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Abstract

In this thesis, the low energy excitations of the quarter-filled sodium vanadate ladder
system alpha’-NaV2O5 are studied. Using a modified Determinantal Quantum Monte
Carlo technique and Maximum Entropy, the extended Hubbard Holstein model is treated
in a nonperturbative and numerically exact way. For the first time, the Lang-Firsov
transformation is implemented in a Quantum Monte Carlo study of a spinfull many-
electron Hubbard Holstein model. This basis transformation allows to sample weakly
correlated phonon configurations. However, the extension to the many-electron model
with spin degrees of freedom suffers from a severe minus-sign problem, restricting sim-
ulations to at most adiabatic phonons. The implementation of Parallel Tempering in a
multi-node environment allows the efficient simulation of the metastable state of sodium
vanadate at low temperatures. Using these techniques, unbiased spectra for spin, charge,
and single particle excitations are computed for the first time at finite temperature. Lad-
der systems of size 32 × 2 allow to minimize finite size effects and to obtain an improved
momentum-resolution compared to exact diagonalization techniques.

Keywords: quarter-filled ladder, extended Hubbard Holstein model, Quantum Monte
Carlo, Hubbard-Stratonovich transformation, α′-NaV2O5, Lang-Firsov transformation,
Maximum Entropy, dynamic response functions





Kurzdarstellung

In dieser Arbeit werden die niederenergetischen Anregungen des viertel-gefüllten Natri-
umvanadat Leitersystems alpha’-NaV2O5 untersucht. Unter Weiterentwicklung der De-
terminanten Quanten Monte Carlo- und Maximum Entropy Methode wird das Extended
Hubbard Holstein Modell nicht-perturbativ und numerisch exakt behandelt. Erstmals
wird die Lang-Firsov Transformation für eine Quanten Monte Carlo Studie des Hub-
bard Holstein Vielteilchensystems mit Spinfreiheitsgraden entwickelt und implementiert.
Mit Hilfe dieser Basis-Transformation ist es grundsätzlich möglich, schwach korrelierte
Phononen-Konfigurationen zu generieren. Die Erweiterung auf das Vielelektronenmod-
ell mit Spinfreiheitsgraden unterliegt jedoch einem ausgeprägten Vorzeichenproblem und
zwingt dazu, die Kopplung an Gitterfreiheitsgrade auf höchstens statische Auslenkungen
zu beschränken. Die Technik des parallel Tempering wird für eine Architektur paral-
leler Rechner implementiert. Mit ihrer Hilfe ist es möglich, Natriumvanadat bei tiefen
Temperaturen effizient zu simulieren. Die Spektren dynamischer Korrelationsfunktio-
nen und die Ladungsordnung des extended Hubbard Modells werden schlielich erstmals
bei endlicher Temperatur berechnet, für Systeme der Gröe 32x2. Verglichen mit den
Möglichkeiten der Exakten Diagonalisierung weisen die Resultate geringere Finite-Size
Effekte und eine deutlich bessere Impulsauflösung auf.

Schlüsselworte: viertelgefüllte Leiter, extended Hubbard Holstein Model, Quan-
tum Monte Carlo, Hubbard-Stratonovich Transformation, α′-NaV2O5, Lang-Firsov Trans-
formation, Maximum Entropy, dynamische Antwortfunktionen
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Introduction 1
”Apart from the theories of superconductivity and plasma oscillations, the application of
many-body theory to solids had, up to that time, led to nothing striking ...

But here we had something entirely different: the correlations might sometimes be
determining the actual nature of the solid.”

J. Hubbard reflecting about the work on his model

April 22, 1980, IBM Research Laboratory, San Jose, CA

Indeed, they do! Strong correlations in solids trigger phenomena from high temper-
ature superconductivity to colossal magneto resistance. Even nowadays, decades after
their experimental discovery, they puzzle theorists.

Condensed matter theory aims at the description and analysis of phenomena found in
experiments. This includes the development of new efficient models, as well as methods
and algorithms for analytical and numerical treatment. The combination of analytical
framework and computational skills bears powerful tools for exploring physics. The
goal of computing in physics is not only to benchmark analytic approaches, but also
to develop an unbiased approach, capable of treating intermediate regions of parameter
space.

The quantum theory for solids found its first application in the classification of
crystals into metals and insulators as a function of the occupation of the electronic bands.
Band theory led to a technically mature approximation, where electrons become quasi-
particles which can be described under the influence of an effective potential originating
from all other electrons. This effective one-particle problem results in corresponding
energies taking continuous values on some distinct intervals, constituting the bands.

While electronic phenomena in crystals have been successfully described in many as-
pects, this approximation is no longer valid for compact electron configurations where the
large Coulomb repulsion or strong attractive interactions become predominant over the
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1 Introduction

kinetic energy. De Boer and Verwey [1] reported that many properties of the transition-
metal oxides are in total disagreement with these band structure calculations. Their
partially occupied bands indicated a metallic behavior, but to the contrary, these ma-
terials are insulators. Mott and Peierls [2] argued that this might be the effect of the
repulsive Coulomb interaction between electrons on the orbitals, which has not been
taken into account in the calculations. Indeed they found that the repulsion opens a gap
larger than the bare electron bandwidth. In this case the electronic band structure splits
up into narrow bands, which leads to new effects giving rise to rich phase diagrams with
various competing correlations.

A prominent example of such an effect, the charge order or the formation of an
ordered pattern of ion charges in low dimensional quantum systems, has been known
since the discovery in the Fe3O4 mangnetite in the early 40’s [3]. Compounds with
similar phenomena attract attention with the interest to find the driving force behind
these transitions. They represent a challenge to theoretical physics due to the complex
interplay of charge, spin, orbital and lattice degrees of freedom.

A particular interesting class of these compounds are the low dimensional vanadates,
where active spins are confined to the vanadium sites. These materials are realized in a
variety of different structures exhibiting many different electronic and magnetic proper-
ties. Despite their simple structure, solutions of models with realistic parameters are not
yet available. Analytical methods like perturbation theory or mean field considerations
provide reasonable approximations to those systems, but most of the time they cannot
treat the large Coulomb repulsion effectively. Instead, numerical methods like Exact
Diagonalization, Quantum Monte Carlo or Density Matrix Renormalization Group have
proven to be reliable tools within condensed matter theory of strongly correlated systems.

This thesis aims at the description of the strongly correlated compound sodium
vanadate and its simulation. At first we will give a brief overview of the properties and
history of the strongly correlated α′-NaV2O5 which will be the particular topic here.
The second chapter is dedicated to the model description appropriate to the compound’s
properties and the Lang-Firsov transformation, important for the improved numerical
treatment of the model. Chapter 3 contains the numerical framework necessary for
the simulation. The algorithm used as well as improved computational methods are
introduced. In chapter 4 we deal with the basic theoretical elements of the operators of
interest,the discussion of methods used for the analysis of the produced data and some
theoretical background for their interpretation. We end with a summary and conclusion
in chapter 6 followed by the appendices dealing with technical details and add-ons.
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1.1 Sodium vanadate
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Fig. 1.1: Left: front-view of one ladder and two half ladders in two layers of α′-NaV2O5 built up by
Vanadium atoms centered in O5 pyramids. White balls indicate the positions of the oxygen atoms, black
balls vanadium sites – the sodium doping is not indicated and would lie between the layers next to the
pyramid’s bottoms; right: top-view, the vanadium sites of two legs are not visible due to congruent lying
oxygen atoms.

1.1 Sodium vanadate

α′-NaV2O5 [4] is an interesting example of a layered insulating compound. While the
system can be described by an effective S = 1/2 anti-ferromagnetic Heisenberg-chain
with coupling J = 560K for a wide temperature range, it undergoes a phase transition
with the onset of charge order and a spin-Peierls-like spin gap formation. For this
reason this compound has attracted attention since the report by Isobe and Ueda [5] in
1996. Charge order, a spin gap and therefore a drop-off of the magnetic susceptibility
below 34K are the results of an interplay of on-site-, nearest-neighbor inter-site Coulomb
repulsion and lattice dimerization. The system allows to investigate the homogeneous
and the dimerized state of a quantum spin-ladder as a function of temperature and
couplings.

Further experiments have shown that there may actually be two second order phase
transitions close to each other1. The first one is accompanied by a logarithmic peak in
the specific heat interpreted as a spin-Peierls-Ising transition causing charge ordering
and super-exchange dimerization. The second one separated by ≈ 0.3K is of mean-field
character and possibly a pure spin-Peierls transition triggered by increasing coupling
constants due to charge ordering [6, 7, 8].

The α′-NaV2O5 compound is one of the five reported bronze phases of the NaxV2O5

1In this context second order is used to describe a continuous transition.
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1 Introduction

Fig. 1.2: Top view of each three ladders indicated by the dashed line Left: in-plane orbital alignment of
the effective vanadium- and oxygen-sites according to [9]. Center: schematic crystal structure according
to [5]. Right: site model with indicated charge order and inter-ladder coupling from [10]

system [4]. For different dopings these are α (0 < x ≤ 0.02), β (0.22 ≤ x ≤ 0.40),
α′ (0.70 ≤ x ≤ 1.00), η (1.28 ≤ x ≤ 1.45), χ (1.68 ≤ x ≤ 1.82). Throughout this work we
concentrate on the α′-phase and therefore we drop the identification of the phase. Its
crystal structure consists of layers built up by VO5 square pyramids illustrated in the
model in Fig. 1.1. The crystallographic vanadium sites are located in the base-plane of
the oxygen-pyramids. If the super-exchange via oxygen along the a- and b-axis are taken
as the dominant exchange paths, the compound may be understood as an arrangement
of weakly coupled two-leg ladders, described in more detail below.

The sodium atoms form chains lying between the VO5 layers and act as charge
reservoir. The coupling in c direction – responsible for the interaction between the
layers – is very weak. Thus the properties of this compound are mainly determined by
the VO5 layers and their quasi one-dimensional ladders. Nevertheless, the coupling in c
direction may be crucial for the successful description of some effects.

At room temperature first measurements indicated a non-centrosymmetric structure
Pmn21[11, 12] . However, NMR-measurements [13] and X-ray diffraction, neutron scat-
tering [14] show the centrosymmetric structure Pmnm with equivalent vanadium sites.
This implies a formal valence of 4.5+ which comes as a surprise in view of the insulating
properties. Horsch and Mack explained this behavior by showing that the molecular
orbital state of one electron on a rung of two vanadium sites is the key element of
the electronic structure [9]. Dagotto and others [15] explain the insulating properties
via the combination with the strong local Coulomb-repulsion which confines the formal
charges of the vanadium ions to 4+ and 5+. As formally only one electron (spin) per
two vanadium sites is available the ladders are quarter-filled [16].
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1.2 General properties of ladder-systems

Below TSP the sites become inequivalent and split into V4+, V5+ oxidation states
doubling the unit cell [17, 18]. Fig. 1.2 illustrates the VO5 pyramids, the corresponding
molecular orbits (left) and two charge order scenarios (A, B). The corresponding other
two charge ordered states (A’, B’) are their antisymmetric counterparts. The structure
of the low-temperature phase is still under discussion. The acentric Fmm2 point group
is a proposal and is built up by alternating distorted and non-distorted charge-ordered
chains. However, a corresponding V4.5+-site is not observed in [13, 19]. Also theoret-
ical investigations [20] propose Fmm2 as average space group as a result of stacking
disorder. Recent experimental investigations by Ohwada and others [21] confirm this
assumption. Following [20], the lattice parameters of the basic structure at 15K are
a = 11.294Å, b = 3.604Å and c = 4.755Å. The super-lattice can be described by an
F -centered orthorhombic (cubic, distorted) 2a × 2b × 4c super-cell.

A detailed representation of the structural and magnetic properties of the sodium
vanadate is given by Lemmens et al [4].

1.2 General properties of ladder-systems

Inspite of their simple structure, ladder systems feature several reasons for theoretical
interest. First of all, real ladder-materials do exist, mostly known in materials related
to high temperature superconductors. A better understanding of the mechanisms and
dynamics in ladder-materials may prove helpful for understanding the nature of high
temperature superconductivity [22]. Ladder-like materials provide a good way to study
the crossover from one- to two-dimensional systems, where the extensive knowledge
about single chains can be of use.

The general ground state properties of spin-ladder systems can be summarized as
follows. While even numbered legged ladders exhibit a spin-gap at half filling (one
electron per site), the ground-state of odd numbered coupled chains is given by weakly
coupled doublets forming a gapless phase [23]. For the 2-leg ladder it is assumed that
its ground state is a close realization of the resonating valence bond state proposed by
Anderson in the context of high-Tc superconductivity [24]2.

The qualitative behavior of two leg spin-ladders, can be understood in the rung-
picture, advocated by Dagotto, Rice [23] and others. The rungs can be seen as the
elements of a loose chain in the case of favored charge transfer perpendicular to the
ladder. For example the behavior of the antiferromagnetic S = 1/2 Heisenberg ladder can
be well reproduced by a antiferromagnetic S = 1 Heisenberg chain at some commensurate
fillings.

2The resonating valence bond state is a linear superposition of spin singlet pairs spanning different
ranges.
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1 Introduction

Spin-ladders seem to be very similar to chains in the thermo-dynamical limit at first
sight and indeed, in many cases their magnetic behavior can be described by effective one-
dimensional spin models. However, due to their different exchange topology, they exhibit
strongly differing behavior from their one-dimensional counterparts in their electronic
degrees of freedom.

These properties make ladder systems an interesting laboratory for studying the
effects of various parameters in pairing-mechanisms and quantum-fluctuations.
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Modeling

the ladder system 2
The challenge is to design an appropriate model to simulate the physics of interest. Even
though in the real compound the system is built up by a giant number of particles, models
consisting of a limited number of degrees of freedom can be taken to reconstruct their
distinct behavior. Despite of simplifications, most of the models cannot be evaluated
analytically exactly, but preferably by perturbative approaches or numerical methods.

In this chapter we introduce the basic models, give a brief overview of their properties
and the needed parameters for the model description of sodium vanadate. At the end we
discuss the unitary Lang-Firsov transformation to prepare the Hamiltonian for improved
numerical investigation.

2.1 Light transition-metal d-electron systems1

A common characteristic of many strongly-correlated compounds is the essential contri-
bution of the transitional-metal 3d orbitals to the electronic properties. The physics of
electronic transport and fundamental excitations takes place near the Fermi surface.

Collective modes and excitations can be only formed by unpaired electrons, thus
one neglects fully occupied orbits. The bands in transition-metal compounds are mainly
formed by the overlap of d-orbitals in the crystal. Because of the small radius of the wave
function compared to the lattice constant this overlap is often realized via ligand oxygen
p-orbitals resulting in effective transfer integrals for the electrons. The small overlap and
the indirect bridged transfer leads to narrow bandwidths, thus rather isolated Wannier
orbitals are a valid approximation. Because of the small spatial extent they retain much
of their initial atomic properties such as the strong Coulomb repulsion between two
electrons on the same ion. This unscreened short-ranged repulsion makes the correlations
play a predominant role in the underlying physics.

1In this section we basically follow reference [25].
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2 Modelling the ladder system

The 3d orbital has total angular momentum L = 2 and therefore fivefold degeneracy
(Lz = 2, . . . ,−2) for each spin direction. This tenfold degeneracy is lifted through the
strong influence of the crystal field leading to fourfold degenerate eg and sixfold t2g

orbitals in cubic lattice structure. The latter degeneracy is lifted again through the
adjacent oxygen orbitals in orthohombic crystals. Their tendency to negative valence
results in larger amplitudes of the wave function away from the neighboring atoms and
is represented by dxy, dyz and dzx wave functions. The orbital structure is illustrated in
Fig. 1.2.

Valence electrons in the sodium vanadate are restricted to narrow bandwidths in
the twofold degenerate dxy orbitals. They are therefore highly affected by local and
inter-site Coulomb interactions but screened off from other influences. The px and py

orbits of the closely located oxygen atoms are considered via effective exchange couplings
and probably have not to be treated separately according to Horsch and Mach [9]. The
system can therefore be simulated as a discrete lattice, where electrons are located on
its sites.

2.2 Requirements on the model

For a given compound almost all electronic parameters such as hopping matrix elements
and electron correlations but also lattice-force constants and electron-phonon couplings
can be extracted from band-structure calculations.

The first-principles investigations by Spitaler et al [26] and Smolinski et al [16] un-
derline the quasi-one-dimensional behavior of α′-NaV2O5: as a result of the strong
anisotropy of the sodium vanadate crystal, its two-dimensional layers are approximately
independent of each other. Within the plane the ladders are weakly coupled, thus we
will restrict ourselves (and are still numerically restricted) to study the dynamics of a
single ladder. Although the couplings in-plane and in-space are very weak, the distinct
behavior of the compound may emerge from these couplings as long range order evolves
in the ladders. These modes may renormalize the inter-ladder and following the inter-
layer couplings in favor of an overall global behavior. Owing to the properties obtained
by experiments, we expect from an appropriate model

• to involve itinerant charge carriers with spin and the coupling to phononic de-
grees of freedom as well as large Coulomb repulsion terms for local and nonlocal
interactions in order to satisfy the d-orbital electronic properties;

• to exhibit a transition from a disordered to a charge-ordered state with decreasing
temperature, or increasing coupling;
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2.3 Fermions on a lattice - the Hubbard model

• to show an anti-ferromagnetic-Heisenberg-chain-like behavior in the high temper-
ature regime;

• to exhibit a gap in the spin excitation spectrum in the low temperature phase;

• to be treatable in an unbiased, non-perturbative and numerically precise way with
controllable errors.

As a fact of the first-principles investigations [26, 16] a Hubbard-like model including
phonons should be appropriate to render the features of the α′-NaV2O5. The Hubbard
model established itself as the most popular generic model for strong Coulomb interaction
(and high temperature superconductivity). The interaction between lattice vibrations
and electrons can be handled via the Holstein interaction.

2.3 Fermions on a lattice - the Hubbard model

The simplest model describing itinerant, interacting fermions with large Coulomb re-
pulsion is the single band Hubbard model [27]. It describes unpaired electrons by the
Hamiltonian in second quantization

HH = −
∑

<ij>,σ

tij

(

c†iσcjσ + c†jσciσ

)

+ U
∑

i

ni↑ni↓ , (2.1)

with niσ = c†iσcjσ. The first term describes the kinetic contribution of the electrons
which gain the energy tij (the transfer integrals) via hopping between lattice sites. The

symbol <ij> represents the nearest neighbor pairs and the fermionic operator c†iσ (ciσ)
creates (annihilates) an electron at site i with spin σ. The second term represents the
local Coulomb interaction which contributes the amount U to the Hamiltonian in case
two electrons with spins σ,−σ are located at the same site i. In physical means this,
e.g., gives account to the large Coulomb repulsion of two electrons in a single d-orbitals.
In one dimension the model is exact solvable via the Bethe-Ansatz [28, 29] and does
not show any quasi-particle excitations near the Fermi-surface. Its low energy physics is
defined by collective modes namley spinons and holons (spin- and charge-fluctuations).
The two- and higher dimensional Hubbard model is not (yet) exactly solved for infinite
system sizes. Despite the simplicity of the Hubbard model it is not fully understood
[30].

For negative values of the coupling (U < 0) one has the attractive Hubbard model.
Physically, the local attraction can have its origin in the coupling to polarons or local
phonons. For values of U > 0 the local interaction is repulsive. Then, as a consequence
of virtual hopping of two anti-parallel spins, the model favors anti-ferromagnetic order.

9



2 Modelling the ladder system

Fig. 2.1: The parameters of the (extended) Hubbard model in two dimension with the transfer inte-
gral t, on-site interaction U , inter-site coupling V and effective super-exchange coupling JU = 4 t2/U ,
JV = 4 t2/V for on-site and inter-site constellations, respectively.

Although double occupation is charged with the amount U , hopping electrons contribute
−tij to the Hamiltonian. This so-called super-exchange can be expressed as effective
coupling J = 4 t2/U 2 and is illustrated in Fig. 2.1. In the tight-binding (or Fermi-gas)
limit U = 0 the Hamiltonian (2.1) describes free particles and becomes diagonal in
k-space. The atomic limit (t = 0) – where no charge transfer exists – reduces the
Hamiltonian to a single site problem, now diagonal in position space. The infinite-U
limit is subject of the Nagaoka-problem, which is only exactly solvable in the cases of
one dimension or a single hole in the half-filled band at arbitrary dimensions [31]. The
classification of the phase-transition and phase-boundaries of the model are discussed by
Watanabe and Imada [32].

Hubbard’s simple model has lead to genuinely new results. But, unfortunately, it
did not provide a solution to its original problem of localized versus itinerant behavior
in metallic ferromagnets3. The Hubbard model is as fundamental to quantum sys-
tems as the Ising model to classical statistical physics. It characterizes the essentials of
phenomena like filling- or bandwidth- controlled Mott-Metal-insulator transition, BCS-
superconductivity, high temperature superconductivity, heavy fermions, fullerenes or
liquid helium (or is assumed to do so) [30].

2.4 Extended Hubbard model

The denomination extended Hubbard model is used for a variety of different extensions
to the pure Hubbard Hamiltonian. In our case, the latter is enhanced by an inter-site
(nearest neighbor) Coulomb interaction term. Depending on the filling of the system

2derived from the large-U limit of the Hubbard model resulting in an effective t-J-model [31].
3Originally designed for the description of ferromagnetism, the Hubbard model does describe ferromag-

netism, except only in some super-special cases of parameters and lattice types [30]
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2.4 Extended Hubbard model

this repulsive interaction can be the dominating quantity. The Hamiltonian is given by

HEH = −
∑

<ij>,σ

tij

(

c†iσcjσ + c†jσciσ

)

+ U
∑

i

ni↑ni↓ + V
∑

<ij>

ninj , (2.2)

with ni = ni↑ +ni↓. The inter-site Coulomb repulsion term is the product of the nearest
neighbor density operators ni. The term will contribute to the Hamiltonian in case the
sites i and j are each occupied by at least one electron.

1D properties

For the one-dimensional case at zero temperature and below half-filling the inter-site
Coulomb repulsion leads to a quantum phase transition – a charge ordered state below
a finite critical Vc. This type of extended Hubbard model exhibits phenomena like a
charge- to spin-density-wave-transition (CDW, SDW) [33, 34]

Recent analyzes show that the quantum phase transition from SDW- to CDW-phase
incorporates a bond-ordered (or dimerized) BOW-phase at a small intermediate region
at half-filling which is possibly of Kosterlitz-Thouless type (see Fig. 2.2). Where its
existence has been clarified, the form of the phase boundaries is still under discussion
[35, 36, 37].

In one dimension and for U → ∞ the extended Hubbard model reduces to the prob-
lem of spinless fermions with nearest-neighbor interaction, which can be solved exactly.
The case of the 1D extended Hubbard model at quarter-filling (n = 1/2) corresponds to
a half-filled band of spinless fermions with a metal-insulator transition at V = 2t. For
V � U and off quarter- or half-filling the system is of metallic kind. The spinful case for
any filling in the limit V → ∞ the model reduces to the problem free spinless fermions,
since the double occupancies cannot decay. In consequence, the spin of unpaired elec-
trons is irrelevant because they cannot be nearest neighbors. For more details and exact
solutions we refer to [30].

Ladder properties

In Sec. 1.2 we stressed that for strong anisotropic hopping, ladders may be seen as chains
of rungs. Though this applies to several physical quantities, the T = 0 phase diagrams
of the one-dimensional- and the ladder-can severely differ. To illustrate the difference
between the half-filled one-dimensional and the quarter-filled quasi-one-dimensional (lad-
der) system, their schematic ground state phase diagrams are plotted in Fig. 2.2. They
exhibit definitely different behavior due to the additional spatial freedom for the elec-
trons in the ladder. The ground state phase diagram of the quarter-filled chain instead,
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2 Modelling the ladder system

Fig. 2.2: Schematic ground state phase diagrams in the U-V-plane of the extended Hubbard model
(half-filled) in one dimension (left) following Ref. [37], in the isotropic quarter-filled ladder (center), in
the anisotropic quarter-filled ladder (right), according to Ref. [38]. Phases are indicated by SDW, CDW,
BOW (see text), CDWsg (charge density wave with spin gap; phaseboundary could not be determined
with DMRG - indicated by the questionmark), PS (phase separation), MI (Mott-insulator) and COI
(charge-order-insulator). The COI phase incorporates anti-ferromagnetic order of the rungs along the
ladder.

looks similar to the ladders’s. A BOW region at the phase boundary from Mott insulator
(MI) to charge-order insulator (COI) has not been found yet.

