime
w < 1 will clearly emerge when we discuss results in Sec. 3.4.1, it works surprisingly well
if we keep in mind the simplicity of the method. Moreover, the reasons for the failure of
the VPA in certain parameter regimes are physically clear and can easily be interpreted.
Although it is straight forward to extend the VPA to infinite systems, here we restrict
ourselves to finite clusters with periodic boundary conditions.

For translational invariant systems the displacement fields satisfy the condition ~;; =
7ji—j|- Inserting this relation into Eq. (3.15), the expression inside the brackets becomes
independent of the index i. For the single-electron case with ) . 7; = 1 we have

~ w
lee = 5 Zl:rYf —a%- (317)

We solve the eigenvalue problem of the transformed Hamiltonian (3.9) in a zero-phonon
basis for which we make the ansatz

N
{y=c,la]]le), 1=1,...,N}, (3.18)
v=1

where \¢(()”)) denotes the ground state of the harmonic oscillator at site v. For simplicity,
we restrict ourselves to one dimension. The matrix elements of the transformed hopping
term in this basis are

WENY = —tw [J00 0 167)

= —ty H / dz ¢(z + )z + )

= —tll,efizu(”ﬁﬁ%ﬂ—l')z , (3.19)
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where t;y = td,yy is nonzero for nearest-neighbor hopping pairs I’ = [ = 1 and ¢(z) is the
harmonic oscillator ground-state wavefunction in coordinate space. The matrix elements
of the other terms of Hamiltonian (3.9) are easily evaluated as

WP = dusy.
(U lt) = 0,
~ w
<l| Iee |l’> = 5”/ <§ Z"}/? - OA"}’O> . (320)
l

The eigenstates of the transformed Hamiltonian (3.9) in the zero-phonon subspace, spanned
by the basis states defined in Eq. (3.18), are

i) = e, [0y @ [T 165”) (3:21)
with energy

w w
E(k) = Ek+§N+§;%2—a%,

E. = —t Z PP DINCTA A (3.22)
§=+1

Eyx denoting the kinetic energy of the electron. Defining the Fourier-transformed parame-
ters 7, as

I Y
o= —= > _ " (3.23)
VN &

and using (y; € R)

Z Yo Yv+é = Z i’q:y—qeiq(s = Z ’3/2 CcoS q6 , (3_24)
v q q

it can be written as

E, = —t Z eikée—% >4 (1—cos g0)7;
5
- éo(k)e’% >, (1—cos q)72
= éeff(k) ) (325)
where £y(k) = —2t cos k is the tight-binding band dispersion in one dimension. Using these

results the ground-state energy finally becomes

- Nw w 9 Q -
E(k}) = &?eff(k') + 7 + 5 . Yq — ﬁ;%. (326)
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The variational parameters 7, are determined by the condition

oF a
= A 1 — + WAy — —— =0. 3.27
8'7p rYp‘S ff(p)( COs p) Wp \/N ( )

The values for 4, which minimize F can then be obtained from

- o 1
= VN w + Eeg(p)(1 — cosp)

As é.4 depends on the set of parameters 7,, this equation has to be solved self-consistently.
Equation (3.28) has a typical random-phase approximation form, which is reasonable since
a variational ansatz for the ground state of the untransformed Hamiltonian can be written
as

(3.28)

o'1pe) = e et Em o) @ [T1e") (3.29)

1
— > e
with © as defined in Eq. (3.3).

In addition to the total energy given by Eq. (3.26), we are also interested in the QP
weight for momentum k£ = 0, defined as

VZo = (0] Eheoy %0) - (3.30)

Here [t/y) denotes the ground state with one electron of momentum p = 0 and the oscillators
in the ground state |¢). Fourier transformation leads to

1
Vi = 55 D (0ol (0] Gioc, [0) [60)
J

1 7i . o~
= NZ<¢°|6 2k TP [ )
= e i1ZdV (3.31)

where we have used the same steps as in Eq. (3.19).

3.4.1 Results

In order to test the validity of the VPA we have calculated the total energy [Eq. (3.26)]
and the QP weight [Eq. (3.31)] on a cluster of four sites for various phonon frequencies w.
A comparison with results from Lanczos diagonalization [123] is depicted in Fig. 3.8. The
values of W have been chosen to lie in the nonadiabatic regime w > 1 where the zero-phonon
approximation of the VPA is sensible. The overall agreement is strikingly good. Minor
deviations from the exact results increase with decreasing w. For the smallest frequency
shown, @w = 1.0, the curve for the HLF approximation is also shown. It reveals that the
VPA represents a significant improvement over the HLF approximation, underlining the
importance of the extended polaron cloud.
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Figure 3.8: Total energy E (left) and QP weight zo (right) as functions of the electron-
phonon coupling A for different values of the adiabatic ratio w. Symbols corre-
spond to VPA results, while full lines represent exact 7' = 0 data obtained with
the Lanczos method [123]. Dashed lines are results of the HLF approximation.

Figure 3.9: Total energy E as a function of the electron-phonon coupling g (see text) for
different values of the adiabatic ratio @. Symbols correspond to VPA results,
while full lines represent data obtained with the Global-Local method [99]. The
dashed line represents the result for w = oc.

The comparison with exact results obtained with Lanczos was restricted to small clus-
ters with N = 4 in order to achieve convergence with respect to the number of phonon
states included in the calculation. To further scrutinize the accuracy of the VPA we also
compare the results of the latter for the total energy with the variational Global-Local
method, which has been shown to give accurate results over a large range of parameters
[99]. We chose N = 32 for which finite-size effects are already very small (Sec. 3.5.3). More-
over, following Romero et al. [99], in Fig. 3.9 we plot E/w over g with g = \/AW/(2w).
Similar to the case N = 4 shown in Fig. 3.8 we find a very good agreement for large values
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Figure 3.10: Polaron-size parameter 5 as a function of the electron-phonon coupling A for
various distances d. Also shown is the parameter v [Eq. (3.10)] of the standard
LF transformation.

of w over the whole range of electron-phonon coupling, whereas for smaller w the VPA
results begin to bend away from the correct curve and collapse to the nonadiabatic strong-
coupling result for large g. We would like to point out that the maximum electron-phonon
coupling strength in Fig. 3.9 corresponds to A ~ 40 (for w = 4.0), in contrast to Fig. 3.8
where A\ < 2. Figures 3.8 and 3.9 reveal that for w > 1 the VPA yields a very good agree-
ment with the exact data and the Global-Local method even in the intermediate-coupling
regime. This behavior can easily be understood considering the assumptions of the VPA.
The zero-phonon approximation becomes exact in the nonadiabatic limit w — oo, where
the energies of phonon excitations are too high to have an effect on the ground state. Fi-
nally, we would like to mention the possibility of comparing the VPA with the QMC results
presented in the following section. This has been done for a variety of parameters, but we
have found that it is difficult to distinguish between deviations due to the shortcomings
of the VPA and due to temperature effects in the QMC results. Consequently, we have
decided to confront the VPA with another ground-state method, namely, the Global-Local
method, which gives a much clearer picture.

In Fig. 3.10 we present results for the variational displacement fields s, which give
us a measure for the size of the polaron. For w = 0.1 we see an abrupt cross over from
a large to a small polaron at A ~ 1.2. For smaller values of the coupling, the electron
induces lattice distortions at neighboring sites even at a distance of more than three lattice
constants. Above A =~ 1.2 we have a mobile small polaron extending over a single site
only. In contrast, for a larger value of the adiabatic ratio w = 4.0, there is no obvious cross
over and we have a somewhat extended (large) polaron even for large values of A. The
same behavior has been found by Marsiglio [79] who determined the correlation function
(niz;1s) by Lanczos diagonalization for a restricted phonon basis. Within the VPA we
have the relation (n;%;15) = 5. The main difference is that in Marsiglio’s results, the
cross over to a small polaron for @ = 0.1 occurs at a smaller value of the coupling A ~ 1.
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Nevertheless, the simple VPA reproduces the main characteristics of the cross over of the
Holstein polaron as the coupling strength A is increased. Finally Fig. 3.10 also shows the
result for the parameter v of the standard LF transformation (Sec. 3.3). For @ = 0.1, the
curves for v and 75— are identical above the critical value A\ &~ 1.2. This is not surprising
since, in this regime, we have a small polaron extending over a single site only, which is
well described by the local LF transformation defined in Eq. (3.11). However, the HLF
approximation predicts a spurious exponential decrease of (7;Z;) also below the cross over.
The same incorrect behavior is also found for the kinetic energy (not shown), corresponding
to the well-known overestimation of the polaron band narrowing [3]. For larger values of
the phonon frequency, v and 7, do not coincide above a critical value of the coupling, but
the difference vanishes as A — oo (see Fig. 3.10). In contrast to the adiabatic regime, the
polaron remains an extended object up to very strong coupling, so that the local ansatz of
the LF transformation is insufficient for finite values of A (see also [105]).

3.5 Quantum Monte Carlo approach

3.5.1 Introduction

A very general QMC method for coupled fermion-boson models, based on an analytic
integration over the fermion degrees of freedom, was developed by Blankenbecler et al.
[124] and Scalapino and Sugar [125]. The simulation is performed using the grand-canonical
ensemble with a computation time proportional to the cube of the system size. While the
simulations of [124] and [125] were restricted to one dimension, Levine and Su [126,127]
and, using a stabilized version of the same algorithm applicable at low temperatures,
Niyaz et al. [128] studied charge-density-wave formation and superconductivity in the two-
dimensional Holstein model. We shall see in Chap. 5 that the method presented here
can be generalized to a grand-canonical algorithm which is very similar to the approach
of Blankenbecler et al. [124]. A numerically faster method is the world-line algorithm
developed by Hirsch et al. [106,107] based on a special breakup of the Hamiltonian and
a fixed number of fermions. This results in configuration weights which are simple to
evaluate allowing much larger system sizes. In the course of the simulation, both fermions
and bosons are sampled simultaneously. The latter method has been successfully applied
to the Holstein polaron problem and to the half-filled SSH and Holstein models [106, 107,
129-131]. However, it is restricted to models in one spatial dimension [10]. Scalettar
et al. [132] applied a rather complicated so-called hybrid molecular dynamics algorithm
to the two-dimensional Holstein model near half filling. This work was extended to the
low-temperature regime by Noack et al. [133|. Finally, Marsiglio [134] developed a low-
temperature QMC method to study the same model, also at half filling.

De Raedt and Lagendijk [108-110| and Kornilovitch [111] used an alternative approach
based on Feynman’s path-integral method [135], in which the boson degrees of freedom are
integrated out analytically and the resulting fermionic model is treated by MC. Although
the method is limited to one electron or two electrons of opposite spin [136] by the sign
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problem, it allows efficient simulations in one, two, and three dimensions even for small
phonon frequencies near the adiabatic limit, and has been used to investigate a model
with dispersive phonons [110]. Also using Feynman’s path integral, Kornilovitch and Pike
[114] developed a QMC method which exploits the conservation of the total quasimomen-
tum of the system and allows the calculation of dynamical properties such as, e.g., the
polaron band structure. Although the method is not restricted to a certain model or di-
mensionality of the system, it suffers from large statistical errors. Moreover, it is limited
to a single fermion at very low temperature, and exhibits a sign problem for nonzero total
quasimomentum even in one dimension. Prokof’ev and Svistunov [137] and Mischenko et
al. |115] used QMC to directly sample the zero-temperature one-electron Green function
of the Frohlich polaron in imaginary time. The method allows calculations for an infinite
system in three dimensions, but requires a convergent series for the electron propagator.
While all but the last method mentioned so far make use of the Trotter-Suzuki approxima-
tion (Sec. 2.1.4), Kornilovitch [112,113] derived a continuous-time algorithm that works
in any dimension and permits simulations on infinite systems. It yields directly dynam-
ical quantities such as the polaron spectrum and effective mass with very high accuracy.
Similar to previous work [114], it is restricted to one electron at very low temperatures.
Moreover, calculations for small phonon frequencies and /or weak electron-phonon coupling
are difficult and a sign problem appears for nonzero total quasimomentum. The projector
QMC method [10] in combination with a local updating of the phonon degrees of freedom
has been used by Berger et al. [138] to investigate the Holstein-Hubbard model at various
band fillings, and Green function QMC simulations for the half-filled Holstein model of
spinless fermions have been performed by McKenzie et al. [139]. Finally, the stochastic
series expansion MC technique has been applied recently to an extended, one-dimensional
Hubbard model with an electron-phonon interaction of the SSH type [140]. In contrast to
other work, the phonons are treated in second quantization. Although the method allows
simulations on large lattices in one dimension, it relies on an upper limit for the num-
ber of phonons at each site which makes it difficult to study the regime of small phonon
frequencies and intermediate or strong coupling.

As the above discussion reveals, the QMC methods of [108-113| are very well suited
to study the one-electron problem. Moreover, de Raedt and Lagendijk also extended
their approach to the bipolaron problem of two electrons with opposite spins [136] (see
also Chap. 4). However, as pointed out by Kornilovitch [111], these are all world-line
methods. Consequently, despite the possibility of integrating out the phonon degrees of
freedom even in the many-electron case, they face a serious sign problem in more than
one dimension, for two or more fermions of the same spin, and can therefore not be used
to study many-particle systems. On top of that, the advantage gained by the integration
over the phonons diminishes quickly with increasing electron density. In the context of
superconductivity, the Holstein and the Holstein-Hubbard model with many electrons have
been investigated [124-128] using the method of Blankenbecler et al. [124]. Due to strong
autocorrelations, these simulations were restricted to rather large phonon frequencies w >
1, while typical materials fall into the adiabatic regime w < 1. If the phonon degrees of
freedom are not integrated out analytically, these correlations predominantly come from
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the free harmonic-oscillator dynamics, especially for small phonon frequencies. This often
leads to an enormous computational effort even for rather small systems and intermediate
temperatures, and is exactly the point where our new approach enters. We shall see below
that it completely avoids the problem of autocorrelations. This even remains true for the
spinless Holstein model at finite electron density considered in Chap. 5.

This section is organized as follows. In Sec. 3.5.2, we derive the QMC method for
the transformed Holstein model, discussing in detail the new concepts used, in particular
the reweighting method and the principal component representation, which will also be
used in later chapters. We also illustrate the reasons behind the problems encountered
with existing methods. The canonical transformation of the Hamiltonian gives rise to
a moderate sign problem. The dependence of the latter, and possible explanations of
its origin are investigated in Sec. 3.5.3, together with the results obtained with the new
method. We conclude with a discussion of the computational effort as compared to other
approaches in Sec. 3.5.4.

3.5.2 Monte Carlo for the transformed model

In contrast to the approximate variational approach presented in the preceding section,
the QMC method discussed here is based on the LF transformation (3.11), which does not
contain any free parameters. Therefore, it is exact apart from statistical errors and errors
due to the Trotter discretization, which can be systematically reduced.

Due to the fact that the LF transformation contains the crucial electronic influences
on the phonons, the MC simulation for the phonon degrees of freedom can be based only
on the purely phononic part of the transformed Hamiltonian. The electronic contributions
can then be allowed for by reweighting of the probability distribution, corresponding to an
exact treatment of the fermion degrees of freedom. This enables us to completely ignore
the electronic weights in the updating process, and thereby dramatically reduce the compu-
tational effort. Finally, we introduce a principal component representation of the phonon
coordinates, which allows exact sampling of the phonons and avoids all autocorrelations.

Partition function

Following the general discussion in Sec. 2.1, we begin with the evaluation of the partition
function Z = Tre A% = Tre #Ho_with Hy given by Eq. (3.14). As indicated in the preced-
ing section, for a single electron, the last term in Hamiltonian (3.14) merely represents a
constant energy shift. Moreover, we can drop spin indices and are left with the Hamiltonian

The polaron binding energy given by Eq. (1.20) can be neglected during the QMC sim-
ulation, and needs only to be considered in calculating the total energy. If not indicated
otherwise, we assume periodic boundary conditions in real space. Using the Suzuki-Trotter
decomposition (Sec. 2.1.4), we obtain

e—BHo o, (e—ATf(Oe—ATPpe—ATPX)L =U*, (3.33)
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where A7 has been defined in Eq. (2.15). Splitting up the trace into a bosonic and a
fermionic part and inserting L complete sets of momentum eigenstates we derive the ap-
proximation for the partition function

Z, = Trf/ dpidpy - - - dpy (p1|[U [p2) - - - (pr| U [p1) (3.34)

where dp, = [[, dp; .. Each matrix element can be evaluated by inserting a complete set
of phonon coordinate eigenstates [ dx,|z,)(z,|. All z, integrals are of Gaussian form and
can easily be carried out. The result is

2w
WAT

<p7—‘ e_ATPx ‘p7—+1> — CNe—ﬁ Zi(pi,v—_pi,‘r+1)2 , C = (335)

The normalization factor in front of the exponential has to be taken into account in the
calculation of the total energy, but cancels when we measure other observables. With the
abbreviation Dp = dp,dp, - - - dp, the partition function finally becomes

Z, =CNE / Dp wy, we (3.36)
with the abbreviations
L ~
wy, = e A we=TreQ, Q= H e~ATKor (3.37)
T=1

Here f{O,T is K, with the phonon operators p;, p; in Eq. (3.14) replaced by the momenta
Di,r, Pj,- on the 7th Trotter slice. The exponential of the hopping term may be written as

e = DoDL gy = (M) (D) = g (339)
Jj

where h'P is the NP x NP tight-binding hopping matrix for the D-dimensional lattice under
consideration. Thus we have the same matrix « for every time slice, which is transformed
by the diagonal unitary matrices D,. The matrix {2 can be calculated in an efficient way
by noting that the transformation matrices DI and D, at time slice 7 may be combined

to a diagonal matrix
(DT,T+1)ij = 5Z.jei7(pi,f+rm,r) . (3.39)

Due to the cyclic invariance of the fermjonic trace, D; can be shifted to the end of the
product, where it combines with Dz to Dyr,1. Hence we can write

L
Q=][rDrrs1, (3.40)
=1

96



Chapter 3. Holstein polaron

with periodic boundary conditions in imaginary time. In the one-electron case, the fermionic
weight we =) (n|€|n) is given by the sum over the diagonal elements of the matrix rep-
resentation of €2 in the basis of one-electron states

In) = ¢l |0) . (3.41)

The bosonic action in Eq. (3.37) contains only classical variables and takes the form

— w 2 1 2
=5 Z_sz',r t A Z (Pir — Pir41)” (3.42)
where the indices 7 =1,...,N and 7 = 1, ..., L run over all lattice sites and Trotter times,

respectively, with the periodic boundary conditions p; 11 = p;:. It may also be written
5
as

So =Y p Ap, (3.43)

with p, = (pi1,---,pi,L) and a periodic tridiagonal L x L matrix A with nonzero elements

w n 1 A _ 1
2 T wAr2? THELT oA

Since Zj, is a trace, it follows that Ay, = Ar ;1 = —1/(2wAT?).

At this stage, with the above result for the partition function, a QMC simulation of the
transformed Holstein model would proceed as follows. In each MC step, a pair of indices
(40, 7o) on the N x L lattice of phonon momenta p; , is chosen at random. At this site, a
change piy.-, — Diy,r, + Ap of the phonon configuration is proposed. To decide upon the
acceptance of the new configuration using the Metropolis algorithm (Sec. 2.1.2), the corre-
sponding weights wywy and wi,wg have to be calculated. Due to the local updating process,
the change of the bosonic weight Awy, = wi/wy, can easily be obtained. In contrast, the
fermionic weight requires the evaluation of the L-fold matrix product appearing in the
definition of © in Eq. (3.37). The numerical effort for the calculation of wf may be reduced
by varying 7y sequentially from 1 to L instead of picking random values. In this case the
calculation of the new fermionic weight, after the change of a single phonon momentum,
can be reduced to only two matrix multiplications. We would like to mention that, in
contrast to some determinant QMC methods [10], here the matrix product involved in the
calculation of the matrix €2 is well conditioned also for large systems at low temperatures,
so that a time-consuming numerical stabilization is not necessary. Similar to other MC
methods, a warm-up phase at the beginning of the simulation would be required for each
set of parameters. An additional difficulty arises from the fact that, for the transformed
model, the fermionic weight w; is no longer strictly positive, even for a single electron in
one dimension. This is a consequence of the complex-valued hopping integrals, in contrast

Ay = (3.44)

5From this point, we shall denote the set of all momenta p;,, (i=1,...,N,7=1,...L) by p, while p,
corresponds to the vector (pz.’l, . 1), as stated in the text. The same notational convention is used
for £ and =z.
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3.5. Quantum Monte Carlo approach

to simulations of, e.g., the Hubbard model, where a minus-sign problem occurs as a con-
sequence of the Fermi statistics of the electrons [10]. The sign problem encountered here
will be discussed in detail below.

A related QMC approach to the original Holstein Hamiltonian (3.2) involves a very
similar derivation [124, 125] to obtain the partition function, also in the one-electron limit.
In fact the bosonic action Sy, takes exactly the same form, with p replaced by . The main
difference is the fermionic part of the partition function, contained in the matrix 2. While
the LF transformation leads to a complicated hopping term, the standard approach for
the untransformed model only includes the bare hopping operator of Eq. (3.2). However,
an interaction term I [cf. Eq. (3.2)] appears, which contains the phonon coordinates ;.
Hence the matrix 2 is replaced by

L
QO =T[xVe, (V)i = 8y oo (3.45)
T7=1

and the path integral in the partition function |[Eq. (3.36)] is over all coordinates  instead
of the momenta p. Apart from the fact that the coordinates x are sampled instead of
the phonon momenta, the QMC procedure for the untransformed model is identical to
the simulation described above. We shall refer to this less sophisticated QMC method
for the original Holstein Hamiltonian as the standard approach. For A = a = 0, i.e., no
electron-phonon coupling, we have a set of N independent harmonic oscillators, and both
approaches are alike.

Problems with the standard approach

Let us briefly consider the noninteracting limit, in which the partition function can be
written as Z;, ~ [ Dpe~27%. As discussed by Batrouni and Scalettar [141], the difficulties
encountered in QMC simulations, even for the simple case of a single (N = 1) harmonic
oscillator, arise from the large condition number, i.e., the ratio of largest to smallest eigen-
value, of the matrix A in the bosonic action S}, [see Egs. (3.43) and (3.44)]. For small values
of A this ratio is proportional to (wAT)~2 [141], leading to autocorrelation times which
grow quadratically with decreasing phonon frequency and the number of Trotter slices L.
The physical reason for these correlations becomes obvious if we look at the bosonic ac-
tion [Eq. (3.42)]. The latter can be thought of as being proportional to the energy of a
given phonon configuration, £ = A7S),. While the first term corresponds to the kinetic
energy of the oscillators, the second term describes a coupling in imaginary time, i.e., a
pure quantum effect. As pointed out in [141], large changes of a single phonon degree of
freedom, p; , say, are very unlikely to be accepted due to the energy change proportional
to (wAT) !, which arises from the coupling to p;,+1. However, a QMC simulation with
only small local changes is extremely ineffective in sampling the relevant regions of phase
space. Therefore, successive phonon configurations will be highly correlated. A possible
solution might be the use of global updating schemes. Alternatively, the situation could be
improved by transforming to the normal modes of the phonons, so that different step sizes
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Chapter 3. Holstein polaron

can be used in updating each mode. We will see below that such a principal component
representation can indeed be used to completely eliminate these difficulties.

In addition to the abovementioned autocorrelations, which are in fact independent of
any electronic influences, standard simulations of the Holstein model become very diffi-
cult in the regime where polaron effects are important. This occurs at low temperatures,
small phonon frequencies W < 1, and for intermediate or strong electron-phonon coupling
A 2 1. Unfortunately, these are exactly the parameters of interest for simulations of real
substances such as, e.g., the manganites [3]. To illustrate the physical origin of these prob-
lems let us consider the case of a single electron in the Holstein model. In the polaronic
regime, the electron drags with it a cloud of phonons which corresponds to a more or less
localized lattice distortion. When the electron hops from site A (with a displaced oscilla-
tor corresponding to a small polaron), say, to a neighboring, previously unoccupied site B
(with the oscillator in its undisplaced ground state) during a QMC simulation, the current
phonon configuration is no longer energetically favorable. Clearly, the oscillator at site
A has to return to its undisplaced ground state, while a corresponding phonon cloud has
to be built up at site B. Such distortions of the lattice in the presence of an electron are
large compared to the zero-point motion of the oscillators. On the other hand, only small
changes of the current configuration will be accepted in the simulation. Consequently,
it takes an enormous number of single updates to obtain the new configuration in which
the polaron has completely moved to site B. Obviously these polaron effects also give rise
to strongly autocorrelated configurations, thereby dramatically increasing the numerical
effort. The problems due to polaron formation can be overcome by using the LF trans-
formed model, because it separates the large displacements of the local oscillators—due to
polaron effects—from the free-oscillator dynamics which correspond to vibrations around
the shifted equilibrium positions. The quantities to be sampled, namely the phonon mo-
menta p, only show a weak dependence on the electron-phonon coupling strength A, in
stark contrast to the coordinates z in the original, untransformed model, whose expecta-
tion values grow linearly with A in the strong-coupling regime. In fact, the QMC results
obtained for the transformed model show that the statistical errors increase in the interme-
diate coupling regime A\ = 1, but decrease again as we approach the strong-coupling limit.
This is in perfect agreement with the fact that the the LF transformation diagonalizes the
Hamiltonian (3.2) in the strong-coupling or atomic limit A — oo (Sec. 3.3), so that the
QMC method based on the transformed model becomes very efficient.