2.5 Coupled fermion-boson system - the Holstein model

Phonons are expected to play an important role in strongly correlated electron systems
like sodium vanadate [10, 39]. They affect the electronic behavior in diverse ways, such
as causing shifting in temperature dependence of observables, an effective attractive
electron-electron interaction, or fully changing the physics in the system, depending on
the electron-phonon coupling. The Holstein model has been introduced in the late 1950s
[40] in order to study electron-phonon interaction in molecular crystals. It describes the
local interaction between dispersion-less optical (Einstein) phonons and the density of
electrons at a given lattice site. The Hamiltonian takes the form

HHO = −
∑

<ij>,σ

tij

(

c†iσcjσ + c†jσciσ

)

+
∑

i

(
p2

i

2M
+

k

2
x2

i

)

− α′∑

i

nixi , (2.3)

where k denotes the spring-constant and M,pi and xi denote the mass of the vibrating
ions, their momenta and their coordinates, respectively. The phonon degrees of freedom
are equivalent to local harmonic oscillators coupled to the electron density at each site
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with coupling strength α′. The Hamiltonian in second quantization reads

HHO = −
∑

<ij>,σ

tij

(

c†iσcjσ + c†jσciσ

)

+ ω0

∑

i

a†iai − g
∑

i

ni

(

a†i + ai

)

. (2.4)

Here c†iσ (a†i ) denote fermionic (bosonic) creation operators of spin-σ electrons (phonons)
and i is the Wannier site index again. The free phonon energy is given by the angular
frequency ω0 =

√

k/m (~ = 1) and the electron-phonon coupling g is defined related
to α′ via g = α′/

√
2Mω0. The phonon operators in second quantization are related to

their counterparts in first quantization via

ai =

√

Mω0

2
xi + i

√
1

2Mω0
pi , a†i =

√

Mω0

2
xi − i

√
1

2Mω0
pi (2.5)

and, equivalently,

xi =

√
1

2Mω0
(a†i + ai) , pi = i

√

Mω0

2
(a†i − ai) . (2.6)

A common definition is the dimensionless parameter λ related to the electron-phonon
coupling g via λ = 2g2/ω0W , where W is the free electron bandwidth. For small coupling
λ and small frequencies ω the model is treatable via weak-coupling perturbation theory
– the opposite with large λ, ω via perturbation theory with the help of the Lang-Firsov
transformation (see Sec. 2.9). For the intermediate regime only numerical techniques
are applicable, e.g., exact diagonalization, or Quantum Monte Carlo are applicable [41,
42, 43].

Einstein phonons are justifiable for models of realistic compounds in case the com-
pound’s phonon modes show only vanishing dispersion. An analytical description of the
model is given by the Migdal-Eliashberg theory, however, it suffers from quantitative
deviations because of missing interaction terms (vertex corrections) and does not fit to
one-dimensional systems, where the phonon energies become of the order of the free
electron bandwidth.

Polarons

Coupling electrons to phonons can lead to the formation of quasi-particles (termed po-
larons after Landau in 1933) in form of charge carriers dressed with a cloud of approx-
imately localized coherent phonons. Depending on the coupling to the electrons λ and
the retarded action, these quasi-particles can be blurred over several sites or localized
at a single site. For small λ the electrons are dressed in a coherent multi-phonon-cloud
simply causing a shift in potential energy. With increasing coupling they mediate an
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2 Modelling the ladder system

effective attractive potential by renormalizing the transfer integral tij in the hopping
term. As the coupling changes the system behavior, the ratio to the phonon frequency
becomes crucial. At coupling λ < 1 and the ratio λ/ω0 < 1/2 quasi-particle (Bloch-like
states) form and the phonon cloud surrounding the electron gives rise to an increased
effective mass of the particle, limiting its bandwidth. On the other hand, for λ > 1
and λ/ω0 > 1/2, the electrons become trapped in their self-induced lattice distortion,
usually called small polaron. In general, polaronic effects become more dominant for
small phonon frequencies ω0 → 0 [43].

2.6 Extended Hubbard Holstein model

Combination of the extended Hubbard model and the Holstein model results in the
extended Hubbard Holstein model (EHHM), which is the model we use for our investi-
gations. The Hamiltonian is given by

HEHH = −
∑

<ij>,σ

tij

(

c†iσcjσ + c†jσciσ

)

+ U
∑

i

ni↑ni↓ + V
∑

<ij>

ninj

+ ω0

∑

i

a†iai − g
∑

i

ni

(

a†i + ai

)

. (2.7)

As for the Holstein model, in certain parameter regimes, it is energetically favorable for a
second electron to remain close to a first electron rather than to distort another portion of
the lattice structure. Thus the phonons induce an effective attraction between electrons.
Typical energy-scales of electrons (O(1eV)) and phonons (O(10meV)) put close the
assumption that the phonons affect the system only in form of small fluctuations. Indeed,
as a consequence of the strong correlations, the bandwidths are renormalized to a regime
where the influence of the phonons becomes non-negligible.

Fully quantum mechanical treatment of lattice fluctuations in systems with finite
electron density has so far received little attention. The reason for this is that such cal-
culations face severe difficulties handling electron-phonon coupling together with strong
electron-electron repulsion and their parameter range is heavily restricted. Perturbative
studies are restricted to weak, strong, or adiabatic coupling limits and numerical treat-
ment is very delicate. Where Quantum Monte Carlo (QMC) is handicapped by long
autocorrelation times, exact diagonalization techniques (e.g., ED, DMRG) are limited
within a certain number of degrees of freedom (details will be given in the following
chapter).
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2.6 Extended Hubbard Holstein model

Fig. 2.3: The generic ladder-model with indicated transfer integrals along and perpendicular to the
ladder ta, tb, on-site and inter-site Coulomb couplings U , V , respectively, and electron-phonon coupling
λ.

Polarons and Bipolarons

Depending on the relative strength of the phonon-mediated attraction and the Coulomb
repulsion, pairs of electrons may form bonding states called bipolaron. This quasi-
particle may consist of two electrons in either a singlet or a triplet state depending on
their individual spin alignment. While the singlet consists of two electrons of opposite
spin on one site, the triplet lies energetically above the singlet and is usually spread over
at least two sites due to the Pauli-exclusion principle.

For small electron-phonon couplings λ (see Sec. 2.5) and large U neither the Hubbard-
Holstein model (HHM) with V = 0 nor the EHHM is expected to form bound bipolarons.
In contrast to the HHM, where the attractive interaction mediated by phonons favors
bound singlet bipolarons with increasing λ, in the EHHM the inter-site Coulomb repul-
sion competes with the attractive potential. This leads first to bounded singlet bipo-
larons and for strong coupling to a state of coexisting bounded singlet- and bounded
triplet bipolarons. The renormalized masses of the polarons and bipolarons become
smaller with increasing on-site-repulsion U , which probably makes them more mobile.
The HHM shows a transition from a bipolaron state to an unbound polaron formation
at a critical value of U . In contrast, the polarons in the EHHM remain bounded even in
the limit U → ∞.

Since we will not primarily focus on the polaron and bipolaron formation in the
EHHM within this work, we refer the interested reader to the references [43, 44, 45, 46,
47].
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2 Modelling the ladder system

2.7 Symmetries of Hubbard models in low dimensions

The application of the theory of groups and their representations for the exploitation
of symmetries in quantum mechanics allows consideration of model properties and their
behavior in case of symmetry breaking. Their knowledge also allows improved numer-
ical treatment, especially important in exact diagonalization techniques to efficiently
minimize the number of states needed to be saved, or the sampling in Monte Carlo sim-
ulations. The group transformations are mathematically represented in the state space
by operations relating the states to each other. The quantum mechanical analogues are
operators acting on the state space, which correspond to the physical observables. Any
state of a physical system can be described as a superposition of states of elementary
systems and that is, of systems with states which transform according to the irreducible
representations of the symmetry group. The interpretation of symmetry breaking and
its transition allows the classification of models and their critical exponents.

The one-dimensional Hubbard model has infinitely many conserved quantities and
is integrable. The non-integrable higher dimensional Hubbard models have only a few
known symmetries. On regular (bipartite) lattices with periodic boundary conditions,
the general class of Hubbard Hamiltonians has some or all of the following symmetries
and invariances:

• SU(2) spin rotational invariance at half-filling – conservation of total spin under
global spin-rotations (the generators of the SU(2)-algebra).

• SU(2) charge rotational invariance – charge conservation (in the case of symmetric,
non-frustrated hopping).

• U(1) phase symmetry – evidently in every particle quantum system (at commen-
surable filling) an arbitrary phase factor of the wave function leaves observables
invariant. In the U(1)-broken state the group reduces to a SU(2) s-charge density
wave (known in the context of superconductivity).

• Particle-hole symmetry – the transformation of electrons into holes and vice-versa
(at half-filling).

• Parity – site-parity invariance under spatial reflections (in even numbered systems);
spin-parity/chirality invariance under chiral-transformations.

• Free choice of sign of the transfer amplitude t under the transformation

c
(†)
iσ → (−1)i c

(†)
iσ – so that H(t, U, ...) = H(−t, U, ...).

• Translational symmetry – The total momentum on the lattice is conserved.

• Particle number conservation.

• Point symmetry group of the finite lattice – invariance under certain transforma-
tions. The corresponding conserved currents are parity and the quantum number of
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the discrete lattice rotations, which can be considered as a discrete spatial angular
momentum.

The overall symmetry of the Hubbard model at half-filling is given by

SO(4) = SU(2) × SU(2)/Z2 , (2.8)

where the reduction through Z2 is due to the simultaneously integer or half odd-integer
eigenvalues of the z-components of total spin and charge. Several more special cases and
overviews are given in references [30, 31, 48]. The symmetries of the extended Hubbard
Holstein model are discussed in Ref. [49].

There exist some (albeit only a few) rigorous theorems for Hubbard models [50, 51].
The absence of magnetic ordering in one and two dimensions was proven by Ghosh
[52], who extended the Bogoliubov inequality method of Mermin and Wagner [53]. This
assertion is valid for a general class of Hubbard models and forbids the spontaneously
breaking of a continuous symmetry in one or two dimensions at finite temperature (a
thermodynamic phase transition). The theorem of Lieb [54] states for the Hubbard model
that for finite systems at even filling the system has Sz = 0 for total spin and the ground-
state is definite (at half-filling) or trivially degenerated in SU(2) symmetry. Another
rigorous theorem by Koma and Tasaki [55, 56] yields explicit bounds for the decay of
the superconducting and magnetic correlations in one- and two-dimensional Hubbard
models, valid for also for non-local interactions. We will return to these symmetry
considerations when we interpret and justify the simulation results in Sec. 4.5.

2.8 Model parameters for α
′-NaV2O5

We have now chosen an appropriate model reflecting the properties of the α′-NaV2O5.
We need to know now the strength of the Coulomb-couplings, transfer integrals, lattice
force constants and dominant phonon frequencies. With the knowledge of the structure
(spatial alignment and electronic configuration) almost all these parameters (shown in
Fig. 2.3) can be extracted from first-principles band-structure calculations.

We choose the intra-rung transfer integral ta as the system unit of energy which
has been estimated by the LDA calculations done in [16, 26] to be ta ≈ 0.35eV. The
transfer integral along the ladder is tb ' ta/2, which favors intra-rung hopping and the
quasi-one-dimensional magnetic behavior. For the strong on-site Coulomb repulsion we
use U = 8.0ta as estimated in [16]. We assume an isotropic extended Hubbard Coulomb
repulsion which will be left as free parameter. It will be determined within the simulation
so that it causes full (in the sense of quantum mechanics) charge order. The electron-
phonon coupling can be obtained by comparing the cases of the undistorted and distorted
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2 Modelling the ladder system

lattice and is estimated as λ = 0.49ta [26]. Phonon frequencies of dynamical lattice
distortions are given by experiment [57], with the smallest dominant frequencies at
ω0 = 60meV, 125meV, or ω0 = 0.17ta, 0.36ta while their eigenvectors are given by first-
principles calculations [16, 26]. Now, that we have defined the parameters in terms of
ta, we will no longer exhibit the energy unit in the following definitions explicitly.

We will see in the following that the opening of a spin gap cannot be reconstructed
by the model for this distinct set of parameters, but may be a result of lattice vibrations.
A Density Matrix Renormalization study by Vojta and others shows a spin gap in the
EHM for increasing hopping anisotropy [38]. Another possible idea is that the gap in
the magnon spectrum emerges due to a collective mode of a cluster of ladders[58].

2.9 The Lang4-Firsov transformation

Unfortunately, sampling phonon configurations by local updating of the phonon co-
ordinates or momenta leads to tremendous autocorrelation times independent of the
electronic structure. They grow quadratically with decreasing phonon frequency and
temperature. They become problematic at phonon frequencies ω0 < 1 or strong electron-
phonon coupling λ > 1 – the parameters for which polaron effects are large and the
physics is most interesting. These problems can be overcome by applying the Lang-
Firsov (LF) transformation [41] to the Hamiltonian. This unitary transformation sepa-
rates the displacement of the local oscillators from the free oscillator dynamics around
the equilibrium positions. The updating process of the phonons involves for less elec-
tronic contributions and therefore becomes almost independent of the electron-phonon
coupling λ. The transformation does not involve any free parameters and is exact.

This work is, to the best of our knowledge, the first use of the LF-transformation
with a QMC-study of a spinful many-electron Hubbard Holstein model. So far, the
approach has been used in several ED-studies [59, 60, 61] and Hohenadler and others
have intensively investigated the polaron formation in the Holstein model with spinless
electrons [62, 43] and the Hubbard Holstein model with two spinful electrons [63, 64, 43].
Perturbative approaches based on the LF-transformation yield reasonable results for
strong electron-phonon coupling and intermediate or large phonon frequencies ω ≥ 1,
but cannot be extended to the regime of intermediate coupling and small finite phonon
frequencies.

In this section we basically follow Ref. [43]. It is more convenient to express
the phonon variables in Eq. (2.3) in terms of their natural units xi 7→ (Mω0)

−1/2 xi,
pi 7→ (Mω0)

1/2 pi. Setting M = 1, k = ω2
0 and defining α = α′/

√
2 =

√
2g, the Hamilto-

4Unfortunately, NO this is not me!
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nian equivalent to Eq. (2.7) in grand-canonical representation becomes

Hµ
EHH = −

∑

<ij>,σ

tij

(

c†iσcjσ + c†jσciσ

)

+ U
∑

i

ni↑ni↓ + V
∑

<ij>

ninj

+
ω0

2

∑

i

(
p2

i + x2
i

)
− α

∑

i

nixi − µ0

∑

i

ni , (2.9)

where we introduced the chemical potential µ0. The unitary operator of the LF-
transformation is defined as

eS = eiγ
P

i nipi , with S† = −S , (2.10)

where ni is the electron density operator and the operator pi corresponds to the phonon
momentum at site i. The parameter γ depends on the coupling constant and will be
defined in the following. The operator eS satisfies anti-hermiticity so that operators
transform as

A 7→ Ã = eSA e−S . (2.11)

Via the Campbell-Baker-Hausdorff relation for bosonic operators

Ã = eSA e−S = A + [S,A] +
1

2!
[S, [S,A]] + . . . , (2.12)

we obtain the annihilation (creation) operator commutator relations

[S, c†iσ] = i γ pi c
†
iσ , [S, ciσ ] = −i γ pi ciσ . (2.13)

This yields
c̃†iσ = c†iσ eiγpi , c̃iσ = ciσ e−iγpi . (2.14)

The transformations for the displacement and the moment of the oscillator at site i are

x̃i = xi + γ ni , p̃i = pi . (2.15)

With Eq. (2.14) and Eq. (2.15) we can derive the extended Hubbard Holstein Hamilto-
nian (Eq. (2.7)) under Lang-Firsov transformation

H̃µ
EHH = eSHµ

EHH e−S

= eS (Hk + HU + HV + Hosc + He-ph + Hµ) e−S . (2.16)

Since the density operators are not affected by the transformation, only the terms
HK,Hosc and He-ph change

H̃k = −
∑

<ij>,σ

tij eiγ(pi−pj)
(

c†iσcjσ + c†jσciσ

)

(2.17)

H̃osc + H̃e-ph =
ω0

2

∑

i

(
p2

i + (xi + niγ)2
)
− α

∑

i

ni(xi + niγ) . (2.18)
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By choosing the free parameter

γ =
α

ω0
, (2.19)

the coupling term in Eq. (2.18) vanishes. The equation then simplifies to

H̃osc + H̃e-ph =
ω0

2

∑

i

(
p2

i + x2
i

)
− EP

∑

i

n2
i . (2.20)

The first term matches with the untransformed oscillator-term. The term quadratic in
the density operators contains the factor EP = ω0γ

2/2. It emerges as a natural parameter
from the Lang-Firsov transformation and is commonly termed polaron binding energy.
We again use the dimensionless quantity

λ =
α2

ω0W
=

α′2

ω2
0W

=
2 g2

ω0W
, (2.21)

as the electron-phonon coupling constant normalized to the free electron bandwidth
W = 4 tD in D dimensions. This enables one to compare electron-phonon coupling
strengths of systems of different dimension independent of the phonon frequency ω0.
This way we could also have written γ =

√

λW/ω0 in Eq. (2.19) or for the polaron
binding energy EP = λW/2. The quadratic term in Eq. (2.20) can now be written as

−EP

∑

i

n2
i = −EP

∑

i

(ni↑ + ni↓)
2

= −EP

∑

i

ni

︸ ︷︷ ︸

→Hµ

−2EP

∑

i

ni↑ni↓

︸ ︷︷ ︸

→HU

, (2.22)

leading to additional contributions to the chemical potential and the on-site Hubbard
term. The transformed Hamiltonian at last yields

H̃µ
EHH = H̃k + Hosc + H̃U + HV + H̃µ , (2.23)

with the terms

H̃k = −
∑

<ij>,σ

tij eiγ(pi−pj)
(

c†iσcjσ + c†jσciσ

)

, (2.24)

Hosc =
ω0

2

∑

i

(
p2

i + x2
i

)
, (2.25)

H̃U = Ũ
∑

i

ni↑ni↓ , (2.26)

HV = V
∑

<ij>

ninj , (2.27)

H̃µ = −µ̃
∑

i

ni , (2.28)
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2.9 The Lang-Firsov transformation

Fig. 2.4: (a) schematic illustration of the shifting of the oscillator potential in the presence of an electron
in the LF-transformed model. (b) the factor γ as a function of the electron-phonon coupling λ; (c) the real
part of the complex phase eiγ(pi−pj) as a function of the momenta difference ∆p = pi − pj for couplings
of λ = 0.25, 0.5, . . . , 1.25 – see Sec. 3.6.2 for discussion; both figures at bandwidth W = 4 tD = 4.0 and
ω0 = 1.0.

and the effective couplings with the contributions from Eq. (2.22)

Ũ = U − 2EP and µ̃ = µ0 + EP . (2.29)

For the case of U < 2EP this introduces an attractive interaction between electrons on
a site. In a physical view the redefinition of U to Ũ reflects the situation at large phonon
coupling where it is energetically favorable to pay the energy U instead of destroying the
current phononic configuration by electron transfer. Additionally the extension of the
hopping term in Eq. (2.17) by the complex phase factor eiγ(pi−pj) reflects this behavior.

In Fig. 2.4a the shift of the oscillator potential in the presence of an electron is
illustrated. When the lattice is displaced by γ, the harmonic potential of the oscillator
is lowered by the amount of the polaron binding energy EP, 4EP in the case of one, two
electrons on the same site, respectively. The phase depends on the phonon coupling λ
and goes with the square-root γ =

√

λW/ω0. The hopping is damped or even penalized
for increasing momenta-differences as visible in Fig. 2.4b,c.

As shown, the Lang-Firsov transformation removes the electron-phonon coupling
term, introduces a Hubbard-like attractive interaction and extends the transfer integral
by a complex phase.
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Numerical method 3
Numerical methods can no longer be regarded as mere tools to check analytical results,
but represent an alternative way to physics. Simulation techniques are still under devel-
opment – in many cases new techniques are as much a demonstration of an algorithm
as they are an exploration of new physics. Difficulties in performing simulations in-
clude excessive computation time, non-positive definite probability weights that become
negative, non-ergodic behavior and numerical instabilities.

We are dealing with high dimensional integrals and quantum mechanics. The interest
is focused on large system sizes, a wide range of parameters (V , λ, ω0, T ) and most of
all on the dynamical properties of the system. A suitable technique for evaluating the
model is the Quantum Monte Carlo method (QMC) in equilibrium. The QMC is an
approximation-free method which gives exact results up to statistical errors and can
be applied to large system sizes1. Further processing of QMC data via the Maximum
Entropy method allows one to obtain dynamical properties of the model as a function
of real frequency.

In this chapter the principles of QMC applied onto the grand-canonical ensemble
with its benefits and problems will be introduced. Numerical stabilizing techniques as
well as analytic optimization are discussed.

3.1 Quantum Monte Carlo

Classical Monte Carlo (MC) is based on sampling configurations of the partition function
according to a probability weight. This is done by constructing a Markov sequence of
configurations by changing an existing configuration corresponding to the weighting de-
cision introduced by Metropolis and others with respect to the detailed balance condition

1Note, precision and discretization errors of some QMC methods can be arbitrarily reduced limited
only by computation time.
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[65]. This corresponds to replacing the deterministic integral problem by an equivalent
stochastic one. As an example, we want to evaluate the expectation value of a function
f(x) under a proper weight function w(x) ≥ 0, where

〈
f
〉

w
=

∫
dx w(x) f(x)
∫

dx w(x)
. (3.1)

We may obtain this by a summation over a set of points {xi}

〈
f
〉

w
= lim

N→∞
1

N

∑

{xi}
f(xi) , (3.2)

where the points {xi} are distributed according to w. Thus we are exploiting the central
limit theorem by sampling an average to average a sample. Proposing the set of points
as a Markov chain under the condition that the probability to get from point x to x′ is
symmetric (the detailed balance condition), i.e.,

w(x)P (x → x′) = w(x′)P (x′ → x) , (3.3)

guarantees w to be the equilibrium distribution of this Markov process. If w(x) corre-
sponds to the Boltzmann weight exp(−βE(x)) one can accept a new point (configura-
tion), satisfying Eq. (3.3), with the Metropolis probability

P (x → x′) = min(1, exp(−β[E(x′) − E(x)]) . (3.4)

Its main advantage is, that it allows to evaluate phase space integrals (such as thermal
averages) in a time that scales only polynomially with the system size N , although the
configuration space expands exponentially with N [66]. Here, only a brief overview to
the usage of the MC-method is shown – for a comprehensive overview we refer the reader
to the book by Landau and Binder [67].

The statistical mechanics of a quantum system can be described by a path integral
formalism [68]. In the path integral representation, every quantum particle maps onto
a cyclic string. In most path integral simulations like in QMC, the quantum strings are
first discretized and then the sum over all paths is carried out by MC integration. In
general, the d dimensional quantum system is mapped onto a d+1 dimensional classical
system. Introductions to various QMC methods are given by von der Linden [69] and
Evertz [70].

In the present paper the Determinant Quantum Monte Carlo (DetQMC) method
introduced by Blankenbecler, Scalapino and Sugar (BSS) in 1981 is used for the evalu-
ation of the extended Hubbard Holstein model [71, 72, 73]. Part I of the introductory
paper to the BSS-formalism has been published in [74] dealing with field operators and
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gauge fields on the space-time-lattice, where part II published in [75] deals with fermion
operators on sites and bonds. This reflects the similar techniques used in high energy
physics and condensed matter physics. The BSS-style-simulation can also be interpreted
as a coupled fermion-boson system with nonlinear four-fermion interaction and found its
application in the context of the Nambu Jona-Lasinio [76] or Gross-Neveu model (also
thought of as a possible model for high-Tc superconductors [77]).