Observables

Thermodynamic expectation values
(0) = Z'Tr Oe Pl = 271 Ty O Pl (3.46)

of observables O are computed in the LF transformed representation via

(0) = 21 Tr, / dp (p| O e P |p) | (3.47)
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3.5. Quantum Monte Carlo approach

Here we are interested in the kinetic energy of the electron, the total energy, the mean
square of the phonon momenta, and the momentum distribution n(k) = (¢l&) for various

wavevectors k. We begin with the kinetic energy which is defined as
Ey=(K)=—tZ"" ZTr (c}Lc]- e7(Pi—Pi) e‘ﬂf{“) . (3.48)
(i5)

Using the same steps as in the derivation of the partition function, and noting that the
additional phase factors from the operators czT and c; again lead to the same matrix ) as
in Eq. (3.40), we find

B, = —tzZ;! Z/Dpwa(MQchj |n)
(7) n
— —tz;' Y [ Do G2 (3.9
(7)

with one-electron states |n) as defined in Eq. (3.41). Using the matrix elements Q;; =
(7| © |7) and the expectation values

_ / Dpuy O(p)
(O = W (3.50)

with respect to the purely phononic weights wy, we obtain

B, = —t M. (3.51)

> (Qai)y
Here we have already taken into account the reweighting method which will be discussed
in detail below. The total energy can be obtained from the thermodynamic relation £ =

—0(In 2)/05, with Z given by Eq. (3.36). The result is

w
E = Ek+§2i:<p?>+E£,h—EP;

N 1 ,
E{)h = QAT - QWATQL ;: <(pi,7' - pi,T+1) > ) (3‘52)

where Ep is defined in Eq. (3.16) and the expectation values are calculated according to
Eq. (3.54) given below. To compare with other work we subtract the ground-state energy
of the phonons, Ey ,, = Nw/2. Finally, n(k) can be obtained using Fourier transformation.
In one dimension, we find

(3.53)

with k£ from the first Brillouin zone.
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Chapter 3. Holstein polaron

Due to the analytic integration over the phonon coordinates x used here, interesting
observables such as the correlation functions (7;%;4) are difficult to measure accurately.
Other quantities such as the QP weight, and the closely related effective mass [85], can be
determined from the one-electron Green function at long imaginary times [142], but results
would not be as accurate as in existing work (e.g., [83,92,97]). The situation is strikingly
different in the more demanding many-electron case, to which our method can be extended
(Chap. 5). For the latter, other methods produce far less reliable data than for a single
electron and, moreover, other observables, such as the one-electron Green function, are of
great physical interest, and can be calculated with our approach.

Reweighting

In typical QMC simulations a large amount of the total computational effort goes into the
calculation of the probability for the acceptance of a proposed change of the configuration.
This probability is usually determined by the ratio of the weights of the new and the old
configuration, as in the Metropolis algorithm (Sec. 2.1.2). In the notation of Sec. 3.5.2, this
involves the calculation of w;, and wy for the two configurations, p and p' say, in every MC
step. While the change in the bosonic weight, wy,(p')/wp(p), is easily calculated for the
case of local updating, the fermionic weight given by Eq. (3.37) involves an L-fold matrix
product of N x N matrices for each configuration. Although the numerical effort of the
evaluation of such a matrix product can be reduced by scanning sequentially through the
time slices, it still requires a lot of total computer time.

This can be avoided by reweighting of the probability distribution to be sampled. Here
this corresponds to taking into account only the change wy,(p')/wy(p) in the bosonic weight,
and compensating for this by dividing the resulting expectation value of an observable O
by the expectation value of the fermionic weight wy, as has been used already in Eq. (3.51).
In general, this leads to ratios of the form

(0) = : (3.54)

where the subscript “b,” defined in Eq. (3.50), indicates that the average is computed based
on wy, only. Following this procedure, the fermionic weight is treated as part of the observ-
ables. The splitting into weight wy, and observable Owy is sensible as long as the variance
of we and Owy is small, which is the case after the LF transformation. This approach has
several additional advantages. With the reweighting method, the updating of the system
does no longer require the calculation of wy in every step, but only when measurements
are performed. Compared to the usual Markov Chain MC procedure (Sec. 2.1.2), this can
save an enormous amount of computer time. We will see below that in combination with
the principal component representation, the phonon momenta p can be sampled exactly
without any autocorrelations. This avoids a warm-up phase, and measurements can be
made after every MC step. In this final, very efficient procedure, the calculation of ws for
measurements remains, and is then the most time-consuming part of the simulation. Fi-
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Figure 3.11: Kullback-Leibler number pk;, as a function of electron-phonon coupling A for
various sets of the parameters N (number of sites), 5 (inverse temperature)
and @w. As indicated, the results for the untransformed model, denoted in the
legend as “w/o LF,” have been scaled by a factor 0.25 (see text). Errorbars
are smaller than the symbols shown, and lines are guides to the eye only.

nally, we want to remind the reader once again that here the electronic degrees of freedom
are treated exactly, i.e., they are not sampled in the course of the simulation.

Despite the obvious advantages of this approach, it is necessary to scrutinize whether
reweighting does not lead to prohibitive statistical noise. If, for example, there was too
small an overlap of the actual probability distribution with the one we are sampling with,
the method would fail. In fact, our calculations have shown that for the untransformed
model the reweighting method cannot be applied at low temperatures and for critical values
of the parameters @w and A.

The distance between two arbitrary probability distributions ¢;(y) and ¢»(y), each
depending on a set of variables y, can be measured by the Kullback-Leibler number pxi,
defined as [143]

o3} (y)
b2(y)

For ¢1 = ¢ we have uxr, = 0, while for ¢; # ¢o uxr, > 0. The fact that pk;, is a reasonable
measure for the distance of two distributions is best illustrated by considering two one-
dimensional Gaussian deviates ¢, ¢, with variance o2, centered at 4, and 15, respectively.
In this case uxr, = (y1 — 12)%/(20%). For |y, — y»| = V/20, where the two peaks begin
to be distinguishable, we have uxr, = 1, while a large value of ugxr ~ 10, for example,
corresponds to well-separated Gaussian distributions. Here we use pkp to investigate the
applicability of the reweighting method. As long uk;, < 1, reweighting works well, while a
Kullback-Leibler number strongly exceeding unity indicates severe problems. Two relevant
distributions in our case are ¢1(p) = wy(p)/ 2 and @a(p) = wy(P)|we(P)|/ Zbs, depending
on the phonon configuration p (or  for the untransformed Holstein model). 2, and Z¢
are the normalization factors of the probability densities ¢1(p) and ¢y(p), and w; has been

it (6, 6) = / dy é1(y) In (3.55)
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replaced by its absolute value due to the aforementioned sign problem. Inserting these
definitions into Eq. (3.55) we find puxy, = In{|wg|)p — {In |wg|)p. Figure 3.11 shows results for
uxk, for different parameters 8, @, and N in one dimension. For A = 0, w¢ is independent
of the phonon configuration so that uxr, = 0. With increasing electron-phonon coupling,
the difference between the two distributions becomes larger. For an intermediate value
of the electron-phonon coupling strength, uxr takes on a maximum and approaches zero
again in the strong-coupling limit A — oo. This is exactly the behavior we would expect
for the LF transformed model. For A\ = 0 the transformation has no effect and wy is a
constant, just as in the case of the untransformed model. In the intermediate coupling
regime, the small-polaron picture mediated by the transformation is not correct as we have
an extended (large) polaron in this region. However, as the coupling increases further,
the polaron becomes smaller and for A = oo it is known that the LF transformation
diagonalizes the Holstein Hamiltonian (3.2). The dependence of px;, on temperature and
phonon frequency is also in perfect agreement with the physical picture of the Holstein
polaron. As St increases, polaron effects become more prominent. The same effect occurs
if we decrease w, and in both cases the maximum of uky, increases. In Fig. 3.11, the result
for a system of eight lattice sites is also shown. The maximum in pg;, is clearly smaller
than for the four-site cluster. Calculations for even larger clusters (not shown) reveal that
the maximum in gy decreases further indicating that the overlap between ¢; and ¢
increases as N — oo. This behavior agrees well with the influence of finite-size effects in
the cross over region [79]. With increasing system size, the cross over becomes smoother
in agreement with the fact that the ground state of the Holstein polaron is an analytic
function of the coupling A [118]. This point will be further illustrated in Sec. 3.5.3. Similar
results for pk;, have been found in higher dimensions. To summarize, for all parameters
shown in Fig. 3.11, uxr < 1, so that we can conclude that the two distributions are indeed
very close and the reweighting method can be successfully applied.

We have also calculated the Kullback-Leibler number for the untransformed model,
denoted in Fig. 3.11 as “w/o LF,” for which |w¢| = ws. The result has been divided by a
factor 4 to allow a better representation in Fig. 3.11. The difference between ¢; and ¢
increases strongly with A and reaches large values of uxr > 10 already in the intermediate
coupling regime 1 < A < 2. Hence, we cannot expect the reweighting method to work in
this case. Finally, we want to point out that the distance between ¢; and ¢, may not affect
all observables in the same way. A detailed analysis for each observable O would be based
on the Kullback-Leibler distance of the marginal probability densities

pal0) = / dy p(oly) pa(y) = / dy 60— O(w)] paly) | (3.56)

where O(y) is the value of the observable for a given configuration y and oo = 1, 2 for the
two distributions under consideration.

In summary, the reweighting method, together with the LF transformation, allows us
to sample a system of independent oscillators, while all the influence of the electrons is
transferred to the observable, thereby strongly reducing the numerical effort. In order
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to obtain a reliable error analysis for observables calculated according to Eq. (3.54), the
Jackknife procedure (Sec. 2.1.5) has been applied.

Principal component representation

Although the reweighting method allows us, in principle, to skip enough sweeps between
measurements to reduce autocorrelations to a minimum, the computational effort for these
MC updates can become the most time-consuming part of the simulation. Even though
a single phonon update requires negligible computer time compared to the evaluation of
the fermionic weight, in the critical parameter regime, an enormous number of such steps
will be necessary between successive measurements. Moreover, reliable results can only
be obtained when long enough MC runs have been performed to see even the longest
autocorrelation times. In this section, we present a principal component representation for
the phonon degrees of freedom, which enables us to create completely uncorrelated samples
of phonon configurations.

In order to illustrate the severe problem of autocorrelations with standard updates of
the phonons, we have calculated the integrated autocorrelation time Tzi,“t for the average
phonon momentum p. As discussed in Sec. 2.1.5, 7™ is a direct measure for the number of
MC steps which have to be skipped between measurements in order to obtain uncorrelated
data, and is usually given in units of sweeps. We define a sweep as N times L proposed
local changes of the phonon configuration. For a four-site system, for example, with gt = 5,
A=2,w=2,and A7 = 0.05 we find Tli)“t ~ 500. This corresponds to an autocorrelation
time of about 2 x 10° single MC steps. For smaller phonon frequencies, 7, increases
strongly. For @ = 1 and the same A7, the autocorrelation time is already ~ 1700 sweeps,
which agrees quite well with the aforementioned (wA7)™? dependence for A = 0. The
dependence of Tli,“t on the coupling strength A is relatively weak, and we have found no
systematic behavior of T;,nt as a function of A\. Depending on the other parameters, the
autocorrelation times were observed to increase or even decrease slightly as A is increased.
We have also determined the autocorrelation times for observables such as, e.g., the kinetic
energy. Although 7, is smaller for electronic observables, the problem still exists, and
the determination of the autocorrelation times for various parameter sets is vital to obtain
reliable results. This usually requires very long MC runs and a lot of CPU time.

As indicated earlier, the autocorrelations which arise from the structure of the bosonic
action Sy, [see Eq. (3.42)] may be overcome by a transformation to the normal modes of the
system. Here we represent the bosonic action S}, in terms of its normal modes along the
imaginary time axis, so that we can sample completely uncorrelated phonon configurations.
As the fermion degrees of freedom are treated exactly, our QMC method is indeed free of
any autocorrelations. This greatly simplifies calculations, since it makes the usual binning
analysis (to determine the autocorrelation times) obsolete and, more importantly, leads to
significantly shorter simulation times.

All this can be achieved with the simple but effective idea of a transformation to
principal components. To this end let us recall the form of the bosonic action given by
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Eq. (3.43) which we write as

Sp=) piAp; =) plAPAp, = ¢l ¢ (3.57)

with the principal components €, = AY?p,, in terms of which the bosonic weight takes the
simple Gaussian form
T
wy, = e AT L& (3.58)

The QMC can now be performed directly in terms of the new variables £&. To calculate
observables we have to transform back to the phonon momenta p using the matrix A~1/2,
Comparison with Eq. (3.43) shows that instead of the ill-conditioned matrix A we now have
the ideal structure that we can easily generate exact samples of a Gaussian distribution. In
terms of the new coordinates &, the probability distribution can be sampled exactly, e.g.,
by the Box-Miiller method [57|. In contrast to a standard Markov chain MC simulation
(Sec. 2.1.2), every new configuration is accepted and measurements of observables can be
made at each step.

From the definition of the principal components it is obvious that an update of a single
variable & , say, actually corresponds to a change of all p; .-, 7/ =1,..., L. Thus, in terms
of the original phonon momenta p, the updating loses its local character. Consequently,
a sequential updating of the Trotter time slices can no longer be used to reduce the nu-
merical effort for the evaluation of the fermionic weight. However, in combination with
the reweighting method, the latter is only calculated when measurements of observables
are made. The enormous advantage of the principal components, leading to completely
uncorrelated phonon configurations, clearly outweighs this drawback. Apart from this, the
principal component representation can also be applied for more than one electron (see
Chaps. 4 and 5), since the bosonic action [Eq. (3.58)], on which the transformation relies,
remains unchanged. This even holds for models including, e.g., spin-spin or Hubbard-type
interactions (Sec. 1.3), as long as the phonon operators enter in the same form as in the
Holstein model.

Another important point is the combination of the principal components with the
reweighting method. Using the latter, the changes to the original momenta p, which
are made in the simulation, do not depend in any way on the electronic degrees of freedom.
Thus we are actually sampling a set of N independent harmonic oscillators, as described by
Sp. The crucial requirement for the success of this method is the use of the LF transformed
model, in which the polaron effects are separated from the zero-point motion of the oscil-
lators around their current equilibrium positions. Therefore, the strong dependence of the
phonon coordinates on the electron-phonon interaction makes exact sampling impossible
for the untransformed model.

Sign problem

Before we come to a discussion of the sign problem in the approach presented here, we
would like to give a quick review of its occurrence in other QMC methods. The situation
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Figure 3.12: Average sign of the fermionic weight ws as a function of electron-phonon
coupling A in one dimension for different cluster sizes N, with parameters
as indicated in the figure. Here and in subsequent figures, lines are guides
to the eye only, and errorbars are smaller than the symbols shown. The data
presented in Figs. 3.12—-3.15 are for A7 = 0.05. The inset shows the minimum
of (sign) as a function of the system size N (see text).

is best illustrated for the world-line algorithm (see, e.g., [141]). The use of the latter
to simulate systems of interacting fermions is restricted to one dimension by the Fermi
statistics of the electrons. This is a consequence of the negative matrix elements w, which
appear when two fermion world lines wind around each other one or more times as they
traverse the space-time lattice. Depending on the model parameters, simulations can still
be carried out in many situations by using |w| instead of w. As discussed in [144], this
corresponds to simulating an effective model of hard-core bosons. The average sign in this
case may be written as

(sign) = (sgn(w)) | = e PV flw) | (3.59)

where f, and fj, denote the free energy per site of the fermionic and bosonic model,
respectively, and V is the volume of the system [144]|. From Eq. (3.59), it is obvious that
(sign) decreases exponentially with increasing 8 and V.

The auxiliary-field method [10] for the Hubbard model faces similar problems. Here
the weight of a configuration is given by the product of determinants for 1 and | electrons,
respectively. The product is strictly positive only for half filling, whereas simulations
for other particle densities become very demanding at low temperatures and/or for large
systems. Since at large U the determinant is similar to the weight of world lines of Hubbard-
Stratonovitch variables [145], this similarity of the dependence of (sign) on the parameters
of the system is not surprising. Finally, there is no sign problem in determinant grand-
canonical simulations of the Holstein model at any filling, since the coupling of electrons
and phonons is the same for both spin directions [146].

The sign problem in the current approach clearly has a fundamentally different origin,
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Figure 3.13: Asin Fig. 3.12, but for the case of two-dimensional clusters with (a) periodic
and (b) open boundary conditions in real space. The insets show the minimum
of (sign) as a function of the linear system size N.

since there is only a single electron in the system, so that no winding of world lines around
each other can take place. To investigate this issue, we calculate the average sign of the
fermionic weight ws

(sign) = <<wf>b (3.60)

|wel}o
The expectation value (---);, has been defined in Eq. (3.50). In Fig. 3.12, we show the
dependence on electron-phonon coupling and system size. The calculations have been
performed for a single, fixed value A7 = 0.05, for which the Trotter error is smaller than
statistical errors.

From the general discussion above, it is clear that the sign problem encountered in
the present approach is of a different nature than in, for example, QMC simulations of
the Hubbard model. For the Holstein polaron problem under consideration, it is most
pronounced for small systems, low temperatures and small phonon frequencies. Therefore,
the bulk of results presented below will be for such a set of “worst case” parameters,
including N = 4, ft = 10, and w = 0.1. Figure 3.12 shows that, in one dimension, the
average sign of wy in the critical region of intermediate electron-phonon coupling increases
quickly as the system size increases from N = 4 to N = 16, which is in strong contrast
to Eq. (3.59). This increase of the minimum as a function of N is also shown in the
inset of Fig. 3.12. Since we have only calculated (sign) for a finite number of A-values, an
approximation for the minimum has been determined using a spline interpolation.

The minimum of (sign) occurs near A = 1, where the cross over from a large to a
small polaron takes place (see Sec. 3.1). The resulting increase of statistical errors in this
regime is similar to the situation encountered in simulations of the untransformed model.
However, the use of the transformed model still gives significantly more accurate results for
the same number of measurements, in particular for low temperatures and small phonon
frequencies. Finally, one may be tempted to explain the unusual system-size dependence of
the sign problem by ascribing its origin to the periodic boundary conditions in real space. If
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Figure 3.14: Dependence of the average sign on (a) the adiabatic ratio @ and (b) the
inverse temperature 5 on a 4 x 4 cluster. The insets show the minimum of
(sign) as a function of (a) @ and (b) ft.

the latter were indeed the source of the sign problem, the boundary effects would decrease
with increasing system size, in accordance with the results of Fig. 3.12. This possibility
has been investigated, and we shall see below that the sign problem persists also for open
boundary conditions.

We now consider the two-dimensional case. In Fig. 3.13(a), we present results for (sign)
for different lattice sizes, again starting with a very small linear dimension N. All other
parameters are the same as before, in particular ft = 10 and @ = 0.1. Obviously, for the
smallest cluster size shown, the minimum of the average sign has diminished to a value of
approximately 0.1, so that large numbers of measurements will be necessary. Similar to
one dimension, (sign) increases with increasing system size, and for the largest system size
shown (N = 12), we find a rather uncritical minimum value of about 0.5.

The results for open boundary conditions, shown in Fig. 3.13(b), reveal that for small
clusters the average sign is larger than for periodic boundary conditions. However, with
increasing system size, it quickly converges to the same values, independent of the boundary
conditions. This is just what one would expect, since with increasing N, the effect of the
choice of boundary conditions on the properties of the system diminishes. Moreover, we
can conclude that the negative weights do not simply result from hopping processes of the
electron across the periodic boundaries, since in that case we would expect (sign) = 1 for
open boundary conditions, in contrast to Fig. 3.13(b). The same conclusion can be drawn
in one and three dimensions.

The influence of the phonon frequency on the average sign is shown in Fig. 3.14(a).
Clearly, the sign problem is most noticeable for small values of w, while it diminishes
quickly as we increase the adiabatic ratio (see inset). This is very similar to the small-
polaron cross over. As discussed in Sec. 3.1, the latter sharpens significantly with decreasing
w, while a very gradual change with increasing A takes place in the nonadiabatic regime
w > 1. Additionally, the position of the minimum of (sign) is shifted to larger values of A
with increasing .
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Figure 3.15: Dependence of the average sign on the linear system size N in three dimen-
sions. The inset shows the minimum of (sign) as a function of N for two
different temperatures.

In Fig. 3.14(b), we report the average sign as a function of A, and for different inverse
temperatures 5. Again we have taken N = 4 and @w = 0.1, the parameters for which the
sign problem is most conceivable. While for 8t = 10, the minimum of (sign) lies below
0.1, the situation is much better already for St = 5, as shown in the inset. At even higher
temperature §t = 1, the fermionic weight is always positive so that we have (sign) = 1
for all \. The dependence of the sign problem on temperature is therefore similar to other
QMC methods [see Eq. (3.59)], although we do not find a simple exponential relation.

Finally, we also present results for (sign) in three dimensions, for lattices of different
linear size N, and again for the parameters w = 0.1 and St = 10 as a function of A.
Figure 3.15 reveals that the minimum of (sign) in 3D has an even more pronounced form
than in two dimensions. The sign problem diminishes slightly as we increase the system
size from N = 4 to N = 6. However, accurate simulations in this regime are still quite
demanding. For a higher temperature St = 5 and all other parameters unchanged, (sign)
is close to 1 even for N = 4 (see inset in Fig. 3.15), so that accurate results can be obtained
even for small phonon frequencies.

In summary, the investigation of the sign problem has shown that our method works well
for a large range of values of phonon frequency, electron-phonon coupling and temperature,
as long as the system size is large enough. This contrasts, with the world-line algorithm of
Kornilovitch [112,113|, which is restricted to intermediate and strong coupling, as well as
low temperatures and rather large phonon frequencies, also by a minus-sign problem. Al-
though we have investigated the influence of all important parameters on the sign problem,
a physical interpretation of its origin has not emerged. Nevertheless, it is clear that the
negative fermionic weights are a result of the phase factors in the LF transformed hopping
term in Eq. (3.14). This is similar to the sign problem which occurs, e.g., in simulations
of electron-phonon models in an external magnetic field [146], but here the phonon fields
pi, vary with time (7) and position (), and are coupled in imaginary time by the bosonic
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action [see Egs. (3.43) and (3.44)]. Furthermore, the dependence of the sign problem on
w, A, B and N bears a striking resemblance to the influence of these parameters on the
properties of the Holstein polaron. In particular, its reduction with increasing system size
may be a consequence of the dilution of the system (the particle density n — 0 as N — oo
in the one-electron case, see also Sec. 5.3.3). Finally, it is interesting to note that the large
statistical fluctuations resulting from the sign problem occur at exactly the same points in
parameter space as in the untransformed model. This underlines the correlation between
the minimum in (sign) and the small-polaron cross over, similar to simulations of other
models, in which negative weights occur exactly where the most interesting physics is going
on, e.g., in the vicinity of phase transitions [10].

3.5.3 Results

We now come to the results obtained with the QMC approach. As a lot of work has already
been done on the Holstein polaron problem in the past, we shall exploit the advantages of
QMC and study, in particular, finite-size and finite-temperature effects. Furthermore, the
comparison with existing results serves as a test of the new ideas presented above. The
extension of the current method to the case of more electrons will then allow us to obtain
new and interesting results in Chaps. 4 and 5.

Since our approach is based on a discretized imaginary time, it is important to study
the convergence of any results with increasing number of time slices L, which determines
the error due to the Suzuki-Trotter approximation of Eq. (3.33). In one dimension, L was
chosen such that systematic errors are smaller than the statistical errors of the results. For
all observables considered here we have found the usual (A7)? dependence of the Suzuki-
Trotter error (Sec. 2.1.4). Depending on the adiabatic ratio w, values of A7 = 1/30 (for
w < 1) and A7 = 1/40 (for w > 1) are sufficient even for the most accurate results. The
results in higher dimensions presented below have been obtained by extrapolating results
to A7 = 0 (Sec. 2.1.4). Errorbars for the QMC data presented are always smaller than
the symbols used in the figures and are therefore not shown. Finally, lines connecting data
points obtained with QMC in Figs. 3.16-3.24 are guides to the eye only.

To test our QMC algorithm we have performed several comparisons with other methods.
First, we have checked that the QMC reproduces the exact results obtained with Lanczos
on a four-site cluster. Apart from temperature effects, an excellent agreement has been
found for several different values of the phonon frequency. Second, as the QMC results
are all for finite temperature, we have also compared them with an exact solution for the
two-site system valid for arbitrary temperature. We have found a perfect agreement over
the whole range of values for 8, W, and A, and can therefore exclude the possibility of any
systematic errors.
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Figure 3.16: Normalized kinetic energy E\ |[Eq. (3.61)] as a function of the electron-phonon
coupling A for various values of the adiabatic ratio w.