3.2 Basics and Trotter-decomposition

The objective is to calculate quantum mechanical expectation values of the form

〈
A
〉

=
1

Z tr
(

A e−βH
)

=
1

Z

∫

DΨ e−βH A(Ψ) , (3.5)

where the partition function Z is given by

Z = tr
(

e−βH
)

=

∫

DΨ
〈
Ψ
∣
∣e−βH

∣
∣Ψ
〉

, or Z =
∑

|Ψ〉

〈
Ψ
∣
∣e−βH

∣
∣Ψ
〉

, (3.6)

where β = 1/kBT is the inverse temperature and kB denotes Boltzmann’s constant.
Identifying the inverse temperature as imaginary (Euclidean) time β = i t/~, we can
write the equations in Feynman’s path integral representation

〈
A
〉

=
1

Z

∫

DΨ e−S(Ψ) A(Ψ) , with Z =

∫

DΨ e−S(Ψ) , (3.7)

where S(Ψ) denotes the Euclidean action for all possible configurations of the classical
fields Ψ. Within quantum simulations one generally studies the operator e−βH by writing
each matrix element as a path integral

〈
ΨS

∣
∣e−βH

∣
∣ΨE

〉
=

∑

|Ψ1〉...|ΨL−1〉

〈
ΨS

∣
∣e−∆τH

∣
∣Ψ1

〉〈
Ψ1

∣
∣e−∆τH

∣
∣Ψ2

〉
. . .

×
〈
ΨL−1

∣
∣e−∆τH

∣
∣ΨE

〉
, (3.8)

where the path integral has been discretized in steps ∆τ = β/L and e−βH = e−i t H/~ is
the time evolution operator of the system. The integral is over all paths periodic in
imaginary time, with

∣
∣Ψ
〉

=
∣
∣ΨS

〉
=
∣
∣ΨE

〉
. The kinetic and potential terms in the Hub-

bard Hamiltonian do not commute and therefore cannot be simultaneously diagonalized.
However, we may break-up the Hamiltonian to separate the exponentials – diagonaliza-
tion of the single terms is more easily. In the following we will restrict the treatment

25



3 Numerical method

for simplicity to the extended Hubbard Hamiltonian without phonons which has al-
ready been introduced in Eq. (2.2). The Hamiltonian in grand canonical representation
consists of the parts

Hµ
EH = −

∑

<ij>,σ

tij

(

c†iσcjσ + c†jσciσ

)

+ U
∑

i

ni↑ni↓ + V
∑

<ij>

ninj − µ0

∑

i

ni

Hµ
EH = Hk + HU + HV + Hµ . (3.9)

According to the Suzuki-Trotter decomposition [78, 79, 80] the sum of matrices in an
exponent can be written as

e(A+B) = lim
L→∞

(

e
A
L e

B
L

)L
, (3.10)

where the breakup parameter L discretizes the imaginary-time or Trotter-time into slices
of length ∆τ , which corresponds to the path integral. We apply this decomposition to
the Hubbard Hamiltonian where the discretization leads to a controlled systematic error
for a finite L,

e−βHµ
EH = e−β (Hk+HU+HV+Hµ)

= lim
L→∞

(e−
β
L

Hk e−
β
L

HU e−
β
L

HV e−
β
L

Hµ)L

=
L∏

i=1

(

e−∆τHk e−∆τHU e−∆τHV

+
1

2
β∆τ [[[Hk,HU],HV],Hµ] + β O((∆τ)2tUV )

)

. (3.11)

Within the trace, e.g Eq. (3.5), the term linear in ∆τ vanishes since a trace over a
commutator gives zero. As one can see, the temperature and the systematic error are
controlled by the parameters L and ∆τ . Due to the product over the L slices the error
accumulates to O(∆τ). Some expectation values, defined via Eq. (3.5), only exhibit
errors of order O((∆τ)ν) for ν ≥ 2, as for example the total energy [81]. The finite ∆τ
also plays the role of a high frequency cut-off where 1/∆τ is absorbed in the Hubbard-
Stratonovich transformation described in the next section. High frequencies originate
from the continuous but not differentiable paths in imaginary time,contributing to the
path integral, which cannot be represented by a finite number of degrees of freedom on
a computer anyway. These frequencies contribute negligibly to most observables and
cause no practical limitations in the calculations. In the following we will not explicitly
state the Trotter error.

As a consequence of the Suzuki-Trotter decomposition we are able to write the par-
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3.3 Auxiliary fields

tition function as

Z = tr e−βHµ
EH = tr e−∆τ(Hk+HU+HV+Hµ)

= tr
∏

L

(
e−∆τHk e−∆τHU e−∆τHV e−∆τHµ

)
. (3.12)

Here, and in the further expressions we will drop the order of the error term for simplicity
and keep in mind this systematic error. For a detailed description of the Suzuki-Trotter
decomposition see App. A.1. From now on we distinguish between Monte Carlo time
and Trotter time. The propagation in Trotter time (= imaginary time) represents the
fluctuations of the quantum mechanical system. This decomposition of non-commuting
parts of the Hamiltonian can also be done in continuous imaginary time avoiding the
Trotter discretization error as discussed in App. A.1.

3.3 Auxiliary fields

The DetQMC method is based on the formulation of the interactions of the model
Hamiltonian in terms of auxiliary-fields and is therefore often referred to as Auxiliary-
field-QMC. For comparison of the following description with other works we refer to
[82, 83, 84, 85, 86, 87, 88] – we claim to present here a more continuous introduction to
the DetQMC.

The DetQMC method works in a space of Slater determinants (basis states of Fock
space) which represent the many-body states. Their matrices are built-up by single-
particle base states. In order to carry out the trace in Eq. (3.6) we have to write the

many-body propagator e−βH in single-particle (bilinear) form, hence as A =
∑

ij aijc
†
icj .

This enables us to integrate over the fermionic degrees of freedom explicitly and leaves
a pure bosonic theory. Then we can simplify the trace over the exponential fermionic
operators A,B, . . . to a determinant over the matrices (see Sec. A.2)

tr {e−
P

ij c†i Aijcj e−
P

ij c†i Bijcj . . .} = det
(
1 + e−A e−B . . .

)
. (3.13)

The electron-electron interaction term is of quadratic order in the densities niσ, hence of
quartic order in fermion creation (annihilation) operators. In our favored representation
only linear dependencies are to be used, thus we have to decouple the interaction term.
For the Hubbard model the interaction term HU (not-commuting with the hopping term)

e−∆τHU = e−∆τU
P

ni↑ni↓ (3.14)

can be transformed into bilinear form via the Hubbard- Stratonovich transformation
[89]. The transformation is based on the identity

e
1
2
A2

=
1√
2π

∫

dx e−
1
2
x2−Ax , (3.15)
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3 Numerical method

where the exponential of a square is decomposed by a Gaussian integral. For the
Hubbard-term with attractive interaction (U < 0), repulsive interaction (U > 0) we can
write

U ni↑ni↓ = ±U

2

(

(ni↑ ± ni↓)
2 − (ni↑ + ni↓)

2
)

, (3.16)

thus the transformation is given by

e∆τ U
2

(ni↑∓ni↓)2 =

√

∆τ

2π

∫

dφi(l) e−
∆τ
2

φ2
i (l)+∆τ

√
U(ni↑∓ni↓) φi(l) . (3.17)

This replaces the influence of the electron interactions on the motion of a given electron
by a space- and time-dependent fictitious field φ acting on the electron. Instead of
the continuous auxiliary field in Eq. (3.17), it is more convenient to work with discrete
variables. Motivated by the fact that the fermion occupation is discrete this results in
smaller errors due to the reduced phase space [72]. The transformation reads [90]

exp (−∆τUni↑ni↓) =
1

2

∑

αi=±1

exp

(

λ± αi (ni↑ ∓ ni↓) −
1

2
∆τU (ni↑ + ni↓)

)

, (3.18)

Note that this is an exact identity in the discretized form. The transformation reduces
the quadratic self-interaction of the electrons to a linear interaction with the Ising-like
variables αi. The local Coulomb interaction is now in bilinear form and the trace over
the fermionic degrees of freedom can be taken easily. This rewriting of a many body
problem to a manifold of single particle problems enables us to evaluate the trace in
form of a determinant at the price of introducing an additional sum to be carried out.

For a one-dimensional system of N sites, for each density-density interaction ni(τ)nj(τ)
in space-time an auxiliary field of L Ising variables is introduced. Note, that the Ising
chains for the L time-slices are not perfectly classical systems since they are correlated via
the electron density and therefore reveal – depending on the set of parameters (couplings)
– quasi-world-line behavior. The connection between the world-line and the determinant
functional formulation has been shown by Hirsch in [91]. Back to the transformation,
by inserting all possible occupation numbers into Eq. (3.18) we get

ni↑ ni↓ e−∆τU(ni↑ni↓) = 1
2

∑

α=±1 eλ± α (ni↑∓ni↓)− 1
2
∆τU(ni↑+ni↓)

0 0 1 = 1

1 0 1 = cosh(λ±) e−
1
2
∆τU

0 1 1 = cosh(λ±) e−
1
2
∆τU

1 1 e−∆τU = e−∆τU

and are able to fix the free parameter λ± (which must not be confused with the electron-
phonon coupling). In order to work with real weights one uses λ+ (λ−) for U > 0 (U < 0).
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3.3 Auxiliary fields

The real parameter for the on-site Hubbard interaction is then given by

cosh(λU) = e
1
2
∆τU or λU = 2arctanh

(√

tanh (∆τU/4)
)

. (3.19)

In the case of the nearest neighbor Coulomb interaction HV the Hubbard-Stratonovich
decoupling of the two-body interaction term has to be carried out for all combinations of
the two involved spins (σ, σ′) ∈ [(↑↑), (↑↓), (↓↑), (↓↓)] in niσnjσ′ for all space directions –
hence four times on each lattice bond. The newly introduced auxiliary Ising-fields φx1

σσ′

and φx2
σσ′ , corresponding to the two spatial directions, exist on the bonds between the

lattice sites as illustrated in Fig. 3.1 mediating the inter-site interaction. In this case the
free parameter is given by

λV = arccosh
(

e
1
2
∆τV

)

= 2arctanh
(√

tanh (∆τV/4)
)

. (3.20)

The repulsive on-site (inter-site) Coulomb interaction has been replaced by a mediating
bosonic field α (φσσ′) which couples to the net spin σz

i = (n↑ − n↓)/2. The auxiliary
fields are massless and provide localized instantaneous interactions. Physically, this
amounts to creation of a spin moment in the orbital. A local change in the auxiliary
fields leads to a change in the effective potential of the corresponding site. For negative
U (attractive interaction) the Ising field couples to the local charge-density. It should be
noted that the choice to use the positive solution for λ in Eq. (3.20) breaks the SU(2)
spin rotational invariance for a given configuration of the auxiliary fields which is restored
after summation over the HS-fields within the ergodic MC-process [83]. Instead it may
be convenient to use the negative solution (λ−) with complex weights. However, in the
case of a real-valued computation the positive solution (λ+) is to be favored due to less
computational effort. In appendix A.3 examples for other decoupling-transformations
are given.

Now returning, the partition function in Eq. (3.12) has been changed via the Hubbard-
Stratonovich transformation to

Z = tr
∏

L

e−∆τHke−∆τHµe−∆τHUe−∆τHV

= tr

{ L∏

l=1

e−∆τHk

N∏

i=1

e∆τµ(ni↑+ni↓)

× 1

29

∑

{α(l,i)=±1}
eλUα(ni↑−ni↓)

∑

{φx1
↑↑ (l,i)}

∑

{φx1
↓↓ (l,i)}

∑

{φx1
↑↓ (l,i)}

∑

{φx1
↓↑ (l,i)}

∑

{φx1
↓↓ (l,i)}

× eλVni↑(φ
x1
↑↑

+φ
x1
↑↓

) eλVni↓(φ
x1
↓↑

+φ
x1
↓↓

) e−λVni+1↑(φ
x1
↑↑

+φ
x1
↓↑

) e−λVni+1↓(φ
x1
↑↓

+φ
x1
↓↓

)

}

.

(3.21)
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3 Numerical method

Fig. 3.1: The local and the inter-site Coulomb interaction maps onto Ising-fields αi and φx1

σσ′ , respectively,
via the Hubbard-Stratonovich transformation.

Here, {..} stands for all possible configurations of the auxiliary fields (for simplicity, only
one dimension x1 for the inter-site coupling has been taken into account here). We in-
troduced the chemical potential µ = µ0 − U/2 − nnnV which contains the shift resulting
from the HS-transformations, where nnn denotes the number of nearest neighbors and
µ0 is the standard chemical potential without corrections. To provide a more compact
form we combine the kinetic and the interaction terms separately for each spin σ =↑, ↓
into the single electron propagators

Bσ
l = e−∆τ c†iσ (K)ijcjσ e−∆τ c†iσ (Vσ

l )ijcjσ , (3.22)

where K is the tight-binding-style hopping matrix and the interactions are built-in the
matrices V on all time-slices l. For a two dimensional inter-site interaction the matrices
are

(K)ij =

{
−t for i, j nearest neighbors
0 otherwise

, (3.23)

(Vσ
l )ij = δij{µ +

1

∆τ
σλU α(l, i) (3.24)

+
1

∆τ
λV(φx1

σ↑(l, i) + φx1
σ↓(l, i) − φx1

↑σ(l, i − 1) − φx1
↓σ(l, i − 1)

+φx2
σ↑(l, i) + φx2

σ↓(l, i) − φx2
↑σ(l, i − 1 − nx) − φx2

↓σ(l, i − 1 − nx))} .

We have now expressed the partition function Eq. (3.12) in terms of auxiliary fields

Z =
1

29NL

∑

{α(l)}

∑

{φx1
↑↑ (l)}

. . .
∑

{φx2
↓↓ (l)}

tr

L∏

l=1

B↑
l B

↓
l . (3.25)

The next step is to take the trace over fermions explicitly. Following Hirsch [72] we use
the identity given in Eq. (3.13) and specified in App. A.2 to write the trace as

Z =
1

29NL

∑

{α(l)}

∑

{φx1
↑↑

(l)}
. . .

∑

{φx2
↓↓

(l)}

∏

σ

det (1 + Bσ
L . . .Bσ

1 ) . (3.26)
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3.4 The propagator

Here the matrices Bσ
l = e−∆τ K e−∆τ Vσ

l represent the operators Bσ
l . In this step the

(LN)2-Slater determinant is reduced to N2-matrices via recursion. Alternatively, one
can prove this by working in a coherent state basis with Grassmann variables [74].
Introducing

Mσ [x̌] = 1 + Bσ
L . . .Bσ

1 , (3.27)

where {x} represents all configurations x of the auxiliary fields, we arrive at a formulation
which makes clear the expression determinant Quantum Monte Carlo

Z =
1

29NL
tr
{

detM↑[x̌] · detM↓[x̌]
}

. (3.28)

In this last equality the product of determinants defines an effective density matrix.
To conclude this subsection: we have rewritten the integral over the mixed-fermionic-
bosonic action to a sum over the auxiliary field configurations only, by doing the sum
over the fermions exactly

Z =
∑

{x̌}

∑

fermionic

e−S =
1

29NL

∑

{x̌}

∏

σ

detMσ[x̌] =
∑

{x̌}
wf[x̌] . (3.29)

Here, wf [x̌] denotes the weight for a configuration x̌ = {α, φx1 , φx2} which will be inte-
grated stochastically to obtain the partition function. We will refer to it as the fermionic
weight, although we are left with a sampling over Ising-like degrees of freedom only.

3.4 The propagator

In this section we will deduce the Green’s function in the DetQMC formulation as the
central object in the simulation. The Green’s function will play two essential roles: the
first one is in the importance sampling of the auxiliary fields discussed in the following
section, whereas the second one is in measurements of the electronic degrees of freedom,
which will be the subject of Sec. 4.12.

The matrix elements of the equal-time one-particle Green’s function are [93]

Gσ
ij(τ, τ) :=

〈
ciσ(τ) c†jσ(τ)

〉
= δij −

〈
c†jσ(τ) ciσ(τ)

〉
(3.30)

where
〈
. . .
〉

represents the expectation value over the grand canonical ensemble. Though
Eq. (3.30) is a common notation, the equal-time one-particle Green’s function is indepen-
dent of τ . We will express the Green’s function in terms of the introduced single electron

2According to Wick’s theorem all desired measurements can be derived from the Green’s function [92].
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propagators Bσ
l – similar to the partition function. Following Loh and Gubernatis [82]

we can write the operator c†jσ ciσ as

c†jσ ciσ =
∂

∂h
eh c†jσ ciσ

∣
∣
∣
∣
h=0

=
∂

∂h

∏

abσ′

eh c†
aσ′ Oσ′

abcbσ′

∣
∣
∣
∣
∣
h=0

(3.31)

with the matrix Oσ′
containing only the single nonzero element Oσ′

ab = Oσ
ji = 1. Now the

expectation value of the Green’s function reads
〈
c†jσ(τl) ciσ(τl)

〉
= δij − Gσ

ij(τl, τl)

:=
1

Z
∂

∂h
tr e−(β−τl)Heh c†

aσ′ Oσ′

abcbσ′e−τlH

∣
∣
∣
∣
h=0

=
1

29LN

1

Z
∂

∂h

∑

{αi(l)}
. . .

∑

{φx2
↓↓ (l)}

×
∏

σ′

det(1 + Bσ′

L . . . Bσ′

l+1 ehOσ′

Bσ′

l . . .Bσ′

1 )

∣
∣
∣
∣
∣
h=0

=
1

29LN

1

Z
∂

∂h

∑

{αi(l)}
. . .

∑

{φx2
↓↓ (l)}

∏

σ′,σ′′,σ′′′

det(1 + Bσ′′

L . . .Bσ′′

1 )

×
det(1 + Bσ′

L . . .Bσ′

l+1 ehOσ′

Bσ′

l . . .Bσ′

1 )

det(1 + Bσ′′′

L . . . Bσ′′′

1 )

∣
∣
∣
∣
∣
∣
h=0

(3.32)

Expression Eq. (3.32) represents the expectation value of the Green’s function in the
DetQMC formulation, where

wf[x̌] =
1

29LN

1

Z
∏

σ′′

det(1 + Bσ′′

L . . .Bσ′′

1 ) , (3.33)

is the fermionic weight which has been already defined in Eq. (3.29) and

δij − Gσ
ij(τl, τl) :=

∂

∂h

∏

σ′,σ′′′

det(1 + Bσ′

L . . . Bσ′

l+1 ehOσ′

Bσ′

l . . .Bσ′

1 )

det(1 + Bσ′′′

L . . .Bσ′′′

1 )

∣
∣
∣
∣
∣
∣
h=0

, (3.34)

is the Green’s function for a specific configuration x̌ of auxiliary fields. Here we use
the symbol G instead of G which we use for the operator. Hence Eq. (3.32) can also be
written as

〈
c†jσ(τl) ciσ(τl)

〉
= δij − Gσ

ij(τl, τl) :=
∑

{x̌}
wf[x̌]

(
δij − Gσ

ij(τl, τl)
)

. (3.35)
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The expression in Eq. (3.34) can be simplified via the identity3 ln detA = tr lnA to

δij − Gσ
ij(τl, τl) =

∂

∂h
ln det(1 + Bσ

L . . .Bσ
l+1 ehOσ

Bσ
l . . .Bσ

1 )
∣
∣
∣
h=0

=
∂

∂h
tr ln(1 + Bσ

L . . . Bσ
l+1 ehOσ

Bσ
l . . .Bσ

1 )
∣
∣
∣
h=0

= tr (1 + Bσ
L . . .Bσ

1 )−1Bσ
L . . .Bσ

l+1O
σBσ

l . . .Bσ
1

=
[
Bσ

l . . .Bσ
1 (1 + Bσ

L . . . Bσ
1 )−1Bσ

L . . .Bσ
l+1

]

ij

=
[
1 + (Bσ

l+1)
−1 . . . (Bσ

L)−1(Bσ
1 )−1 . . . (Bσ

l )−1
]−1

ij
. (3.36)

In the last step we used the identity (XY)−1 = Y−1X−1 to multiply out the inverse of
the expression in the parenthesis. The Green’s function at a time-slice l is then given by

Gσ(τl, τl) =
(
1 + Bσ

l . . .Bσ
1 Bσ

L . . . Bσ
l+1

)−1
. (3.37)

This major result enables us to evaluate the partition function by calculating the product
of the single electron propagators Bσ

l of all time-slices for all possible configurations of
the auxiliary fields. As simple as this sounds, note that there exist 25NL configurations
(in one dimension). A typical system treated in this thesis has about 1055,600 possible
configurations (no phonons have been taking into account here), which would correspond
to a 430 × 430 classical 2D-Ising model. This sounds not too bad, but one is confronted
with a product of 160 matrices of sizes up to 128 × 128 and its inverse for each and every
configuration. Computing this product 1055,600 times – that takes a very long time! No
need to despair, cheer up – there is Monte Carlo!

3.5 Single spin-flip and the MC-update

The integration over all configuration of the auxiliary fields has now to be performed
via Monte Carlo. According to the weight wf defined in Eq. (3.33) a Markov-chain
of field configurations is generated. In this stochastic process, the number of samples
needed to obtain reasonably good measurements on the physical system is many orders
of magnitude smaller than the whole configuration space. Let

〈
A(x̌)

〉
be the expectation

value of the operator A for a field configuration x̌ = {α, φx1 , φx2}. The expectation value
in the MC-process is given by

〈
A
〉

=

∑

{x̌} wf[x̌] A(x)
∑

{x̌} wf[x̌]
. (3.38)

3This identity may be formally shown by expanding the logarithm and using the cyclic properties of
the trace.
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An appropriate method to sample new auxiliary field configurations with high acceptance
rates within the MC-process is needed. To compute the fermionic weight wf according
to Eq. (3.33) the determinant of the expensive matrix product of the L Bσ-matrices is
needed. To reduce the effort to determine the weight of a proposal configuration (which
might be rejected) we stick to single spin-flip updates. These updates can be made at
minor costs compared to the evaluation of the matrix products in Eq. (3.33).

For a given auxiliary field configuration the probability R of flipping a single Ising
spin is calculated. R is given by the ratio of the current and the proposed weight of both
configurations.

R =
w′

f

wf
. (3.39)

When the Ising-spin on site j of the on-site Coulomb repulsion field α flips

α(l, j) → α(l, j)′ = −α(l, j) , (3.40)

then the interaction matrix Vl and the matrix Bσ
l change

(Vσ
l )′jj → (Vσ

l )jj ∓ 2σλUα(l, j)

(Bσ
l )′ → (1 + ∆σ

l ) Bσ
l , (3.41)

where we introduced the matrix ∆σ
l containing only one nonzero element

(1 + ∆σ
l )jj = e−2σ λU α(l,j) . (3.42)

The auxiliary fields for the inter-site Coulomb interaction are treated analogous to the
on-site interaction. For a flip

φσσ′(l, i) → φσσ′ (l, i)′ = −φσσ′(l, i) , (3.43)

where σ′ = σ we get the changes

(Vσ
l )′jj → (Vσ

l )jj − 2λVφσσ′(l, i)

(Vσ
l )′j+1,j+1 → (Vσ

l )j+1,j+1 − 2λVφσσ′(l, i)

(Bσ
l )′ → (1 + ∆1 + ∆2) Bσ

l (3.44)

(∆1)mn = (e−2λVφσσ′(l,i) − 1) δmi δin

(∆2)mn = (e2λVφσσ′(l,i) − 1) δm,i+1 δi,n+1 .
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For the case σ′ = −σ the changes are

φσσ′(l, i)′ → −φσσ′(l, i)

(Vσ
l )′jj → (Vσ

l )jj − 2λVφσσ′(l, i)

(Vσ
l )′j+1,j+1 → (Vσ

l )j+1,j+1 − 2λVφσσ′(l, i)

(Bσ
l )′ → (1 + ∆1) Bσ

l (3.45)

(Bσ′

l )′ → (1 + ∆2) Bσ′

l (3.46)

(∆1)mn = (e−2λVφσσ′(l,i) − 1) δmi δin

(∆2)mn = (e2λVφσσ′(l,i) − 1) δm,i+1 δi,n+1 .

The acceptance probabilities can now be calculated via the changes in the Bσ
l matrices.

According to Eq. (3.39) we compare the configuration weights of Eq. (3.33) for a flip of
a single Ising-spin in the α-field

Rσ =
det
(
1 + Bσ

L . . .Bσ
l+1 (1 + ∆σ

l ) Bσ
l . . .Bσ

1

)

det(1 + Bσ
L . . .Bσ

l+1B
σ
l . . .Bσ

1 )

=
det
(
1 + Bσ

L . . .Bσ
1 + Bσ

L . . .Bσ
l+1∆

σ
l Bσ

l . . .Bσ
1

)

det(1 + Bσ
L . . .Bσ

1 )

= det
(
1 + (1 + Bσ

L . . .Bσ
1 )−1

Bσ
L . . .Bσ

l+1∆
σ
l Bσ

l . . . Bσ
1

)

= det
(
1 + ∆σ

l Bσ
l . . . Bσ

1 (1 + Bσ
L . . .Bσ

1 )−1Bσ
L . . .Bσ

l+1

)

= det
(
1 + ∆σ

l (1 − (Bσ
l . . . Bσ

1B
σ
L . . .Bσ

l+1)
−1)
)

= det
(
1 + ∆σ

l (1 − Gσ(τl, τl))
)

. (3.47)

Here, the cyclic rearrangement under the determinant is allowed since only quadratic
matrices with well-defined inverses are involved. The acceptance probability to flip a
spin at site j of the auxiliary field α at time-slice l is determined

R = R↑ R↓ =
∏

σ

(
1 + ∆σ

jj

(
1 − Gσ

jj(τl, τl)
))

. (3.48)

In a similar fashion the acceptance probability for single spin-flips in the φσσ′ -fields for
σ = σ′ is obtained. We drop the Trotter-slice index for simplicity and have

Rσ = det (1 + (1− Gσ) (∆1 + ∆2)) , (3.49)

where expanding the determinant yields

Rσ =
[
1 +

(
1 − Gσ

jj

)
∆1,jj

] [
1 +

(
1 − Gσ

j+1,j+1

)
∆2,j+1,j+1

]
(3.50)

−Gσ
j,j+1 ∆1,jj Gσ

j+1,j ∆2,j+1,j+1 ,

R−σ = 1 . (3.51)
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For the spin-flip in φσσ′ with σ′ = −σ we have

Rσ =
[
1 +

(
1 − Gσ

jj

)
∆1,jj

]
(3.52)

R−σ =
[

1 +
(

1 − G−σ
j+1,j+1

)

∆2,j+1,j+1

]

. (3.53)

Again the acceptance probability R is given by the product of R = R↑R↓, here a bit
more complicated. One can now do a Metropolis- [65] or heatbath-update (or Gibbs
sampler) [67] where the probabilities are given by

Metropolis sampler Heatbath-Gibbs sampler

Pacc = min[1, R] = min

[

1,
w′

f

wf

]

, Pacc = min

[

1,
R

1 + R

]

= min

[

1,
w′

f

wf + w′
f

]

.

(3.54)

The choice of the Metropolis-update guarantees optimal single spin-flip sampling in a
Ising-like system with respect to the autocorrelation time and variance as demonstrated
in [94] and [95]. For both cases the spin-flip is accepted if the probability Pacc is greater
than a uniformly distributed pseudo random number in the interval [0, 1).

The single spin-flip move enables us to generate a cheap (in the sense of computation
time) proposal for a new configuration. We will see in the following that this local
change in the auxiliary field leads to a simple rescaling of the elements of the Green’s
function which as already has been mentioned will be needed for the measurement of
observables. The drawback of the single spin-flip is that consecutive configurations are
highly correlated and independent field configurations are obtained only by skipping a
large number of updates between measurements. More on this problem will be discussed
in Sec. 3.9.1 and Sec. 3.6.2 about nonlocal updating-schemes.

If single spin-flip move at a site on time-slice l is accepted, the Green’s function
changes to4

(Gσ
l )′ =

(
1 + (1 + ∆σ

l )Bσ
l . . . Bσ

1 Bσ
L . . .Bσ

l+1

)−1

= Gσ
l

(
1 + ∆σ

l (Gσ−1
l − 1)Gσ

l

)−1

= Gσ
l (1 + ∆σ

l (1 − Gσ
l ))−1 , (3.55)

where we use the abbreviation Gσ
l for Gσ(τl, τl). The sparse matrix ∆σ

l (1 − Gσ
l ) can be

numerically effectively evaluated with the Sherman-Woodbury and Morrison formulas
[96], which are used to calculate small changes in an inverse of a matrix without invoking
the full machinery of matrix inversion. We use the Ansatz

(1 + ∆σ
l (1 − Gσ

l ))−1 = (1 + x∆σ
l (1 −Gσ

l )) = Q−1 (3.56)

4Eq. (3.55) corresponds to a rearrangement of the Dyson equation (Gσ
l )′ = Gσ

l − (Gσ
l )′∆σ

l (1 − Gσ
l ).
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3.5 Single spin-flip and the MC-update

for the inverse. Since the matrix ∆σ
l consists of a single non-zero element we can easily

evaluate

Q−1Q = 1 = (1 + x∆σ
l (1 − Gσ

l )) (1 + ∆σ
l (1 − Gσ

l )) , (3.57)

which gives us for x = −1/(1 + ∆σ
l (1 − Gσ

l )). We can now update the Green’s function
after a change in the α-field easily by

Gσ(τl, τl)
′ = Gσ(τl, τl) −

∆σ
l

Rσ (1 − Gσ(τl, τl))G
σ(τl, τl) . (3.58)

For a flip made in a φσσ′ -field with σ = σ′ the update is given as (Trotter-slice index has
been dropped on the rhs for simplicity)

Gσ
km(τl, τl)

′ = Gσ
a,km −

(
1 − Gσ

a,k,j+1

)
Gσ

a,j+1,m∆2,j+1,j+1

1 +
(
1 − Gσ

a,j+1,j+1

)
∆2,j+1,j+1

, (3.59)

with Gσ
a,km = Gσ

km −
(
1 − Gσ

kj

)
Gσ

jm∆1,jj

1 +
(
1 − Gσ

jj

)
∆1,jj

,

and for σ′ = −σ we have

Gσ
km(τl, τl)

′ = Gσ
km − ∆1,jj

Rσ

(
1 − Gσ

kj

)
Gσ

jm , (3.60)

G−σ
km(τl, τl)

′
= G−σ

km − ∆2,j+1,j+1

R−σ

(
1 − G−σ

k,j+1

)
G−σ

j+1,m . (3.61)

As we have now proposed a new configuration via, e.g. Eq. (3.48) and updated the
Green’s function via according to NEWG we can process all sites of the auxiliary fields
on the time-slice and are ready to do so as well on the next time-slice. To wrap to the
next (preceding) slice the corresponding Bσ

l matrices have to be applied to the Green’s
function

Gσ(τl+1, τl+1) = Bσ
l+1 Gσ(τl, τl) (Bσ

l+1)
−1 , (3.62)

Gσ(τl−1, τl−1) = (Bσ
l−1)

−1 Gσ(τl, τl)B
σ
l−1 , (3.63)

respectively, which results in a product like given by Eq. (3.37). Now we have all tools
to effectively generate a Markov-chain of auxiliary-field configurations.

The numerical effort is of the order O(N2), whereas the standard matrix product
would be of the order O(N3). Unfortunately, one cannot restrict oneself to calculate
the changes in the propagator this way since the matrices are numerical ill-conditioned
and numerical errors would accumulate very fast updating single matrix elements only.
Thus, the calculation of the Green’s function via direct multiplication of the Bσ

l matrices
is necessary at regular intervals, i.e. every few (∼ 8) time slices. The required number
of these stabilization points needed increases with U and V (latter needs more changes
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3 Numerical method

in the Green’s function and therefore destabilzises the calculation faster) and is set to
preserve numerical accuracy5. By saving partial products from the construction of the
Green’s function, one can severely reduce the computational effort

Gσ(τl2 , τl2) = (1 + Bσ
l2 . . .Bσ

l1 . . . Bσ
1 Bσ

L . . .Bσ
l2+1

︸ ︷︷ ︸

unchanged

)−1 . (3.64)

Let l1 be the last time the Green’s function has been calculated from scratch, only the
four to eight matrices Bσ

l2
, . . . ,Bσ

l1+1 have to be multiplied with the unchanged matrix
product in order to obtain the Green’s function at time-slice l2. The computational effort
for a whole lattice sweep is therefore made up by L · N proposals for new configurations
at the cost of O(N2) plus L standard matrix products of O(N3). Hence, this is an
overall effort of O(2LN3)6. Nevertheless, the updating via single spin-flips is effective
in generating new configurations with respect to computation time, but causes long
autocorrelation times.

We have rewritten the problem of interacting electrons as problem of independent
electrons moving under the influence of a time dependent field. The complex many-body
problem has been reduced to a sum of simple problems. From the basic quantity of the
algorithm – the elementary Green’s function – all possible observables can be calculated
as discussed in Sec. 4.1.1. What is left are the phonon degrees of freedom treated in the
next section. Methods to overcome numerical instabilities and autocorrelation times will
be discussed in the following sections.

3.6 Auxiliary field QMC under Lang-Firsov transformation

We now extend the so far purely electronic DetQMC by phononic degrees of freedom in
form of dispersionless Einstein-phonons treated under Lang-Firsov (LF) transformation.
As described in Sec. 2.9 the LF transformation adds a complex phase to the hopping-
term which has not been taken into account in the QMC-algorithm described so far.
Nevertheless, this drawback which forces us to compute with complex values favors
the use of a spin-symmetry conserving HS-transformation, which is advantageous for
convergence of the MC simulation.

In addition to the decoupling of the oscillators, the LF transformed Hamiltonian
provides a formulation for an efficient MC-update of the phonon degrees of freedom.

5This way, the maximum (mean) deviation of Green’s function matrix elements from numerically exact
values is usually of the order 10−10 (10−12), which is orders of magnitude smaller than the statistical
uncertainty of results.

6Here, no additional needed decompositions have been taken into account. These will be discussed in
Sec. 3.7.
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3.6 Auxiliary field QMC under Lang-Firsov transformation

3.6.1 Changes in the algorithm

In this section we follow the approach for spinless fermions by Hohenadler et al [43] and
extended it to the extended Hubbard Holstein model. Let us recall the extended Hubbard
Holstein Hamiltonian under LF-transformation in grand-canonical representation

H̃µ =
∑

<ij>,σ

tij eiγ(pi−pj)
(

c†iσcjσ + c†jσciσ

)

+ Ũ
∑

i

ni↑ni↓ + V
∑

<ij>

ninj

+
ω0

2

∑

i

(
p2

i + x2
i

)
− µ̃

∑

i

ni , (3.65)

with the effective couplings Ũ = U − 2EP and µ̃ = µ0 − U/2 − nnnV + EP. Apply-
ing the Suzuki-Trotter decomposition we can write the EHH Hamiltonian under LF-
transformation as

e−βH̃µ ≈
(

e−∆τH̃k e−∆τH̃U e−∆τH̃V e−∆τH̃osc,p e−∆τH̃osc,x e−∆τH̃µ

)L
≡ U , (3.66)

with ∆τ = β/L. Here we have split up the oscillator term into H̃osc = H̃osc,p + H̃osc,x

(see Eq. (3.21)). The trace in the partition function Z = tr e−βH̃µ
can be split up into a

bosonic and a fermionic component. Inserting L complete sets of momentum eigenstates
leads to the approximation for the partition function

Z = tr

∫

dP1 dP2 . . . dPL

〈
P1

∣
∣U
∣
∣P2

〉
. . .
〈
PL

∣
∣U
∣
∣P1

〉
, (3.67)

where dPl ≡
∏

i dpi,l and the indices run over all lattice sites i = 1, . . . , N and time slices
l = 1, . . . , L with periodic boundary conditions in Trotter time, such that PL+1 = P1.
The phonon coordinates x in ZL can be integrated out analytically by inserting complete
sets of eigenstates

∫
dxl

∣
∣xl

〉〈
xl

∣
∣. The xl integrals are of Gaussian form and can be easily

carried out, we obtain

〈
Pl

∣
∣e−∆τH̃osc,x

∣
∣Pl+1

〉
= CNe

− 1
2ω0∆τ

P

i(pi,l−pi,l+1)
2

, with C =

√
2π

ω0∆τ
, (3.68)

Therefore the momentum operators pi can be replaced by their eigenvalues pi,l at each
site i on time slice l. With the abbreviation Dp ≡∏τ dpl and

∑

{x̌} denoting the sum
over all auxiliary field configurations x̌ (seeEq. (3.29)) the partition function can be
written as

Z = CNL

∫

Dp e−∆τSb
∑

{x̌}
tr

L∏

l=1

B̃↑
l B̃

↓
l

= CNL

∫

Dp wb[p]
∑

{x̌}
w̃f[x̌, p] (3.69)
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Here we introduced the bosonic weight wb[p] = e−∆τSb . The bosonic action Sb is local
in space and contains only classical variables (compare with Eq. (3.68))

Sb =
ω0

2

∑

i,l

p2
i,l +

1

2ω0 ∆τ2

∑

i,l

(pi,l − pi,l+1)
2 . (3.70)

The operators B̃σ
l = eiγ(pi−pj)e−∆τ c†iσ (K)ijcjσ e−∆τ c†iσ (Ṽσ

l )ijcjσ in Eq. (3.69) contain
the hopping and the electronic interactions similar to the operators Bσ

l in Eq. (3.22).
The matrix Ṽσ

l differs only in the chemical potential µ̃ instead of µ from the definition
in Eq. (3.23). The fermionic degrees of freedom can be integrated out exactly in the same
way as already described in Sec. 3.3. The trace in Eq. (3.69) can be then expressed as a
determinant

tr (B̃σ
1 B̃σ

2 . . . B̃σ
L) = det (1 + B̃σ

1 B̃
σ
2 . . . B̃σ

L) ≡ det M̃σ [x̌, p] , (3.71)

with the matrices
(

B̃σ
l

)

ij
= eiγ(pi,l−pj,l)

(
e−∆τK

)

ij

(

e−∆τṼσ
l

)

ij

= eiγpi,l
(
e−∆τK

)

ij
e−iγpj,l

(

e−∆τṼσ
l

)

ij

B̃σ
l = Dl κD

†
l υσ

l . (3.72)

Here κ, υσ
l is the exponentiated hopping matrix e−∆τK and diagonal interac-

tion matrix e−∆τṼσ
l , respectively, l the Trotter-slice and the complex phases have

been extracted into the diagonal unitary N × N matrices7 Dl. The fermionic weight
w̃f[x̌, p] =

∏

σ det M̃σ[x̌, p] in Eq. (3.69) is therefore a function of the auxiliary fields and
the phonon momenta.

With Eq. (3.69) we have an expression similar to the partition function for the ex-
tended Hubbard model without phonons in Eq. (3.29). The difference is the additional
integral over the phonon momenta via the bosonic weight and the phase in the hopping
matrix.

3.6.2 Principle components representation

What is left, is to deal with the updating of the phonon degrees of freedom. In standard
approach the phonon momenta (or coordinates) are updated locally [97]. To obtain
independent measurements a large number of configurations has to be skipped between

7Note that (Dl)ij = δije
iγpj,l and υl commute since they are diagonal.
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3.6 Auxiliary field QMC under Lang-Firsov transformation

them. To overcome these autocorrelations very long QMC runs and lots of CPU-time
are required.

Autocorrelations can be strongly reduced when we use the LF transformed model,
as described by Hohenadler et al [43]. This is a consequence of the fact that the large
displacements of the oscillators in the presence of an electron are explicitly contained
in the Hamiltonian [62]. The oscillations around the potential-minimum are therefore
separated from the displacement of the oscillators.

The problem of long autocorrelation times can additionally be eased by the simple
but effective idea of a transformation to so-called principle components. This enables
us to represent the phonon fraction of the bosonic action of Eq. (3.70) in form of the
system’s normal modes. The action may be written as

Sb =
∑

i

pT
i Api =

∑

i

pT
i A

1
2 A

1
2 pi =

∑

i

ξT
i · ξi (3.73)

with pi = (pi,1, . . . , pi,L) and the principle components given by ξi = A
1
2 pi. The matrix

A is tridiagonal with the nonzero elements

Al,l =
ω0

2
+

1

ω0 ∆τ2
and Al,l±1 = − 1

2ω0 ∆τ2
. (3.74)

Since the trace is taken the matrix has to provide periodic boundary conditions A1,L =
AL,1 = −1/(2ω0 ∆τ2) as well, so that pi,L+1 = pi,1. Using this representation we can
write the bosonic weight of the phonons as

wb = exp

(

−∆τ
∑

i

ξT
i · ξi

)

, (3.75)

which is in fact a simple Gaussian form with the standard deviation σph =
√

1/(2∆τ).
This leads to the conclusion that the QMC can now be performed directly in terms of the
new variables ξ that can easily be generated as samples of a Gaussian distribution via
the Box-Müller method [96]. The matrix A

1
2 mediates between the principle components

and the phonon momenta pi to calculate the Green’s function.

In the simulation we sample a new set of variables ξ according to a Gaussian distribu-
tion with standard deviation σph. This corresponds to a change of all phonon coordinates
pi at all time slices, thus the updating lost its local character in imaginary time. The new
phonon configuration is then accepted or declined in a Metropolis decision Eq. (3.54).
Between the phonon updates a reasonable number of auxiliary field configurations are
sampled via local updates. The computational effort of a new configuration proposal for
the phonon momenta pi,j is of the same order as a lattice sweep, since it is necessary to
compute the Green’s function and its weight in Eq. (3.37) from scratch.
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In the representation of ξ variables we are able to sample weakly autocorrelated
phonon momenta configurations. The acceptance-rate of correspondingly sampled con-
figurations can be increased at the cost of longer autocorrelation times by sampling the
ξs no longer in the systems’s normal modes (full range of the Gaussian distribution with
variance σph), but as small changes with respect to their last values.

3.6.3 Changes in the code

The changes in the Hamiltonian due the LF transformation concern the observables and
the updating in the MC-process, now that we deal with a complex action.

The formal description of the DetQMC method does not change when we use com-
plex matrices instead of real ones. In the program code all functions and variables
involved in the construction and updating of the Green’s function (Eq. (3.37)) have to
be changed to complex data type. Note that the matrix-transpositions needed in the
SVD-decomposition (see Sec. 3.7) have to be extended by complex conjugations since
the algorithm now runs with complex matrices. The phase has to be included in the
routines calculating the matrix products of the propagator-matrices B̃ and the couplings
have to be renormalized according to Eq. (2.29). This implies the need of an auxiliary
field even in the case of initial U = 0.

As we are now running the simulation of the transformed Hamiltonian, the observ-
ables have to be transformed as well. Our main-quantity the Green’s function transforms
with the definition in Eq. (2.14) to

〈
c†iσ cjσ

〉
→
〈
c̃†iσ c̃jσ

〉
=
〈
c†iσ eiγpicjσ e−iγpj

〉
(3.76)

such that we have to apply the phase of the current time-slice to the Green’s function
before we measure our observables. For the imaginary time correlators, pairs of phases
corresponding to the time-slices have to be applied. Since most observables are derived
from the Green’s function their implementation remains unchanged, solely the total
energy has to be adapted by including the phonon degrees of freedom – the measurement
of observables is described in chapter 4.

Of course, H̃µ is Hermitian H̃µ = (H̃µ)† such that the MC-estimators, e.g.,

〈
O
〉

=
1

ZL

∑

x̌,p

w̃f[x̌, p] w̃b[p] Õ(x̌, p) , (3.77)

are real quantities
〈
Ψ̃
∣
∣Õ
∣
∣Ψ̃
〉

=
〈
Ψ
∣
∣U † UOU † U

∣
∣Ψ
〉
∈ R , (3.78)

where U denotes the unitary operator introduced with the LF-transformation in Eq. (2.10).
Though, this statement does not necessarily hold for a single configuration of phonon
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3.6 Auxiliary field QMC under Lang-Firsov transformation

momenta but after integration over the whole phase space. Therefore one has to include
the weights in the observables and needs to keep track of them in the analysis.

3.6.4 Complex Hubbard-Stratonovich transformation

Accordingly, we are now forced to compute with complex values, which increases the
computation time for all operations and functions by a factor ∼ 3. We can exploit this
handicap by using a different Hubbard-Stratonovich transformation. Instead of taking
the real valued (positive) solution of the free parameter λ in Eq. (3.20) we choose to
take the negative solution of the square-root

exp
(

−∆τŨni↑ni↓
)

=
1

2

∑

αi=±1

exp

(

2 iλŨ αi (ni↑ + ni↓) −
1

2
∆τŨ (ni↑ + ni↓)

)

, (3.79)

where

cos(λŨ ) = e−
1
2
∆τŨ

iλŨ = i arccos
(

e−
1
2
∆τŨ

)

= 2arctanh

(√

− tanh
(

∆τŨ/4
)
)

. (3.80)

As already mentioned, for this choice of the Hubbard-Stratonovich transformation,
SU(2) spin invariance is retained for any given auxiliary-field configuration [98] for the
repulsive Hubbard model (Ũ > 0). The auxiliary fields no longer couple to the spin but
to the local density – thus spin dependent observables (and other quantities which do not
commute with the z-component of the spin) are stabilized. In case of the SU(2)-invariant
algorithm, one has

〈
c†i↑cj↑

〉
=
〈
c†i↓cj↓

〉
(3.81)

for all pairs of i, j and for all times τ . Thus the total magnetization is identical to zero
for all configurations of the HS-fields

As discussed by Assaad [98] spin-dependent imaginary time displaced Green’s func-
tions (multi-point correlators) profit from this choice of HS-transformation. Fig. 3.2
shows the spin-spin correlation function

〈
S(Q, τ)S(−Q, 0)

〉
, with Q = (π, π) for a

square Hubbard model with and without SU(2) invariant code. Here also the result
for a Green’s function coupled to the z-component of the spin only and the relative
errors of the two coding variants are given, which remain stable for all values of τ . The
computation time for both versions was held equal by carrying out more than twice
as many sweeps for the SU(2) non-invariant code. Assaad also showed for an extra
auxiliary fields (e.g. an additional pairing term) which hampers a fully spin-symmetric
simulation additionally, that the SU(2) invariant code performs even better.
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Fig. 3.2: Imaginary time displaced spin-spin correlations at Q = (π, π) of a 6 × 6 Hubbard model with
U/t = 4 at half-filling and zero temperature taken from Ref. [98]. Compare the graphs on the lhs for
the difference of the SU(2) invariant HS-transformation. The rhs shows the Green’s function of the
non-invariant code coupled to the z-component of the spin only and the relative errors of (a) and (b)
- for equal computation time the non-invariant code gives slightly better converged results for small
distances in imaginary time.

The physical interpretation of a spin-flip in the auxiliary fields here changed to the
creation (annihilation) of electrons at a space-time site. The balance of the equal number
of up- and down-spins is given for all times and the fluctuations of the auxiliary fields now
affect the noise in the filling of the system. Although this can be seen as a disadvantage,
it does not severely hamper convergence of density-dependent observables.

3.7 Stabilizing the computation

Within the procedure to obtain the Green’s function, the evaluation of the product of sev-
eral matrices B̃σ

l is necessary. Sometimes these matrices are numerically ill-conditioned
in sense of the ratio of the largest singular value of the matrix to the smallest one. This
ratio represents an upper bound to be amplification of errors in matrix multiplications.In
calculating the Slater determinants in Eq. (3.28), one computes small differences of large
matrix elements. These differences are very inaccurate, dominated by the noise in the
least significant bits of the matrix elements due to their finite numerical representation.
This problem becomes more serious as the number of time-slices is increased to obtain
simulations at low temperatures. Simulations neglecting this fact ultimately fail because
of these awkward scale-features.