Holstein polaron in one dimension

Kinetic energy The one-electron kinetic energy Ey is given by Eq. (3.51). In order to
compare results for different dimensions later on, we define the normalized quantity

with Ey = 1 for T = 0 and A = 0. The kinetic energy of the electron has previously been
calculated by several authors [85,93,99,108,109,111,121]. In Fig. 3.16 we show results
for F on a 32-site cluster, with At = 10 and for several values of the phonon frequency.
For large values of A and @ < 1 we find E ~ A~! as predicted by small-polaron theory
[147]. This contrasts strongly with the behavior of the QP weight z, [see Fig. 3.8(b)]
which decreases much faster and is exponentially suppressed in the small-polaron regime
[92]. As pointed out by Fehske et al. [101], in the Holstein model, the QP weight is, to
a very good approximation, given by the inverse of the ratio meg/m where mes and m
denote the effective and free mass of the electron, respectively. Hence, in the small-polaron
regime, the effective mass increases exponentially, while the kinetic energy still has a finite
value. We ascribe this behavior to the undirected motion of the electron inside the phonon
cloud, which gives rise to a nonzero kinetic energy even for large values of A, although
the polaron is almost localized owing to an exponentially narrowed band. A discussion
of the dependence of the cross over on the phonon frequency will be given below for the
two-dimensional case.

Total energy Next we consider the total energy E, given by Eq. (3.52). In Fig. 3.17 we
present the total energy for various values of the phonon frequency. Finite temperature
effects increase as we approach the low-frequency regime, and for w = 0.1 we clearly see
a strong deviation from the ground-state result £ = —2t for A = 0. The frequency-
dependence of the temperature effects can easily be understood if we consider the exact
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Figure 3.17: QMC results for the total energy E [Eq. (3.52)] as a function of the electron-
phonon coupling A for various values of the adiabatic ratio w.

result for the kinetic energy of N independent harmonic oscillators

_wNyyy o Ne (1, 1
Biepn = 5 ) () = = <2+ eﬂw—1) , (3.62)

i

which is identical to the second term in Eq. (3.52). At low temperatures we have (p?) ~
0.5+e~# with a correction to the ground-state value of 0.5 that increases with decreasing
w and is independent of A. Therefore, the total energy curves are shifted by the same
amount for all values of the coupling. As we shall see below, temperature effects are much
smaller for other observables, such as the kinetic energy, due to the absence of the strongly
temperature-dependent terms P, and E}; [see Egs. (3.2) and (3.52)].

The dependence of F on @ in Fig. 3.17 agrees well with existing work [79, 81,84, 89,
98,99,101,108,109,111,112,123|. It is interesting to note that in contrast to the kinetic
energy F, which decreases conceivably near A = 1 in the adiabatic regime (Fig. 3.16), the
total energy does not change significantly at the small-polaron cross over since the energy
of the system is merely redistributed from kinetic to potential energy [111].

Momentum distribution and oscillator momenta Following Zhang et al. [94] we have
also calculated the momentum distribution n(k), given by Eq. (3.53), for different wavevec-
tors k |Fig. 3.18(a)]. To compare with their DMRG results we chose the same parameters
N =6 and w = 1.0. For A = 0 the ground state has momentum £ = 0, so we have
n(0) = 1 and n(k # 0) = 0. With increasing coupling n(0) decreases in a way similar to
the kinetic energy (cf. Fig. 3.16), while n(k) for & # 0 increases. In the strong-coupling
limit A — oo, n(k) approaches the value 1/N = 1/6 for all k. This is a simple consequence
of the localization of the electron for A = co. Although the curve for £ = 0 looks very
similar to the results of [94] we find a slightly stronger decrease of n(0) in the intermediate
coupling regime. This deviation is no temperature effect of our QMC method but probably
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Figure 3.18: (a) Momentum distribution n(k) [Eq. (3.53)] as a function of electron-phonon
coupling A for various wavevectors k. (b) Mean square of the phonon momen-
tum p as a function .

originates from the fact that Zhang et al. [94] obtained their results for n(0) by integrating
over an approximate spectral function.

In the discussion of the reweighting method, we mentioned that, within the LF ap-
proach, the phonon degrees of freedom only show a weak dependence on the electron-
phonon coupling, in contrast to the standard approach, where the average oscillator co-
ordinate (z) increases strongly with A due to the displacement in the presence of an
electron. The weak dependence of the vibrational energy of the local oscillator, which
is proportional to (p?), on ) is shown in Fig. 3.18(b). For A = 0 we have the result
(p?) = 0.5 + [exp(Bw) — 1]7! [see Eq. (3.62)] for a free oscillator. In the intermediate
coupling regime, (p?) takes on a minimum, corresponding to a reduction of merely 4%,
and approaches the value for A = 0 again in the strong-coupling limit. Since the LF trans-
formation does not affect the phonon momenta p [see Eq. (3.13)], the result for (p?) as a
function of A is the same in the untransformed Holstein model. However, the significant
advantage of the current method is that the phonon momenta are sampled instead of the
coordinates x. Thus the probability distribution associated with the degrees of freedom to
be sampled has only a small variance, which makes simulations much more effective. The
dependence of (p?) on the coupling strength A\ and temperature has first been studied by
Ranninger and Thibblin [84] for the two-site model. For such a small system, the minimum
of (p?) is even more pronounced, while for larger systems the average effect of the electron
on a local oscillator is washed out. Ranninger and Thibblin [84] ascribe the deviation
of the vibrational energy from the free-oscillator result to anharmonic effects, which are
visible only at low enough temperatures. This can clearly be seen in Fig. 3.18(b), where
the minimum of (p?) becomes less pronounced and is shifted to smaller values of \ as the
temperature increases.
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Figure 3.19: Normalized kinetic energy E\ as a function of electron-phonon coupling A
for different values of the adiabatic ratio @ on a 12 x 12 lattice. The results
shown in Figs. 3.19 - 3.24 have been obtained by extrapolating the QMC data
to AT = 0 (see text).

Holstein polaron in two dimensions

While the results in one dimension have been obtained for a single value of A7, here we
perform simulations at different values of A7, typically 0.1, 0.075 and 0.05, and exploit
the linear dependence of the results on (A7)? to extrapolate to A7 = 0. This is a common
procedure in the context of discrete-time QMC methods [10], and allows one to remove the
Trotter error if A7 is sufficiently small (see also Sec. 2.1.4).

We begin with the dependence of the small-polaron cross over on the phonon frequency.
To this end, we present in Fig. 3.19 results for the kinetic energy calculated for N = 12
and St = 10. The large range of the adiabatic ratio 0.1 < w < 8.0 demonstrates the ability
of our method to give accurate results for almost arbitrary values of the phonon frequency.
This contrasts with the method of Kornilovitch [112,113], which is restricted to @ 2 1 and
A 2 1 by a minus-sign problem. In our case, the only limitations regarding the accessible
values of w are the moderate sign problem discussed above, which for small systems and
low temperatures gives rise to a noticeable increase of statistical errors as w — 0, and the
increasing Trotter error as w — oo, which requires the use of more and more time slices.
Similar to one dimension, the cross over sharpens considerably with decreasing phonon
frequency, and the cross over position ). increases with @ in the nonadiabatic regime (see
Fig. 3.19).

In the adiabatic regime w < 1, the cross over is entirely determined by the balance of
the electron’s kinetic energy and the polaron binding energy Ep. As soon as the gain in
potential energy outweighs the loss in kinetic energy, the size of the polaron collapses to a
single site. The parameter ) is defined as the ratio of these two contributions [Eq. (1.18)]
and may be written as A = Ep/(W/2) (—=W/2 is the kinetic energy of a free electron
at T = 0). Therefore, in the adiabatic regime, the cross over occurs at A = 1. With
increasing w, the lattice energy becomes important, since more energy is required to excite
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Figure 3.20: Normalized kinetic energy Ey as a function of electron-phonon coupling \ for
different linear dimensions N of the system.

phonons. Consequently, the distortions of the lattice around the position of the electron—
giving rise to the large effective mass and low mobility of a small polaron—are much
smaller, with the oscillators being predominantly in their ground state. The electron can
therefore remain untrapped even for A > 1 if @ > 1. The decrease of Ey with increasing
A is a result of the exponentially decreasing overlap of the ground-state wavefunction of a
displaced and an undisplaced harmonic oscillator, which reduces the hopping probability
between neighboring lattice sites. In the nonadiabatic regime, a small polaron is formed if
VEp/w > 1 (Sec. 3.1). The larger lattice energy in this case also gives rise to the more
gradual decrease of E for intermediate and large values of w. In particular, the kinetic
energy is much larger for A > 1 and @ > 1 than for @ < 1. Finally, for the same @, the cross

over in two dimensions (Fig. 3.19) is noticeably sharper than in one dimension (Fig. 3.16).

To address the issue of finite-size effects, we have calculated Ey for gt = 10, w = 0.1
and different linear lattice sizes N = 4-12 [see Fig. 3.20(a)]. The choice of @ = 0.1 is
reasonable since the large polaron, which exists for A < A, is most extended for small
phonon frequencies (Sec. 3.1), so that finite-size effects can be expected to be largest.
To illustrate this point, we also present results for a larger phonon frequency w = 2.0
[Fig. 3.20(b)|. For the latter, the local oscillators can respond very quickly to the motion
of the electron, and the extension of the phonon cloud or lattice distortion surrounding
the electron is much smaller. In contrast, above the critical coupling for the formation of
a small polaron, the lattice size is expected to have little influence in both cases. All this
is well confirmed by Fig. 3.20, which also reveals that results begin to saturate for N > 8,
as pointed out previously by Kornilovitch [111]. Nevertheless, we find a nonnegligible
dependence on N up to the largest system size (N = 12). This is better illustrated in
Fig. 3.21, in which we show Ey as a function of 1/N, and for several values of A. To allow
a better representation, some curves have been shifted, as indicated in the legend. From
Fig. 3.21, we see that Ey changes very little for N > 4 for strong coupling A = 2 and, in
fact, remains constant within the errorbars. For smaller values of A, no such saturation is
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Figure 3.21: Normalized kinetic energy E) as a function of the inverse of the linear size
N of the system, and for different values of the electron-phonon coupling A.
As indicated in the legend, some curves have been shifted, in order to allow a
better representation. All curves are monotonic within statistical errors.

found on the scale of Fig. 3.21, and the behavior of the kinetic energy for large N is almost
linear when plotted as a function of 1/N. We used a linear fit of the data for N = 8, 10,
and 12 to obtain an approximation to the thermodynamic limit. The results are presented
in Fig. 3.20. Obviously, Ey for N = oo has decreased noticeably for small values of \
(including A = 0), while it remains almost unchanged in the small polaron regime. The
decrease of Ey for A < ). can easily be understood if we consider the fact that our method
works at a finite temperature 1/3. Therefore, for very small N, the energy gap between
the ground state with £ = 0 and the first excited state with k # 0 is larger than the
thermal energy (Bt)~!. With increasing system size, thermal population of excited states
becomes possible. For N large enough (N = 20 for 5t = 10 and A = 0), results converge to
those for N = oo and, in fact, the extrapolated data for A = 0, shown in Fig. 3.21, agree
well with the results for a free electron on an infinite lattice. We ascribe the smallness of
this finite-temperature effect in the strong-coupling regime above A, to the narrow polaron
band (see Sec. 3.2). Consequently, the low-energy coherent states with different k have
very similar energies.

We also investigated the effect of temperature, again for @ = 0.1 and @w = 2.0. The
results, presented in Fig. 3.22, indicate that E is more affected by the finite temperature
of the simulation in the adiabatic case @ = 0.1 [Fig. 3.22(a)]. This is a consequence of
the fact that calculations at finite temperatures only give ground-state-like results when
pw > 1. Clearly, this condition is much more difficult to meet for w = 0.1, and requires
larger values gt > 10.

The changes of E\ with temperature result from an interplay of several effects. For
A = 0, the kinetic energy approaches its full noninteracting value of —2tD (i.e., Eyx = 1) as
T — 0. At finite T, however, states with nonzero total quasimomentum k will contribute
and thereby lead to a decrease of Fy. As discussed above, this effect is expected to decrease
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Figure 3.22: Normalized kinetic energy Ey as a function of electron-phonon coupling \ for
different inverse temperatures (3.

with increasing A, and to be extremely small in the strong-coupling regime. In the adiabatic
case [Fig. 3.22(a)], the cross over at A\, = 1 is smeared out at high temperatures. For both
@ = 0.1 and @ = 2.0, a qualitative change in behavior occurs near \.. F) decreases
with increasing temperature for A < )., whereas the opposite is true for A > A\.. The
behavior above A\, can be understood by considering the electronic hopping amplitude,
given by the overlap of the wavefunctions of a displaced and an undisplaced oscillator
at neighboring sites. While the latter is exponentially reduced with increasing electron-
phonon coupling at 7' = 0, it increases with temperature as the oscillators can occupy
excited states, corresponding to wavefunctions which are more spread out than the ground
state.

Interestingly, the dependence of E) on temperature is almost linear at low tempera-
tures for W = 2.0 [see Fig. 3.23(b)|]. Similar to the finite-size scaling performed above,
we also linearly extrapolated the data for St = 10 and 15 to the zero-temperature limit
ft = oo, with the results shown in Fig. 3.22(b). While the general trend agrees well with
our expectations based on the finite-temperature data shown, the scaling procedure over-
estimates the temperature effects in the weak-coupling regime, thereby leading to spurious
values B, > 1 at A = 0. This can easily be understood keeping in mind that results will
ultimately saturate at low-enough values of 8¢, so that the linear extrapolation used here
becomes insufficient.

For @ = 0.1, an inverse temperature St = 10 is not sufficient to obtain well-converged
results except for the strong-coupling regime. A linear dependence of E\, as for w = 2.0,
may still be found at lower temperatures which have not been investigated here since such
calculations, with the accuracy of the results presented here, would be very time-consuming.
The situation could be improved by using the checkerboard breakup introduced in Sec. 5.3.

We conclude our discussion of the two-dimensional Holstein polaron by noting that the
results of de Raedt and Lagendijk [108-110] were also given for St = 5 (and w = 1), but the
small number of Trotter slices (L = 32 in their case) will cause relatively large systematic
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Figure 3.23: Normalized kinetic energy Ey as a function of temperature 1/(53t), and for
different values of the electron-phonon coupling A. As indicated in the legend,
some curves have been shifted, in order to allow a better representation.

errors [111]. This is not the case for the results of [111], in which the same extrapolation
to A7 = 0 was employed as here. Finally, the method of Kornilovitch [111,112] is free of
such errors, but only permits one to calculate ground-state properties for restricted values
of w and A.

Holstein polaron in three dimensions

In contrast to the one- and two-dimensional cases discussed above, less work has been
done in three dimensions [82,83,97,108-110,112,113]. In fact, we are only aware of one
calculation of the kinetic energy, which is by de Raedt and Lagendijk (DRL) [109]. To
compare with their work, we chose the same parameters & = 1.0 and 5t = 5. The numerical
effort for calculations with our method, which is proportional to N3P for the algorithm in
the form used here, restricts us to smaller systems than those considered by DRL [108-
110]. For simplicity, we have therefore limited ourselves to a maximum of N = 6, for which
results can easily be obtained within a reasonable amount of computer time, while the data
presented in [108-110] is for N = 32. To be more specific, our calculations for one value
of A\, with N =6 and A7 = 0.05, took about 10 h on an Intel Xeon 2600 MHz computer.
Due to the relatively small system size in our work, it is important to study to what extent
the results are converged with respect to N. To this end, in Fig. 3.24(a), we present E)
as a function of A for N = 4,5, and 6. Surprisingly, the results are already satisfactorily
converged. There is a maximal change of less than 20% in the cross over region at A = 1,
while Fy remains almost constant for small and large ), as the linear size increases from
N = 4to N = 6. Thus, increasing N further will not change the results qualitatively,
although the finite temperature of our simulations will manifest itself in a way similar to
the two-dimensional case. Our findings agree well with the results of DRL [109]. The main
difference is that for weak coupling, our results are closer to the zero-temperature values
(e.g., Ex = 1 at A = 0). The reason for this discrepancy—despite the fact that we have
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Figure 3.24: Normalized kinetic energy Ey as a function of electron-phonon coupling A
(a) for different linear dimensions N and (b) for different dimensions D of the
lattice.

used the same temperature—is the smaller lattice size in our calculations. We have not
performed a scaling to N = oo in 3D, since the clusters under consideration are too small
to reveal a systematic power law dependence on 1/N.

Finally, we wish to investigate the effect of dimensionality on the small-polaron cross
over. Therefore, we compare E) in one, two and three dimensions using 3t = 5, N = 6, and
@ = 1.0. The dependence on D, which is shown in Fig. 3.24(b), is in perfect agreement with
previous work. The cross over from a large polaron to a small polaron sharpens considerably
with increasing dimension of the system, and while E\ only displays a gradual decrease in
1D—without any signs of an abrupt change at A = 1-—we find a sharp and well-defined
cross over in three dimensions.

To end with, we would like to compare the accuracy of our results to those of DRL
[108-111], and Kornilovitch [112,113]|. As discussed in Sec. 3.5.1, the main advantage of
their methods is that they allow one to obtain data which are essentially free of finite-size
effects, in any dimension D = 1-3, with modest computational effort. However, we have
seen above that even in three dimensions, where the limitation of our algorithm is most
noticeable, results are reasonably converged. While the work of [112,113] is limited to
T = 0, DRL’s method as well as the current approach can, in principle, be used to study
any temperature. Apart from the sign problem, the only limitation is that one has to
increase the number of Trotter slices as 8 — 00, so as to keep the Trotter error small.
This situation can be greatly improved by extrapolating results to A7 = 0. The accuracy
of the results presented here depends on w, ft, N and A. Except for the adiabatic regime
w < 1 near A = 1, errorbars are use usually smaller than the linewidth, corresponding to
relative errors of less than 0.5%. This is comparable to the accuracy of the results given
by Kornilovitch [112] and significantly more accurate than the original results of DRL
[108,109].
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3.5.4 Performance

The methods of DRL [108-110] and Kornilovitch [111-113] are based on an analytic in-
tegration over the phonon degrees of freedom. This separation of electronic and bosonic
degrees of freedom greatly reduces the statistical noise due to phonon fluctuations, which
increase noticeably with decreasing phonon frequency, decreasing temperature and increas-
ing electron-phonon coupling. Although the LF transformation used here performs a very
similar task, namely, to separate polaron effects from the zero-point and thermal fluctua-
tions of the free oscillators, the integral over the bosonic degrees of freedom is calculated
with MC, thereby leaving us with a residual influence of the phonons. In fact, the numer-
ical effort for calculations with our approach is proportional to the LN3P, similar to the
grand-canonical determinant method for the Holstein model [124]. This could be improved
to a computer time ~ LN?P by using the checkerboard breakup (Sec. 5.3). The numerical
effort for the methods in [108-113] is independent of N, and depends linearly on D.

A typical MC run for a 1D cluster with 32 lattice sites, 5t = 5,0 = 1.0, and A ~ 1 (i.e.,
near the small-polaron cross over) only takes 5 min of CPU time on a 650 MHz Pentium III
personal computer. For such a run relative errors of, for example, the kinetic energy are less
than 1.0%. Away from the cross over point, the same accuracy can be obtained within a
few seconds. For Bt = 10, the temperature used in most of the calculations presented here,
a MC run with A near the cross over value and with similar statistical errors as mentioned
above takes about 80 min. The use of the aforementioned checkerboard breakup reduces
the CPU times given here by about 65%. For comparison, Kornilovitch [111], using the
method of de Raedt and Lagendijk [108-110], reports simulation times of several hours on
a work station for a 32 x 32 lattice, 5t = 15 and L = 150—240, and similar CPU times are
required for the methods of [112,113].

3.6 Conclusions

We have applied CPT to the Holstein polaron problem in one and two dimensions, and
comparison with existing work has revealed a very good agreement. In combination with
the Lanczos method to calculate the cluster Green function, reliable results can be obtained
for the one-electron spectral function A(k, €), which become exact in the weak- and strong-
coupling limits, A = 0 and ¢ = 0, respectively. Finite-size effects are significantly reduced
compared to standard ED. Our results extend previous applications of CPT to Hubbard
and t — J models, showing that the method is also well suited for electron-phonon models
with local interactions. In particular, using CPT, we have been able to calculate the
complete spectral function of the Holstein polaron for continuous values of k. This is in
contrast to ED, which is restricted to rather small numbers of k values, and QMC which
gives exact results only for the polaron band structure.

Additionally, we have presented a simple variational approach to the Holstein model,
which incorporates an extended LF transformation. It can be generalized to infinite systems
and represents a marked improvement over the standard small-polaron approximation,
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which is only useful in the nonadiabatic, strong-coupling regime.

More importantly, we have introduced an exact QMC method, which is based on the
standard LF transformation of the Hamiltonian. The phonon momenta are represented in
terms of principal components. This enables us to sample completely uncorrelated config-
urations, with the electronic degrees of freedom being taken into account by reweighting.
The present approach can be applied for a wide range of parameters with relatively small
computational effort. In particular, efficient simulations can be performed in the adiabatic
regime w < 1, which is of special interest in connection with materials such as the man-
ganites. The sign problem resulting from the LF transformation has been found to only
weakly affect the statistics, as it diminishes with increasing system size. Comparison with
existing work has revealed a very good agreement, although the current QMC approach is
not as fast as world-line methods [108-113].

Finally, the method is not restricted to a single electron. Indeed, we shall see in Chap. 4
that it can also be used to investigate the Holstein-Hubbard model with two electrons, and
the spinless Holstein model at finite electron density (Chap. 5). The necessary modifica-
tions to the algorithm will be discussed in the corresponding chapters.
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Nothing shocks me. I’'m a scientist.
(Harrison Ford, as Indiana Jones)

4 Holstein-Hubbard bipolaron

In the previous chapter, we have seen that the coupling of electrons to phonons can lead to
the formation of polarons. The next step is to consider the interaction of two such polarons.
Depending on the relative strength of the phonon-mediated attractive interaction and the
Coulomb repulsion, two electrons may form a bound state which is called a bipolaron. Such
QP’s have been proposed to play an important role in several classes of materials, including
the high-temperature superconductors [13, 14, 148] and the manganites [15]. For the latter,
Alexandrov and Bratkovsky [15] derived a theory which assumes the existence of small
polarons in the ferromagnetic phase, which bind to bipolarons at the Curie temperature.
Although their model can explain some experimental data on the manganites, such as the
increase of the resistivity near 7z, the CMR effect, and the metal-insulator transition, there
exist several fundamental problems [3|. Nevertheless, bipolaron formation is still subject
of ongoing research work, and much of the recent progress in the field has been achieved
using exact numerical methods to perform unbiased studies.

This chapter is concerned with the Holstein-Hubbard model with two electrons, ne-
glecting the interaction between bipolarons which will definitely be present to some degree
in real materials. Using CPT, QMC and a variational method, we study in detail the
formation of different bipolaron states as a function of the system parameters. While CPT
yields accurate results for the one-electron spectral function, QMC and the variational
approach can be used to calculate observables such as the kinetic energy of the electrons
or electron-electron correlation functions.

The outline of this chapter is as follows. In Sec. 4.1, we review existing work as well
as available knowledge about the Holstein-Hubbard bipolaron, while Sec. 4.2 contains the
CPT results for the spectral function. Section 4.3 is devoted to canonical transformations
of the Holstein-Hubbard Hamiltonian, the results of which are then used for the QMC and
variational methods presented in Secs. 4.4 and 4.5. Finally, we conclude in Sec. 4.6.

4.1 Holstein-Hubbard bipolaron

The Holstein-Hubbard model has been defined in Egs. (1.21) and (1.22). While for CPT it
is more convenient to use the form (1.22), the starting point of the QMC and variational
methods will be Eq. (1.21). For U = 0, Egs. (1.21) and (1.22) are identical to the pure
Holstein model, while for ¢ = 0 (o = 0) we recover the familiar Hubbard model. As in
Chap. 3, we use the coupling constant A [Eq. (1.18)] and the adiabatic ratio @ [Eq. (1.19)].
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4.1. Holstein-Hubbard bipolaron

Additionally, we define _
U=U/t, (4.1)

and express all energies in units of the hopping ¢. Consequently, the independent parame-
ters of the model are @, U, and \.

There exists a considerable amount of work on the Holstein-Hubbard bipolaron, al-
though it is by far not as well understood as the simpler one-electron case. In the sequel,
we restrict our discussion to new developments in the field. A very complete review of
earlier work has been given by Alexandrov and Mott [78].

While the pairing of electrons in momentum space can be accurately described by
Migdal-Eliashberg theory [9] for weak-enough coupling, no reliable theory is available for
the formation of bipolarons—corresponding to pairing of electrons in real space—at in-
termediate to strong electron-phonon interaction. In recent years, progress was made us-
ing either variational approaches [149-155| or, more importantly, numerical studies based
on ED [79,84,85,121,156|, variational diagonalization [34,95,157,158], DMRG [94], and
QMC [136,159]. The ED and DMRG calculations were restricted to rather small systems
consisting of two [84, 121, 156], four [79], six [94], eight [85,157] or twelve [95] sites, while
QMC [136,159] and the method of [158] are almost free of finite-size effects. The larger
number of phonon states required to obtain converged results makes numerical studies with
ED methods even more challenging than for a single electron, especially for small phonon
frequencies.

Since the Holstein-Hubbard model represents a simplified description of the situation
in real materials, it is highly desirable to study more complex models. To this end, it is
interesting to note that the QMC methods of de Raedt and Lagendijk [136] and Macridin et
al. [159] can be generalized to include dispersive phonons. Furthermore, both approaches
can be applied to models with long-range Coulomb interaction [136,159], similar to the
work of Bon¢a and Trugman [160]. Finally, we would like to point out that bipolaron
formation in a model with JT modes—as present, e.g., in perovskite manganites—has
recently been studied by Shawish et al. [34].

To discuss the physics of bipolaron formation in the Holstein-Hubbard model under
consideration, we have to distinguish between two cases. The two electrons can either
have the same or opposite spin, which leads to a singlet or triplet state, respectively. We
consider these possibilities separately.

Singlet state

For two electrons in a singlet state, the formation of a bound bipolaron state in the absence
of Coulomb interaction originates from the fact that the potential well—arising from a
displacement of the oscillators—around an occupied lattice site deepens in the presence
of a second electron. This may easily be seen in the atomic limit £ = 0, using the LF
transformation. As discussed in Sec. 3.3, on different lattice sites, each electron gains
an energy —FEp by distorting the lattice, whereas the energy shift becomes —4FEp if both
particles occupy the same site (small or onsite bipolaron). For t > 0, the competition
between the kinetic energy of the electrons on the one hand and the displacement or
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lattice energy on the other hand determines the cross over from a state with two weakly
bound polarons, sometimes also referred to as a large bipolaron, for A < A. to a small
bipolaron for A > )., where \. denotes the critical value of the electron-phonon coupling.

In Eq. (1.18), A has been defined as A = 2Ep /W, i.e., as the ratio of the energy gain due
to polaron formation to the kinetic energy of a free electron. While A, = 1 in the adiabatic
regime for the small-polaron cross over in the model with one electron (Sec. 3.1), here we
expect Ac = 0.5 (for @ < 1) due to the energy gain of —2Fp per electron compared to
—FEp in the single polaron problem. This is well confirmed by the calculations of Wellein
et al. [85], who find a strong decrease of the kinetic energy near A = 0.5 for w = 0.4.

For w > 1, the lattice energy becomes important since the trapping of the carriers
requires the formation of a sizable lattice distortion. This gives rise to the additional
condition 24/FEp/w > 1 for a small bipolaron [13].! Similar to the one-electron problem,
the cross over is very gradual in the nonadiabatic regime [85]. The correlation or binding
of the two electrons depends crucially on the phonon frequency, since the latter determines
the maximum distance across which the two particles feel an attractive interaction due to
the phonons. Up to second order in g, this coupling is given by

2¢%w

Uenr(€) = 9°Dpn(g; €) = — (4.2)

where Dpu(q, €) denotes the phonon propagator. Equation (4.2) reveals that the energy-
dependent interaction is attractive for ¢ < w, and becomes instantaneous in the nona-
diabatic limit w — oo where Usg = —2¢?/w. Hence, the binding always decreases with
increasing phonon frequency [79].

For U > 0, there is a competition between the retarded, attractive interaction medi-
ated by the phonons and the instantaneous, repulsive Hubbard interaction. Consequently,
a state with two unbound polarons—stabilized by the onsite repulsion—can exist for suf-
ficiently weak electron-phonon coupling [85]|. This is in contrast to the extended Holstein-
Hubbard model with long-range interaction, in which a bipolaron state is formed irrespec-
tive of the value of U [161]. The effective electron-electron interaction in the Holstein-
Hubbard model which determines the nature of the bipolaron state is

U =U — 2Ep . (4.3)

From this result, which can be obtained either from the generalization of Eq. (4.2) to
U # 0 in the limit w — oo, or in the nonadiabatic strong-coupling limit [159], one may
be tempted to expect a bipolaron state to exist only for Usg < 0, i.e., if there is a net
attractive interaction between the particles. While this is true for the effective Hubbard
model onto which the Holstein-Hubbard model maps in the nonadiabatic strong-coupling
limit, a consideration of virtual hopping processes leads to the less stringent condition
U < 4Fp [158]. The energy gain due to virtual exchange processes of two electrons on
neighboring lattice sites—mnot suppressed by strong electron-phonon coupling—leads to

!The corresponding condition for a small polaron is \/Ep/w > 1 (Sec. 3.1).
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the formation of a weakly bound intersite bipolaron with the two electrons most likely to
reside on neighboring lattice sites [158,159]. A phase diagram for bipolaron formation as a
function of A and @ in one dimension has been presented by Weike et al. [95]. Eventually,
for sufficiently strong electron-phonon coupling 2Ep > U, the effective onsite potential Ueg
becomes attractive, and a small bipolaron is formed.

Starting from a small bipolaron, a cross over to an intersite bipolaron takes place when
the Coulomb interaction becomes large enough [158,159, 161]. The intersite bipolaron has
a much smaller effective mass than the small bipolaron and may therefore also exist as a
mobile carrier in real materials [158]. In the adiabatic limit @ = 0, the onsite-intersite
bipolaron transition has been shown to be of first order [152,153|, but for finite phonon
frequencies it is expected to happen in a more gradual way because of retardation effects,
in agreement with recent calculations [158|. Estimates for the region of existence of the
intersite bipolaron state for w = 1 are U < 2Ep for weak coupling, and U < 4Fp for strong
electron-phonon coupling [158|, and phase diagrams in the (U, A)-plane have been reported
in one [158| and two dimensions [159]|. While the above conditions are quite accurate in
the nonadiabatic regime w > 1, the case W < 1 remains an open problem.

Finally, the physically most interesting regime, which is unfortunately also the most
difficult case to treat theoretically, is defined by w < 1, and a Coulomb repulsion which is
at least as large as the attractive interaction due to the electron-phonon coupling.

Triplet state

For two electrons of the same spin, the Pauli principle forbids double occupation of a site.
Although in principle a bound state may be formed with the two particles being located
on different lattice sites, the exchange processes, which stabilize the intersite bipolaron
state of two electrons in a spin singlet configuration, are not strong enough to bind two
polarons in a triplet state in the strong electron-phonon coupling regime [158]. Since for
U — oo the singlet and triplet state become degenerate, this may also be seen from the
strong-coupling condition U —4Fp. If U = 0o, no value A > 0 is sufficient to create a bound
state. Furthermore, the ground-state energy of two polarons in a triplet state is always
larger than for a singlet state because two particles with parallel spin cannot occupy the
same k = 0 energy level.

4.2 One-particle spectral function

42.1 Method

As in Chap. 3, we use CPT in combination with the Lanczos recursion method (Secs. 2.2
and 2.3). The major difficulty we are facing in the present case is the larger number of
phonon states needed to obtain converged results. From a physical point of view, this is
not surprising since each of the two electrons will create a lattice distortion or phonon
cloud, whereas there is only one dressed particle (polaron) in the one-electron problem
(Chap. 3). However, in addition to the simple doubling of the number of particles, it has
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been shown by previous authors [79, 85, 94| that multiphonon states play a more important
role for the bipolaron, as a result of the phonon-mediated binding. ED (and also CPT) for
electron-phonon systems is affected both by finite-size effects and the truncation error due
to the restricted number of phonon states kept in calculations. Obviously, if one used very
small clusters, good convergence with respect to the phonons could be achieved even for
strong electron-phonon coupling. On the other hand, for small numbers of phonon states,
rather large clusters can be studied. A common approach is to require the truncation error
A [Eq. (2.48)] to be smaller than a certain limit, and to use the maximal cluster size which
can be handled for this number of phonon states.

From the nature of the approximation made (see Sec. 2.2), it is clear that CPT will
work particularly well if the local interactions dominate the physics of the system, i.e., for
the Holstein-Hubbard model (1.22), if g, U > ¢. This point will be illustrated in Sec. 4.2.2.

Since here we only consider the one-dimensional case, in the sequel, we shall adopt the
notation accordingly. We are interested in the Green function

1
Go(k,€) = (| Ckae_—HCZU 4 (4.4)

where |]) denotes the ground state with one electron of spin down, and o =1, ). Equa-
tion (4.4) only contains the inverse photoemission part of the total one-electron Green
function. In the case of G4, the second part—corresponding to photoemission (PE)—
vanishes, since there is no 1 electron in the ground state. Moreover, for G|, PE is identical
to the spectrum of a single polaron, which has been studied in detail in Sec. 3.2. The situ-
ation would be different if we started with a two-electron (singlet or triplet) ground state.
Then, the PE part of the one-electron spectral function also contains valuable information.
However, due to limited computer memory, such computations involving three-electron
states are not possible with the code used here.

In Eq. (4.4), we have omitted the energy Ej of the ground state ||}, which usually enters
in the form H — E} [Eq. (2.35)], to permit direct comparison with the singlet bipolaron
band dispersion E™(k) in Sec. 4.2.2. We would like to mention that this issue did not
arise for the Holstein polaron in Sec. 3.2, since the ground state energy of the state |0) in
Eq. (3.1) is zero. The one-electron spectral function is related to the Green function (4.4)
by Eq. (2.36). In the present case, a spin index has to be added, so that we have

Ay (kye) = 1 lim Im G,(k,e+in). (4.5)

T n—0+
The phonon Hilbert space is truncated in the same way as in Sec. 3.2 [see Eq. (2.47],
with the number of phonon states used denoted as N,,. The latter will be chosen so as
to push the truncation error A(Npy) [Eq. (2.48)] of the energy EJ* of the two-electron
ground state |1}) below 107%. The use of Egi to monitor convergence with respect to Ny
comes from the observation that—for the same number of phonons—the truncation error

of the latter is always smaller than for the triplet state |{J). This may be ascribed to the
fact that for two electrons of the same spin, no bound state exists. In particular, there
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will be no large local lattice distortion surrounding an onsite bipolaron, the description of
which requires a significant number of phonons. In previous work on the Holstein-Hubbard
bipolaron, using ED with periodic boundary conditions [79, 84, 85,121, 156], the truncation
error was usually smaller than 10~%. However, these methods were restricted to only a few
k vectors. Furthermore, our calculations show that even a relative error of 10~* ensures
satisfactory convergence of the one-electron spectrum. The smaller number of phonon
states enables us to use larger clusters and thereby significantly diminish finite-size effects
since, within the CPT, even an increase N — N + 1 noticeably improves the results. Once
the cluster size has been fixed, we use the maximal possible number of phonons. The
accuracy A varies for the different calculations and will be reported in each figure.

In its present form, our method is restricted to the nonadiabatic regime w > 1, except
for weak electron-phonon coupling. To study smaller phonon frequencies—relevant, e.g.,
to transition metal oxides—a combination with variational diagonalization techniques, or
the use of shared-memory systems would be necessary. As in Chap. 3, we restrict our
calculations to the spectral function, which is the most fundamental quantity that can be
obtained within CPT [12].

4.2.2 Results

The one-electron spectral function of the problem considered here has been calculated be-
fore using ED [84,121,156] and DMRG [94], both in one dimension. However, results were
only given for k£ = 0, and for very small systems with N =2 and N = 6, respectively. This
makes it difficult or even impossible to study the dispersion of QP features. Recently, a
parallelized DMRG code has been developed [91], which allows studies of Holstein models
on very large one-dimensional clusters even at half filling [162]. However, the calculation
of spectral functions within DMRG is very time-consuming, since it has to be done sep-
arately for each point on the energy axis. Several authors have also calculated dressed
spectral functions |94, 121, 156|, with the fermion operators in Eq. (4.4) replaced by their
LF transformed (i.e., dressed) counterparts, as well as pair spectral functions [94]. The cor-
responding spectra show a simplified structure in certain regimes, indicating that polarons
and bipolarons are “good” QP’s for these parameters.

De Mello and Ranninger [121]| have pointed out that to study the cross over between
polarons and bipolarons it is, in general, necessary to investigate both, photoemission
and inverse photoemission. This can easily be understood by considering electron emission
from the two-electron singlet ground state, i.e., the Green function (1J| CLT(G—H ) e 111)-
Depending on the parameters, |1]) may either consist of two weakly bound polarons or
a bipolaron. Consequently, photoemission spectra will only show a single QP band. In
contrast, the Green function (4.4) with 0 =1 corresponds to adding an 1 electron to the
one-electron ground state |]). For example, the additional particle can either go into the
ground state to form a bipolaron, or into an excited polaron state. In general, we therefore
expect two QP bands in the spectral function, whose weights and energies vary with @, U
and \.

As we will compare our findings with the variational diagonalization method (VDM)
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of Boné¢a et al. [34,158|, we would like to comment on the accuracy of the latter. The
problem is defined on an infinite system, so that the approach is free of boundary finite-
size effects. However, the method involves a variationally determined Hilbert subspace with
two variational parameters, namely the maximal allowed distance between electrons and
phonons, and between the two electrons, respectively. For the bipolaron problem under
consideration, the limiting variational parameter in the regime w > 1 is the maximum
distance Ny, between the two electrons. The results presented here have been obtained
using N, < 18. Consequently, while the method gives very accurate results—with errors
smaller than the linewidth in the figures—for the case of a small bipolaron (U < 2Ep),
it is less reliable (relative errors < 1%) for strong onsite repulsion U > 2Fp favoring
two weakly bound polarons, similar to ED and CPT. Due to additional towers of phonon
excitations that are located in the neighborhood of the electron sites, the method achieves
good convergence in the small bipolaron regime even for strong coupling. Nevertheless, the
adiabatic regime w < 1 represents a difficult problem, as is the case for other approaches.
Finally, as in CPT, results can be obtained at any wavevector.

We shall see below that there is a close correspondence of the QP bands in the spec-
tra to the polaron and bipolaron dispersion relations denoted here as ET(k) and E™(k),
respectively.? Results for E™(k) have been reported by Wellein et al. [85] and Weike et
al. [95,161]. However, in contrast to A, (k,€), ET(k) and E™(k) do not reveal the spectral
weight of the corresponding QP’s. Nevertheless, the comparison with the spectra will yield
valuable insight and serve as a test of the CPT results. Moreover, a direct calculation of
energy bands does not suffer from the restricted energy resolution of CPT due to the use
of a smearing parameter (Sec. 2.2).

Owing to the limitations regarding the number of phonon states, we shall only show
results for w > 1. To be more specific, we consider two values of the adiabatic ratio,
namely w = 4 and w = 1. For w = 4, the spectra will turn out to be relatively simple, and
we are able to study even strong electron-phonon coupling. Consequently, we start with a
discussion of the nonadiabatic regime, and then move on to the more difficult case w = 1.

Nonadiabatic regime

In this section, we restrict the discussion to U = 0, while the influence of Coulomb repulsion
will be studied below. Figure 4.1 shows the evolution of the one-particle spectrum with
increasing electron-phonon coupling. Here and in subsequent figures, solid lines represent
results for A+ and dashed lines correspond to A, [see Eq. (4.4)].

For U = 0, two electrons of opposite spin always form a bipolaron state for any A > 0.
At weak coupling A = 0.5 [Fig. 4.1(a)|, A4 exhibits two well-visible bands, as well as an
incoherent part centered at € ~ (0. To understand the nature of the coherent excitations,
we have also included in Fig. 4.1 the bipolaron band dispersion E™ (k) (solid vertical line),
calculated by the VDM [163]|. The latter fits well the low-energy band, with the minor

deviations at intermediate k—i.e., the splitting of the low-energy peak into several small

2As noted in Chap. 3, the spin is irrelevant for the case of a single electron, i.e., we have ET(k) = E*(k).
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Figure 4.1: One-particle spectral functions A+ (k, €) (solid lines) and A, (k, €) (dashed lines)
calculated with CPT for different values of the electron-phonon coupling A,
using n = 0.05¢ [see Eq. (2.36)]. All other parameters as indicated in the
figures. The truncation errors are A < (a) 5.3 x 107%, (b) 1.0 x 107%, (c)
2.4 x 1077, (d) 6.7 x 1075 (see text). The vertical lines correspond to VDM
results for the polaron and bipolaron band dispersions E'(0) + ET(k) (dashed)
and E™(k) (solid), respectively [163].

satellites—being finite-size effects, as has been verified by calculations on smaller and larger
clusters for a smaller number of phonon states (not shown). A more detailed discussion
of finite-size effects will be given below for w = 1. Even at weak coupling A = 0.5, the
bipolaron band already has a relatively small width of W'/W =~ 0.37 compared to the
free-electron value W. Moreover, the spectral weight of the lowest peak, obtained by
integration over the CPT spectrum, decreases significantly from about 0.68 at £ = 0 to
about 0.08 at £ = m. At the same time, the weight contained in the incoherent part of the
spectrum increases with increasing k. This behavior is very similar to the single-electron
case (Sec. 3.2.4).

We now turn our attention to the second band appearing in Fig. 4.1(a). From the
general discussion in Sec. 4.1, we expect that it corresponds to an excited state with
two polarons. We therefore compare it to the energy of two independent polarons in an
infinite system. Since A;+ [Eq. (4.4)] describes the process of adding an electron with

90



Chapter 4. Holstein-Hubbard bipolaron

elt

Figure 4.2: Density plot of the one-particle spectral function A4(k,€) for w = 4.0, U = 0,
and A = 0.5, as shown in Fig. 4.1(a). The symbols correspond to VDM results
for ET(0) + E'(k) (squares) and E™(k) (crosses), respectively [163].

momentum & to the one-polaron ground state with energy ET(0), we show in Fig. 4.1(a)
the band dispersion ET(0)+ E'(k) (dashed vertical line). The comparison with the spectral
function yields a very good agreement at intermediate and large k, while there are some
discrepancies at small momenta. A density plot of A; (Fig. 4.2) reveals more clearly that
the two coherent bands hybridize and repel each other near the point where they would be
degenerate, giving rise to an upper band with inversed dispersion at small £. The situation
is similar to the hybridization of the coherent and incoherent parts in the one-electron case,
which occurs for |ET(k) — ET(0)| ~ @ (see Sec. 3.2.4). Of course, such effects are absent in
the band dispersion of a system with two independent polarons.

The spectral function A, also shown in Fig. 4.1(a), contains a coherent band at low
energies, and an incoherent part which is very similar to that of A;. Well away from k£ = 0,
the band in A follows closely the polaron band in A4. Thus the excited two-polaron state
of the system with two electrons of opposite spin is very similar to the ground state of
the system with two electrons of the same spin. Near & = 0, the spectral weight of the
low-energy peak in A, is small (= 0.08) compared to the polaron peak in A4 (& 0.2). This
is a result of the abovementioned fact that two polarons with the same spin cannot occupy
the same k£ = 0 state, so that the corresponding excitation in the one-particle spectrum
has little weight. The picture changes at larger momenta, where both bands have similar
weight, although the sharp peaks in A are higher than the broadened features in A'.

With increasing electron-phonon coupling, the low-energy bipolaron band becomes even
narrower until it is virtually flat at A = 1.5 |Fig. 4.1(c)]. Here, the two conditions for a
small bipolaron (Sec. 4.1) are identical to A > 0.5. Consequently, finite-size effects are very
small in Figs. 4.1(b) —(d), as confirmed by the excellent agreement of the bipolaron band
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with the results for E™ (k). The reduction in bandwidth with increasing \ is accompanied
by a loss of spectral weight. For £ = 0, the latter decreases from the value 0.68 at A = 0.5
given above to about 0.10 at A = 2.0. Both the narrowing and the loss of weight indicate
a significant increase of the effective bipolaron mass.

While the polaron band lies relatively close to the bipolaron band at A = 0.5 |Fig. 4.1(a)|,
the increase of the coupling leads to a clear separation, and to a downward shift propor-
tional to the polaron binding energy Fp. In the nonadiabatic strong-coupling regime of
Fig. 4.1(d), the energy gap between the two bands is well described by atomic-limit value
2Fp = 8t. Similar to A = 0.5, the two-polaron band dispersion E'(0) + ET(k) agrees well
with the polaron band in the spectra, with some differences being visible near £ = 0. In-
terestingly, in Fig. 4.1(c), there is a mixing of the bipolaron state with one phonon excited,
which lies an energy w = 4t above the lowest band, and the two-polaron excitation. As
expected from the one-electron calculations (Sec. 3.2.4), the polaron band also narrows
with increasing electron-phonon coupling. However, the effect is much smaller than for the
bipolaron band. Additionally, the spectral weight of the £ = 0 polaron peak in A} increases
from about 0.20 at A = 0.5 to about 0.32 at A = 2.0. This may be explained by the fact
that for weak coupling |Fig. 4.1(a)|, some of the weight of the polaron state is contained in
the large low-energy feature. Calculations for a single electron and the same parameters
show that the spectral weight of the polaron at £ = 0 decreases from about 0.86 (A = 0.5)
to about 0.52 (A = 2.0). Since the spectral weight of the Holstein polaron is, to a very good
approximation, equal to the inverse of the ratio meg/m [101], these results indicate that
the polaron mass does not increase at the same rate as the bipolaron mass with increasing
coupling, as reflected by the corresponding changes in bandwidth in Fig. 4.1. Finally, we
also find a comparable reduction of spectral weight for the two-polaron band in A from
about 0.08 to about 0.04 at £ = 0.

To conclude the discussion of the case @ = 4, we would like to underline the enormous
advantage of CPT in the strong-coupling regime. It allows us to perform calculations on
a very small cluster (N = 4)—sufficient to obtain well-converged results—but still yields
the spectral function at any desired k.

Intermediate phonon frequency

In the preceding section, we have investigated in detail the signatures of polaron and
bipolaron states in the one-particle spectrum for w = 4. Owing to the large energy of
phonon excitations, most of the spectral weight resides in the corresponding bands, allowing
a fairly easy identification. We now consider the case w = 1, which turns out to be more
difficult to study numerically and to interpret. Nevertheless, work in the regime w < 1 is
highly desirable to understand many interesting strongly correlated systems such as, e.g.,
the manganites. Although the latter are usually characterized by w < ¢, quantum effects
are already visible for w = t. As a consequence, previous authors [84,94,136,158-160]
have often focused on this case, which is numerically much easier to tackle than the region
w < 1. Calculations for @ < 1 have been presented, e.g., by Wellein et al. [85] and Weike
et al. [95,161]. While the discussion of @ = 4 was restricted to U = 0, here we shall also
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Figure 4.3: One-particle spectral functions A+(k, €) (solid lines) and A, (k, €) (dashed lines)
calculated with CPT for different values of the electron-phonon coupling A, us-
ing n = 0.05¢. All other parameters as indicated in the figures. The truncation
errors are A < (a) 9.1 x 1075, (b) 9.0x 1075, (¢) 1.2x 1077, (d) 2.4 x 107%. The
vertical lines correspond to variational diagonalization results for the polaron
and bipolaron band dispersions E'(0) + ET(k) (dashed) and E™(k) (solid),
respectively [163].

take into account a finite Coulomb repulsion.

U =0 Since converged results for @ = 1 require more phonon states than for @ = 4, we
have slightly reduced the cluster sizes in our calculations. Consequently, finite-size effects
are larger, as discussed below. Moreover, we are not able to reach the strong-coupling
regime but instead restrict the range of A\ to 0.5-1.25.

Figure 4.3 contains the one-particle spectra for U = 0. In principle, for A\ = 0.5,
the results look quite similar to Fig. 4.3(a). However, the spectral weight of the two
coherent bands is much smaller, as a consequence of the increased importance of incoherent
excitations for w = 1. In particular, the spectral weight of the latter is strongly enhanced
at large k, so that the bands are no longer easy to identify. Therefore, and because
of the strong mixing of the bands with coherent and incoherent excitations, it becomes
difficult to accurately determine the spectral weight by integration over the CPT spectra.
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Furthermore, we see from Fig. 4.3 that the bipolaron bandwidth is much smaller for w =1
(W'/W = 0.1) than for @ = 4, despite the fact that the value of X\ is the same in both
cases. Hence, the effect of electron-phonon interaction on the bipolaron mass is much
more pronounced in or near the adiabatic regime due to the larger mass of the oscillators.
In principle, the spectrum also contains coherent excited states which are separated from
the lowest-energy band by less than the phonon energy w. However, owing to the rather
complex structure of the spectrum in the two-electron case, they are difficult to identify.
A direct calculation of excited states in the Holstein model with one electron has recently
been presented by Barisi¢ [104]. Finally, the relation between A; and A; is very similar to
w=4.

As we increase the electron-phonon coupling, the bipolaron dispersion collapses to an
extremely narrow band [Fig. 4.3(b)]. This cross over is again associated with a significant
loss of spectral weight. At k£ = 0, for example, we find a reduction from about 0.50 at
A = 0.5 to about 0.14 at A = 0.75. Increasing A further to 1.25, we finally arrive at a
bipolaron band with W’/W =~ 10~* and a spectral weight of less than 0.03 at k = 0.
Similar to Fig. 4.1(d), the spectrum displays several bands equally spaced by w which
belong to excited states with one or more phonons. Moreover, the polaron and bipolaron
bands are well separated, and the incoherent contributions dominate at large k.

The agreement between the bipolaron band dispersion and E™(k) in Fig. 4.3 is again
very good. Similar to @w = 4, the condition for a small bipolaron is given by A > 0.5, so that
CPT yields very accurate results. In contrast, the two-polaron energy ET(0) + ET(k) fits
less well to the corresponding bands in the spectral function. We attribute this difference
to the nonadiabatic regime [Fig. 4.1] to the stronger retardation effects for = 1. As
a consequence, the polaron state is more extended below the small-polaron cross over
occurring at A = 1 (Sec. 3.1), leading to a stronger overlap of the two particles. In
contrast, for w = 4, the lattice distortions around the electrons are very localized, and
the two polarons therefore do not experience a significant interaction. Above A = 1, i.e.,
in the small-polaron regime, the two-polaron dispersion for @ = 1 again follows closely a
two-polaron-like band in the spectrum [Figs. 4.3(c) and (d)].