The singular value decomposition (SVD) technique allows to deal with those matrices
based on the Gram-Schmidt orthogonalization of linear algebra [96]. The product of m
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3.7 Stabilizing the computation

matrices can be expressed (spin indices are dropped for simplicity) as

M = B̃m B̃m−1 . . . B̃1 = UDV , (3.82)

where U is a well conditioned orthonormal, D is a diagonal matrix with a wide spectrum
of values and V is an upper triangular matrix. Using the fact that U and V are suffi-
ciently well-conditioned, we can multiply them by other matrices without compromising
the accuracy. Decomposing the ill conditioned matrices this way, only the diagonal ma-
trix contains the numerically problematic values. In order to understand what we gain
of this factorization, consider the schematic matrix product

M = UDV =
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Here, the product is essentially the outer product of the first column of U and the first
row of V at the order of the largest scale in D. The different scales now exist implicitly
as very small differences of large matrix elements. As example for a sufficiently well
conditioned matrix product consider a matrix W where its small scales are explicitly
given in its columns. We decompose into W = UDV such that we can write the stable
product to illustrate the difference:
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Obviously, multiplication on the left of W is stable – combining elements of the same
scale. Multiplication on the right by V−1 mixes different scales but can be kept sta-
ble by appropriate down-scaling. This factorization conserves all information without
compromising accuracy (too much).
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In practice, to get the product of B̃-matrices from time-slice l to l + 1 we write
according to Loh and Gubernatis [82]

B̃l+1B̃l . . . B̃1 = B̃l+1 UDV = (B̃l+1 UD)V

=


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= (U′D′V′)V = U′D′(V′V) ,

which is the decomposition of the new partial product B̃l+1B̃l . . . B̃1. With this technique
the safe inversion to obtain the Green’s (Eq. (3.37)) function is given by

Gσ(τl, τl) = (1 + B̃l . . . B̃1B̃L . . . B̃l+1)
−1

= (1 + UDV)−1

= V−1
(
U−1V−1 + D−1

)−1

︸ ︷︷ ︸

decompose to (U′ D’ V′)−1

U−1

= V−1
(
U′D′V′)−1

U−1

=
(
V′V

)−1
D′−1

(
UU′)−1

. (3.83)

Here, we isolate the divergent scales into D and invert the individual pieces. Elements
of different scales are separated until the last step. There they are combined which
cuts off the divergent scales and information definitely gets lost. Nevertheless, this does
not severely compromise the accuracy of the computation of the the Green’s function.
In the decomposition of the single-particle propagator the matrices U and V contain
the information for the states for a given HS-field configuration. The scales of these
states are explicitly contained in D. Overwriting of divergent scales in D by numerically
representable numbers does not erase the information of which scales are small or large.
Thus, this computation does not induce any significant error into the computations of
the Green’s function.

The effort of stabilizing the construction of the Green’s function is proportional to
the number of the time-slices L. Since the number of decompositions one must perform
in each reconstruction increases with L as well, the computational overhead scales as L2.
Storing SVD-factorized matrix products at recurrent check-points within the simulation
saves computer-time. A helpful approach is to sweep back and forth through the lattice
from time-slice 1 . . . L and back again from L . . . 1, enables one to save SVD-factorized
matrix products of the actual configuration on the fly which are needed for the return
trip. Instead of re-evaluating Eq. (3.83) for different times τl we can compute the Green’s
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function from the stored SVD-decompositions of two partial products. We define the
partial product from the right and left hand side as

B̃l . . . B̃1 = URDRVR , and B̃L . . . B̃l+1 = VLDLUL . (3.84)

We can now compute the Green’s function from Eq. (3.37) on time-slice l by expanding
with ULU

−1
L and U−1

R UL

Gσ(τl, τl) = (1 + URDRVRVLDLUL)−1

= U−1
L

(
U−1

R U−1
L + DRVRVLDL

)
U−1

R . (3.85)

Similar to Eq. (3.83) the inverse of the ill-conditioned sum can be obtained by further de-
composition and inverting the individual pieces. This reduces the stabilization overhead
to scale only with L.

The partial products in Eq. (3.84) should be stored every few (≈ 8, depending on
your set of parameters) time-slices. The memory necessary to store the partial products
is bearably small.

3.8 Checkerboard breakup

A good spot to reduce computation time is in optimizing matrix operations. The ex-
change operator e−∆τK is a densely occupied matrix. A default matrix product produces
costs of O(N3). It can be reduced to O(N2) by applying the Suzuki-Trotter decompo-
sition one more time

e∆τ K = e∆τ
P

<ij> tijc†iσcjσ ≈
∏

<ij>

e∆τ t′ijc†iσcjσ , (3.86)

with the sum over all pairs of lattice sites connected via the transfer t′ij 6= 0. This
can be viewed as the product of the exponential of an N × N -matrix t′ containing
solely two nonzero elements t′ij , t

′
ji with t′ji = t′ij

∗. The Trotter-approximated fermionic
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contribution to the partition function is now given by

exp(∆τK) ≈
∏

<ij>

exp ∆τ
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. . .
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. . .
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














, (3.87)

with C = cosh(∆τ‖t′ij‖) and S =
t′ij

‖t′ij‖
sinh(∆τ‖t′ij‖) on the diagonals. This matrix ma-

nipulation is called Checkerboard-breakup [99]. The error of this additional Suzuki-
Trotter transformation is small compared to the systematic error of the Hamiltonian
decomposition – as shown by Endres in [84], its influence on the results is negligible.
While the exact treatment of the hopping term leaves the Hamiltonian Eq. (2.7) symmet-
ric under particle-hole transformation at half-filling, this symmetry is no longer conserved
using the Checkerboard-breakup-approximation [43]. This is because of the additional
Suzuki-Trotter error in the approximation of the kinetic matrix. This way, half-filling
n = 1.0 is no longer obtained by setting µ = −EP + U/2 − NnnV , but has to be slightly
adjusted to different values.

Alternatively, for uniform transfer integrals, one may utilize Fast-Fourier-Transformations
in order to apply the kinetic-energy factor e∆τK in momentum space, in which K is di-
agonal.

3.9 Improving convergence

Since consecutive auxiliary field configurations differ only in small amounts because
of the local updates described in Sec. 3.5 their autocorrelation time as a measure of
dependence is fairly high. To obtain independent measurements one is therefore forced
to skip a large number of local updates between them.
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3.9 Improving convergence

One way to overcome this problem is to profit from global updates, which are usually
difficult to construct due to the nontrivial correlations of the degrees of freedom. Other
ways to enhance the sampling in the Monte Carlo process are tempering and reweighting.

Parallel Tempering is based on sampling configurations for different couplings si-
multaneously, Simulated Tempering and reweighting methods like the Multi-canonical
Monte Carlo alter the sample weights. These methods aim to allow the Markov-chain
to move faster in phase space (circumnavigating improbable regions) than it is possible
with conventional moves. Therefore observables converge faster.

In this work we choose a combination of the nonlocal moves and tempering in the
inter-site coupling.

3.9.1 Global updates

Like the LF transformation depicted in Sec. 2.9 and Sec. 3.6 is used to obtain a represen-
tation of the phonon momenta in orthogonal space to sample new low correlated phonon
configurations, an improved updating scheme for the auxiliary field configurations en-
hances the Monte Carlo procedure. It is necessary to identify physically the collective
(slow and nonlocal) modes of the system, and to devise an efficient computational al-
gorithm for speeding up those modes. Unfortunately these two goals are in conflict; it
is very difficult to devise global-move algorithms that are nonlocal enough that their
computational cost outweighs the reduction of slowing down. Cluster algorithms used in
classical models (Wolff–, Swendsen-Wang algorithm) cannot be applied to the DetQMC
because of the nonlocal determinant weight.

So far we introduced a single spin-flip update for the Ising fields of the Hubbard and
the extended Hubbard interaction in Sec. 3.5. As shown by Scalettar and others [100],
for the bare Hubbard model the configuration space (at real-valued HS-transformation)
shows two extrema separated by an intersection growing with the repulsive coupling U
illustrated in Fig. 3.3. The intersection covers the bulk of improbable configurations.
Note that this is only visible in the approximation of the strong coupling U � t limit.
This approach becomes rigorously correct only for large U/t, though it definitely illus-
trates the problem.

For large βU and half-filling the auxiliary field configuration Σ =
∑

i α(i, l) with
all Ising spins up (down) can be assigned to n↑ ≈ 1 (n↓ ≈ 1), the intersection with
n↑ = n↓ = 1/2,. For example to get from configuration α(i, l) = +1 to configuration
α(i, l) = −1 for the site i at all l-time-slices is very improbable. In this case it is unlikely
that the observables will converge using only single spin-flip moves since the simulation
time is limited. Observables depending on symmetric sampling of these configurations
would not converge satisfactorily. Naturally, if ergodicity is violated so badly, other
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Fig. 3.3: Left: The probability of auxiliary field configurations in the strong coupling limit t = 0 for values
of U = 1.0 (squares), U = 4.0 (triangles) and U = 8.0 (circles) illustrating the tunneling barrier. Lines
are guide to the eye only. Right: Schematic illustration of the phase space for a specific configuration
indicated by the black dots

correlation functions are unlikely to be obtained correctly either.

Scalettar and others [100] introduced a nonlocal update by flipping the spin at a
site α(i, l)′ = −α(i, l) for all time-slices l and obtained impressive improvements. Such
a move has the interpretation of flipping a spin in the large-U Heisenberg limit of the
Hubbard model. For the extended Hubbard model in real representation Zacher demon-
strated that naive application of the Scalettar-move to the inter-site coupling fields shows
no advantages since the acceptance rate drops to zero – especially near half-filling [34].
As a result of the Hubbard-Stratonovich transformation the nearest neighbor Coulomb
interaction is realized by four Ising-fields per dimension. Zacher proposed additionally
to the Scalettar-move to swap the fields coupled to an up-spin with those of a down-spin
for fixed i and all time-slices l

φxi

↑↑(l, i)
′ → φxi

↓↑(l, i) , φxi

↓↑(l, i)
′ → φxi

↑↑(l, i) ,

φxi

↑↓(l, i)
′ → φxi

↓↓(l, i) , φxi

↓↓(l, i)
′ → φxi

↑↓(l, i) . (3.88)

Depending on the filling and the couplings of the system one can try to give the HS-
field configurations a physical interpretation. For example, at a filling of 1/8-th with
onsite and inter-site coupling the electrons are probably delocalized to more than one
site. Thus, if one wants to flip the spin of an electron the proposed move from Eq. (3.88)
should be applied to four neighboring sites and to the onsite field simultaneously.

A reliable indicator for ergodicity in the repulsive Hubbard models with real-valued
HS-transformation is the over-all spin

〈
Sz

〉
= (n↑ − n↓)/2. As a consequence of the

symmetry provided by the model, the grand-canonical expectation value is zero. In
non-ergodic simulations at large couplings one obtains values like

〈
n↑
〉

= 9 ± 0.000002
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and
〈
n↓
〉

= 7 ± 0.000002 [100]. It is obvious that the simulation is stuck in a small area
of configuration space – the problem is therefore called sticking-problem. Tracking the
estimators in Monte Carlo time their expectation values are stuck as well, instead of
showing a Gaussian deviated accumulation around the correct mean value.

For the parameters of the sodium vanadate, the Scalettar-move greatly improves the
convergence of

〈
Sz

〉
with acceptance rates of approximately 8–12% (depending on the

system size). The Zacher-move is hardly ever accepted and contributes only negligibly
to the convergence.

As already said in Sec. 3.6.4, this indicator for ergodicity is replaced by the accumu-
lation of the imaginary part of the Green’s function to zero in the case of the SU(2)-
invariant HS-transformation. With the complex solution of the HS-transformation the
probability-distribution of the auxiliary field configurations changes to an oscillating
form around Σ = 0 in Gaussian shape, while the condition

〈
Sz

〉
= 0 is always fulfilled

in the simulation. Nonetheless, any global move is of help, enhancing the movement of
the Markov-chain.

3.9.2 Parallelization

For large system sizes the use for large scale computing is inevitable and the need for
parallelization is evident. The simulation is perfectly suited for trivial parallelization,
where several simulations with the same set of parameters but different random-seeds
can be run in parallel without any communication in between and their output can be
easily combined within the Jackknife analysis (Sec. 4.3).

3.9.3 Tempering

Having the situation of parallel running processes suggest itself to implement Parallel
Tempering, a modification of Simulated Tempering [101, 102, 103]. In this procedure a
number of simulations run simultaneously with slightly different parameters (e.g. cou-
plings for the auxiliary fields). Frequently, after passing several thousand updates the
processes exchange their current auxiliary field configurations in form of a detailed bal-
ance Metropolis decision. That way, the systems remain in equilibrium and canonical
expectation values are calculated unchanged without the need of reweighting.

The tempering procedure is possible in any parameter of the system, although just
for few ones it really pays off. For our simulation, the tempering in the extended Hub-
bard coupling V seems to be the best choice. One obtains results for a wide range of
the coupling without producing unneeded data. Tempering in the on-site coupling U
would enhance the sampling of the (for large U) separated configuration space, however,
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we are not interested in different values for the Hubbard interactions, since this is a
fixed parameter for sodium vanadate. Additionally to the tempering in V , one can try
global updates of the onsite-interaction auxiliary fields as one swaps the configurations
of different processes which all run at the same value for U .

The range of our tempering-parameter V should include the charge ordered phase
as well as the disordered phase of the system to provide efficient sampling. Then we
estimate the number of different couplings required in the range as follows. In order
that each process wanders over the whole coupling region, the acceptance probabilities
of the exchange process should be in the vicinity of one and approximately constant.
While in classical systems this number can be estimated via the Boltzmann weight
[101], the dependence of the auxiliary fields to the configuration weights in DetQMC
are nontrivial. Nonetheless the intervals can be estimate via the transition of the order
parameter as a function of V or the overlap of the distributions via the Kullback-Leibler
number. To allow nearly constant acceptance ratios the intervals have to become more
dense as they approach the critical point.

The necessary conditions for effective tempering can be seen as:

(i) The exchange in both directions is realized with a non-negligible probability for
all adjacent pairs of processes;

(ii) Each process moves around the whole coupling range in reasonable simulation time;

(iii) By wandering in the coupling, the system forgets where it was trapped.

In this simulation the communication is realized via the MPI-libraries [104] in master-
slave topology. The jobs run independently several hundred sweeps and report in at the
controlling master process. The master collects the probability weights of the current
auxiliary field configurations wi and computes the probability of an exchange of the
auxiliary fields between adjacent (in the sense of their couplings Vi) processes i and i+1
according to [105] via

Pswap(Vi, Vi+1) = min

[

1,
wi(Vi+1)wi+1(Vi)

wi(Vi)wi+1(Vi+1)

]

. (3.89)

If the swap is accepted the auxiliary field configurations are exchanged and the processes
resume their computation independently and are then reporting in again. The data-
amount sent in this communication is small and can be processed very fast. The exchange
could also be done via point-to-point communication between the processes without a
master.
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3.10 Outline of the algorithm

In this chapter we gave a detailed introduction into BSS-style determinant (or auxiliary
field) QMC. The Suzuki-Trotter decomposition of the Hamiltonian enabled us to define
the problem in a path integral formalism. Via the Hubbard-Stratonovich transformation
we were able to linearize the quadratic interaction of the Hubbard-term by introducing
auxiliary fields over which one has to integrate. This high-dimensional integral can be
evaluated by means of MC-sampling. In the BSS-style QMC the MC-configurations can
be efficiently generated by a single spin-flip algorithm, which can be improved by global
updates, tempering, or different types of the Hubbard-Stratonovich transformation.

We discussed the changes in the algorithm, necessary to extend the Hamiltonian
by Einstein-phonons with Holstein coupling. Preparing the Hamiltonian with the LF
transformation allows highly efficient sampling of the phonon degrees of freedom. It
can be additionally enhanced as one samples the phonon configurations in the system’s
normal modes. Technical details on how to speed up matrix products and how to deal
with numerical instabilities prepared us to combine all these methods in our simulation.

Running once through all lattice sites in space and time and trying to update the
corresponding Ising-spins is called a sweep. By decreasing the temperature (or coupling-
strength) stepwise the auxiliary fields are equilibrated before starting the measurement.
As a rule of thumb one can, e.g., run a large number of multiple of the integrated
autocorrelation time for warmup sweeps, or drop the first ten percent of the collected data
of the simulation. Another method is to observe an observable to determine when the
transient region in the beginning ends. Both methods should be sufficient, but one can
never be sure not to be trapped in a meta-stable phase space region. The measurements
are taken after skipping enough sweeps in between to obtain low-correlated time series.
The overall QMC-algorithm is described in some pseudo-code:

INIT - Initialize all fields to arbitrary (e.g. randomly chosen) spin-alignment;

calculate the Green’s function for the first time-slice given in Eq. (3.37);

prepare runtime environment for all nodes involved in the tempering process

DO I=1,WARM+MEAS*SKIP

IF (I <= WARM) THEN

TEMPERPARAMS - Adjust all couplings slowly with increasing I so that

sufficient sweeping at final coupling strength is guaranteed

END IF

SWEEP - run trough all lattice sites and for all time slices; update Ising

spins according to the probability in Eq. (3.54); calculate the new

Green’s function as defined in Eq. (3.58)

IF time to stabilize THEN

IF time for global move THEN
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UPDATE PHONONS - propose new phonon configuration; sample new

Gaussian distributed momenta according to Eq. (3.75)

TEMPER - swap HS-fields with other processes via MPI as described

in Sec. 3.9.3

CLUSTER FLIPS - propose new HS-field configuration according to

the description in Sec. 3.9.1

END IF

GFSCRATCH - calculate the Green’s function from the scratch via

SVD-decomposition as given in Eq. (3.37)

END IF

IF (I > WARM && MOD(I-WARM,SKIP) == 0) THEN

MEASURE - calculate observables from current configuration

END IF

END DO

From the data output, averages and errors of the observables will be calculated via the
Jackknife method. The analytic continuation of the imaginary time data is done by the
Maximum Entropy method. Both will be discussed in the following sections.

3.11 DetQMC compared to other methods

Usually we want: large system sizes, a huge number of particles, scan through a wide
range of parameters, observables of any kind and complexity, my personal supercomputer
for home, world peace, ... – apart from the last two the DetQMC-method can provide a
good bunch of them. The most important feature for this work is the ability to calculate
dynamic quantities, although via the detour of Maximum Entropy described in Sec. 4.4.
However, there are restrictions as already described, like the sign- or phase problem from
Sec. 4.2 which restricts the size and temperature of the system, numerical instabilities
like in Sec. 3.7 and strong autocorrelations depict in Sec. 3.9 and Sec. 4.3.

Alternative numerical methods exhibit excellent properties but are not as flexible
as QMC is. Exact diagonalization (ED) techniques like the Lanczos method can per-
form zero- as well as finite temperature calculations [106], produce static observables and
dynamical spectra – and that (as labeled) almost exactly. Unfortunately the diagonaliza-
tion requires huge amounts of memory which restricts system size and parameter range
leading to undesirable finite size effects. Cluster perturbation theory (CPT) utilizing
ED (CPT must not be necessarily incorporate ED) suffers from similar problems, since
cluster sizes are small and additionally the decoupling into clusters breaks translational
invariance. At present no method is known to measure multi-point-correlations in CPT
and dynamical spectra are limited to the one-particle Green’s function.

Density matrix renormalization group (DMRG) is a variational diagonalization method
where larger systems than in ED can be treated. In principal dynamical spectra can be
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calculated with DMRG – the drawback is that the computation would exceed the effort
using QMC by far. Since DMRG is based on a variational Ansatz the results do not
necessarily lead to the exact eigenstates. This is due to the specific construction of the
system-block, where the system may get stuck. The effects of boundary conditions are
a delicate subject in DMRG as well.

Another non-perturbative approach is the dynamical mean field theory (DMFT)
based on a self-consistency loop with a system-solver (e.g. QMC, ED). While DMFT
directly works in the thermodynamical limit of infinite system size and is exact in the case
of infinite dimensions, it must be regarded as a strong approximation for low-dimensional
problems due to the neglected spatial correlations. Finally, and most importantly for
coupled-electron-phonon systems, the infinite Hilbert-space associated with the bosonic
degrees of freedom represents a substantial difficulty for ED, DMRG and CPT (with
ED) in contrast to QMC.

Other QMC-methods, include Stochastic Series Expansion (SSE) introduced and
extended by Sandvik and Kurkijärvi [107], where the partition function is treated non-
perturbative in powers of the Hamiltonian. This and other world-line-like methods with
loop or worm algorithms are suffering from an undesirably bad sign problem for dimen-
sionality higher than one, far worse than in the DetQMC. There are as well DetQMC
(or related) algorithms which try to compensate or overcome the minus-sign problem
(or also nodal problem for the auxiliary fields), generally known as constrained- path or
fixed-node QMC [108, 109]. Unfortunately, dropping the fermionic noise leads only to
approximate results as already discussed by Klein and Pickett in 1976 [110]. The prob-
lem is that all regions of phase space are important but have contributions which tend to
cancel each other. All those methods in this class can usually be extended to continuous
time avoiding the Trotter-error. A continuous-time formalism for the DetQMC-method
has been proposed by Rombouts and others [111]. Recently, a method without the need
of the HS-transformation has been introduced by Rubtsov and others [112]. Both are
discussed in the appendix about the imaginary-time discretization (App. A.1).
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Analysis 4
In this chapter we will introduce the measured observables, their analysis and some
theoretical background necessary for their interpretation.

4.1 Observables

4.1.1 Wick’s theorem

The universal quantity calculated throughout the simulation is the thermal one particle
Green’s function. According to Wick’s theorem the expectation value of an arbitrary
(time-ordered) product of creators and annihilators for a bilinear Hamiltonian can be
expressed through the Green’s function in order to calculate any observables of inter-
est [113, 93]. In the extended Hubbard model the Hamiltonian is bilinear for every
configuration of the auxiliary fields.

We follow Ref. [114] and define the contraction between two arbitrary creation
(annihilation) operators A and B as

AB ≡ AB − {AB} , (4.1)

where {AB} indicates the normal-ordered form of the pair (thus all annihilation oper-
ators standing to the right of all creation operators). As one can easily check, the only
nonzero contraction of the combination of a creator-annihilator pair is

cic
†
j = cic

†
j − {cic

†
j} = cic

†
j + c†jciδij . (4.2)

Thus only a limited number of pairings of creators and annihilators are physically in-
teresting: an annihilator applied to the vacuum makes sense only in case it is trailed
by a creator. The used anticommutator relations are given in App. A.2. The Wick’s
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reduction of a general time-ordered product of interaction-free particles is given by the
sum of all contractions which is a sum of single particle propagators.

For a fixed HS-configuration of Ising-spins, one has a free theory interacting with
the HS-fields. Thus, Wick’s theorem holds and an observable can be given by its Wick’s
reduction. As an example consider an operator consisting of two creators and two
annihilators. With the equal time Green’s function

〈
ciσ c†jσ′

〉
= δσσ′Gσ

ij one can write
[114]

〈
c†i1σ1

ci2σ2c
†
i3σ3

ci4σ4

〉
=

〈
c†i1σ1

ci2σ2

〉〈
c†i3σ3

ci4σ4

〉
+
〈
c†i1σ1

ci4σ4

〉〈
ci2σ2c

†
i3σ3

〉

=
(

δi1i2δσ1σ2 −
〈
ci2σ2c

†
i1σ1

〉)

·
(

δi3i4δσ3σ4 −
〈
ci4σ4c

†
i3σ3

〉)

+
(

δi1i4δσ1σ4 −
〈
ci4σ4c

†
i1σ1

〉) 〈
ci2σ2c

†
i3σ3

〉

= δσ1σ2δσ3σ4

(
δi1i2 − Gσ1

i2i1

) (
δi3i4 − Gσ3

i4i3

)

+ δσ1σ4δσ2σ3

(
δi1i4 − Gσ1

i4i1

)
Gσ2

i2i3
. (4.3)

The number of terms necessary for an operator of n pairs is n!, thus this leads to
rather complicated expressions which can be constructed and simplified with the help of
Mathematica. As reviewed by Assaad [115] any n-point correlation function (n ≥ 1) can
now be decoupled into a sum of products of Green’s functions (two point correlators).