U =4 So far, we have only presented results for U = 0, for which a bipolaron state is
always favored. However, in materials such as the cuprates or the manganites, strong local
correlations hinder the carriers from forming onsite bipolarons even for strong electron-
phonon coupling. To model such effects, we therefore consider here a finite value of the
electron-electron repulsion U = 4.

In the case of two electrons with opposite spin, the Lanczos results for the cluster Green
function converge faster as a function of Ny, for U > 0 compared to U = 0 as a result of
the reduced effective electron-electron interaction. This is fortunate, since it allows us to
use slightly larger clusters, thereby partly compensating for the increased finite-size effects
due to the spatially more extended ground-state wavefunction in the weak-coupling regime.

From the general discussion in Sec. 4.1, we expect the ground state to consist of two
weakly bound polarons for 2Fp < U, and a cross over to a bipolaron state at a critical
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Figure 4.4: One-particle spectral functions A+(k, €) (solid lines) and A (k, €) (dashed lines)
calculated with CPT for different values of the electron-phonon coupling A, us-
ing n = 0.05¢. All other parameters as indicated in the figures. The truncation
errors are A < (a) 3.3x107%, (b) 2.0x107°, (¢) 9.9x 107°, (d) 6.7x 107". The
vertical lines correspond to variational diagonalization results for the polaron
and bipolaron band dispersions E'(0) + ET(k) (dashed) and E™(k) (solid),
respectively [163].

value of the electron-phonon interaction A. In the nonadiabatic limit, the latter is given
by 2Ep = U (i.e., A = 1 for the case considered here) for weak coupling, and by 4Ep = U
for strong coupling.

In Fig. 4.4, we present the results for the spectral function, again for A = 0.5-1.25. For
weak coupling A = 0.5 [Fig. 4.4(a)], the most striking difference to the U = 0 case discussed
above is the fact that there is only one band at low energies. Together with the incoherent
contributions, and taking into account the doubling of the number of carriers leading to a
shift of energies, the spectrum bears a close resemblance to that of a single polaron with
the same parameters (Fig. 3.3). This is also underlined by the polaron and bipolaron band
dispersions shown in Fig. 4.4(a), which are almost identical throughout the Brillouin zone,
and lie just below the corresponding band in the spectral function. In particular, the band
displays the typical flattening at large k£, which indicates the phononic character of the low-
energy excitation. Furthermore, owing to the finite onsite repulsion, the low-energy band
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Figure 4.5: Comparison of the one-particle spectral function A+(0, €) calculated with ED
and CPT, respectively, for different clusters sizes N, using n = 0.05¢. The
crosses correspond to the VDM result for the bipolaron energy E™(0) [163].

in A is very similar to that in A4 since, for finite U and weak electron-phonon coupling,
the singlet ground state consists of two weakly bound polarons. Consequently, the singlet
and triplet state have comparable energies, although the spectral weight in A is again
very small near k£ = 0.

For A\ = 0.75 [Fig. 4.4(b)], the ground state of the system is still given by two polarons,
and the spectrum is almost indistinguishable from A = 0.5. In the present case, the
condition for the existence of an intersite bipolaron is expected to lie between the weak-
and strong coupling results U < 2Ep and U < 4Fp [158|. However, owing to the small
binding energy, the intersite state is difficult to distinguish from the two-polaron state in
the spectral function. At A = 1.0 |Fig. 4.4(c)|, the band in the spectral function begins
to split. Although the energy difference between the polaron and bipolaron dispersions is
still relatively small near ¥ = 0, an excitation gap clearly emerges at larger k. Finally, at
A = 1.25, two distinct bands with similar spectral weight have formed which agree very
well with E™(k) and ET(0) + ET(k), respectively. Interestingly, the band in the triplet
spectral function A| lies noticeably higher than the polaron band in A;. Thus, for the
parameters considered here, two polarons of opposite spin can lower their total energy by
occupying the same lattice site, which is just the mechanism behind bipolaron formation.

The abovementioned discrepancies between the bipolaron band dispersion E™ (k) ob-
tained by Shawish [163] and the band in A; are a result of finite-size effects in the CPT
calculations. The latter reduce with increasing coupling A together with the size of the
bipolaron, and for A = 1.25 we find a very good agreement [Fig. 4.4(d)]. To illustrate this
point, we compare in Fig. 4.5 the spectral function Ay at £k = 0, A = 0.5, and for different
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cluster sizes N, calculated using ED with periodic boundary conditions (left column) and
CPT (right column), respectively. The results reveal that for weak coupling and interme-
diate U, ED is superior to CPT concerning the convergence of the peak positions with
respect to system size. This is not surprising as CPT is based on a strong-coupling expan-
sion in the hopping term (see Sec. 2.2). Here, the electron-electron and electron-phonon
interaction are both of about the same magnitude as the hopping, so that the method does
not work as well as for U = 0. For U > 0, finite-size effects in both, CPT and ED, are
larger due to the extended bipolaron state which exists for weak coupling. Similar to the
one-electron case discussed in Chap. 3, deviations from the exact results due to the finite
cluster size are usually smallest for £ = 0, while they become larger with increasing k.
Although here the positions of the peaks in the CPT spectral function are less accurate
than in the case of ED, the weights of the excited states resemble more closely the results
in the thermodynamic limit.

Finally, for U > 4, the cross over to a small bipolaron occurs at even larger values of
A. Apart from the change of the critical coupling, the physics is not altered significantly.
Therefore, we have restricted our discussion of the spectral function to U < 4, but some
results for the bipolaron band dispersion at U = 8 will be presented below.

Bipolaron band dispersion The bipolaron band dispersion E™(k) has been calculated
before by Wellein et al. |85] and Weife et al. [95,161] for small phonon frequencies w = 0.4
and w = 0.5, respectively. Remarkably, for parameters U > 0 and A > 0 such that the
effective interaction U,g = U —2Fp = 0, they found a renormalized, free-particle dispersion
relation [95,161]. In this section, we wish to extend these considerations to the case w = 1,
and to infinite systems. While the narrowing effect due to electron-phonon interaction has
been discussed above, here we focus on the form of the band.

Owing to the limited energy resolution and finite-size effects in the CPT results shown
above, we use the more accurate data from the VDM. In Fig. 4.6, we show Shawish’s
[163] results for the bipolaron energy as a function of k, for different values of U and .
To permit a direct comparison, we have scaled all curves to the interval [—1, 0], with the
actual bandwidths given in the legend.

We begin with the regime of a strongly bound small bipolaron. To this end we consider
the case U = 0 and A = 1.25. The corresponding band resembles quite closely a cosine
dispersion, with some deviations being visible around k¥ = 7 /2. A different behavior is
found for finite U = 4, as well as weak coupling A = 0.5. For these parameters, which
favor a ground state with two polarons [see Fig. 4.4(c)|, the form of the band is remarkably
different from a simple tight-binding dispersion for nearest-neighbor hopping. This is still
true for A = 1, although a trend towards a cosine dispersion is visible. For even larger
U = 8, the noncosine-like form persists even for A = 1. It is worth mentioning the great
similarity of the results for U = 4 and U = 8 in the weak-coupling regime, which follows
from the fact that once the small (onsite) bipolaron state is energetically unfavorable for
the two electrons due to the Coulomb repulsion, a further increase of the latter has very
little effect.
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Figure 4.6: Bipolaron band dispersion E™(k) as a function of the wavevector k [163].
Also shown is the bare tight-binding dispersion relation for nearest-neighbor
hopping, and a fit to the results for U = 4, A\ = 0.5 using a dispersion for
nearest- and next-nearest neighbor hopping (see text). All curves have been
scaled to the interval [—1, 0], with the actual bandwidths given in the legend.

To identify the origin of the deviations from a free-electron band, we also included in
Fig. 4.6 a fit of a free-electron model with nearest and next-nearest neighbor hopping to
the band for U = 4 and A\ = 0.5, which yields an amplitude ¢’ & 0.6t for two-site hopping
processes. As proposed by Wellein et al. [85], the importance of long-range hopping for the
band dispersion of a single polaron may be due to a residual polaron-phonon interaction,
with the phonons and the polaron residing on different sites. Since we find substantial
deviations of the bipolaron band from a cosine dispersion only in the regime of two weakly
bound polarons, it stands to reason to assume the same underlying mechanism.

Finally, we would like to comment on the fact that despite Usg = 0for U =4 and A =1
in Fig. 4.6, we do not have a simple cosine band, in contrast to the findings of Wellein
et al. [85] and Weifte et al. [161], which have have been attributed to the formation of an
intersite bipolaron [161]. In contrast, here we observe noncosine-like behavior even in the
regime where an intersite state exists. These differences are expected to be a result of the
larger value of the phonon frequency (here @ = 1, while @ = 0.4 and 0.5 in [85] and [161],
respectively), which leads to a noticeable reduction of retardation effects. Moreover, since
the critical coupling A\, decreases as w — 0, the bipolaron is more strongly bound in
the work of [85,161|, thereby suppressing the abovementioned nonlocal phonon-polaron
interaction. Further work along these lines is highly desirable, to investigate the dependence
of the bipolaron band dispersion on the phonon frequency in the regime w < 1.

4.3 Transformed Hamiltonians

The basis of both the variational approach and the QMC method presented below is a uni-
tary transformation of the Hamiltonian (1.21). Compared to the one-electron calculations
in Chap. 3, the situation is slightly more complicated owing to (a) the presence of two elec-
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trons instead of one, and (b) the additional Hubbard term I... After the transformation
H = vHv!, with v given by Eq. (3.3), Hamiltonian (1.21) becomes

~ ; R A R U .
H = —t Z ch_yae > (i —1)h +P + Z TL]'CU,‘((U’%;]' - Ckéij) + Z Vij NNy — 5 Z n;, (46)
i

(ij)o ij \ij

_, - /

with
w 1
=3 Z%ﬂli — Qv+ §5ijU (4.7)
I

and P as defined in Eq. (3.2). The extended transformation v takes into account nonlocal
lattice displacements, which are essential for an accurate description in the regime @w < 1.
For the QMC method, we resort to the standard LF transformation (3.11), which yields

= —¢ Z cly ;€ PP 4 (U — 2Bp) > " gty —2Fp . (4.8)

- ~ v~ -~
I

-~

Ko

Hence, in contrast to the polaron problem [Eq. (3.32)], the electron-electron interaction
term, which results from the canonical transformation, does not vanish but instead com-
bines with the Hubbard term.

4.4 Quantum Monte Carlo
The derivation of the QMC algorithm for the bipolaron problem is very similar to the

one-electron case considered in Chap. 3, and we shall therefore focus on the differences
occurring. Moreover, we restrict the discussion to one dimension.

4.4.1 Partition function

We set out to calculate the partition function Z = e #0, with H, given by Eq. (4.8).
To this end, we first notice that the last term in Hamiltonian (4.8) is a constant and can
therefore be neglected during the QMC simulation. Using the standard Suzuki-Trotter
decomposition (Sec. 2.1.4) we obtain

) 3 L
e—BHo (6—ATK0e—ATPpe—ATPxe—ATI) =u’, (4.9)

with A7 given by Eq. (2.15). Following the same steps as in Sec. 3.5.2, we find

Zp, = Trf/ dpidp; - - -dpyg, (Pﬂu \p2) s <PL|U ‘p1> ) (4-10)
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with dp, = [[,dps-, and lim;,,, Z, = Z [10]. Since the phonon contribution to U is
the same as for one electron, we can again integrate out the coordinates z. Upon defining
Dp = dp.dp, - - - dp,, the partition function becomes

ZL = C/ 'Dp Wy Wr, (411)
where C = [27/(wAT)]¥L and
L ~ ~
wp=e A% w=TriQ, Q= H e AR o= ATL (4.12)
T=1

Here the bosonic action S, and the hopping operator K, are identical to Sec. 3.5.2. To
evaluate the fermionic trace we choose the two-electron basis states

{h=lipy=ci0), ij=1,..,N}, (4.13)

where we have introduced a combined index [ running from 1 to N? in one dimension.
We begin with the contribution of the kinetic term Ky [Eq. (4.8)]. Tt follows that the
tight-binding hopping matrix, denoted as x, has dimension N? x N2. The exponential of
the transformed hopping term can be written as

e A7Kor = D gD} (4.14)

where _
(D)) = Oy eV Pir Pi) (4.15)

is diagonal in the basis (4.13).
The second cgntribution to the matrix 2 comes from the effective electron-electron
interaction term I [Eq. (4.8)] in terms of the diagonal matrix

Vo) = 6 e27U-2Bp)i (4.16)

The random variables p merely enter the diagonal matrix D, while the N? x N? matrices
V; and k are fixed throughout the entire MC simulation. Thus, in total, we have

Q=[] D.xD}V;, (4.17)

and the fermionic trace can be calculated as
TreQ =) (i, Q1i,4) (4.18)
(4]
which is identical to the sum over the diagonal elements of the matrix €2 in the basis (4.13).
Similar to the one-electron case, we use the principal component representation and

the reweighting procedure. A detailed discussion of these ideas and their applicability has
been given in Chap. 3.
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4.4.2 Observables

The first observable of interest is the kinetic energy of the electrons defined as
Ey=—tY (e,&,) =—2t) (chc;e@ 7)) (4.19)
(ij)o (i5)

where we have exploited spin symmetry. Following the same steps as in the derivation of
the partition function we get

(5}}@0 — ZEI/ Dp wy e Pi1 =P Ty ((Q) CITC]'T)' (4.20)

Writing out explicitly the fermionic trace we obtain

Tre(Qchey) = Y (151 Qche; i)

i’j’

= > G105, (4.21)

3!

j
and the kinetic energy finally becomes

B, = —2tZ;" / Dpwy Y Y e®er=pin) (5 3 Qi 5) . (4.22)
(i)

5!

J
In addition to F), we shall also consider the correlation function
p(8) = (Pirhirsy), §=0,1,...,N/2—1 (4.23)

depending on the distance §. A simple calculation leads to
p(0) =ZL1/Dpwa(i,i+(5|Q|i,i+5). (4.24)

Finally, we would like to point out that other observables, such as the total energy and
the momentum distribution (c;rwcko_), may also be measured within the current approach,
while correlation functions such as (72;Z;) or the quasiparticle weight cannot be determined
accurately (Sec. 3.5).

4.4.3 Numerical details and performance

The most significant difference between the present calculations and the one-electron case
in Chap. 3 is the dimension of the matrices involved. While for one electron all matrices
have size N x N—N being the extension of the 1D lattice under consideration—here the
dimension is N2 x N2. Clearly, this restricts calculations with respect to the number of
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lattice sites, especially in higher dimensions D > 1 where N? — N?P. The total numerical
effort for the current approach is proportional to NSPL. In contrast, the one-electron
algorithm displays the same dependence o< N3PL as the determinant QMC method of
Blankenbecler et al. [124] for the many-electron case, which can be reduced to N*°L
by employing the checkerboard breakup of the hopping matrix (Sec. 5.3). The increase
in required computer time for the bipolaron results from the fixed number of electrons.
Additionally, in contrast to Chap. 3, we find that numerical stabilization is required in
evaluating the L-fold matrix product in Eq. (4.17). In fact, the necessary singular value
decomposition [164] becomes the dominant contribution to computer time for large N
and low temperatures. Despite these shortcomings, we shall see below that the present
algorithm allows one to study lattices of reasonable sizes N < 14, for a wide range of the
parameters w, A and U. In particular, we can obtain accurate results in the adiabatic
regime w < 1.

Let us briefly compare our method to other QMC approaches to the Holstein-Hubbard
bipolaron. The method of de Raedt and Lagendijk [136] is based on an analytic integration
over the phonon degrees of freedom, leading to a model with retarded electron-electron
interaction. Similar to our approach, it employs a Suzuki-Trotter approximation and gives
results at finite temperatures. For simplicity, de Raedt and Lagendijk only considered the
adiabatic limit 0 = 0, in which there are no retardation effects. The numerical effort grows
as L2, but is virtually independent of the system size, so that simulations can be carried
out even for large clusters in three dimensions. However, it is not clear how a small but
finite adiabatic ratio w < 1 will affect the computer time.

Macridin et al. [159] used the diagrammatic QMC method to study two electrons on a
25 x 25 lattice. Although their approach does not rely on the Suzuki-Trotter decomposition
(Sec. 2.1.4), it is limited to zero temperature, and statistical errors increase noticeably for
w < 1. Moreover, the accuracy also decreases for large values of A and/or U, whereas we
shall see in Sec. 4.4.4 that we can easily study the strong electron-phonon coupling regime
also for U > 0.

The numerical effort for the present method can be reduced by exploiting the transla-
tional invariance of the model. To this end, the basis states (4.13) would have to be replaced
by states {|k, A)} with total quasimomentum k, and with the two electrons separated by
a distance A. A similar idea has been used by Kornilovitch [112,113] for a single electron.
In one dimension, the use of the basis {|k, A)} would reduce the size of the matrices in
the algorithm from N2 x N2 to N x N. However, in the course of the simulation, we had
to evaluate the matrix product over 7 |[Eq. (4.17)| for each allowed value of k. In total,
we could therefore reduce the numerical effort by a factor N. Additionally, owing to the
smaller size of the matrices, numerical stabilization may not be necessary to the same ex-
tent as here. The major drawback of using the reduced basis in momentum space is that it
significantly complicates the program code. Consequently, in this work, we have restricted
ourselves to the straight-forward extension of the one-electron algorithm presented above.

Finally, the minus-sign problem, which has been discussed in detail in Chap. 3, also
occurs for the two-electron case considered here. However, as for one electron, it quickly
diminishes with increasing system size, and does therefore not conceivably affect simula-
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Figure 4.7: Normalized kinetic energy Ey [Eq. (4.25)] from QMC as a function of electron-
phonon coupling A for different cluster sizes N. Here and in subsequent figures
QMC results have been extrapolated to A7 = 0 (see text), errorbars are smaller
than the symbol size, and lines are guides to the eye.

tions.

4 4.4 Results

As in Chap. 3, we extrapolate the QMC results to A7 = 0, to remove the error ~ (Ar)?
due to the Suzuki-Trotter approximation. In contrast, this error is expected to be relatively
large (on the order of a few percent) in the calculations of de Raedt and Lagendijk, due
to the use of a rather small number of Trotter slices (L = 32 at 8 = 5, so that A7 ~ 0.16
[136]). Here we have performed simulations for three different values of Ar, typically 0.1,
0.075 and 0.05. The errorbars in the figures below are usually as small as the linewidth,
and will not be shown if smaller than the symbols used.
We define the effective kinetic energy of the two electrons as

E.=E./(—41). (4.25)

Owing to the increased numerical effort compared to the one-electron case, we will mainly
show results for N = 12. Calculations for N = 4-14, w = 0.4 and St = 5, presented in
Fig. 4.7, show that the kinetic energy is converged within the symbol size, corresponding
to changes of less than 0.5%. As expected, finite-size effects are largest near the cross
over between a large and a small bipolaron, and very small in the strong-coupling regime.
Similar behavior has been found for the correlation function p(J).

In Fig. 4.8 we show E) as a function of the electron-phonon coupling for different values
of w and U, at 8t = 5. An inverse temperature of 5t = 5 has been shown [136] to be low
enough to study bipolaron formation, in agreement with Fig. 4.9. Although the cross over
still becomes more abrupt as we lower the temperature further, it is already well visible at
Bt = 5.

Figure 4.8 reveals a strong decrease of Ey near A = 0.5 for small phonon frequencies
and U = 0. With increasing w, the cross over becomes less pronounced, and shifts to
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Figure 4.8: Normalized kinetic energy Ey as a function of the electron-phonon coupling A
for different values of the adiabatic ratio @ and the Hubbard repulsion U.

Figure 4.9: Normalized kinetic energy E) from QMC as a function of electron-phonon
coupling A for different inverse temperatures f3.

larger values of A. A comparison with Fig. 3.16 reveals that for the same value of w, the
cross over to a small bipolaron is sharper than the small-polaron cross over in the Holstein
model with one electron. The small but finite kinetic energy even for strong electron-
phonon interaction is a result of undirected, internal motion of the two electrons inside
the phonon cloud. For a finite onsite repulsion U = 4 between the electrons, Fy remains
fairly large up to A &~ 1 (for @ < 2.0), in agreement with the strong-coupling result A\, =1
for U = 4 (see Sec. 4.1). At even stronger coupling, the Hubbard repulsion is overcome,
and a small bipolaron is formed. Again, we see that the critical coupling increases with
increasing phonon frequency. We would like to mention that the kinetic energy has also
been calculated by ED on clusters of up to twelve sites [85,95,157], but results for w > 1
were restricted in the accessible range of A. In the regime where ED is applicable, a very
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Figure 4.10: Correlation function p(d) [Eq. (4.23)] as a function of electron-phonon cou-
pling A for different values of 6. [(a) U = 0, (b) U = 4]. Inset: Correlation
function p(d) as a function of the distance ¢ of the electrons for different values
of .

good agreement has been found with our QMC data.

The nature of the bipolaron state can be revealed by the correlation function p(d)
defined by Eq. (4.23), which gives the probability for the two electrons to be separated
by a distance §, and therefore represents a direct measure for the size of the bipolaron.
Clearly, we have the sum rule ) ;p(d) = 1. As pointed out, e.g., by Marsiglio [79], the
phonon frequency determines the degree of retardation of the electron-phonon interaction,
and thereby sets the maximal allowed distance between the two electrons compatible with
a bound state. In the sequel, we shall focus on the most interesting regime of small phonon
frequencies, which has often been avoided in previous work for reasons outlined in Sec. 4.1.

Figure 4.10(a) shows p(6) as a function of \ for U = 0. Starting from the noninteracting
state (A = 0) with p = 1/N, we see a pronounced increase of p(0) near A = 0.5. For
large A 2 2, we have p(0) &~ 1 and p(6) =~ 0 for 6 > 0, which is characteristic for the
aforementioned onsite bipolaron. The decrease of the spatial extent of the bipolaron with
increasing electron-phonon interaction is better illustrated in the inset of Fig. 4.10(a), where
we depict p as a function of §. For finite onsite repulsion U = 4, an extended bipolaron
state is stabilized for small A\ [Fig. 4.10(b)], while a small bipolaron is found for A = 2.
Additionally, we see that for A = 1, the electrons are most likely to occupy neighboring
lattice sites [intersite bipolaron, see also inset in Fig. 4.10(b)].

As pointed out earlier, a cross over from a small bipolaron to an intersite bipolaron to
two weakly bound polarons takes place as a function of the Hubbard interaction. Since
the latter competes with the retarded electron-phonon interaction, the phonon frequency
is expected to be an important parameter. In Fig. 4.11, we show the kinetic energy and the
correlation function p(§) as a function of U. We have fixed the electron-phonon coupling
to A = 1. Starting from a small bipolaron for U = 0 [see Fig. 4.10(a)], the kinetic
energy increases with increasing Hubbard repulsion, which is equivalent to a reduction of
the effective mass [34,158]. Although the cross over is slightly washed out by the finite
temperature in our simulations, there is a well-conceivable increase in E} between U = 3
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Figure 4.11: (a) Normalized kinetic energy Ey and (b) correlation functions p(0), p(1) as a
function of the Hubbard repulsion U for different values of the adiabatic ratio

W.

and U = 4. It originates from the breakup of the small bipolaron, as indicated by the
decrease of p(0) in Fig. 4.11(b). Close to U = 4, the curves for p(0) and p(1) cross, and it
becomes more favorable for the two electrons to reside on neighboring sites. The intersite
bipolaron only exists below a critical Hubbard repulsion U.. As discussed in Sec. 4.1, the
latter is given by U. = 2Ep (i.e., here U. = 4) at weak electron-phonon coupling, and by
U. = 4Ep at strong coupling. For an intermediate value A = 1 as in Fig. 4.11, the cross
over from the intersite state to two weakly bound polarons is expected to occur somewhere
in between, but is difficult to identify from the QMC results.

Figure 4.11 further illustrates that the cross over becomes steeper with decreasing
phonon frequency. In the adiabatic limit w = 0, it has been shown to be a first-order phase
transition [153], while for @ > 0 retardation effects suppress any nonanalytic behavior.
At the same U, Ey increases with @ since for a fixed A, the bipolaron becomes more
weakly bound. For the same reason, the cross over to an intersite bipolaron—showing up
in Fig. 4.11 as a crossing of p(0) and p(1)—shifts to smaller values of U.

Let us now consider the effect of temperature. While the kinetic energy shows a similar
temperature dependence as in the one-electron case—with the cross over being smeared
out at high temperatures (see Fig. 4.9)—it is much more interesting to look at p(4). In
Figs. 4.12(a)—(c) we plot p(d) at different temperatures, for parameters corresponding to
the three regimes of a large, intersite and small bipolaron, respectively.

We begin with the large bipolaron in Fig. 4.12(a). For the parameters chosen (U = 0,
A = 0.25) the two electrons are most likely to occupy the same site, but the bipolaron
extends over a distance of several lattice constants. Clearly, in this regime, the cluster
size N = 12 used here is not completely satisfactory, but still provides a fairly accurate
description as can be deduced from calculations for N = 14 (not shown). Nevertheless, on
such a small cluster, no clear distinction between an extended bipolaron and two weakly
bound polarons can be made. As the temperature increases from 5t = 10 to St = 1, the
probability distribution broadens noticeably, so that it becomes more likely for the two
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Figure 4.12: Correlation function p(d) as a function of § for different inverse temperatures
B, N =12 and w = 0.4.

electrons to be further apart. In particular, for the highest temperature shown, p(0) has
reduced by about 30 % compared to St = 10.

A different behavior is found for the small bipolaron, which exist at stronger electron-
phonon coupling A = 1.0. Figure 4.12(b) reveals that p(d) peaks strongly at § = 0, while
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it is very small for 6 > 0 at low temperatures. Increasing the temperature, we observe
that p(d) remains virtually unchanged up to 8t = 3. Only at very high temperatures there
occurs a noticeable transfer of probability from § = 0 to 0 > 0. At the highest temperature,
Bt = 0.5, the two electrons have a nonnegligible probability for traveling a finite distance
0 > 0 apart, although most of the probability is still contained in the peak located at § = 0.

Finally, we consider in Fig. 4.12(c) the intersite bipolaron, which has been found above
for U = 4 and A = 1.0 (Fig. 4.10). At low temperatures, p(d) takes on a maximum for
0 = 1. For smaller values of 3t, the latter diminishes, until at St = 1, the distribution is
completely flat, so that all § are equally likely.

The different sensitivity of the bipolaron states to changes in temperature can be ex-
plained by their different binding energies. The large and the intersite bipolaron are rel-
atively weakly bound as a result of the rather small effective interaction Ugg ~ U — 2Ep
(see Sec. 4.1). In contrast, the small bipolaron in Fig. 4.12(b) is strongly bound, and
therefore only weakly affected by a moderate increase in temperature. It is important
to compare the temperatures used here to the physically relevant temperatures, e.g., in
the manganites. The Curie temperatures of compounds such as, e.g., La;_,Sr,MnOj3 or
La; Ca,MnOj3 with z = 0.3 take on values of T¢ &~ 200-350 K depending on sample
preparation and dopant ion [3] (see also Fig. 1.3). In order to make a connection between
our one-dimensional calculations and the 3D manganites, we use the bandwidth W as a
unit of energy. For the pseudocubic compounds, the latter is about W = 2 eV [19]. Using
W = 4t shows that St = 2—10 corresponds to 7"~ 1—-107¢. In fact, the thermal dissocia-
tion of intersite bipolarons—with two holes residing on neighboring oxygen ions—has been
proposed by Alexandrov and Bratkovsky [15] to explain the slowly decreasing resistivity
in the paramagnetic state above 7¢.

4.5 Variational approach

In this section we extend the variational approach of Sec. 3.4 to the bipolaron problem.
Although the method can easily be applied also in higher dimensions, we wish to keep the
notation simple and therefore restrict the derivation to D = 1. The approximation consists
of the use of a zero-phonon basis after the extended unitary transformation, which leads
to fep = 0 [Eq. (4.6)]. Furthermore, neglecting the ground-state energy of the oscillators,
we also have P = 0, so that

H=K+ L., (4.26)

with the transformed hopping term

K= —tg Z cgo_cjo, = Zs(k) CLUCIM (4.27)
(

ij)o ko

and e(k) = =2 teg Y _,, cos(k). Here, the effective hopping amplitude is given by (Sec. 3.4)

]_ 1 2
tof = — E -z 2i(—s—m) 4.98
ff P - € 3 ( )
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where § = +1 in one dimension, 2z is the number of nearest neighbors, and rotational
invariance has been exploited. For two electrons of opposite spin, the interaction term I,
in Eq. (4.6) simplifies to

jee =20—-U+2 Z Uz'j’lﬁbﬁﬁji (429)

ij

if we use v; = vj;_y and NN, = 0 for i # j. The two-electron eigenstates of the
Hamiltonian (4.26) have the form

k) =D dych 1634 10) - (4.30)
p

Here we have suppressed the phonon component which is simply given by the ground state
of N free harmonic oscillators. The states (4.30) may be written as

k) = \/— Z el Z d Cucz—HT 10), (4.31)
where the Fourier transform
d=Fd (4.32)

with F, = € /y/N has been employed. The normalization of Eq. (4.30) reads

(| r) Z AR (4.33)

The expectation value of the transformed hopping term with respect to the states defined
by Eq. (4.30) becomes

(W K ) = > dadyy Y e(g)

St o4
x <$0| CotCh—pt Pt Ch—pry Cprp 10) + (0] €04 ot Gy ‘OD

~”

8y p1 00, 8, 1 Ogsk—p

= ) _|d,[*[e(p) + £(k — p)]

= —4dtgd'Tid. (4.34)

In the last step we introduced vector notation, defined T}, = F diag[cos(p)+cos(k—p)] /2 F!
and used Eq. (4.32). The expectation value of the interaction term is best computed in
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Figure 4.13: The ratio of the ground-state energy E to the phonon frequency w as a
function of electron-phonon coupling A, for different values of w. Symbols
corresponds to VPA results, and lines represent data obtained by the VDM
[163].

the real-space representation (4.31). We find

<1/}k‘l~ee ‘¢k> = 2’00 Z |dl‘2 vazzdldl’e —xyr)

] ]” lll

x (0l ¢; e "¢”nﬁj¢CT‘"¢CT‘"+z'T 0)

5”/(5”// d; ]+l‘51 v

dy?

2
= (2’(}0 - U) Z |dl‘2 + N Zvj+l’j
7,5l

l
= (20— U)d'd+2d'Vd, (4.35)

where the diagonal matrix V;; = d;;v; has been introduced. The minimization with respect
to d yields the eigenvalue problem

(—4teff Tk: + 2V) d= (E() - 2’[}0 + U) d. (436)

The vector of coefficients d and thereby the ground state are determined by minimizing the
ground-state energy E, through variation of the displacement fields 7;;. In contrast to the
local LF transformation, this procedure takes into account displacements of the oscillators
not only at the same but also at surrounding sites of the two electrons. This represents
a physically much better ansatz to describe the extended bipolaron state which exists for
weak electron-phonon coupling and/or strong Coulomb repulsion.

45.1 Results

While the above QMC approach is limited to finite temperatures and relatively small
clusters, the variational method presented here yields ground-state results on much larger
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Figure 4.14: Variational results for the normalized kinetic energy Ey as a function of the
electron-phonon coupling A, and for different adiabatic ratios w. Also shown
are results of the HLF approximation (see text).

systems. It becomes exact in several limits. First, for A = 0 (i.e., no electron-phonon
coupling), we obtain the exact solution 7,;; = 0 for all 7, j. Second, as w — oo, no phonons
can be excited so that the use of a zero-phonon basis is justified. Similarly, in the classical
limit w = 0, the phonons do not have any dynamics, and the variational determination
of the displacement fields allows one to obtain exact results for any A. In contrast, the
HLF approximation® generally overestimates the local displacement of the phonons at a
given site in the presence of an electron, even for w = co. Finally, the variational approach
becomes exact in the nonadiabatic strong-coupling limit A, w — oco. Since the two-electron
problem is diagonalized exactly without phonons, the above statements hold for any value
of the Hubbard repulsion U.

To scrutinize the quality of the variational approach, we compare in Fig. 4.13 the total
energy for U = 0—normalized by the phonon frequency —as a function of electron-phonon
coupling for different values of @, to the most accurate approach currently available in
one dimension, namely the VDM [158|. For U <« 2Ep, the latter yields the energy of the
infinite system with errors smaller than the linewidth (see also Sec. 4.2.2). We have chosen
N = 25 to ensure small finite-size effects. Figure 4.13 reveals a good agreement between
our simple variational approach and the data of Shawish [163| over the whole range of A.
Slight deviations are visible for w < 1, whereas for larger phonon frequencies the variational
energies are very accurate.

Despite the good agreement of the total energy with other results, one has to be careful
not to overestimate the validity of any variational method. To reveal the shortcomings of
the current approach, we show in Fig. 4.14 the normalized kinetic energy [Eq. (4.25)] as a
function of electron-phonon coupling, and for different &. As before, we have set N = 25
and U = 0. In principle, Fig. 4.14 displays a behavior similar to the QMC data in Fig. 4.8.
There is a strong reduction of E} near A ~ 0.7 for @ = 0.4, which becomes washed out and

3Similar to the one-electron problem, the HLF approximation can be obtained from the VPA by replacing
7;; With ¥8,;, where v is given by Eq. (3.10).

i3’
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Figure 4.15: Variational results for the normalized kinetic energy E) _and the correlation
functions p(0), p(1) as a function of the onsite repulsion U.

moves to larger A\ with increasing phonon frequency. Compared to the exact QMC results
in Fig. 4.8, the cross over to a small bipolaron is much too steep in the adiabatic regime,
regardless of the fact that the variational results are for 7' = 0. This is a common defect
of variational approaches. Moreover, for w = 0.4 2.0, the variational kinetic energy is too
small above the bipolaron cross over compared to the QMC data, while for @ = 4, the
decay of E) with increasing \ is too slow. The reason for the discrepancies is the absence
of retardation effects, which play a dominant role in the formation of bipolaron states. The
increased importance of the phonon dynamics—not included in the variational method—
for the two-electron problem leads to a less good agreement with exact results than for one
electron (Sec. 3.4). In particular, our variational results overestimate the position of the
cross over (Fig. 4.14) compared to the value A\, = 0.5 expected in the adiabatic regime.
Nevertheless, the method represents a significant improvement over the HLF approximation
due to the variational determination of the parameters ;;. This is illustrated in Fig. 4.14,
where we also show the HLF result By = exp(—Ep/w) (see, e.g., [159]) for @ = 0.4 and
4.0. In contrast to the variational approach, it yields an exponentially decaying kinetic
energy for all values of the phonon frequency. While such a behavior actually occurs in the
nonadiabatic limit w — oo, the situation is different for small & (see Figs. 4.8 and 4.14).
The variational method presented here accounts qualitatively for the dependence on the
phonon frequency.

Next, we wish to study the influence of Coulomb repulsion U. Similar to Fig. 4.11,
we take A\ = 1, so that an onsite bipolaron state is formed at U = 0. For small phonon
frequency @ = 0.4, Fig. 4.15 reveals a sharp cross over near U = 2.5, i.e., at a smaller
value of U than in the QMC results of Fig. 4.11, the reason being again the neglect of the
retarded nature of the effective electron-electron interaction. As in the QMC results, the
Coulomb repulsion breaks up the onsite bipolaron, leading to an increase of the kinetic
energy. Moreover, the curve for p(1) peaks at the cross over point, indicating the existence
of an intersite bipolaron in this regime. A similar picture is found for larger phonon

frequency @ = 4, also shown in Fig. 4.15, although the changes with increasing U are much
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Figure 4.16: Variational results for the effective interaction Ues(d) (see text) and the cor-
relation function p(d) (inset) as a function of the electron-electron distance

J.

more gradual than for w = 0.4.

Finally, we report in Fig. 4.16 the effective interaction U.g(d) between the two electrons
as a function of their relative distance ¢, which is given by vs [Eq. (4.7)]. We have chosen
W = 0.4 and U = 4, the same parameters as in Fig. 4.10(b). For A = 0.75, the finite
Coulomb repulsion stabilizes two weakly bound polarons, as illustrated by the results for
p(0) shown in the inset of Fig. 4.16. While U is repulsive (positive) for 6 = 0, the two
electrons can form a bound state by traveling a finite distance 1 < § < 4 apart. This is still
true for A = 1, for which the atomic limit yields Ueg(0) = U — 2Ep = 0. Nevertheless, the
two electrons experience an attractive interaction and form an intersite bipolaron. Finally,
for even stronger coupling A = 1.25, the phonon-mediated electron-electron interaction
has overcome the onsite repulsion, so that Usg(d = 0) < 0. At the same time, the size
of the bipolaron has collapsed to a single site. It is worth mentioning that the values of
Ue(0) in Fig. 4.16 are larger than the strong-coupling prediction U — 2Fp for all values
of A considered. This may be attributed to the overestimated bipolaron binding energy in
the atomic limit.

As pointed out in several places, the shortcomings of the variational approach presented
here are a result of the missing dynamical phonon effects. Significantly more accurate
results could be obtained by making an ansatz for the eigenstates of the untransformed
Hamiltonian (1.21) of the form

1 e - .
W) = 5 SN et epe; (dl()l)yt{,y(l)} n d:g?)y’r{,y(Z)}) 15, 5) | (4.37)
iy P

with |4, j) defined as in Eq. (4.13), two canonical transformations depending on the dis-

placement fields 71-(;) and 7-(2) (see Sec. 4.3), and additional variational parameters J](gl)

7 7

6215)2). Thereby, one can take into account lattice distortions not centered at the sites of the
electrons, which become important as w — 0.
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4.6 Conclusions

In this chapter, we have presented a detailed study of the Holstein-Hubbard model with
two electrons of either the same or opposite spin, using CPT, QMC and a variational
approach.

The one-electron spectral function obtained with CPT reveals that polaron and bipo-
laron states manifest themselves as QP bands, whose widths, weights and dispersions
change as a function of the electron-phonon and electron-electron interaction strength.
Results have been compared to accurate data for the bipolaron energy dispersion. For
weak coupling or strong Hubbard repulsion, finite-size effects are visible, but are much
smaller than in previous work which was restricted to small clusters. The major advantage
of CPT is that the spectrum can be obtained at any point in k-space, even when using
clusters with only a few lattice sites for which enough phonon states can be kept in the
calculation. This has allowed us to investigate, for the first time, the dispersion and the
spectral weight of the QP features throughout the Brillouin zone. The results and their de-
pendence on the model parameters have been discussed, and a perfect agreement has been
found with the physical picture of the Holstein-Hubbard bipolaron emerging from previous
work. A comparison of the bipolaron band dispersion with a simple tight-binding band has
revealed an important contribution from next-nearest-neighbor hopping processes in the
regime of a weakly bound state. Finally, the adiabatic regime of small phonon frequencies,
which is characteristic of many real materials, remains an interesting and demanding open
issue for future work.

The QMC method used here represents an extension of the one-electron algorithm
developed in Chap. 3. For the present case, it is limited to relatively small clusters in one
dimension (up to fourteen sites). However, in contrast to other approaches, it allows one
to perform accurate calculations also for small phonon frequencies and finite temperatures.
We have studied the dependence of bipolaron formation on the phonon frequency and
the Hubbard repulsion. Our results underline the importance of quantum phonon effects,
which have often been neglected in previous work. Moreover, we have presented for the
first time exact results for the effect of temperature on the bipolaron state in the important
adiabatic regime. Thermal dissociation of the large and the intersite bipolaron is observed
at high temperatures, as proposed by Alexandrov and Bratkovsky [15] to explain the
activated dc conductivity in the paramagnetic state of doped manganites. An interesting
open issue remains the effect of dimensionality, which cannot be addressed with the current
approach. Instead, one may extend the promising work of de Raedt and Lagendijk [136]
to finite phonon frequencies.

Finally, we have proposed a variational approach based on a canonical transforma-
tion with variational parameters. The latter represents a significant improvement over
the nonadiabatic strong-coupling approximation and reproduces qualitatively many of the
physical features of the Holstein-Hubbard bipolaron, especially the dependence on phonon
frequency.
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Physics is becoming so unbelievably
complex that it is taking longer and
longer to train a physicist. It is tak-
ing so long, in fact, to train a physicist
to the place where he understands the
nature of physical problems that he is
already too old to solve them.

(Eugene Wigner)

5 Photoemission spectra of
many-polaron systems

Chapters 3 and 4 were devoted to a detailed understanding of the formation of single
polarons and bipolarons. In real materials, such as the cuprates or manganites, which
are in the focus of current research, strong interactions among these QP’s are expected
to significantly affect the properties of the system. Unfortunately, the knowledge about
many-polaron systems is by far not as complete as that of models with one or two electrons.

In the cuprates, bipolaron formation is strongly suppressed by strong electronic cor-
relations, as described by the Holstein-Hubbard model considered in Chap. 4. Similarly,
the large Hund’s rule coupling Jy in the manganites (see Sec. 1.1) imposes a severe energy
penalty on configurations with doubly occupied sites, giving rise to a strong tendency of the
system to avoid singlet, small bipolarons. Furthermore, the double exchange mechanism
tends to align the itinerant spins ferromagnetically below 7. Extended bipolarons may
still be formed in the paramagnetic state above T [15], but recent experiments as well as
theoretical considerations do not quite support such theories [3,165]. These circumstances
motivate studies of many-polaron systems, such as the spinless Holstein model considered
here, in which bipolaron formation is suppressed either by the Pauli exclusion principle or
by strong Coulomb repulsion among the electrons. For the manganites, the applicability
of such models is underlined by recent experimental work [165,166], which suggests that
the charge carriers are polarons rather than bipolarons.

Most previous work on Holstein models with many electrons focused on the Peierls
instability and superconductivity, while the polaron physics has received relatively little
attention apart from the work for one and two electrons (see Chaps. 3 and 4). Consequently,
small-polaron theory [9]—valid for a single electron strongly coupled to the lattice—is
frequently used to more or less successfully interpret experimental results for materials
with strong electron-phonon interaction and high carrier density.

For the many-electron case, Eliashberg theory [9] works well if the phonon frequency
is much smaller than the Fermi energy, i.e., w < Er. Similarly, perturbative approaches
based on the LF transformation (Sec. 3.3) yield reasonable results for strong electron-
phonon coupling and intermediate or large phonon frequencies @w 2 1. However, neither of
these methods can be extended to the most interesting regime of intermediate coupling and
small but finite phonon frequency, which is realized, e.g., in the abovementioned classes
of materials. The resulting gap in knowledge may be filled by making use of unbiased
numerical methods. Although the latter can, in principle, be applied for any values of the
model parameters, limitations in computer power and memory have so far imposed severe
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(a (b)

Figure 5.1: TIllustration of the charge-ordered Peierls state in the (a) spinless and (b)
spinfull Holstein model at half filling. Filled circles correspond to lattice sites,
and thick (thin) arrows indicate electrons (lattice distortions).

restrictions on calculations. Here we tackle this challenging theoretical problem by means
of a novel QMC algorithm as well as ED performed on parallel supercomputers.

This chapter is organized as follows. We begin with a brief review of the spinless
Holstein model in Sec. 5.1. In Sec. 5.2, we use CPT together with an exact solution for the
atomic-limit Green function to calculate approximate spectral functions. The extension of
the QMC method presented in previous chapters to the many-electron case is discussed
in Sec. 5.3. We then use QMC and ED to investigate in detail the spectral properties of
many-polaron systems over a wide range of band filling and electron-phonon interaction,
both in the adiabatic and nonadiabatic regime (Sec. 5.4). Finally, Sec. 5.5 contains our
conclusion.

5.1 Spinless Holstein model

The spinless Holstein model can be obtained by dropping spin indices in Egs. (1.13)
and (1.17), respectively. The electron density operator is then given by n; = c;fci with
eigenvalues 0, 1. As before, we use the dimensionless parameters \ [Eq. (1.18)] and @
[Eq. (1.19)].

Since we are interested in polaron physics, we restrict the discussion of previous work
to the case of quantum phonons. In the latter, the fluctuations of the lattice enable the
electrons to hop even in the strong-coupling regime, while in models with classical phonons
the carriers become trapped by the lattice distortions and no coherent polaron states exist.

We begin with the half-filled model, which has been studied in one dimension using
QMC [129,131,167|, ED [168], DMRG [169] and variational methods [170-173]. Similar to
the spinfull Holstein model at half filling, i.e., with one electron per site, the spinless model
with one electron per two lattice sites displays a quantum phase transition from a metallic
state to a Peierls insulating state with charge-density-wave (CDW) order. Figure 5.1(a)
illustrates that in the spinless model, every other site is occupied by one electron which
causes a local lattice distortion. In contrast, in the spinfull case, the ground state consists
of singlet bipolarons [Fig. 5.1(b)]. While the insulating CDW state of the spinless model is
stable for any A > 0 in the adiabatic limit & = 0, it is destroyed by quantum phonon fluc-
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tuations for @ > 0. At zero temperature, and for finite phonon frequencies, the transition
to the Peierls state occurs when w becomes smaller than a critical value w., or A > A..

Capone et al. [174] used ED to study the cross over from a single polaron to a many-
electron system. Although their work is for the Holstein-Hubbard model, the latter behaves
very similar to the spinless Holstein model in the limit of large U considered in [174].

Finally, using DMFT, Capone and Ciuchi [175] found a cross over from a metallic
to a polaronic state in infinite dimensions, in which a charge-ordered insulating state is
suppressed even at half filling. This is similar to the work of Green [25], who developed a
many-body coherent potential approximation for the Holstein and the Holstein-DE model
which will be discussed in some detail in Sec. 5.2.1.

5.2 Strong-coupling perturbation theory

The CPT calculations in Chaps. 3 and 4 were restricted to one and two electrons, respec-
tively. Although the method has been successfully applied, e.g., to the many-electron Hub-
bard model [11,12,61, 68|, the phonon degrees of freedom in the Holstein model severely
limit calculations using the Lanczos method. Here we consider a finite electron density
n = 0.5 by combining CPT with the exact analytic result for the atomic-limit Green func-
tion, which can readily be obtained for many models using the equation-of-motion method
[9]. The results for the one-electron spectrum in two dimensions will be compared to the
many-body coherent potential approximation [25].

5.2.1 Many-body coherent potential approximation

Extending previous work of Edwards et al. [176,177] for the pure DE model (Sec. 1.3.2),
Green [25] studied the Holstein-DE model using a many-body coherent potential approxi-
mation (CPA) which, owing to the more complicated form of the Holstein-DE Hamiltonian
|Eq. (1.10)], constitutes a considerable extension of the Hubbard III approximation [178].
The many-body CPA successfully describes many aspects of the manganites, and we re-
fer the reader to a recent review of this and other work by Edwards [3]. Here we only
consider the special case of a completely saturated ferromagnetic state at temperature
T = 0, with all itinerant spins having 1 spin, say. Consequently, the DE term—coupling
local and itinerant spins (Sec. 1.3.2)—becomes merely a constant shift in energy, and the
Holstein-DE model is equivalent to the pure Holstein model of spinless fermions, i.e., with
no doubly-occupied sites (Sec. 1.3.2). An important feature of the many-body CPA is that
for hopping ¢ = 0 the one-electron Green function reduces to the exact atomic limit [45]

oo

- )1 a’ n 1—n
AL — ) - 1
Gri(e) =e {e+zr! (e+wr+e—wr)}’ (5:1)

r=1

where & = ¢g?/w? and the polaron binding energy Ep has been absorbed into the chemical
potential. The general result for GA" of the spinfull Holstein model has been given by
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Green [25], and we drop the spin index in the sequel. As discussed by Edwards [3], for an
elliptic density of states, the local Green function G(z) for complex energy z satisfies the
CPA equation

G(z) = GA (2 — W?G/16), (5.2)

W denoting the bare bandwidth [Eq. (1.8)], and the self-energy can be obtained from [3]
Y(2) =2z-G ' —=W?G/16. (5.3)

Finally, the one-electron spectral function is given by [cf. Eq. (2.36)]

A(k,€) = —;Im Pk (5.4)
where
D
e = —2t Z cos kpp, (5.5)
m=1

is the band energy for wavevector k in D dimensions.

In order to compare with ARPES data on the bilayer manganite La; 5Sr; §Mn,O7, nom-
inally with n = 0.6, Hohenadler and Edwards [45] chose a strong electron-phonon coupling
g/W = 0.1 (corresponding to A = 0.8 in two dimensions where W = 8t [Eq. (1.18)]), as
deduced from the low Curie temperature of this material. To simplify calculations, they
also used n = 0.5 for which the chemical potential © = 0 by symmetry. We want to
point out that the many-body CPA assumes a homogeneous system, so that no tendencies
toward CDW order occur as n is varied [25]. As in previous work [25], Hohenadler and
Edwards [45] used W = 2 eV and w/W = 0.025 (w = 0.2). The results [45] for A(k,e€),
shown in Fig. 5.2, support the theory of Alexandrov and Bratkovsky [179] that in these
manganites, small polarons exist in the ferromagnetic state. A similar interpretation of
the experimental data—based on standard small-polaron theory—had also been given by
Dessau et al. [180]. Well away from the Fermi surface, a well-defined peak exists which
broadens as k approaches the Fermi level Er at y = 0.5. If y is increased further, most of
the spectral weight is transfered above Er. Moreover, the peaks never approach the Fermi
level closely, in agreement with the experimental data. This indicates the existence of a
pseudogap in the one-electron density of states. However, in the gap, there exist small
polaron subbands (see Fig. 4 of |25]) and one of them, at the Fermi level, presumably
gives rise to the low but finite conductivity of the system. As discussed by Edwards [3],
the many-body CPA does not give coherent states with infinite lifetime at the Fermi level,
even for 7" = 0. This is typical for any CPA, and here it leads to an incoherent polaron
subband around the Fermi level. Nevertheless, outside the central band around FEF, the
imaginary part of the self-energy displays the correct behavior, i.e., it vanishes in the gap,
between the polaron bands.
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Figure 5.2: Comparison of the one-particle spectral function of the spinless Holstein model
at T = 0, calculated with the SCPT (left) and with the many-body CPA (right,
taken from [45]). Here the wavevector k is given by k = 7(1,y) with y as
indicated in the figure [45]. The plot is for w/W = 0.025 and g/W = 0.1. The
SCPT results have been broadened using a smearing parameter n/W = 0.025.