4.1.2 Static quantities

In our DetQMC simulation the thermodynamic expectation value for the operator A

〈
A
〉

=
1

Z tr A e−βH =
1

Z tr Ã e−βH̃ , (4.4)

become using importance sampling

〈
A
〉

= lim
Nmeas→∞

1

Nmeas

Nmeas∑

i=1

A(xi) , (4.5)

where Nmeas is the number of measurements taken at HS-field configurations x̌i. For a
finite number of measurements the estimate for

〈
A
〉

is given by

A =
1

Nmeas

Nmeas∑

i=1

A(xi) , (4.6)

and the fluctuation around the true expectation value
〈
A
〉

= A ± ∆A. The methods to
obtain correct estimates for the statistical error ∆A will be described in Sec. 4.3. We
will now give an overview of the basic observables.
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Our universal quantity, the thermal one-particle Green’s function for the the Hamil-
tonian under LF-transformation G̃ is given by

G̃σ(τ, τ ′, i, j) = −i
〈
T c̃iσ(τ) c̃†jσ(τ ′)

〉
. (4.7)

For equal-time observations τ = τ ′ the Wick time-order operator T can be dropped and
the Green’s functions are given by

G̃σ,a
ij = −i

〈
c̃iσ c̃†jσ

〉
(4.8)

G̃σ,b
ij =

〈
c̃†iσ c̃jσ

〉
, (4.9)

Working in real-space and imaginary time, we have for the one-electron Green’s function
within the DetQMC-algorithm as defined in Eq. (3.37). The computation of the static
quantities within the formalism as a thermal average is straightforward. The particle
density is given by

〈
n
〉

=
1

N

∑

i,σ

〈
nσ

i

〉
, (4.10)

where the expectation value
〈
nσ

i

〉
can be calculated from the trace over the Green’s

function Eq. (4.9) via
〈
nσ

i

〉
=
〈
G̃b,σ

ii

〉
. The sum over the off-diagonal elements yields the

kinetic energy

Ek = −t
∑

<ij>,σ

〈
c̃†iσ c̃jσ

〉
= − t

N

∑

<ij>,σ

〈
G̃σ,b

ji

〉
. (4.11)

The total energy can now be obtained from the thermodynamic relation

E =
∂

∂β
lnZ

= Ek + EU + EV + Eph − 2EP

∑

i,σ

〈
nσ

i

〉
, (4.12)

where EP is the polaron binding energy given in Eq. (2.20) and
∑

i,σ

〈
nσ

i

〉
yields the

number of electrons. The remaining terms are the kinetic energy given in Eq. (4.11), the
onsite and inter-site Hubbard terms which can be easily computed from combinations
of
〈
nσ

i

〉
and the phonon contribution

Eph =
N

2∆τ
− 1

2ω0∆τ2

∑

i,τl

〈 (
pi,τl

− pi,τl+1

)2 〉
+

ω0

2

∑

i,τl

〈
p2

i,τl

〉
, (4.13)

which corresponds to the bosonic action in Eq. (3.70). For comparison with other work
one can subtract the ground state energy of the phonons E0,ph = Nω0/2.

Any quantity can be constructed from these simple expressions as one employs Wick’s
theorem to reduce the expectation values of arbitrary constructs of creation and anni-
hilation operators to a sum of single particle propagators.
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Static structure factors and order parameter

The connected correlation functions to measure the charge- and spin-fluctuations in
k-space are given by

Sc(k) =
1

N

∑

<ij>

eik(ri−rj)
(〈

ninj

〉
−
〈
n
〉2
)

(4.14)

Ss(k) =
1

N

∑

<ij>

eik(ri−rj)

(
∑

i

〈
Sz

i Sz
j

〉
−
〈
Sz
〉2

)

(4.15)

with Sz
i =

1

2
(ni↑ − ni↓) .

Here we can restrict ourselves to measure Sz due to the O(3) symmetry of the spins in
space. Connected correlation function means to subtract the average (order) parameter,
such that only the fluctuations are measured. The corresponding structure factors SC

and SS are the non-connected correlation functions at vector Q = (π, π) which can be
obtained simply as one drops the quadratic term.

The spin- and charge-correlation function provide information about the strength of
magnetic order, charge order or traces of phase separation. The order parameter for the
zig-zag charge pattern on the ladder is therefore

m2
CO =

1

N
〈
n
〉2 Sc(Q) , (4.16)

where
〈
n
〉2

ensures that the order parameter is equal to unity for full charge order. In
the latter case the electron density or valence at the occupied sites is

〈
n
〉

= 1
2 ± mCO

2 .

4.1.3 Dynamic quantities

Imaginary time displaced, dynamic response functions, or spectral functions are repre-
sented by the imaginary part of Green’s functions [93] of the type

AO(k, ω) = I 1

π

〈
En

∣
∣O†(k)

1

ω − (H − En) − i0+
O(k)

∣
∣En

〉
, (4.17)

here is k the wave number and ω the angular-frequency – in natural units (~ = 1)
these are interpreted as momentum and energy. They determine at which energy and
momentum the response of the system to an outer perturbation is probed. This way the
primary excitations, their interplay and their stability can be extracted, providing insight
into the dynamics of the quantum system. Quantities like spin- or charge-susceptibility,
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optical conductivity and single particle spectral functions provide the possibility of direct
comparison with experiments, such as electron energy loss-, neutron scattering- or photo-
emission spectroscopy as described in App. A.5.

The relation between the representation in Eq. (4.17) and correlators or Green’s
functions in imaginary time can be shown via the spectral theorem [92]. From here
on we use a notation without phonon degrees of freedom for simplicity. The spectral
function of the operator O is given by

AO(ω) = − 1

π
Im Gret

O (ω) , (4.18)

where Gret
O denotes the retarded (time-displaced) Green’s function for the operator O. In

the DetQMC formulation this time-displaced Green’s function can be defined by writing
the operator ciσ at time-slice τl

ciσ(τl) = ei∆τ(Hα
l −µN) ciσe−i ∆τ(Hα

l −µN) =
∑

i′

(Bσ
l )ii′ ci′σ(τl−1) , (4.19)

where Hα
l is the decoupled Hamiltonian at slice l. Consequently, the time-displaced

Green’s function is given by

〈
ciσ(τl) c†jσ(0)

〉
=
∑

i′

(
Bσ

l B
σ
l−1 . . .Bσ

1

)

ii′

〈
ci′σ(0) c†jσ(0)

〉
. (4.20)

Owing to Eq. (3.37) we can express the time-displaced Green’s function as

〈
c†iσ(τl) cjσ(0)

〉
=
((

1 + Bσ
LBσ

L−1 . . .Bσ
1

)−1
Bσ

LBσ
L−2 . . .Bσ

l+1

)

ji
. (4.21)

Remember that as described in Sec. 3.6.3 for phonons additional pairs of phases corre-
sponding to the time-slices have to be applied!

With these two Green’s functions, the static Green’s function Eq. (3.37) and the
Wick theorem, any dynamical quantity can be computed. Unfortunately, multi-point
correlation functions like current- current correlators are hard to obtain with a simula-
tion, since their expectation values strongly fluctuate giving rise to large error bars.

One particle Green’s function

Inserting a complete set of eigenstates before and after the observable in Eq. (4.17) one
obtains

AO(k, ω) =
∑

i

∣
∣
〈
Ei

∣
∣O(k)

∣
∣En

〉∣
∣2 δ(ω − (Ei − En)) , (4.22)
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with the eigenstates
〈
En

〉
for eigenvalues En of the Hamiltonian. Photo-emission (inverse

photo-emission) measurements correspond to spectral weight function A+
k (ω) (A−

k (ω)).
These are basically determined through transition matrix elements to the particle-states
n, m with the particle numbers Nm, Nn = nm + 1 such that

A(k, ω) ∝ 1

Z
∑

m,n

∣
∣
∣

〈
Ψn

∣
∣c†k
∣
∣Ψm

〉
∣
∣
∣

2
e−β(Em−µNm)

(

1 − e−ζβω
)

×2πδ (En − Em − µ − ω) , (4.23)

and

A+
k (ω) ∝

∑

m

∣
∣
∣

〈
ΨN

0

∣
∣ck

∣
∣ΨN+1

0

〉
∣
∣
∣

2
δ
(

ω −
(

EN+1
0 − EN

0

))

(4.24)

A−
k (ω) ∝

∑

m

∣
∣
∣

〈
ΨN

0

∣
∣c†k
∣
∣ΨN−1

0

〉
∣
∣
∣

2
δ
(

ω −
(

EN
0 − EN−1

0

))

. (4.25)

This is the Lehmann representation of the operators

A+
ij =

〈
c†iσ(τ2) ciσ(τ1)

〉

A−
ij =

〈
ciσ(τ2) c†iσ(τ1)

〉 , for τ2 > τ1 . (4.26)

The time-displaced one particle Green’s function reflects the system’s reaction to parti-
cles (electrons) with a distinct energy ω inserted or removed with the moment k. The
integral over all momenta gives the density of states (DOS) of the system.

The time time-displaced one-particle Green’s function is related to the spectral func-
tion via Eq. (4.18)

Gb(k, τ) =
〈
c†
kσ(τ)ckσ

〉
(4.27)

is related to the spectral function via Eq. (4.18) such that

Gb(k, τ) =

∫ +∞

−∞
dω

e−τω

1 + e−βω
A(k, ω) . (4.28)

As will be discussed in Sec. 4.4 the inversion of of Eq. (4.28) is ill-conditioned and can
be obtained using Maximum Entropy. The function Gb(k, τ) is computed via Fourier
transformation from the measured Green’s function

Gb(k, τ) =
1

N

∑

ij

eik(rirj)Gb
ij(τ) . (4.29)
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4.2 The sign problem

Spin- and charge-susceptibility

Similar to the spectral function we can express the spin- and the charge-susceptibility
by defining

OS(k) = Sz
k =

∑

p

(

c†p+k,↑cp,↑ − c†p+k,↓cp,↓
)

(4.30)

OC(k) = ρk =
∑

p

np =
∑

p,σ

c†p+k,σcp,σ (4.31)

With the spectral theorem we can obtain the susceptibilities via the inversion of

〈
OS,C(k, τ)OS,C(k, 0)

〉
= −i

∫ ∞

∞
dω

e−τω

1 − e−βω
χS,C(k, ω) . (4.32)

Here the kernel e−τω

1−e−βω with the minus in the denominator is used since the susceptibil-
ities are bosonic quantities.

4.2 The sign problem

Determinant Monte Carlo

As flexible as the DetQMC method is, its curse is the notorious (and in general unsolved)
minus-sign problem evident in any kind of fermionic QMC.

Apart from half filling, particle-hole symmetry is no longer conserved in the repulsive
Hubbard model. This implies that the fermionic determinant defined in Eq. (3.28) is
no longer strictly positive, nor factorizes. Consequently the weights wf[x̌] in Eq. (3.33)
can become negative, no longer representing a probability for a specific configuration.
In this situation it is necessary to deal with the estimators by taking the absolute value
of the weight and including the sign explicitly in the observables

〈
A
〉

=

∑

{x̌} |wf[x̌]| sign(wf[x̌])A(x̌)
∑

{x̌} |wf[x̌]| sign(wf[x̌])

MC≈
∑K

k=1 Ak signk
∑K

k=1 signk

(4.33)

where (compare with Eq. (3.29))

〈
sign

〉
=

Zwf

Z|wf|
=

∑

{x̌} wf[x̌]
∑

{x̌} |wf[x̌]| = e−βN∆f . (4.34)

Here ∆f denotes the difference of the free energy densities. The average sign is strictly
positive and real.
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Unfortunately, the problem gets worse with decreasing temperature 1/β and increas-
ing system size N . As the partition functions in Eq. (4.34) are exponentials and the
average sign is a fraction of exponentials, the problem behaves like an exponential e−βN .
The average sign is decreasing rapidly with temperature, for large clusters and large
couplings – where, for too small values of

〈
sign

〉
, the fluctuations of Ak signk dominate

and the computational cost to obtain converging estimators is enormous.

For U < 0 (attractive interaction) there is no sign-problem since M↑ = M↓ in
Eq. (3.28). Consequently, the product of two determinants in Eq. (3.29) becomes a
square and therefore strictly positive semidefinite, even though the determinant itself is
not positive semidefinite.

The origin of the minus-sign problem is controversial and can be explained as a
consequence of the Hubbard-Stratonovich transformation [99, 73]. Since, for strong
coupling the Hubbard-Stratonovich fields display quasi-world-line behavior the minus-
sign might then be understood as a crossing of fermion-lines in Euclidean time [91]. As
shown by Batrouni and Scalettar anomalous decouplings (others than the decomposition
used in Sec. 3.3) yield the same problem [116]. In fact, Batrouni and Forcrand argue
that there is no general Hubbard-Stratonovich transformation that is capable of giving
a semidefinite positive product of the determinants [117].

Recently, Troyer and Wiese [66] argued the sign problem to be generically NP-hard
(nondeterministic polynomial), hence not solvable in polynomial growing time effort
[118]. Their discussion is based on the mapping of the fermionic quantum system to
the classical spin-glass model, which is believed to be NP-hard. Since any NP-hard
problem can be mapped onto another with polynomial complexity, a general solution
of an NP-hard problem is thus equivalent solving any NP-problem1. Nevertheless, it is
still possible that specific sign problems, like that for DetQMC may be solved. For an
example in a different model see Chandrasekharan’s and Wiese’s Meron-Cluster solution
[119].

In Fig. 4.1 the avergage sign versus the inter-site coupling V at inverse temperature
β = 8.0 and the parameters given in Sec. 2.8 is plotted. The figure shows the values
which apply to our simulation results in chapter 5. It increases with V and as we will see
with increasing charge order. The devolution for the ladder lengths of Nx = 8, 16 and 32
rungs shows that the problem gets worse with increasing system size. In this work the
most expensive simulation has been perfomed for a ladder of 32 rungs (64 sites) at
V = 1.0 and an average sign of ≈ 0.9.

1This would revolutionize computing algorithms and compromise all classical encryption methods. If
you are the lucky one who solves the problem in general – get ready for your ticket to Stockholm!
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Fig. 4.1: average sign versus intersite coupling for ladders of Nx = 8, 16, 32 rungs at β = 8.0. Error bars
are small than symbols.

Determinant Monte Carlo under LF-transformation

The determinant-based grand-canonical simulation of the pure Holstein model (without
U , or V ) with phonon coordinates a(x, t) as dynamic variables at any filling does not
suffer from the sign-problem, since the coupling of electrons and phonons is the same for
both spin directions. The model after LF transformation however, is afflicted by some
fermionic noise.

As Hohenadler stated [62, 43], the sign problem in this approach has a different
origin. The transformation introduces an attractive Hubbard on-site term which could
still allow factorization of the determinant and therefore this cannot be the source of evil.
In fact, the negative weights are a result of the complex phase factor in the transformed
hopping term (Eq. (2.24)).

In our spinful many-electron case of the Hubbard-Holstein model including the LF
transformation, we face this additional phononic sign-problem (or phase-problem) as
well. It behaves similar to the fermionic one, getting worse with increasing system size
and decreasing temperature. BUT: it is much more severe! Where the average sign is
near one for small systems up to 8 sites, β = 10 and electron-phonon coupling λ < 1.0
at frequencies ω0 > 1.0 and a large range of the parameters β and U it drops off rapidly
for larger systems and temperatures.

Unfortunately the sign-problem for our set of paramters (see Sec. 2.8) is so severe
that we are forced to abandon the intention to include the coupling to lattice degrees
of freedom in our simulation. The problem arises already for very small systems. Since
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the approach to sample via principle components in a LF-transformed model works for
investigations of the bipolaron (only two electrons) in the Hubbard Holstein model we
stress that the here presented approach might find its application in systems with low
electron density.

4.3 Data analysis

Although several sweeps are skipped between measurements the data are correlated
and blue-eyed analysis would severely bias the results. Therefore, the autocorrelation
times have to be calculated, uncorrelated means have to be determined and from those
the variances can be computed unbiased. This procedure provides trustworthy and
statistically correct estimators, errors and their correlations [120].

4.3.1 Binning and autocorrelation time

The small changes in the electronic-configuration via single spin flips cause statistical
correlations which have to be taken into account in the analysis. To quantify these
correlations we define the autocorrelation function for an observable O

CO(t) = CO(Oi,Oi+t) =
〈(
Oi −

〈
Oi

〉)(
Oi+t −

〈
Oi+t

〉)〉

=
〈
OiOi+t

〉
−
〈
Oi

〉〈
Oi+t

〉
, (4.35)

where the number index i denotes the number of the measurement and t defines the
separation of the measurements in the time-series. In this section we use

〈
. . .
〉

to
denote the average over all indices i. In the limit N → ∞ measurements, this becomes
the physical expectation value. For t = 0 the correlation function equals the variance
in case of single uncorrelated measurements σ2

O. With this definition we introduce the
normalized autocorrelation function given by

Γ(t) =
CO(t)

CO(0)
=

N−t∑

i=1

〈
OiOi+t

〉
−
〈
Oi

〉〈
Oi

〉

〈
O2

i

〉
−
〈
Oi

〉〈
Oi

〉 , (4.36)

with N as the total number of measurements. For increasing separation in the time-
series, Γ(t) decays exponentially

Γ(t)
t→∞−→ a e−t/τO,exp , (4.37)

where τO,exp denotes the so-called exponential autocorrelation time and a is a constant.
The exponential autocorrelation time defines the upper limit of how strongly subsequent
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measurements are correlated. The variance of correlated measurements is calculated by
collecting the diagonal and off-diagonal terms of

σ2
O =

1

N2

N∑

i,j=1

〈
OiOj

〉
− 1

N2

N∑

i,j=1

〈
Oi

〉〈
Oj

〉
=

1

N2

N∑

i,j=1

CO (|i − j|)

=
1

N2

N−1∑

t=−N+1

N−|t|
∑

k=1

CO (|t|) =

N∑

t=−N

CO (|t|) N − |t|
N2

=
CO (0)

N

N∑

t=−N

ΓO (|t|)
(

1 − |t|
N

)

=
σ2
O

N
2

[

1

2
+

N∑

t=1

ΓO (t)

(

1 − t

N

)]

=
σ2
O

N
2τO,int . (4.38)

Here, we defined the so-called (proper) integrated autocorrelation time

τO,int =
1

2
+

N∑

t=1

ΓO (t)

(

1 − t

N

)

=
Nσ2

O
2σ2

O
, (4.39)

where in realistic models τO,int ≤ τO,exp [121]. In some descriptions, the factor (1 − t/N)
is neglected. This is justified, since it vanishes with large N and is additionally sup-
pressed by the exponentially decreasing normalized autocorrelation function. One can
now determine the integrated autocorrelation time by integrating the autocorrelation
function in Eq. (4.38) for increasing separations up to sufficiently large t and by estimat-
ing the remaining contributions from the slope of the asymptotic exponential behavior.

For a large number of data sets, invoking the analysis by integration (Eq. (4.38)) to
obtain the integrated autocorrelation time is often too cumbersome for a day by day basis
[120] – the data analysis would easily exceed the simulation time. A fast estimation of
the autocorrelation time can be obtained from plots of the MC time-series of observables.
Autocorrelations of large time-scales can be identified by eye. Note that the expression
in Eq. (4.38) is correct for simple averages only. For sign-afflicted observables additional
terms have so be taken into account (see below).

The binning (or blocking) analysis is much more convenient, though somewhat less
accurate than full integration of Eq. (4.38). By grouping the incoming data into bins,
one forms a new (shorter) time series. Large enough bin-sizes result in a series of almost
uncorrelated block-values and thus can be analyzed by standard means. Let us assume
that the original data time series consists of N correlated measurements Oi. We block
them in NB bins of length k such that N = NB k. The block-average of the n-th bin is
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given by

OB,n =
1

k

k∑

i=1

O(n−1) k+i n = 1, . . . , NB . (4.40)

Obviously, the mean value over all bin-averages satisfies OB = O. If the bins are large
enough to form a basically uncorrelated series, their variance can be computed as an
unbiased estimator leading to the square of the error of the mean value

ε2
O ≡ σ2

O ' σ2
B(NB)

NB
≡ 1

NB (NB − 1)

NB∑

n=1

(
OB,n −OB

)2
. (4.41)

The integrated autocorrelation time is now given by

τO,int(NB) =
k σ2

B(NB)

2σ2
Oi

, (4.42)

which grows monotonically with decreasing binning block-number NB (and therefore
statistical independence) converging to the integrated autocorrelation time τO,int. If
τO,int(NB) does not converge, then the expectation value at the largest available NB

is a lower bound for τO,int, giving a lower bound for the error of O. In that case, the
simulation has not converged and one cannot deduce reliable physical results for

〈
O
〉
.

For increasing block-sizes, the number of data-points becomes small and the uncertainty
of the estimate for τO,int increases. The calculated estimates for the autocorrelation
time may converge but then start to fluctuate heavily, over- or under- estimating the
correct value. It is therefore reasonable to stop increasing the block-size if the error of
τO,int becomes of the order of τO,int itself, or if τO,int becomes significantly smaller for a
block-size which is larger than the preceding block-size.

Due to these temporal correlations of the measurements the statistical error εO = σO
of the MC-estimator O is increased by a factor

√
2 τO,int. This leads to the effective

statistics

Neff =
N

2 τO,int
, or respectively σ2

O,eff
= 2 τO,int σ2

O , (4.43)

which shows that only every 2 τO,int-th measurement is approximately uncorrelated.
By tuning the number of sweeps skipped between MC-measurements with respect to the
integrated autocorrelation time, the computational overhead can be reduced. For n-point
correlators, which require a ten times better statistic than simple observables (by rule of
thumb) – their much stronger autocorrelations additionally increase the computational
costs.

Finally, we briefly mention the issue of critical slowing down. While the auto-
correlation-time depends on the updating algorithm, it is also influenced by the param-
eters of the lattice system. One can expect the integrated (exponential) autocorrelation
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time to increase as τint ∼ ξz, where ξ is the leading correlation length in the system
and z denotes the dynamical critical exponent of the MC algorithm employed. As one
approaches a phase transition, the correlation length diverges, or on the finite lattice
becomes of the order of the system size ξ ≤ N (ξ ≤ L for correlations in imaginary
time). The computational effort then grows typically like NLmin[ξ,N,L]z . For local
updates one expects z ≈ 2 [70].

Sign bias2

We measure estimates of the form

〈
O
〉

=

〈
Ow

〉

〈
w
〉 ≈ Ow

w
=

∑N
i=1 Oi wi
∑N

i=1 wi

, (4.44)

where we identify w as the sign or the phase discussed in Sec. 4.2. Unfortunately, these
represent a non-linear combination of the basic observable O and w, thus trivial error
propagation is no longer valid. The correct estimates and errors can be calculated simply
via the Jackknife procedure explained in the next section. Another way is to compute
the error propagation directly. The exact estimator is given by

〈
O
〉

=
〈
O
〉

biased

[

1 −
〈
Ow;Ow

〉

〈
Ow

〉2 +

〈
w;w

〉

〈
w2
〉 + . . .

]

(4.45)

with
〈
O
〉

biased
defining the naive expectation value and the abbreviation

〈
Ow;w

〉
=
〈
Ow w

〉
−
〈
Ow

〉〈
w
〉
. The error is then given by

σ2
O =

〈
O
〉2

biased

[〈
Ow;Ow

〉

〈
Ow

〉2 +

〈
w;w

〉

〈
w2
〉 − 2

〈
Ow;w

〉

〈
Ow

〉〈
w
〉 + . . .

]

, (4.46)

or with
〈
Ow;w

〉
=
〈
Oiwi;wi

〉2τOw,w,int
N via

σ2
O =

〈
O
〉2

biased

[〈
Ow;Ow

〉

〈
Ow

〉2

2τOw,int

N
+

〈
w;w

〉

〈
w2
〉

2τw,int

N

−2

〈
Ow;w

〉

〈
Ow

〉〈
w
〉

2τOw,w,int

N

]

. (4.47)

Since we only want to determine a good estimate of the integrated autocorrelation time,
we will not employ Eq. (4.47), where we would need to do multiple binning analyzes for

2In this section we basically follow references [120] and [122].
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the different integrated autocorrelation times τOw,int, τOw,w,int and τw,int. Instead one
can estimate of the variance by taking the first few terms of Eq. (4.46). This should be
a reasonable approximation for the autocorrelation time.

4.3.2 Jackknife

With the knowledge of the integrated autocorrelation time, the means of the measured
quantities and their error can be computed. Instead of solving the complicated error
propagation of non-linear combinations of observables, the Jackknife method allows to
obtain a controlled estimate of the variances. automatically 3 The method has also the
advantage to give reliable results even for a small number of data points.

Similar to the binning analysis, the original data are blocked into bins of length
k = N/NB . To obtain the asymptotic error, k must be significantly larger than the
relevant integrated autocorrelation time τO,int. With this approximately uncorrelated
set of data points the, possibly highly nonlinear, analysis of, e.g., weighted observables
will be then repeatedly done with all but one (varying) data point. First from all NB

data we calculate the overall average O. The Jackknife-averages OJ,n containing all but
one of the block-values is obtained with the n-th-block-average OB,n via

OJ,n =
NO − kOB,n

N − k
n = 1, . . . , NB . (4.48)

Then overall Jackknife-average OJ = (1/NB)
∑

NB
OJ,n. The NB Jackknife blocks

now containing N − k data are trivially correlated since each of them originates from
nearly the same NB −1 bins. This correlation (which has nothing to do with the tempo-
ral correlation of the original data) leads to under-estimated Jackknife block-variances.
Fortunately, because of the trivial nature of this correlation, the underestimation can be
corrected by multiplying with a factor (NB − 1)2 leading to the final error

ε2
O = σ2

O =
NB − 1

NB

NB∑

n=1

(
OJ,n −OJ

)2
. (4.49)

The estimator of the observable O is then given by

O = O − Bias (4.50)

Bias = (NB − 1)(OJ −O) . (4.51)

3The Jackknife is a very general procedure and can be utilized for a large number of problems to
determine non-linear combinations [70].
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As said before, in this procedure error propagation is automatic by making NB + 1 ana-
lyzes using almost the full data-pool. In case of a Jackknife-bias Eq. (4.50) not negligible
with respect to the error Eq. (4.49), the data should be checked more closely. A bias-free
error analysis can be obtained by using the Double-Jackknife method, which in princi-
ple consists of the repeated application of the standard Jackknife process. Usually, the
computational costs do not outweigh the minimal corrections in the error propagation.