5.2.2 Strong coupling perturbation theory

In this section we use the atomic-limit Green function (5.1), and combine it with CPT
to compare the resulting spectrum with the many-body CPA. For this case of a one-site
cluster (a = b), Eqgs. (2.43) and (2.44) reduce to a single equation for the one-electron
Green function [12]

GM(z) 1
1 —exGAL(2) 2z — e — TAL(2)

G(k,z) = (5.6)
with &g as defined by Eq. (5.5). Hence, CPT for N = 1 is equivalent to the Hubbard I
approximation [67], but here with the more complicated atomic-limit Green function of the
Holstein model given by Eq. (5.1). In the sequel, we shall refer to this approximation as
SCPT. This is justified by the fact that the approach becomes exact for ¢t = 0. Historically,
a similar strong-coupling expansion for the Hubbard model [181,182]—including higher
order corrections—has been the starting point for the development of CPT.

Before we discuss the results, we would like to comment on the quality of the SCPT used
here. While the many-body CPA requires a self-consistent, iterative solution of Eq. (5.2),
the SCPT Green function is obtained from the Lehmann representation of GAY, and the
subsequent use of the resulting self-energy ¥4 in Eq. (5.6). Similar to the original Hub-
bard I approximation [67], the resulting Green function consists of § peaks corresponding
to states with infinite lifetime. However, due to the poles in the self-energy, there are
no states at the Fermi level and the system is not a Fermi liquid. As in the many-body
CPA, G depends on k only through the band energy e, whereas the self-energy is local.
This reliance on the atomic limit is reasonable in the strong-coupling regime considered
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here, where small polarons move in an extremely narrow band. Consequently, the sim-
ple perturbative treatment of the hopping term can be expected to give sensible results.
Nevertheless, in the SCPT, we have to use an artificial imaginary part n—which does not
depend on energy—to obtain peaks of finite width. Although for large enough 7 there will
be states at the Fermi level, the latter have only finite lifetime even for 7" = 0. Hence,
both the SCPT and the many-body CPA never give a Fermi liquid, but the self-consistent
CPA Green function yields an imaginary part of the self-energy that shows the correct,
strong energy dependence except for the region inside the very small, incoherent polaron
band around Ff, as discussed above. Thus, as could be expected from the Hubbard I-like
approximation in Eq. (5.6), the many-body CPA is superior to the SCPT, although both
approaches become exact in the atomic limit. Exact results for the spectral function in
one dimension will be presented in Sec. 5.4.

The one-particle spectral function obtained with the SCPT using Eq. (2.36), also shown
in Fig. 5.2, resembles quite closely to the results of [45]. Although there are some differences
concerning the width and the position of the peaks, the overall behavior is very similar.
In particular, the broadening of the QP peak near the Fermi level at y = 0.5 is well
reproduced. Clearly, the success of the SCPT consists of a surprisingly good agreement
with the CPA data for all k. Despite this agreement, the SCPT fails to reproduce the
polaron subbands, and the sharp edge to the pseudogap for large values of y. Moreover,
the gap is larger than in the case of the CPA. These shortcomings are a consequence of the
rather crude approximation. Nevertheless, keeping in mind the simplicity of the ansatz,
the agreement with the many-body CPA is satisfactory.

We would like to point out that the SCPT presented here can also be generalized
to the Holstein-DE model with quantum spins (see Sec. 1.3) and at finite temperature,
using the atomic-limit Green function given by Edwards [3]. Finally, the approximation
could be systematically improved by increasing the number of sites in the cluster, which
is exactly the idea behind CPT (Sec. 2.2). Since for N > 1 the cluster Green function
can no longer be calculated analytically, one has to resort to numerical techniques such as
the Lanczos method (Sec. 2.3). However, calculations are extremely difficult for two- or
three dimensional clusters with, e.g., quarter filling, small phonon frequency and strong
electron-phonon coupling.

5.3 Quantum Monte Carlo method

In this section, we extend the one-electron QMC algorithm developed in Chap. 3 to the
spinless Holstein model with many electrons. We begin by applying the standard LF
transformation (Sec. 3.3) to obtain the Hamiltonian (3.14). For spinless fermions, the last
term in Eq. (3.14) simplifies to —Ep >, 7;. We define the grand-canonical Hamiltonian

H=Ho— i = =3 cle @) 1 g S0P+ 30— (Be+p) Y (5.7)
(i) - N L

~ ~ d ~
pe P=P,+P, i
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where 1 denotes the chemical potential, Ep is the polaron binding energy [Eq. (1.20)], and
the parameter v of the LF transformation is given by Eq. (3.10).

For the case of a half-filled band, i.e., N/2 electrons on N sites for the spinless model (5.7),
the chemical potential is given by y = —FEp. Away from n = 0.5, u has to be adjusted
accordingly to yield the right density of electrons n.

We would like to point out that for the spinfull case, the LF transformation yields an
attractive Hubbard term (see Sec. 4.3). For the determinant QMC method to be applicable,
the latter has to be decoupled using auxiliary fields [10]. In contrast, for the spinless model
considered here, the algorithm is almost identical to the one-electron case. The following
derivation assumes a hypercubic lattice in D dimensions.

5.3.1 Partition function

To calculate the partition function we use the Suzuki-Trotter decomposition (Sec. 2.1.4)

~ . L
- —ArRo ~ATPy —ATP, —Arl
e PH x (e TRoeT AT PeT 2T xe T) : (5.8)

where A7 is given by Eq. (2.15). The trace appearing in the partition function Z = Tr e PH
can be split up into a bosonic and a fermionic component leading to the approximation

o= Trf/ dpdps -+~ dpr, (p1| e ATK0e AT ATPx = AT ) (5.9)

N <pL‘ e*ATI?()e*ATPpefATPXefATf ‘pl) ,

where dp, = [, dp;,;. The phonon coordinates & in Z;, can be integrated out analytically
in the same manner as in Chaps. 3 and 4. Moreover, the momenta p can be replaced by
their eigenvalues on each time slice, and the partition function can be written as

ZL = C/ Dp 6_ATSbTI' f(Blgz e BL) (510)

with Dp =[], dp,, C = [27/(wAT)|V" and

A

B, = e_ATRO’Te_ATf, f(O,T = —tZ c}cjei"’(p“_p“) ) (5.11)
(i5)

The bosonic action Sy, is identical to Eq. (3.42) and may again be expressed in terms of
principal components (see Sec. 3.5.2). As first shown by Blankenbecler et al. [124] (see also
[183]), the fermion degrees of freedom can be integrated out exactly leading to

Tre(By---By) =det(1+ B, --- By) = det(1+Q), (5.12)
where the NP x NP matrix B, is given by

B, =D.kD!V (5.13)
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with

Kij = ( eArthtb) (D,)i; = 6;; e Vij = 6 AT(Ertu) (5.14)

Here h'" is the usual tight-binding hopping matrix. The matrix product in Eq. (5.12) can

be evaluated using a generalization of Eq. (3.40).! To save some computer time, we employ
the checkerboard breakup [164]

i

eATtZ(ij) c;-rcj ~ H eAth:-rcj ] (515)

(i)
Using Eq. (5.15), the numerical effort scales as N?" instead of N3P, while the error due to
this additional approximation is of the same order (A7)? as the Trotter error in Eq. (5.8).

Defining the bosonic and fermionic weights w, = =275 and w; = det(1 + ) respec-
tively, the partition function finally becomes

Z,=C / Dp wy, ws - (5.16)

One of the advantages of Blankenbecler et al.’s [124] formalism as well as the current
approach is the close relation to the one-electron Green function

Gij = (&) + (el¢)) . (5.17)
N e
% d

Working in real space and imaginary time, we have [124, 183]
a __ /x <t -1
Gy = (cicj> =(1+ Q)ij , (5.18)
and
G =6 — Gy = (2G") . (5.19)

We would like to mention that despite the formal similarity to the method of Blanken-
becler et al. [124], the numerical realization of the present approach is quite different. While
the grand-canonical method of [124] benefits enormously with respect to performance from
a local updating scheme for the phonons, here we use a global updating in terms of the
principal components together with the reweighting method, as described in Sec. 3.5 .
Although this requires us to recalculate the full matrix €2 in each step, the resulting sta-
tistically independent configurations clearly outweigh the loss in performance, especially
for small w for which autocorrelation times can exceed 10° sweeps when using the original
grand-canonical QMC method [124]. The approach proposed here allows one to perform
uncorrelated measurements after each update. Moreover, our calculations show that nu-
merical stabilization by means of a time-consuming singular value decomposition [146] is
not necessary for all parameters considered below. Finally, owing to the phase factors in
the transformed hopping term, all the matrices become complex-valued. An important

!Since the interaction matrix V is diagonal, it commutes with D} in Eq. (5.13).
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practical test in simulations therefore is the reality of expectation values of observables,
i.e., the disappearance of the imaginary part within statistical errors.

Similar to the calculations for one and two electrons, the phase factors in the hopping
term [Eq. (5.7)] give rise to a minus-sign problem, i.e., wr can take on negative values.
While for a fixed number of electrons the sign problem diminishes with increasing system
size (Sec. 3.5.3), the opposite is true at finite electron densities. We find an exponential
decrease of the average sign with increasing cluster size, and a strong dependence on the
electron density (Sec. 5.3.3).

5.3.2 Observables

The calculation of observables within the formalism presented here is similar to the stan-
dard determinant QMC method [124,164,183]. An important difference is that we have
to use the transformed operators, i.e.,

|

(0) = ST (Oe™ %), (5.20)

As mentioned above, the MC sampling is based purely on the bosonic weight wy. This

corresponds to a reweighting of the probability distribution so that the fermionic weight
wy is treated as part of the observables (see Sec. 3.5). Hence, we have

<wa>b
0) = 9.21
o) =20 (5.21)
where the expectation value (O)y, for an equal-time observable O is defined as
D Tr¢(OB; -+ B
(0y, = L PruwnerTtdOB: - Br) (5.22)

f Dp wy,

Static quantities

The calculation of static (equal-time) observables is straight forward. We begin with the
particle density

1 .
n=p5 Zi:(ni) . (5.23)

The expectation value in Eq. (5.23) can be calculated from the diagonal elements of the
Green function G® [Eq. (5.18)], i.e., (7;) = (G%). Similarly, the absolute value of the
electronic kinetic energy per site is given by

= t
Ev= <5 > (G (5.24)
(7)
The QP weight at the Fermi momentum in one dimension can be obtained from [184]
k)= T [(n(k) — (k)] (5.29
v 7RF
k, —kp
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On a finite cluster, the expression in brackets in Eq. (5.25) yields an upper bound for z(k),
with kF taken to be the wavevectors just above and below kp. A finite-size scaling has to
be performed to obtain an approximation for the value of z(k) in the thermodynamic limit.
While Eq. (5.25) can produce fairly accurate results within projector QMC approaches for
the ground state, it is less reliable in the case of finite-temperature calculations. In addition
to the scaling with system size, one has to check for each cluster size that the temperature
used is indeed low enough so as to ensure converged results. Due to these difficulties, we
shall not present results for the QP weight in the sequel. Finally, an alternative way to cal-
culate z(k) from the zero-temperature imaginary-time Green function has been suggested
by Brunner and Assaad [142].
Equal-time two-particle correlation functions such as

p(0) = Z<ﬁzﬁz+6) (5.26)

may be calculated in the same way as in the standard determinant QMC method [124, 183].
For a given phonon configuration, we can use Wick’s Theorem [9] to get

(Rifis)p = (cle;che;)y = (cle)p(cle;)p + (cle;)pleich), = GLGY + GYGY, . (5.27)

1753 /P w7

The expectation value (7;72;) is then determined by averaging over all phonon configura-
tions.

Dynamic quantities

An observable of great interest is the time-dependent one-particle Green function

G'(k,7) = (ci(T)ey) = (€™ che ey) (5.28)
which is related to the spectral function
Ak, e — 1) = —%Im GP(k, e — 1) (5.29)
through
G (k,7) = /_ Z de 6_7(16_:)(‘:1_(;2_65 M (5.30)

The inversion of the above relation is ill-conditioned and requires the use of the maximum
entropy method (MEM). Fourier transformation leads to

Z e* TGl (r) (5.31)

The allowed imaginary times are 7, = (A7, with nonnegative integers 0 < ! < L. Within
the QMC approach, we have [124,183]

G?j(Tl) = (G"By--- By)ji - (5.32)
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Another interesting quantity is the one-electron density of states
1
N(e—p) = —;Im G(e— ), (5.33)

where G(e — p) = N 1Y, G(k,e — p). It may be obtained numerically via
N(1) = G%(7), (5.34)

and subsequent use of the MEM (Sec. 2.1.6).

5.3.3 Sign problem

Since the sign problem crucially affects the performance of any QMC method, this section is
devoted to a detailed investigation of the dependence of the average sign on the parameters
of the simulations.

While Hamiltonian (5.7) is symmetric with respect to a particle-hole transformation
for 4 = —Ep (half filling), this symmetry is broken if we use the checkerboard approxi-
mation (5.15), so that n # 0.5 for the above choice of the chemical potential. To simplify
calculations, the results for the average sign at n = 0.5 presented below have therefore been
obtained using the full hopping term. For general band fillings, we find that the checker-
board breakup requires different values of i to perform simulations at the same electron
densities, but results are identical within statistical errors if 4 is adjusted accordingly.

The derivation of the QMC algorithm in Sec. 5.3.1 is independent of the dimension D
of the lattice under consideration. Nevertheless, here we only report results for the sign
problem in D = 1, the case considered in Sec. 5.4, and make some remarks about the
influence of the dimensionality at the end.

The average sign of the fermionic weight, denoted as (sign), has been defined in
Eq. (3.60), with the fermionic weight in the present case given by wy = det(1 + Q)
[Eq. (5.12)]. We begin with the dependence of (sign) on the electron-phonon coupling
strength. For simplicity, we show results for n = 0.5, while the effect of band filling will
be discussed later. The choice n = 0.5 is convenient since we know the chemical potential,
and we shall see below that the sign problem is most pronounced for a half-filled band.
Moreover, all existing QMC results for the spinless Holstein model are for half filling, and
it is thus interesting to see how the sign problem affects simulations within the current
approach.

Figure 5.3(a) reveals a similar dependence of (sign) on electron-phonon coupling as in
the one-electron case (Sec. 3.5.3). It takes on a minimum near A = 1 (in the adiabatic
regime considered here) that becomes more pronounced with decreasing temperature. At
weak and strong coupling, the average sign is close to 1, so that accurate simulations can
be carried out. This feature will be exploited in Sec. 5.4. The dependence on the phonon
frequency shown in Fig. 5.3(b) also bears a close resemblance to the polaron problem |cf.
Fig. 3.14(b)]. Whereas (sign) becomes very small for @ < 1, it increases noticeably in the
nonadiabatic regime w > 1. Owing to the absence of any autocorrelations in our approach,
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Figure 5.3: Average sign (sign) [Eq. (3.60)] of the fermionic weight ws as a function of
electron-phonon coupling A in one dimension (a) for different inverse temper-
atures 3, and (b) for different values of the adiabatic ratio @w. Here and in
subsequent figures showing QMC results lines are guides to the eye only, and
errorbars are suppressed if smaller than the symbols shown. The data presented
in Figs. 5.3 and 5.4 are for A7 = 0.05.
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Figure 5.4: Average sign as a function of (a) band filling n, and (b) system size N.

the present method therefore represents a significant improvement of existing algorithms,
as the latter face severe autocorrelations even for @ 2 1, thereby limiting the temperature
range and cluster size.

As illustrated in Fig. 5.4(a), the average sign depends strongly on the band filling n.
While it is close to one in the vicinity of n = 0 or n = 1, a significant reduction is visible
near half filling n = 0.5. The minimum occurs at n = 0.5, and the results display particle-
hole symmetry as expected. Here we have chosen 5t = 8, w = 0.4 and A = 1, for which the
sign problem is most noticeable according to Fig. 5.3. The statistical error of n in Fig. 5.4
is smaller than the symbol size.

Finally, in Fig. 5.4(b), we report the average sign as a function of system size, again
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for n = 0.5. The behavior is strikingly different from the one-electron case considered
in Chap. 3. While in the latter (sign) — 1 as N — oo, here the average sign decreases
nearly exponentially with increasing system size. Obviously, this limits the applicability of
our method. However, we shall see below that we can nevertheless obtain accurate results
at low temperatures, small phonon frequencies, and over a large range of the electron-
phonon interaction. Moreover, we would like to point out that for such parameters, existing
methods suffer strongly from autocorrelations, rendering simulations extremely difficult.

The dependence of the sign problem on the dimension of the system is similar to the
single-electron case (Sec. 3.5.2). The minimum in (sign) at intermediate A\ becomes more
pronounced for the same parameters NV, w, St and A as one increases the dimension of the
cluster.

To conclude with, we would like to point out that, in principle, the sign problem can
be compensated by performing sufficiently long QMC runs, although we have to keep in
mind that the statistical errors increase proportional to (sign)=2 (Sec. 2.1.3). Owing to
the purely phononic updates, the algorithm is very fast and we have made up to about
2.6 x 107 single measurements to obtain the results presented in Sec. 5.4. Due to the use of
the reweighting method, the measured values of observables have to be stored in every MC
step, in order to perform the Jackknife analysis at the end of the run (see Sec. 3.5.2). For
example, in the case of the Green function (5.28), L+1 complex values for each momentum
k have to be stored in every step. Depending on the observables of interest, this sets a
practical limit for the maximal number of measurements due to restrictions in available
disk space.

5.4 QMC and ED results

We have seen in Chap. 3 that a single electron undergoes a cross over to a small polaron at
a critical value of the electron-phonon coupling. The important question to be addressed
here is what happens if the density of electrons (or polarons) is increased. We do not expect
significant changes in the strong-coupling regime due to the “localized" nature of the small
polaron state. On the contrary, for intermediate electron-phonon interaction and w < 1,
each electron is surrounded by a phonon cloud extending over several lattice sites, whose
overlap with other dressed electrons may lead to a dissociation of the individual polarons.
Such a scenario has recently been observed in the optical properties of Sr and Ca doped
manganites [165,166], in which the charge carriers are considered to be large and small
polarons, respectively.

As pointed out in Sec. 3.1, within the Holstein model, an extended polaron state is
only stable in one dimension, while in higher dimensions the electrons are either free or
form small (onsite) polarons. This is in contrast to the Frohlich model with long-range
interaction, in which large polarons may exist also in D > 1. In the sequel, we therefore
restrict ourselves to the one-dimensional case, assuming periodic boundary conditions in
real space. Existing work on the spinless Holstein model with many electrons is mainly
concerned with the formation of an insulating charge-ordered state at half filling (see
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Sec. 5.1). The effect of an increase of electron density on the polaronic state has not
received much attention in the past, apart form the work by Capone et al. [174], who
applied ED to study the Holstein-Hubbard model in the large U limit on a very small
cluster of five sites.

In this section we use QMC and the KPM to calculate, in particular, one-particle
spectra. As pointed out in previous chapters, ED and QMC both yield unbiased results.
In principle, the KPM (Sec. 2.4) allows to obtain exact results for spectral functions with
very high energy resolution. However, even for relatively small clusters of ten sites—the
size used here—this method requires parallel supercomputers to handle the extremely large
Hilbert space (matrix dimension ~ 10®-10'?). In contrast, the QMC simulations can be
performed on personal computers, and for larger clusters. The drawback is that (a) the
method is limited to finite temperatures, and (b) the calculation of spectral properties
requires the MEM (see Sec. 2.1.6) which limits the energy resolution and often introduces
uncontrolled errors. For this reason, we lay considerable stress on a critical examination
of the MEM results by confronting them with exact KPM data.

Concerning the QMC simulations, we have mainly used a value of St = 8 for the
inverse temperature. For the critical parameters studied below, calculations at even lower
temperatures are very demanding due to the sign problem (Sec. 5.3.3), although we shall
present results for the density of states at ft = 10 and half filling in Fig. 5.9. Already for
Bt = 8 we have (8t) ! = kgT/t = 0.125 < w for the values of @ > 0.4 used in the sequel,
so that direct thermal excitation of phonons can be expected to be rather unimportant.

For the Trotter decomposition, we chose A7 = 0.1 for dynamical properties—the larger
error being negligible compared to the uncertainties introduced by the MEM inversion—
and A7 = 0.05 for static observables. According to the discussion in Sec. 3.5.3, the Trotter
error in the Holstein model becomes important mainly for large phonon frequencies and
very strong electron-phonon interaction. Since we do not consider this regime here, the
abovementioned values of A7 yield satisfactorily small systematic errors. An extrapolation
of results to A7 = 0 similar to Chaps. 3 and 4 has not been performed for several reasons.
First, the dynamic properties calculated in imaginary time explicitly depend on the number
of time slices, making a scaling to A7 = 0 impossible. Second, for static observables such
as the kinetic energy, the value of A7 changes the filling n even if the chemical potential
i is kept the same. Consequently, calculations for different A7 would have to be done
for different values of u. Besides the significant practical effort, the value of n cannot be
fixed to arbitrary accuracy due to statistical errors, thus rendering a A7 extrapolation
inconsistent.

Away from half filling, the electron density has to be adjusted to the values of interest by
varying the chemical potential. Due to the computational effort associated with this trial-
and-error procedure, the actual band filling n’, say, is usually only very close to a desired
value, e.g., n = 0.4, but not exactly the same. Furthermore, within the QMC simulations,
the filling can only be determined up to a statistical error An’, similar to other observables.
For the results presented here, the relative deviation (n — n')/n of the actual value in the
QMC simulations from the value n reported is always smaller than 5 x 10~3. The same is
true for the relative statistical error An’/n. Finally, all QMC simulations have been run
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on personal computers (e.g., Intel XEON 2000), with CPU times varying between several
minutes and a couple of days.

While our method is completely free of autocorrelations between subsequent phonon
configurations, results for the imaginary-time Green function at different times are usually
not statistically independent.|[185] However, in the present case, owing to the exact sam-
pling and the large number of measurements, these correlations are very small and have
been neglected since they have negligible influence on the results. An additional, stringent
test of the QMC results consists of a comparison to ED data which will be presented in
Sec. 5.4.2.

The KPM has been employed to compute the spectral functions

Ne—+1 e e e
At (ko) = W@ el [ 2 ole — (BT — B,

0,9

[
_ Ne—1 Ne e— e
A (kye) = 3@ e, (U 2 dle + (BT — BN, (5.35)
l

where \\I!l(],\c]e)> denotes the [th eigenstate with IV, electrons, momentum £ and energy El(’],je)
(see also Secs. 2.3 and 2.4). The cluster size has been fixed at N = 10, with as many
as 12 dynamical phonons and resulting truncation errors A(N,,) < 10°% [Eq. (2.48)] of
the ground-state energy. Additionally, the convergence with the number of phonons has
been monitored by means of the phonon distribution function defined in Eq. (2.49). It is
important to point out that such a small number of dynamical phonons only yields accurate
results for the parameters considered here if the symmetric phonon mode with ¢ = 0 is
separated from the Hamiltonian analytically before the diagonalization [87,186]. In the
present case, this phonon mode—corresponding to a homogeneous shift of the oscillator
equilibrium positions—together with that for ¢ = 7 represents the dominant contribution
to phonon excitations, so that the separation is very efficient at reducing the computational
effort. The parallel code developed by G. Wellein and H. Fehske was run on six compute
nodes of the Hitachi SR8000-F1 of the LRZ Munich using up to about 2.4 GB of memory
for the largest matrix dimension 7.5 x 107. The energy resolution of the resulting spectral
function with 512 moments has been enhanced by a factor of 8 by the MEM described in
Sec. 2.4.

Owing to our interest in materials such as the manganites, we shall mainly consider the
adiabatic regime, taking w = 0.4. To illustrate the important differences between w < 1
and w > 1, some results for the nonadiabatic value w = 4 will also be shown.

5.4.1 Limiting cases

As we shall see below, the spectra in the intermediate coupling region turn out to have a
fairly complex structure. In order to interpret these results, we therefore begin with the
limiting cases of weak and strong electron-phonon coupling.
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M
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Figure 5.5: One-electron spectral function A(k,¢) from QMC for weak coupling A = 0.1,
w=04,5t=8 N=32and (a) n=0.1, (b) n=10.2, (c) n=10.3, (d) n = 0.4.
Here and in subsequent figures A7 = 0.1, and red lines indicate the position of
the chemical potential p.

Weak coupling

For weak coupling A = 0.1, the sign problem is not severe (Sec. 5.3.3) and the QMC
simulations can easily be performed for large lattices with N = 32, thereby making the
dispersion of QP features well visible. As indicated in Eq. (5.30), the MEM inversion yields
A(k, e — ). To allow a direct comparison with the ED spectral functions [Eq. (5.35)], the
QMC results in Figs. 5.5, 5.7, 5.8 and 5.10 have been shifted by the chemical potential.