We summarize: from the binning analysis the integrated autocorrelation time can
be determined. Blocking the data into bins of a size significantly larger than the inte-
grated autocorrelation time results in approximately statistically independent variables.
Finally, we employ the jackknife method to obtain the errors of arbitrary combinations
of measured observables.

4.4 Analytic continuation

Dynamical properties are described by spectral-functions – for comparison with exper-
imental data (see App. A.5) and the identification of excitation energies, the analytic
continuation to the real frequency axis is required. Maximum Entropy is currently the
most sophisticated method for the ill posed inversion of QMC data.

4.4.1 The Maximum Entropy method

The Quantum Monte Carlo simulation provides Matsubara correlators for a discrete set
of points 0 ≤ τl < β (τl = l∆τ , l = 0, . . . , L), e.g.,

Gkσ =
〈
ckσ(τl)c

†
kσ(0)

〉
from FT(

〈
ciσ(τl)c

†
jσ(0)

〉
) . (4.52)

As already mentioned in Sec. 4.1.3 the spectral density or one-particle Green’s function
A(k, ω) is related to the measured time-displaced Green’s function G by

A(k, ω) = − 1

π
ImG(k, ω) , (4.53)

where the imaginary time-dependent Green’s function at a specific momentum can be
obtained via the spectral-theorem [92] through

G(τ) =

∫ +∞

−∞
dω

e−τω

1 + η e−βω
A(ω) . (4.54)

Here, the kernel of the integral is defined with η = +1 (η = −1) for fermionic (bosonic)
operators. From this we need to reconstruct the continuous function A(ω) in form of an
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inverse Laplace transform. For a finite number of frequencies ωi, i = 1, . . . ,M on the
energy-axis, equation (4.54) can be expressed in matrix form

G = KA with Gl =
∑

w

Kli Ai and Kli =
e−τlωi

1 + η e−βωi
. (4.55)

This leads to a system of linear equations with the vector A of size M (K must not be
confused with the hopping matrix). Here, Gl is an (L + 1)-vector holding the values of
the single particle propagator at imaginary times τl, l = 0, . . . , L. Owing to the form
of the kernel K, the (L + 1) × M matrix K exponentially suppresses the data of A for
large frequencies ω as shown in Fig. 4.2. Consequently, the condition number (ratio of
the largest to the smallest singular value) of the matrix is undesirably large – similar to
the problem of stabilizing the matrix product given in Sec. 3.7.

Additionally, as a consequence of the finite number of field configurations generated,
the data is afflicted with a statistical error. The inversion is therefore utterly ill posed
due to the incomplete and noisy data. In 1990, Silver and others suggested the Maxi-
mum Entropy method (MaxEnt) [123, 124]. Standard likelihood analysis (χ2-fitting) is
inapplicable here, since many degenerate solutions lead to small χ2, resulting in math-
ematically (numerically) correct, but physically useless data (noise). MaxEnt is based
on Bayesian probability theory and provides logic as consistent theory. The method
allows to input additional information like symmetries, sum rules and momenta into the
reconstruction.

Within MaxEnt, the most probable solution for A(ω) for a given value of G(τl) (the
aposteriori-probability) is obtained by maximizing

P
(
A(ω)

∣
∣G(τl)

)
∝ eα S−χ2/2 . (4.56)

Here eα S is an a-priori-probability and χ2 ∝ P (G(τl)|A(ω)) is the likelihood-function
with the discrete kernel Kli of Eq. (4.54), defined by

χ2 =
∑

l

(∑

i KliA(ωi) − G(τl)

σ(τl)

)2

, (4.57)

with σ2 =
1

Nm(Nm − 1)

Nm∑

l=1

(〈
Gl

〉
− Gl

)2
. (4.58)

Nm denotes the number of measurements of the Green’s function G at time l, and S
denotes the Shannon-Jaynes-entropy

S =
∑

i

(

A(ωi) − mi − A(ωi) ln
A(ωi)

mi

)

∆ω . (4.59)
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Here m is the so-called default-model, which is usually chosen as a constant function
(flat), but can also be defined by the atomic limit of the Hamiltonian or similar approx-
imations. Note that any initial assumption biases the result!

There are several approaches to determine the regularization parameter α in Eq. (4.56)
[86]. Maximizing the the aposteriori-probability in Eq. (4.56) is referred to as the clas-
sical method [125, 86]. The method results in the solution passing a χ2-fit and having
the least variation compared to the default model. Thus, it plays out the competition
between the goodness-of-fit measure χ2 and the entropy prior S. The MaxEnt-method
requires careful analysis of variances and correlations of the input data to ensure trust-
worthy results.

The behavior for a model-case is illustrated in Fig. 4.3 showing the resolution and
reliability of MaxEnt-reconstructions for different structures and errors. For each re-
construction a sample spectrum of two narrow Gaussians with varying weight-ratio and
position was transformed with the kernel mentioned before and blurred by normally dis-
tributed random noise. In each plot we show the model and the MaxEnt reconstruction
for artificial errors of O(10−2) and O(10−3). The insets show the corresponding Green’s
function on a logarithmic scale. We can identify the multiple peak structures by the
different slopes of the correlation function. While for a single peak the Green’s function
decays nearly linearly, there are two slopes for two peak structures. The better the
Green’s function is defined at β/2, the more structure will be seen in the MaxEnt result.
At high frequencies, the kernel suppresses the information exponentially, thus (even with
large spectral weight) peaks can only be identified there with extremely accurate data.

As one can see, one can never be sure if an excitation from MaxEnt is a single peak,
or an averaged bunch of multiple peaks. Excitations at high frequency are in general
reproduced with minor peak height than they actually should have. There exist several
different approaches to compute the MaxEnt results, e.g., with the help of integral
corrections, Gaussians of fixed or variable width and many more. Although most of
the approaches result in different peak structures, the deviation of their corresponding
Green’s functions from the input Green’s function lie within the same range. Thus the
different results can be seen as equivalent. We want to emphasize, that in general a
blurry results can be seen as more trustworthy than an fine structured one. Consistent
behavior along several k-vectors may also lend more credence to the results results.

In the following, shadeplots consisting of multiple MaxEnt results (corresponding to
the different momenta) are shown with error bars. These bars indicate the uncertainty of
the position of the peak-maximum and are obtained from the peak weights and slopes.
Thus, they do not result from error-propagation directly, but represent a reasonable
estimate.

MaxEnt is a sophisticated method for analysis of QMC-data, but not the one and only
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Fig. 4.2: Left: a typical bosonic (symmetric) two-point correlation function on a linear and a logarithmic
scale. The gap in the logarithmic representation is due to negative values. Right: the kernel e−τω/(1 +
e−βω) for ∆τ = 0.05 and β = 6.0 showing the suppression of data-points with increasing ω. The manifold
gets more sharp with increasing β.
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Fig. 4.3: MaxEnt results. Top: for two peaks with constant separation at increasing frequency position;
Middle: for increasing separation of two differently weighted peaks; Bottom: for two peaks with different
weight ratios. The insets show the Green’s function with errors of O(10−3).
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for analytic continuation: stochastic continuation [126, 127], the expansion into Cheby-
chev polynomials (polynomial method) [128], or the computation of a cross-operator
matrix using a variational Ansatz to determine the linear combination of kernel coef-
ficients are other examples [129, 130, 131]. The latter might be a reasonable way to
estimate gaps or a lower bound or low energy excitations in the spectral functions. An-
other interesting example is the Padé-approximation which is in general not suitable for
noisy data, but found its appliance in the Hirsch-Fye Monte Carlo [132] using Gray-
coding [133].

In this thesis we use the MaxEnt method and work with the MaxEnt-program by
Danilo Neuber [134] who improved and corrected the program by von der Linden and
Preuss [86, 125], which incorporates an improved evidence approximation to improve
stability.

4.4.2 Additional information for the reconstruction

Additional information can be put into MaxEnt to improve the reconstruction. While
the convergence of static observables can easily be tracked at runtime of the simulation,
the question of the number of measurements necessary to obtain usable data for the
imaginary-time-correlated Green’s functions and the following Maximum Entropy pro-
cess is more subtle. Sum rules and the first momenta of the Hamiltonian, which can be
determined at high accuracy, additionally enhance the resolution.

Convergence and covariance-matrix

Despite the careful data analysis, the data points of the Green’s function can be still
correlated in imaginary time. To provide information about these correlations for the an-
alytic continuation procedure, the covariance-matrix is computed [123]. The covariance-
matrix for an observable O

CO =








c11 c12 · · · c1n

c21 c22 · · · c2n
...

. . .
...

cn1 cn2 · · · cnn








(4.60)

is symmetric cij = cji with the variances of the observable on the diagonal cii = σ2
O.

Given the expectation value of O by
〈
O
〉

with the measurements Oi their correlation is
given by the matrix-elements

cij = cov(Oi,Oj) =
〈 (

Oi −
〈
Oi

〉) (
Oj −

〈
Oj

〉) 〉
. (4.61)
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Taking the N measurements of the Green’s function of the form

Gl =
1

N

N∑

n=1

G
(n)
l , and GlGl′ =

1

N

N∑

n=1

G
(n)
l G

(n)
l′ , (4.62)

the corresponding covariance matrix is given by

Cll′ =
1

N(N − 1)

N∑

n=1

(

G
(n)
l − Gl

)(

G
(n)
l′ − Gl′

)

=
1

(N − 1)

N∑

n=1

(
GlGl′ − GlGl′

)
. (4.63)

The goodness-of-fit measure is then defined by

χ2 =
∑

l,l′

∆Gl C
−1
ll′ ∆Gl′ , (4.64)

where ∆Gl is the same as in Eq. (4.57). The constraint through the covariance-matrix
in the Maximum Entropy process is helpful, but has to be loosened by the definition of
a lower limit for the covariance-matrix eigenvalues to omit singular values. Following
the discussion by Preuss [86], a minimum of L and a suggestion of & 4L uncorrelated
measurements are necessary to obtain a well defined covariance-matrix. Unfortunately
the matrix is again afflicted by errors which would have to be taken into account. Preuss
determined their influence to the reconstruction of the spectra by comparison of the
exact errors and a fixed overall error. He concluded that accounting for the errors is
more important than to know their exact values [125].

Hamiltonian moments

Similar to the constraint to fulfill sum-rules for the spectra, e.g., for purely electronic
systems

∫ +∞

−∞
dω A(k, ω) = 1 , (4.65)

or the demand for positivity, is the implementation of constraints for higher moments
[135]. These can be incorporated through the default model or can be imposed as
an additional constraint in the likelihood function [136]. The first moment is defined
through the derivative of Eq. (4.54) with respect to τ by

d

dτ
Gσ(k, τl) =

∫ +∞

−∞
dω (−ω)

e−τlω

1 + e−βω
A(k, ω) , (4.66)
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In Hubbard Hamiltonians the first momenta for A(k, ω) are given through relatively
simple expressions. It can be shown [137] that the moments are given by

µm =

∫ +∞

−∞
dω ωmA(k, ω) =

〈
{[ck↑, H̃ ]m, c†k↑}

〉
, (4.67)

where { , } denotes an anti-commutator and [ , ]m is a multiple (nested) commutator
with [a, b]1 ≡ [a, b], [a, b]2 ≡ [[a, b], b], etc. and H̃ is the Hamiltonian in momentum
space. Alternatively, the moments can be obtained via the Monte Carlo as expectation
values of the form

〈
d
dτ G(k, τl)

〉
, but they will be afflicted by similar (or more serious)

errors as the Green’s function. The extended Hubbard Hamiltonian from Eq. (2.7) in
momentum space is given by

FT (HEH) = H̃EH =
∑

σ

∑

k

(−2 t cos(k) − µ) c†kσ ckσ

+
1

N

∑

σ,σ′

∑

k,k′,q

(
U

2
δσ,σ′ + V cos(q)) c†k+q,σ c†k′−q,σ′ ck′σ′ ckσ .(4.68)

According to [135], the first three moments are

µ0 = 1

µ1 = εk − µ +
〈
n
〉U

2
+
〈
n
〉V

2
cos(k)

µ2 = (εk − µ)2 +
〈
n
〉
(εk − µ) (U + V cos(k))

+
1

2

〈
n
〉 (

U2 + V 2 cos2(k)
)

, (4.69)

with the tight-binding dispersion relation

εk = −2 t (cos(kx) + cos(ky)) . (4.70)

For two-particle correlators like charge-charge- or spin-spin-correlations only the first
moment is given in simple form [86]

µ1(k) = 2 (1 − cos(k))Ek , (4.71)

where Ek denote the kinetic Energy.

All quantities taken in these expressions are exact or originate from stable MC es-
timators like the filling. Incorporating the n moments into the MaxEnt-reconstruction
provides n additional equations for the system in Eq. (4.55), which definitely enhances
the resolution. Higher moments include combinations of correlators and become rather
complex. Due to their generally large errors the use of their implementation is limited.
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Note that the error induced by the Trotter discretization alters the physics and that
the analytically defined momenta do not necessarily correspond exactly to the simu-
lated system. Thus, the influence of the moments in the MaxEnt process becomes exact
for Trotter-scaling ∆τ → 0 only. However, peak positions and their weights only vary
slightly with increasing discretization steps.

A discussion of the moments for the extended Hubbard Holstein Hamiltonian
(Eq. (2.7)) can be found in Ref. [135].

4.5 Finite size, symmetries and phase transitions

In this subsection we provide a short overview of the interpretation of the decay be-
havior and divergencies of correlation functions and order parameters in the context of
global symmetries and their breaking. To derive the properties of a real physical system
containing an almost infinite number of degrees of freedom from the insights of a small
finite cluster is a delicate task. Finite-size effects have to be taken into account which
can cause completely different physics on a finite system than in the infinite system.

Finite-size effects

Here, we give a few examples of effects which may occur in simulations due to finite
system sizes. More details can be found in references [138, 67].

Shell effects and multiplet splitting – The allowed momenta of a small cluster form
a coarse grid of points. Due to the point group symmetry of the finite lattice the
noninteracting part of many microscopic models (e.g. the hopping part of the Hubbard
model) then creates shells of degenerate momenta. Electron-electron interaction lifts the
degeneracy of the ground state and creates a multiplet splitting which is completely a
finite-size artefact. The numerically detected ground state then reflects many properties
of the ground state multiplet, which means that the Fermi surface of the finite system
might not be a good approximation for the thermodynamical limit, where it can appear
very different.

Hidden symmetries of the Hamiltonian – It is not only possible that the infinite system
shows a symmetry which the finite system does not show, but the inverse situation
may also appear. For example, the ground state of the two-dimensional AF Heisenberg
model has spontaneously broken symmetry (SO(3) rotational symmetry is lifted). On
the contrary, in the finite system, the total spin is still a good quantum number.

Broken symmetries – Short-range interactions may create order on the finite lattice and
the correlation length becomes comparable to the system size, whereas this quantity
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vanishes on the infinite lattice.

Finite-size gaps – Excitation gaps in the single particle spectral function or dynamic
susceptibilities of a finite system are the rule rather than the exception because one is
always comparing systems in which the densities differ by a finite amount and spatial
correlation lengths cannot be infinite. Therefore, a gap obtained by a simulation is in
general not an unambiguous criterion for insulating behavior.

Lifetime effects – Due to error afflicted correlation functions the restricted resolution in
the analytic continuation process (see Sec. 4.4) does not allow definite identification of
the the lifetime (peak witdh) of excitations. The identification is not only made difficult
because of Maximum Entropy but also due to finite size effects which shift and squeeze
excitations with varying lattice size. For this reason it is in general not possible to
reliably deduce peak widths, damping rates and lifetimes from QMC or ED simulations
without correct scaling analysis.

Boundary conditions – These have crucial influence on the result of the simulations, but
become less important with increasing system size. QMC is rather weakly dependent
on boundary conditions since it can handle rather large systems out of the box. DMRG
instead builds up the system from small to large and may therefore strongly depend on
the initial boundary conditions, which can lead to unwanted Weyl oscillations overlaying
the results. As an example for the finite size effect in correlation functions at periodic
boundary conditions we consider a spatial static correlation function C(0, r) which decays
to zero as the distance r goes to infinity (see Fig. 4.4). When measured on a finite one-
dimensional chain of 8 sites, all r-points larger than 7 or smaller than 0 are mapped
onto the range 0 . . . 7. Hence, the correlation function rises to maximum again when
approaching the boundary, altering the decay of the correlation. For infinite correlation
length this corresponds to a a polynomial function or to a hyperbolic (cosh) function
otherwise. In case of a high order transition like a Kosterlitz-Thouless phase transition,
the smooth change in the correlation length requires very large systems to get rid of
finite size artefacts.

Finite-size scaling

Apart from these fundamental effects discussed in the preceding subsection one can
expect that almost all physical quantities measured on a finite cluster exhibit some
smooth transition as the system size is increased to the infinite lattice. The finite size
artefacts may be expected to vanish systematically and can be eliminated by means of
finite-size scaling.

The choice of the interpolating function (fit) to extrapolate to infinite lattice size is
subtle, since one cannot be sure (even it seems unlikely) the behavior does not change
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Fig. 4.4: Example of a correlation function on the (a) infinite lattice and its folding onto the (b) finite
lattice with periodic boundary conditions; (c) shows the measured correlation function on a cluster with
8 sites. Lines are guides to the eye only.

any more in larger systems. But in general, a simple linear or exponential behavior
yields a good approximation for the desired quantity on the infinite lattice. Fortunately,
the scaling functions are known for some classes of models and can be determined by
means of the renormalization group.

For finite-size scaling theory we refer to references [139, 67]. A discussion about the
Trotter-time-scaling is given in App. A.1.

Cross-over, quantum- and thermodynamic phase transition

We are calculating all quantities at finite temperature – nevertheless, we are interested
in the low energy excitations of the system. Is it justifiable to argue about these at finite
temperature, and what temperatures are low enough to make trustworthy statements?

As several studies show [140, 141, 142], the charge disorder-order transition in the
extended Hubbard model is a quantum phase transition. In the finite temperature QMC
a disorder-order crossover is observed as a function of the inter-site Coulomb interaction
V , and also as a function of the temperature T (inverse temperature β). Following the
Mermin-Wagner theorem [53, 31], neither of them can be a true phase transition at finite
temperature, due to the limited dimensionality of the ladder. While for small systems
the ladder might be seen as a two-dimensional object, in the thermodynamical limit
in form of an infinite long ladder, the finite dimension along the rungs plays a minor
role and a phase transition is confined to zero temperature. Nonetheless, this dimension
cannot be fully neglected and does influence the dynamics of the ladder. The observed
transition in β is therefore identified as a finite size effect [143, 144].

In order to understand the transition in V , we quote three kinds of transitions com-
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mon in the literature [145, 146]:

(i) A quantum phase transition (QPT) is strictly defined for T = 0. In general, it
is a sharp transition, as a consequence of triggering the relative strength (or any non-
thermal parameter) of two non-commuting operators. Neither of them needs to favor a
broken symmetry – thus a QPT will not necessarily imply the formation of long range
order (Goldstone mode) of any kind. In solid-state physics the QPT is the competition
between potential and kinetic energy. Gaps in excitations remain robust and do not
vanish in the presence of other excitations.

(ii) The competition in the thermodynamic phase transition (TPT) occurs between
internal energy and the entropy of the system as a function of the temperature and
incorporates the breaking of a symmetry. Excitation gaps are soft and can be overcome
at temperatures where thermic fluctuations are larger than the gap size.

(iii) Crossover is the name for the change of an order parameter as a function of
any parameter in finite systems and finite temperature at a dimensionality for which the
Mermin-Wagner theorem [53, 31] prohibits a true phase transition. This apparent phase
transition vanishes in the thermodynamic limit and can (but does not have to) be the
aftermath of a quantum critical point.

Fig. 4.5: The quantum critical point at T = 0 and Vc is accompanied by a thermodynamic phase
transition (cross-over) from disorder region (II) to order region (I) for finite temperatures up to a critical
temperature Tc. The cross-over red-shaded-region at the order-disorder phase boundary can be the
environment for a true phase transition (solid line at phase boundary) leading in the limit to the quantum
critical point Vc. Adapted from Ref. [145].

To distinguish between TPT and QPT in non-relativistic simulations means to clarify
the situation of transition as a function of temperature and a transition any other non-
thermal parameter. Though, the contrast to the classical phase transition is that the
statics and dynamics of the quantum system are inextricable linked. This is because the
quantum Hamiltonian at some imaginary time does not commute with the Hamiltonian
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at another imaginary time.

In Fig. 4.5 a schematic phase diagram for a model-Hamiltonian which shows a QPT
is given. The model in d > 1 dimensions has a TPT at some finite temperature Tc driven
by thermal fluctuations. For Tc(V ) 6= 0, critical fluctuations in the vicinity of the phase
boundary between quantum ordered phase (I) and quantum disordered phase (II) are
classical. This is due to the diverging correlation time τc which is proportional to the
diverging correlation length in imaginary time ξτ

τc ∝ ξz
τ ∝ |tr|−νz , (4.72)

at the transition line, with ν, z as the critical exponent, the dynamic critical exponent
and the reduced temperature tr = |T − Tc|/Tc, respectively.

This classical critical regime (dark gray region) becomes narrower with decreasing
temperature, shrinking to zero at finite strength of coupling V at zero temperature.
In this quantum critical point Vc the dynamic critical exponents can be expressed by
those of a corresponding d + 1-dimensional classical model and correlations obey power
laws. The transition line separates the phase space into region (I), where long range
order exists and region (II), where quantum order is dominantly broken by quantum
fluctuations and region (III) which is dominated by thermal fluctuations. Between the
quantum disordered and the thermally disordered regions, where both quantum and
thermal fluctuations are relevant, there is an intermediate region (IV) called quantum
critical regime [147, 148, 146, 145].

As it seems that a QPT can be generically mapped onto a classical counterpart, we
want to note that not all properties of a given quantum system can be obtained from its
classical counterpart! Some theories for quantum systems involve long-ranged effective
interactions arising from soft modes, real-time dynamics analysis (phase coherence time)
or a strong space-time anisotropy, which in general cannot be treated by simple mapping.
For an instructive review on the topic of QPT we refer the reader to [145].

The schematic phase diagram for our quasi-one dimensional ladder looks similar to
the one sketched in Fig. 4.5, except for the solid line marking the TPT between Tc and
Vc and the point Tc itself (but with the dark gray region), since this transition would
vanish in the thermodynamical limit. Obviously, the transition within this Monte Carlo
study is a cross-over.

In order to estimate which finite temperature is low enough in our simulation to
identify electronic (phononic) effects we compare the thermal and electronic (phononic)
fluctuations. In units ~ = kB = 1 we have the energy E = T = 1

β . In other words, for
e.g. β = 6/t we should be able to resolve structures of electronic excitations of energies
or frequencies down to t/6, where t is the hopping amplitude. Usually global structures
can still be identified at much higher temperatures.
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4.5 Finite size, symmetries and phase transitions

Backed with adequate computer power, any finite temperature simulation can be
used for groundstate investigations of a QPT as long one knows the critical exponent z.
As one utilizes space-time proportionality to scale the temperature with the system size
in a ratio which conserves critical behavior for a fixed coupling, the scaling limit is not
only the infinite cluster case, but the zero temperature case as well.

Decay behavior, symmetry breaking and Goldstone modes

In general, correlation functions decay with exponentially decreasing amplitude, which
reflects the finite correlation length equivalent to short-range order. In the case of a
term with finite interaction in the Hamiltonian, but correlations are decreasing obeying
a power law, the diverging correlation length indicates a phase transition.