Figure 5.5 shows the evolution of the one-electron spectral function A(k,e¢) with in-
creasing electron density n. At first sight, we see that the spectra bear a close resemblance
to the free-electron case, i.e., there is a strongly dispersive band running from ¢ = —2¢ to
e = 2t. The latter can be attributed to weakly dressed electrons with an effective mass
similar to the noninteracting case A\ = 0. As expected, the height of the peaks increases
significantly in the vicinity of the Fermi momentum kg, which is determined by the crossing
of the band with the chemical potential (red line).

Since the peaks in Fig. 5.5 are very sharp, it is important to check the results from the
inversion with the MEM. To this end, we show in Fig. 5.6 the band dispersion and allowed
wavevectors of free electrons for N = 32 and periodic boundary conditions. By computing
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Figure 5.6: Wavevectors (o) and band dispersion of a free-electron system with N = 32.

the approximate number of electrons corresponding to the fillings of n = 0.1-0.4 of the
32-site system, we can roughly determine kr from Fig. 5.6. Although the nonzero electron-
phonon interaction will affect the band dispersion E(k), the weak coupling considered here
justifies the use of a rigid band approximation, as reflected by the free-particle character
of the spectra in Fig. 5.5.

For n = 0.1, i.e., about three electrons, the Fermi momentum is expected to lie between
k = m/16 and k = 7/8, which correspond to the second and third curve from the top in
Fig. 5.5(a). From Fig. 5.5(a) we see that the largest peaks are those for k¥ = 7/16 and
7 /8—having almost the same height. Above and below these momenta, the peaks are
noticeably smaller. We ascribe this slight discrepancy to the fact that the MEM becomes
less reliable for spectra with extremely sharp peaks. A similar analysis carried out for the
other fillings in Figs. 5.5(b) - (d) shows a very good agreement between the location of the
highest peaks and the estimated values of kr. Finally, we would like to point out that the
apparent absence of any phonon signatures in Fig. 5.5 is not a defect of the MEM, but
results form the large scale of the z-axis chosen. As a consequence, the large peaks running
close to the bare band dominate the spectra and suppress any small phonon peaks present.

Strong coupling

We now turn our attention to the opposite limit of the spinless Holstein model, namely
the case of strong electron-phonon coupling A = 2. While many other numerical methods
such as, e.g., standard QMC or ED, have difficulties in obtaining accurate results in this
regime, the QMC approach used here yields quite accurate results even for large systems.
As pointed out in Sec. 3.5.2, this is a consequence of the LF transformation on which
the method relies. The latter causes a significant reduction of statistical errors compared
to other approaches by separating polaron effects from the free lattice vibrations. The
improved statistics in the strong-coupling regime is also reflected in the dependence of the
average sign on \ (Fig. 5.3). As before, we study the dependence of the spectral function
on the band filling, again for N = 32. The results are depicted in Fig. 5.7.

In the low-density regime n = 0.1 [Fig. 5.7(a)], the spectrum consists of two separate
features located above and below the chemical potential, respectively. Of course there
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Figure 5.7: One-electron spectral function A(k,€) from QMC for strong coupling A = 2.0,
w=04,5t=8 N=32and (a) n=0.1, (b) n=10.2, (c) n=10.3, (d) n = 0.4.

is a free-electron like incoherent feature with bandwidth ~ 4¢. However, we also find a
polaron band at lower energies which is almost flat throughout £ space and has relatively
little spectral weight. Moreover, its energy difference relative to u is roughly given by the
polaron binding energy (Ep = 4t for the parameters considered here). Furthermore, we
can see that the chemical potential, which roughly lies at the center between the upper
and the lower band, shifts downward with increasing coupling, as reflected by the condition
@ = —FEp for half filling [cf. Eq. (5.7)].

With increasing band filling, the two features mix strongly, and for n = 0.4, no clear dis-
tinction between the coherent and incoherent parts of the spectrum can be made. Finally,
the spectrum in Fig. 5.7(d) is almost symmetric with respect to the chemical potential,
and already reveals the gapped structure due to CDW-formation at n = 0.5. The latter
point will be discussed in more detail below.

It is interesting to compare the results of this section to those of Sec. 5.2, which are also
for strong coupling. Before we comment on the structure of the spectral function, we would
like to point out that the coupling constant A takes on different values in the CPA/SCPT
calculations (A = 0.8). However, we have to keep in mind that the results of Sec. 5.2 are
for two dimensions and @ = 0.2. In one dimension, for n = 0.5, W = 0.4 and A\ = 2, the
SCPT based on the atomic limit yields a spectrum which bears a close resemblance to
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Figure 5.8: One-electron spectral function A(k,¢) from QMC for intermediate coupling
A=10,w=04, Bt =8, and (a) n=0.1, N =32, (b) n =02 N = 24, (c)
n=03, N=20,(d)n=04, N=16.

Fig. 5.7(d). In particular, the large low-energy peak never approaches closely the Fermi
level, indicating the existence of a pseudogap centered at u. Finally, whereas CDW order
becomes important in the QMC results as we approach half filling, the pseudogap in the
CPA/SCPT exclusively arises from the polaronic state at strong coupling (Sec. 5.2).

5.4.2 Intermediate coupling

As discussed in the introduction, a cross over from a polaronic state to a system with
weakly dressed electrons can be expected in the intermediate coupling regime. Here we
choose A = 1, which corresponds to the critical value for the small-polaron cross over in
the one-electron problem (Chap. 3).

We first discuss the QMC results. Owing to the sign problem, which is particularly
noticeable for A = 1 (Fig. 5.3), we have to decrease the system size as we increase the
electron density n. To scrutinize the accuracy of the MEM inversion, we shall compare the
QMC results with ED data. The latter will also yield a more detailed understanding of
the spectra.
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QMC

Figure 5.8 shows the spectral function for A = 1 and increasing band filling. We again
start with the low-density case n = 0.1 [Fig. 5.8(a)]. Compared to the spectral function
for A =2 [Fig. 5.7(a)|, we notice that the low-energy polaron band lies much closer to the
incoherent band. Moreover, even for n = 0.1, there is a mixing of these two parts of the
spectrum at small values of k. As for A = 2, with increasing density, the polaron band
merges with the incoherent peaks at higher energies. This is exactly the density-driven
cross over from a polaronic to a metallic state anticipated above. At n = 0.4, we find a
band with large effective width ranging from e ~ —4t to € ~ 2t.
At this point, we would like to mention the exact relation [187]

o0

M, (k) = / dee A(k,€) = e — u— 2Epn (5.36)
—0oQ

for the first moment of the one-particle spectral function of the spinless Holstein model,

with e, = —2tcos k.

While the zeroth moment is identical to the normalization of A(k, ¢) for each k, M, (k)
depends in a nontrivial way on the parameters of the system. In principle, Eq. (5.36)
may be used as a boundary condition in the MEM.|[188] However, in the present case,
we have found that while the normalization is virtually exact for all results shown, the
first moment deviates from the exact values. Moreover, the use of the exact values for
M as a condition in the inversion causes the MEM not to converge for some parameters.
Additional calculations on small systems reveal that this disagreement results from the
finite Trotter error, despite the relatively small value A7 = 0.1 used. Away from parameters
such that M; = 0, M; as determined from the MEM spectra deviates from the exact
values by maximally 1020 percent. Nevertheless, the peak positions and weights in the
spectra shown are fairly accurate, as illustrated by the comparison with ED below. Finally,
we would like to point out that calculations of A(k,e) for A7 < 0.1 become very time-
consuming due to the increasing requirement in disk space and longer simulation times.

Further information about the density-dependence can be obtained from the one-
electron density of states (DOS) N(e — u) given by Eq. (5.33). The latter is presented
in Fig. 5.9 for different fillings n = 0.1-0.5. As in Fig. 5.8, the cluster size is reduced with
increasing n in order to cope with the sign problem. To reveal the influence of finite-size
effects, Fig. 5.9 also contains results for N = 10.

At n = 0.1, the DOS for N = 32 displays a peak at the chemical potential, while such
a feature is absent for N = 10. To understand this behavior, we again resort to the rigid
band approximation, although the rather strong coupling in the present case only allows
qualitative conclusions. According to Fig. 5.6, for a cluster with N = 32 and filling n = 0.1,
the three lowest-lying energy levels are completely filled, and states with zero energy are
still available leading to a large DOS at € = p. In contrast, for N = 10, we have a “closed-
shell” configuration, i.e., a finite energy is required to add an electron, in agreement with
Fig. 5.9. The features above and below p correspond to electronic excitations and become
sharper as we increase N from 10 to 32.

134



Chapter 5. Photoemission spectra of many-polaron systems

(S
[EEY
TTT

Figure 5.9: One-electron density of states N (e — p) from QMC for different band fillings
n,w=204and A =1.0.

When the density is increased to n = 0.2, the DOS at the chemical potential is notice-
ably reduced, which may again be attributed to an almost full shell for N = 24. Clearly,
such effects are absent in the case of an infinite system, for which the energy levels lie
dense in momentum space. The DOS contains two humps situated above and below pu.
In contrast to n = 0.1, the smaller structures in the DOS become slightly washed out for
N = 24 as compared to N = 10.

As we increase n further, a gap begins to form at u, which is a precursor of the CDW
gap at half filling. Similar to n = 0.2, the relatively sharp peaks present for N = 10 evolve
into rather broad features for larger system sizes. For n = 0.4, the spectral weight above
and below the chemical potential is already very similar.

Finally, in the case of half filling n = 0.5, the DOS has become symmetric with respect
to p. There are two maxima situated at about +£FEp (Ep = 2 for the parameters here). The
gap of size ~ X expected for the insulating charge-ordered state at T = 0 is partially filled
in due to the finite temperature considered here. Furthermore, we find additional features
separated from p by the bare phonon frequency w, whose height decreases with decreasing
temperature, as revealed by the results for St = 10 (Fig. 5.9). These peaks—not present
at T = 0 [186]—arise from thermally activated transitions to states with an additional
phonon excited.

Despite the wealth of information contained in the QMC results presented so far, it is
obvious that an interpretation of the various peaks is far from being easy. In particular, the
QMC method does not allow to separately calculate the photoemission and inverse pho-
toemission parts A~ and AT [Eq. (5.35)], respectively. Moreover, the finite temperature
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Figure 5.10: One-electron spectral functions A~ (k, €) (dot-dashed red lines) and A™(k,¢)
(solid black lines) from ED for intermediate coupling A = 1.0, w = 0.4, N = 10
and (a) n = 0.1, (b) n = 0.2, (c) n = 0.3, (d) » = 0.4. Also shown are the
integrated spectral weights of A~ and A" (red and black dashed lines), as well

as A(k,€) from QMC for N = 10 and St = 8 (solid blue lines).

and the use of the MEM limits the energy resolution and introduces uncertainties concern-
ing the positions and weights of structures in the spectra. These circumstances make it
difficult, e.g., to distinguish between phononic and electronic contributions, especially if
A =~ w. To gain further insight, we therefore supplement the QMC data with ED results.

ED and QMC

In order to overcome the abovementioned limitations of QMC, here we use the KPM, as
described in Sec. 2.4, to calculate the one-particle spectral functions defined by Eq. (5.35).
To test the quality of the QMC spectra, we directly compare the two methods, keeping
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in mind that the QMC calculations have been performed at a finite temperature 5t = 8,
whereas ED yields ground-state results.

Figure 5.10 displays the ED results for the same parameters as in Fig. 5.8, i.e., w = 0.4,
A=1andn = 0.1-0.4. The red dot-dashed lines correspond to the photoemission part A,
while the black solid lines correspond to the inverse photoemission part A™. Additionally
shown are the integrated spectral weights of A~ and A" (red and black dashed lines).
Finally, the solid thick blue lines represent QMC results for the same system size and
Bt = 8. The values for n are given in the caption.

We see from Fig. 5.10 that the QMC results are in a very good agreement with the ED
data. Due to the finite temperature and the smearing of the MEM, the QMC data represent
an envelope of the sharp ED peaks. In addition to the possibility of distinguishing between
A* and A~—crucial for an identification of polaron bands at intermediate coupling—the
greater energy resolution of ED also allows to resolve signatures of phonon excitations.

Starting with the case n = 0.1 [Fig. 5.10(a)], we notice that there is a polaron band
at the Fermi level, excitations to/from which are given by the highest peak of A~ and
the lowest peak of AT, respectively. The photoemission part A~ reflects the Poisson-like
phonon distribution of the one-electron ground state (n = 0.1 and NV = 10). The integrated
spectral weight (dashed lines) gives a measure for the weight of the various poles in the
one-electron spectrum. For example, it reveals that the phonon peaks in A~ have very
little weight. In fact, the integrated weight jumps to a finite value at the first peaks near
the Fermi level for £ = 0 and k£ = 7/5, while it changes very little as one moves further
down in energy. For k > m/5, the small spectral weight contained in A~ is continuously
distributed among the phonon peaks.

We also observe the well-known flattening of the polaron band at large values of k.
Similar to the one-electron case discussed in Sec. 3.2, the low-energy states have mostly
electronic character at small k£, and become mostly phononic at large values of k. While
this effect is expected to occur in the low-density regime, we find that is persists even for
n = 0.4 [Fig. 5.10(d)]. Moreover, Fig. 5.10 reveals that the maximum in the incoherent
contribution follows closely the free-electron dispersion for all densities n = 0.1-0.4.

With increasing electron density, the equally spaced peaks in A~ broaden significantly,
until at n = 0.4 they have merged to form a broad band. The polaron band is still visible
at n = 0.2 [Fig. 5.10(b)|, but becomes indistinguishable from the incoherent excitations at
even larger n. Eventually, at n = 0.4 [Fig. 5.10(d)|, we find an almost symmetric behavior
of AT and A~ with respect to the Fermi level at £k = 27/5. This indicates the metallic
character of the system expected for large polaron densities and intermediate electron-
phonon coupling.

5.4.3 Nonadiabatic regime

Until here, we have only presented results for the adiabatic case w = 0.4. Although the
latter is most relevant for strongly correlated materials, it is interesting to compare the
above findings to the nonadiabatic strong-coupling regime. To this end, we chose w = 4
as well as A = 2. As discussed in Sec. 3.1, the condition for a small polaron in this case
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Figure 5.11: One-electron spectral functions A~ (k, €) (dot-dashed lines) and A" (k, €) (solid
lines) from ED for A = 2.0, w = 4.0, N = 10. Here n = 0.1 (red and black
lines) and n = 0.3 (green and blue lines). Dashed lines correspond to the
integrated spectral weight of A~(k, €) (red and green lines) and A™ (k, €) (black
and blue lines).

is v/ Ep/w > 1, which expresses the fact that a large enough lattice distortion is required
to trap an electron. This is in contrast to the criterion A > 1 in the adiabatic regime,
which is purely based on the balance of kinetic and potential energy. Since these energies
are expected to undergo noticeable changes as the particle density varies, small-polaron
formation for w < 1 should significantly depend on n, in agreement with the results of
Sec. 5.4.2.

The spectral function for n = 0.1 and n = 0.3 is displayed in Fig. 5.11. The most
striking difference to the case W = 0.4 considered above is that the bands in the spectrum
are now separated by the phonon energy w, with their width being determined by the
electronic excitations. This is the opposite of the adiabatic regime, in which the bands
correspond to electronic excitations surrounded by phononic satellites.

A comparison of the spectral functions for n = 0.1 and n = 0.3 in Fig. 5.11 indicates
that there is no density-driven cross over of the system as observed in the adiabatic case.
Since for the parameters considered here Fp/w = 1, virtually noninteracting small polarons
are formed also at finite electron densities, in accordance with the findings of Capone et
al. [174).
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Figure 5.12: Normalized kinetic energy as a function of electron-phonon coupling A for

different band fillings n and adiabatic ratios w. Also shown are the results for
a single polaron. Errorbars are smaller than the symbols used and A7 = 0.05.

5.4.4 Kinetic energy

The electronic kinetic energy has been studied extensively in the past to identify the polaron
and bipolaron cross over discussed in Chaps. 3 and 4, respectively. It is therefore interesting
to see if the density-driven changes of the one-particle spectrum also manifest themselves
in the kinetic energy defined by Eq. (5.24). In order to be able to compare different band
fillings, we consider the normalized quantity Ey(n, \)/E\(n,0), which is shown in Fig. 5.12
as a function of electron-phonon coupling for different fillings and phonon frequencies.

We begin with the nonadiabatic regime (@w = 4). Obviously, the results for n = 0.1 and
n = 0.4 are very similar, with slightly larger values of the kinetic energy for n = 0.4. In
addition to these two fillings, we have also included in Fig. 5.12 the result for a single po-
laron with the same parameters. Remarkably, the corresponding curve is indistinguishable
from the result for n = 0.1, calculated with the QMC method of Chap. 3. In total, this
underlines the conclusion drawn above that in the nonadiabatic regime the band filling
does not significantly affect the properties of the system.

A noticeably different behavior is found for w = 0.4. Similar to the one-electron problem
(Sec. 3.5.3), the decrease of the kinetic energy with increasing electron-phonon coupling is
much stronger than for @w = 4. Nevertheless, translational symmetry is not broken so that
the cross over does not represent a phase transition [118]. While the low-density result
n = (0.1 is again virtually identical to that of a single polaron, there is a well-conceivable
change as we go from n = 0.1 to n = 0.4. For the same value of A, the kinetic energy is
larger for n = 0.4 than for n = 0.1 as a result of the polaron-polaron interaction which
leads to an effective, weaker electron-lattice coupling. Finally, despite the fact that there
is a visible change between low and high densities in Fig. 5.12, it is obvious that E\ does
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5.5. Conclusions

by far not contain as much information as the one-particle spectra considered above. This
is not surprising if we recall that the kinetic energy can be obtained by integrating the
product of the spectral function and the band energy ¢ up to the chemical potential and
summing over all & [9].

5.5 Conclusions

Theoretical considerations [3] as well as recent experimental work [165] suggest that the
charge carriers in the manganites are large and small polarons, depending on the spe-
cific material and temperature. The one-dimensional spinless Holstein model represents
a generic model which exhibits a cross over from large to small polarons with increas-
ing electron-phonon coupling. Owing to the complexity of the problem in the adiabatic
regime, the many-electron case cannot be accurately described by analytical methods, and
also represents a challenge to present-day numerical techniques. In this chapter, this model
has been studied using both analytical and numerical methods.

In the strong-coupling regime, CPT together with the exact atomic-limit Green function
yields a surprisingly good agreement with the spectrum from the many-body CPA.

To address the regime of small phonon frequencies and intermediate to strong electron-
phonon interaction, we have extended the one-electron QMC method of Chap. 3 to the
many-electron case. The new approach, which is similar to the determinant method of
Blankenbecler et al. [124], overcomes the problem of autocorrelations at the expense of a
sign problem. Compared to existing algorithms, it enables us to perform significantly more
accurate simulations in the most difficult adiabatic regime.

Using the improved QMC method as well as the KPM, we have calculated the one-
particle spectral function, the density of states and the kinetic energy at different band
fillings. While the KPM is restricted to relatively small clusters, QMC can be used to
study larger cluster at finite temperatures but limits the energy resolution of dynamical
quantities. The reliability of the results from the maximum entropy inversion is scruti-
nized by a direct comparison with exact data. In the adiabatic case, we observe a car-
rier density-driven cross over from a polaronic state to a metallic system at intermediate
electron-phonon coupling. In contrast, for large phonon frequencies and strong coupling,
the individual polarons remain virtually unaffected upon increasing the electron density.
Our results underline the shortcomings of single-polaron theory to describe strongly corre-
lated systems such as the manganites.
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Science is facts; just as houses are made
of stones, so is science made of facts; but
a pile of stones is not a house and a col-
lection of facts is not necessarily science.

(Henri Poincaré)

Summary

The challenging problem of strongly correlated electron-phonon models with a coupling
term of the Holstein type has been addressed using, in particular, unbiased numerical
techniques. While a large part of this work was concerned with the cases of one and
two electrons, we also presented results for finite carrier densities characteristic for many
interesting materials.

A novel quantum Monte Carlo (QMC) method has been developed which overcomes
the problem of strong autocorrelations usually inherent to simulations of electron-phonon
models, especially for finite band filling. To separate polaron effects from the zero-point and
thermal fluctuations of the lattice, we chose as the starting point the Hamiltonian obtained
by the canonical Lang-Firsov transformation. In combination with a reweighting of the
probability distribution, the Monte Carlo sampling can be performed exactly in terms of
principal components. For the spinless Holstein model with many electrons considered here,
the method is quite similar to the standard determinant approach. Phase factors in the
electron hopping term arising from the transformation cause a minus-sign problem. For one
and two electrons, the latter diminishes with increasing system size, while an exponential
reduction of the average sign is found in the grand-canonical version of the algorithm.
Nevertheless, accurate calculations have been carried out for the most difficult parameters
of small phonon frequencies and intermediate to strong electron-phonon coupling in the
low-temperature regime.

Cluster perturbation theory (CPT) in combination with the Lanczos recursion method
has been successfully applied for the first time to electron-phonon models. Similar to
previous work on the Hubbard and the ¢—J model, this method enabled us to compute
accurate one-particle spectra at continuous wavevectors and with strongly reduced finite-
size effects.

An understanding of polaron formation and its dependence on the phonon frequency can
be attained by investigating the Holstein model with one electron. Owing to the absence
of any autocorrelations, the QMC method allows to span the whole range of the phonon
frequency and the electron-phonon coupling. Furthermore, a simple variational approach,
which is based on an extended Lang-Firsov transformation has been shown to represent a
significant improvement of the widely used zero-phonon, strong-coupling approximation.
Finally, the cross over from a large to a small polaron also manifests itself in the one-particle
spectrum, which has been calculated using CPT.

The next rung up the ladder of complexity is the case of two electrons, which may
form bound bipolaron states depending on the relative strength of the phonon-mediated,
attractive interaction and the Coulomb repulsion. The corresponding Holstein-Hubbard
model is by far not as well understood as the one-electron case. Again using QMC, we
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have presented results in one dimension for the adiabatic regime into which many strongly
correlated materials fall. In addition to an investigation of the cross over from an onsite
to an intersite bipolaron state with increasing Hubbard repulsion, the intersite bipolaron
has been found to dissociate at high temperatures. A similar mechanism has been pro-
posed to explain the thermally activated conductivity of the paramagnetic phase of some
manganites. Ground-state results on large clusters have been obtained by a variational
method similar to the one-electron problem. Remarkably, the latter approach is able to
account qualitatively for retardation effects. The one-particle spectral function of the
Holstein-Hubbard bipolaron, calculated for the first time by using CPT, displays bands as-
sociated to polaron and bipolaron states, whose form, position and spectral weight change
upon variation of the parameters. Due to the large Hilbert space, results could only be
obtained in one dimension, and for intermediate to large phonon frequencies. We have
also found a pronounced deviation of the bipolaron band dispersion from a simple cosine
band for parameters favoring a weakly bound bipolaron state, which can be attributed to
next-nearest-neighbor hopping processes.

Although the results for one and two electrons may be related to, e.g., dilute semi-
conductors or doped insulators, many fascinating materials such as the manganites have
high carrier densities. Therefore, we set out to understand the effects of polaron-polaron
interaction by considering the spinless Holstein model in one dimension. Employing QMC
and exact diagonalization, we have studied the cross over from low to high densities at
weak, intermediate and strong electron-phonon coupling by computing the one-electron
spectrum. For small phonon frequencies and intermediate coupling, the system exhibits
a density-driven change from a polaronic state to a metallic state with increased kinetic
energy, caused by the dissociation of individual large polarons due to their mutual interac-
tion. In contrast, such changes are completely absent in the nonadiabatic, strong-coupling
regime, where the polarons are small and do not overlap.

To end with, we would like to mention two interesting perspectives opened up by
this work. First, the successful application of CPT to electron-phonon problems may be
substantially expanded by employing parallelized exact diagonalization methods. Thereby,
it will be possible to study the adiabatic regime, higher dimensions and even the many-
electron case. Second, the QMC approach also allows to calculate transport properties such
as the optical conductivity, for which a wealth of experimental data on the manganites is
available. Owing to the lack of unbiased theoretical results for high electron densities, their
interpretation is still under debate.
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Legend of important symbols and abbreviations

S Z=T 5O Emgjslyg“

ARPES
CDW
CMR
CPA
CPT
DE
DMFT
DMRG
DOS
ED
HLF
JT
KPM
LF
MC
MEM
SCPT
QMC
QP
VDM
VPA

Hopping integral

Bare bandwidth [Eq. (1.8)]

Electron-phonon coupling constant [Eq. (1.18)]
Adiabatic ratio [Eq. (1.19)]

Polaron binding energy [Eq. (1.20)]

Inverse temperature

Trotter discretization parameter |[Eq. (2.15)]
Parameter of the Lang-Firsov transformation |Eq. (3.10)]
Hubbard repulsion [Eq. (4.1)]

Curie temperature

Chemical potential

Number of time slices, number of Lanczos iterations
Linear system size

Artificial smearing parameter

Angle-resolved photoemission spectroscopy
Charge density wave

Colossal magnetoresistance
Coherent potential approximation
Cluster perturbation theory

Double exchange

Dynamical mean field theory
Density matrix renormalization group
Density of states

Exact diagonalization

Holstein Lang-Firsov

Jahn-Teller

Kernel polynomial method
Lang-Firsov

Monte Carlo

Maximum entropy method
Strong-coupling perturbation theory
Quantum Monte Carlo
Quasiparticle

Variational diagonalization method
Variational polaron approach
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