According to Goldstone’s theorem [149, 150], spinless bosons with zero mass appear
when a continuous symmetry is spontaneously broken. The Goldstone bosons appear
whenever a continuous symmetry group leaves the Hamiltonian but not the vacuum
(ground-state) invariant. These may be seen as additional degree of freedom compen-
sating for the broken symmetry and guaranteeing a theory with equal number of degrees
of freedom in the unbroken as well as in the broken phase. Their zero mass reflects the
formal definition of the spontaneous symmetry breaking (SBB) where any broken state
in the same symmetry group can be obtained with vanishing energy effort. SSB means
that an order parameter morder does not commute with the Hamiltonian. It is formally
defined in the limit of an external field h

lim
h→0+

lim
N→∞

morder 6= 0 . (4.73)

The number of Goldstone bosons is given by the number of broken generators of the
system’s symmetry group. In solid state theory these gapless excitations can be density
waves – non-local excitations (local in k-space). In the classical picture of a vector-
model this can be understood as twisting the local spin orientation of the spins so that
they precess around the z-axis with a phase difference. This may be interpreted as an
excitation of particular momentum and energy passing through the crystal like a plane
wave similar to a phonon.

As a matter of fact a divergent correlation length in space is evident in time as
well. In the dynamical spectra this can be seen by the appearance of a zero frequency
Goldstone mode in form of a peak at a certain momentum. Only finite size scaling
to the thermodynamical limit or numerical renormalization group (NRG) studies allow
to determine whether the decay behavior is of exponential or algebraic kind marking
short range order, or a true phase transition and long range order (LRO), respectively.
A diverging correlation function (e.g. spin-spin correlation Sss) at some wave vector q̄
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results in vanishing energy

lim
q→q̄

χss,cc(q̄) → ∞ −→ lim
q→q̄

E(q) = 0 . (4.74)

This means a divergence at some wave vector q̄ possibly indicates Goldstone bosons.
Note, while a Goldstone Boson is a gapless excitation it does not rely on LRO – LRO
does not necessarily imply a spontaneously broken symmetry! One distinguishes between
true LRO and quasi LRO. Where true LRO implies the bijective relation of SSB and a
power law decay of the correlation functions, quasi LRO does not include the spontaneous
breaking of a continuous symmetry. The formal definition of LRO is given by

0 6= m2 = lim
r→∞

lim
N→∞

〈
sisi+r

〉
, (4.75)

where the si, si+r represent arbitrary operators separated in space by r. An overview
to rigorous theorems, symmetry breaking and finite size effects in quantum many-body
systems (on the lattice) is given by Koma and Tasaki in [138].

We want to point out that SSB is not defined for finite systems. Thus to conclude
from a finite system to the existence of SSB in the thermodynamical limit is a rather
difficult task.
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Results 5
Equipped with a suitable method and numerous tricks we simulate the system – the two
legged, quarter-filled ladder as a model for the sodium vanadate. Spectral functions,
susceptibilities, static correlation functions and observables will be discussed below and
above the charge order transition as a function of the inter-site Coulomb repulsion V .

The parameters of the extended Hubbard model specific for the sodium vanadate
are fixed in the following plots. Namely, the onsite coupling repulsion U = 8.0 and
the hopping ta = 1.0, tb = 0.5 perpendicular and along the ladder, respectively (see
Sec. 2.8). The chemical potential µ has been adjusted such that the system is quarter-
filled

〈
n
〉

= 0.5. As explained in Sec. 4.2 due to the severe sign problem we simulate
the pure extended Hubbard model without coupling to lattice degrees of freedom. If not
indicated otherwise, lines between data-points are guides to the eye only.

5.1 Static quantities

In this section we compare with results from Gabriel and coworkers [151]. The simula-
tion used an approximation to reduce the number of auxiliary fields necessary for the
treatment of the inter-site coupling as described in Sec. A.3.

From the parallel tempering we obtain results for simulations with slowly changing
inter-site coupling V . In Fig. 5.1 we plot the quadratic charge order parameter mCO

defined in Eq. (4.16) as a measure for the amount of zig-zag charge order for ladders
of Nx = 8, 16, 32 rungs. The crossover from the disordered phase to the charge-ordered
phase is smooth but sharpens with increasing system size (ladder length). Though in
the thermodynamical limit Nx → ∞ the shape seems to become very sharp it is still no
phase transition due to the finite temperature (see Sec. 4.5)! In Fig. ?? the crossover as
a function of temperature is shown. With decreasing temperature the order parameter
converges for a specific coupling V . As our results are computed for β = 8.0 we expect
the order parameter to be mostly converged, thus the crossover in Fig. 5.1 should not
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shift with decreasing temperature much further. At high temperatures (small beta) the
order decreases for a fixed coupling V , thus the crossover point in Fig. 5.1 shifts towards
larger values of V with increasing temperature as sketched in Fig. 4.5. The dashed line
in Fig. 5.1 represents the zero temperature (β → ∞) result for an extrapolated infinitely
long ladder taken from Ref. [143]. For T = 0 the transition of the order parameter is a
true quantum phase transition as a function of the coupling V and occurs at the critical
coupling Vc = 2.1(1) [143].

In Fig. 5.3 and Fig. 5.4 the changes of (negative) kinetic and potential energy per site
with increasing V are plotted. Both decrease with increasing V . This corresponds to the
classical interpretation that the electrons in the charge ordered phase are frozen in zig-zag
order where they would neither contribute the energy ∼ U for double occupancies nor
the energy ∼ V in presence of nearest neighbors to the energy (compare with illustration
Fig. 1.2). Their shapes show only weak finite size dependence.

The charge correlation length plotted in Fig. 5.5 increases exponentially with a V
depending slope. This behavior is consistent with the 1D Ising model in a transverse
field (IMTF) [151, 152], which is equivalent to the extended Hubbard Hamiltonian in
Eq. (2.2) in the limit of one spinless electron per rung. For large V , the transverse field
goes to zero, and ξIMTF = | ln tanh(β)|−1. This is exponential behavior with slope 2
which the data for V = 3.0 appear to approach. Long range order is only established in
the thermo-dynamical limit. For weaker coupling V < 2.0, the correlation length IMTF
remains finite even in the limit β → ∞ which means disorder even at T = 0.

The static spin-spin Fig. 5.6 correlations exhibit antiferromagnetic order probably
resulting from partial charge order where one electron is delocalized on one rung. The
order appears to be short ranged not only at finite temperature but also at zero temper-
ature investigations [142]. The effective antiferromagnetic coupling between neighboring
sites becomes smaller the larger V gets. The antiferromagnetic behavior along the ladder
will be discussed in more detail below.

5.2 Single-particle particle Green’s function

The single-particle spectral function defined in Eq. (4.28) corresponds to the low energy
band-structure of our strongly correlated model. Results are shown in several figures
below: the intensity of the shading (or peak height in line-plots) reflects the probability
to find an electron inserted (removed) at specific energy ω and momentum k into (from)
the system. The following spectra consist of the momentum range from (kb, ka) = (0, 0)
to (π, 0) and from (0, π) to (π, π).

We follow the argumentation by Aichhorn et al [142] and compare some distinct
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features with their ED+CPT study of the quarter-filled 6 × 2 ladder. We also compare
to the Hubbard chain (see Sec. 5.5) to show the nearly one-dimensional behavior of the
ladder system.

Disordered phase

We start our investigations in the disorderd phase. We choose the inter-site coupling
with V = 1.0 which is far off the crossover-point. Let’s focus on the excitations with
ka = 0 (along the ladder) in Fig. 5.7 first. We have a heavy weighted lower Hubbard
band and vanishing spectral weight in the upper Hubbard band. The dispersion is only
slightly pronounced due to the small hopping integral along the ladder and has a period
of π just like in the half-filled 1D Hubbard model. Consequently, the electrons (holes)
have large effective mass.

The dispersion looks similar to half-filled one-dimensional (1D) Hubbard model with
t = 0.5 shown in Fig. 5.20 with the big difference of a much larger gap. The small gap
of the ladder ∆Q1D ≈ 1.0 where in the Hubbard chain we have ∆1D ≈ 6.0. The gap
is responsible for insulating behavior since there are no excitations at the Fermi-level
(ω = 0.0) which would contribute to the charge-conductivity. In the extended Hubbard
ladder the gap compares well to ED results by Aichhorn et al [142]. It remains finite for
V = 0 and gets larger with increasing V . This can be seen in the charge compressibility
as well. For a wide range of the chemical potential the filling stays constant. The region
broadens with increasing V as plotted in Fig. 5.9. Near kb = 0, π there is large spectral
weight and scattering from short range antiferromagnetic correlations can become most
effective. Therefore the doubling of the unit cell along the ladder in b direction is an
effect of antiferromagnetic order along the legs.

Aichhorn et al stress to find traces of spin-charge separation (see App. A.3) near
kb = 0, π. Due to the limited resolution of the MaxEnt reconstruction spin charge sepa-
ration cannot be identified from the spectral function. The effect should be most likely
seen near kb = 0, π where the band splits into a low energy spinon-branch and a holon-
branch at slighty higher energy.

Traces of structures can be found at kb < π/2, ω > 0.0 and kb > π/2, ω < 0.0 which
can look like reflections of the bands at the Fermi level. These so-called shadow bands can
form in the presence of strong antiferromagnetic correlations and can be seen remnants of
a magnetic superstructure that would be generated by the halving of the Brioullin zone
in a long-ranged antiferromagnetic ordered state. Additional features like excitations
at energies corresponding to double occupation presumably around ω=8.0-10.0 are not
visible and are probably suppressed by the MaxEnt kernel.

For ka = π (Fig. 5.8) no spectral weight at all can be found for inverse photo-emission
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Fig. 5.7: Single-particle spectral function A(k, ω) of the quarter-filled 32 × 2 ladder system in the disor-
dered phase at V = 1.0 along the ladder with ka = 0.
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Fig. 5.8: Single-particle spectral function A(k, ω) of the quarter-filled 32 × 2 ladder system in the disor-
dered phase at V = 1.0 with ka = π.
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Fig. 5.9: Filling versus inter-site coupling for a Nx = 32 ladder reflecting the charge gap dependence for
different V values.

or hole excitations below the Fermi level (w < 0). This implies that there can be only
negligible occupation of the channel. This scenario can be understood as we know the
momentum ka = π corresponds to an anti-bonding state within a rung which has energy
2ta relative to the bonding orbital. Therefore, this state is unlikely to be populated even
at finite temperature.

The primary excitations for kb < π/4 have large spectral weight compared to the
ka = 0 channel. Qualitatively this can be understood as follows. If an electron with
momentum ka = 0 is inserted it will most probably occupy a bonding state. One of
the two possible states is already occupied therefore it is necessary that the electrons
have opposite spin and the electron will couple to the anti-ferromagnetic background. A
particle inserted with momentum ka = π instead would occupy the anti-bonding orbital.
Since both spin directions posses equal probability it will not be influenced by the anti-
ferromagnetic background. Therefore the band with ka = π disperses with period 2π.

Charge-ordered phase

As we set the inter-site Coulomb repulsion to V = 2.8, which is deep in the charge-
ordered sector, the spectral function changes drastically. The peaks become much
sharper mostly because of the better statistics due to the minor sign problem in the
charge-ordered phase. As predicted the gap broadenes with increasing V . In the channel
ka = 0 (Fig. 5.10) we have little spectral weight for ω > 0 with a dispersion of periodicity
2π. Below the Fermi level most of the weight is located near π/4. The band shows only
vanishing dispersion. In a semi-classical picture we can describe the situation as follows.
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Fig. 5.10: Single-particle spectral function A(k, ω) of the quarter-filled 32 × 2 ladder system in the
charge-ordered phase at V = 2.8 along the ladder with ka = 0.
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Fig. 5.11: Single-particle spectral function A(k, ω) of the quarter-filled 32 × 2 ladder system in the
charge-ordered phase at V = 2.8 with ka = π).
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Let’s assume we have a perfectly zig-zag ordered charge pattern. If we put in an electron
with specific momentum either on an occupied or empty site, this costs high amounts of
potential energy from double occupancies and nearest neighbor repulsion even when the
electron is delocalized. If we remove an electron out of the ordered pattern no potential
energy has to be paid and hole and electron can delocalize at least over the nearest
neighbor sites gaining kinetic energy. Thus inverse photo-emission is energetically more
favorable.

Compared to the channel ka = 0 the channel ka = π (Fig. 5.11) has only minor
weight. It shows a similar dispersion as the ka = 0 channel but a bit more pronounced
for ω > 0. With this momentum both, photo-emission and inverse photo-emission seem
to posses equal probability.

5.3 Spin susceptibility

Here the spin-response to an outer perturbation at specific energy ω and momentum
k is probed. The spin susceptibility and the charge susceptibility defined in Eq. (4.32)
yield information about their contribution to the low energy excitations. We compare
the results for the quarter-filled 32 × 2 ladder with the results of the ED study of the
quarter-filled 8 × 2 ladder by Aichhorn et al [141].

Disordered phase

In the introduction to the sodium vanadate we have mentioned that the compound above
the charge-order transition can be described by an effective antiferromagnetic S = 1/2
Heisenberg chain. This can be understood as the magnetic structure of the sodium
vanadate consisting of a single electron per rung where the rungs form a chain of spins
S = 1/2. Indeed for ka = 0 in Fig. 5.12 we find a gapless spinwave dispersion similar
to that of the antiferromagnetic S = 1/2 Heisenberg chain in the spin susceptibility.
Doubly occupied states which usually contribute significantly to the magnetic response
in Mott-Hubbard insulators, have only little influence in our case since they are very
improbable (≈ 5% double occupation). The quasi-one-dimensional magnetic behavior of
the ladder model has been also affirmed in Ref. [141].

The effective antiferromagnetic coupling for the S = 1/2 Heisenberg chain can be
extracted from the spin dispersion using [153]

Jeff =
2

π
ω(0, π/2) ≈ 0.45 . (5.1)

A quantitative with experimental data cannot be made since in the experiment the
ordering and, correspondingly, Jeff is traced as a function of temperature for given other
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Fig. 5.12: Spin susceptibility χS(k, ω) of the quarter-filled 32 × 2 ladder system in the disordered phase
at V = 1.0 along the ladder with ka = 0.
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Fig. 5.13: Spin susceptibility χS(k, ω) of the quarter-filled 32 × 2 ladder system in the disordered phase
at V = 1.0 with ka = π).
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system parameters while we investigate the ordering at a fixed temperature as a function
of the extended Hubbard repulsion V .

The spin-wave picture compares well to the behavior of the spin susceptibility of the
half-filled Hubbard chain with t = 1.0 shown in Fig. 5.21 where an effective coupling of
Jeff ≈ 4t2

U can be derived from perturbation theory. Note that this hopping is twice as
large as tb = 0.5! Thus the magnetic behavior cannot be reproduced by the half-filled
Hubbard chain with t = 0.5 but rather with a larger transfer integral t ≈ 1.0. Though
the comparison with the Hubbard chain confirms the one-dimensional behavior.

At ka = π (Fig. 5.13) the primary excitations can be found at higher energies ω ≈ 1.0.
The gap in the spin spectrum is very close to the charge gap (Fig. 5.17) indicating that
it is probably due to charge excitations. As Aichhorn et al [141] confirm this interplay
between spin and charge excitations which is similar to the charged magnons picture
introduced in Ref. [154] for interpretation of the infrared absorption spectra of NaV2O5.

Charge-ordered phase

In the charge-ordered phase the dispersion of both channels ka = 0, π in Fig. 5.14 and
Fig. 5.15 are reduced to the dark shaded line near ω ≈ 0. Under the assumption that
the shaded area is the upper limit for maximum spin excitation at π/2 then we find the
effective magnetic coupling to be Jeff < 0.06 which is in agreement with perturbation
results in Ref. [38] which yield Jeff ≈ 0.04.

The ka = π channel additionally exhibits excitations of negligible weight at ω > 0
indicated by their error bars for which one cannot make a reliable statement.

5.4 Charge susceptibility

For the discussion of the charge susceptibility we directly oppose the spectra of the
disordered phase (Fig. 5.16 and Fig. 5.17) and the spectra of the charge-ordered phase
(Fig. 5.19 and Fig. 5.19).

In both regimes the spectra exhibit a qualitatively similar dispersion which is nearly
constant with minor weight in the ka = 0 channel and a cosine-like dispersion in the
ka = π channel. Since dominant weight is only in the latter one let us focus on this
channel with ka = π.

While there is an excitation gap of ∆ω ≈ 1.0 in the disordered phase, we have a
gapless excitation at k = (π, π) in the charge-ordered phase. Compared with Fig. 5.7
the charge gap ∆ω coincides with the gap in the single-particle spectral function. This
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Fig. 5.14: Spin susceptibility χS(k, ω) of the quarter-filled 32 × 2 ladder system in the charge-ordered
phase at V = 1.0 along the ladder with ka = 0.
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Fig. 5.15: Spin susceptibility χS(k, ω) of the quarter-filled 32 × 2 ladder system in the charge-ordered
phase at V = 1.0 with ka = π).
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confirms that there are no electronic excitations at the Fermi-level which corresponds to
the insulating behavior.

The gapless excitation at k = (π, π) in Fig. 5.15 is the direct effect of the zig-zag
charge order since the vector (π, π) in k-space corresponds to the zig-zag pattern in
real space. This peak is of O(103) higher than the other structures in the spectrum
and has been cut-off at a specific intensity. This divergence marks the braking of the
discrete translation symmetry because of the two possible zig-zag charge-patterns. The
additional peak at the same vector is probably shifted in the MaxEnt reconstruction due
to the dominant weight of the gappless excitation. As discussed this is probably a finite
size effect which should vanish in the thermodynamic limit.

5.5 Comparison with the half-filled Hubbard chain

For the discussion of the spectra in this chapter we referred to the one-dimensional
Hubbard model at half-filling. In the figures 5.20, ?? and 5.21 the single-particle spectral
function for t = 0.5 and the spin susceptibilities for t = 0.5 and t = 1.0 are plotted for
the same temperature β = 8.0 as used for the discussed spectra.
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Fig. 5.16: Charge susceptibility χS(k, ω) of the quarter-filled 32 × 2 ladder system in the disordered
phase at V = 1.0 along the ladder with ka = 0.
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Fig. 5.17: Charge susceptibility χS(k, ω) of the quarter-filled 32 × 2 ladder system in the disordered
phase at V = 1.0 with ka = π).
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Fig. 5.18: Charge susceptibility χS(k, ω) of the quarter-filled 32 × 2 ladder system in the charge-ordered
phase at V = 1.0 along the ladder with ka = 0.
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Fig. 5.19: Charge susceptibility χS(k, ω) of the quarter-filled 32 × 2 ladder system in the charge-ordered
phase at V = 1.0 with ka = π).
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Fig. 5.20: Single-particle spectral function A(k, ω) of the half-filled 64-sites Hubbard chain with t = 0.5
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Fig. 5.21: Spin susceptibility χS(k, ω) of the half-filled 64-sites Hubbard chain with t = 1.0
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Conclusion 6
The aim for this thesis was to investigate the charge-order transition of the low dimen-
sional transition metal oxide α′-NaV2O5 coupled to the lattice. This challenging problem
has been addressed using unbiased numerical techniques.

We gave a detailed introduction to the Determinant Quantum Monte Carlo Method
for the extended Hubbard model. Several enhancements for the Monte Carlo sampling
in form of global updates and Tempering techniques were described and implemented
to improve the convergence of observables. We explained the numerical framework to
analyze the Quantum Monte Carlo data and the analytic continuation to the real fre-
quencies axis via the Maximum Entropy method. We also attached importance to the
theoretical background necessary for the correct interpretation of the simulation results.

The coupling to the lattice has been realized via Holstein phonons acting on the
charge density of the lattice sites which we implemented following the approach for
spinless fermions by Hohenadler et al [62]. We extended their idea to the extended
Hubbard Holstein model under Lang-Firsov transformation. This work, is to best of
our knowledge, the first attempt of the Lang-Firsov transformation with a Quantum
Monte Carlo study of a spinfull many-electron Hubbard Holstein model. This basis
transformation in principle enables us to sample low correlated phonon configurations
at the cost of using complex-kind numerics and the an additional phase factor in the
hopping term.

Unfortunately the extension to the many-electron model with spin degrees of freedom
brought a severe drawback: the additional phase factor in the hopping term caused a
tremendous phase- or minus-sign-problem. We were therefore forced to desist from
including the coupling to the lattice.

Nonetheless, we were able to compute unbiased unequal-time correlation function
spectra for the extended Hubbard model representing an approximation to the quarter-
filled α′-sodium vanadate. Ladder systems of the size 32 × 2 allowed to minimize finite
size effects and to obtain an improved momentum-resolution compared to the small
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6 Conclusion

systems accessible via exact diagonalization techniques. The features of the low energy
charge- and spin-excitations as well as of the dispersion of the one particle spectral
function were discussed for the disordered and the charge-ordered regime. Next to the
dynamical spectral functions we also discussed the change of the order parameter and
static observables in dependence on the inter-site Coulomb repulsion and temperature.
correlations of the inter-site Coulomb repulsion
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Follow-ups A
A.1 Imaginary time discretization

The Suzuki-Trotter decomposition in detail

The decomposition used in Sec. A.1 is presented for a sum of two non-commuting oper-
ators. If the commutator of two operators A and B vanishes, we can simply decompose
into the exact product

e(A+B) = eA eB , for [A,B] = 0 . (A.1)

Since the kinetic and potential term in the Hamiltonian do not commute, we introduce
the error R of the decomposition writing

e−β(A+B) = e−βA e−βB + R . (A.2)

Expanding both sides in Taylor series for the first three terms yields

e−β (A+B) = 1 − β (A + B) +
β2

2
(A2 + B2 + 2AB + [B,A]) + O(β3) (A.3)

e−βA e−βB = (1 − βA +
β2

2
A2) · (1 − βB +

β2

2
B2)

= (1 − β (A + B) +
β2

2
(A2 + B2 + 2AB) + O(β3) (A.4)

for left-hand side and right-hand side, respectively. Comparing these equations the error
can be estimated with O(β3). It is the product of the two operators A and B times
β2/2. Let tA and tB denote the order of magnitude of the operators the error can be
written as

R ≈ β2

2
O(tA tB) . (A.5)
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A Follow-ups

In case of the Hubbard Hamiltonian tA and tB correspond to t and U . As shown by
Fye [155], the expected error is proportional to (∆τ)2 – when using the lowest order
Trotter decomposition – guaranteed under the condition that the relevant operators
are simultaneously real representable (Hermitian). In order to reduce this problem an
improved form is given by a symmetric decomposition

e−β (A+B) = e−
β
2
A e−βB e−

β
2
A +

β3

24
O(tA tB max(ta, tb)) . (A.6)

Note that for the Hamiltonian used in this paper the asymmetric decomposition in
combination with the complex phase is to be favored as shown in [156]. There exists
a variety of other methods using decompositions of higher order [157] – unfortunately,
they are numerical more expensive.

Whereas the product ∆τ · L defines the inverse temperature of the simulation the
right choice of ∆τ and L depends on the observables one is interested in. In general
the discretization of the inverse temperature changes the physics – hence the length of
time-steps should be set to values ∆τ < 0.1 for reasonable results.

Discrete time extrapolation for large systems

We follow [69] to justify the argument to use ∆τ → 0 extrapolation results in order
to obtain statements for larger systems. Let us assume the leading errors in ∆τ are
given with increasing order by ∆τa1 ,∆τa2 , . . . and the finite size errors respectively by
N−b1 , N−b2 , . . .. The expectation value φ of an operator for a given ∆τ and system size
N is

φ(∆τ,N) = φ(0,∞) + c10∆τa1 + c01N
−b1 + c20∆τa2 + c02N

−b2

+c11∆τa1N b1 + higher-order terms , (A.7)

where the cij are constant. Under the condition that the fractional errors due to finite
∆τ and N are significantly less than unity, we can accurately extrapolate to ∆τ = 0 for
a system of N1 sites. Furthermore, with this assumption we know φ(∆τ,N1), φ(0, N1)
and φ(∆τ,N2) for the larger system with N2 sites (N1 < N2). Therefore we can obtain
φ(0, N2) safely via

φ(0, N2) = φ(0, N1) + [φ(∆τ,N2) − φ(∆τ,N1)]

+O(∆τa1) + higher-order terms . (A.8)

In QMC simulations one usually has an finite Trotter error ∆τa1 = ∆τ2. As described,
one can use the knowledge of the φ(∆τ = 0, N1) behavior to extrapolate to systems of
larger size φ(∆τ = 0, N2) at high accuracy.
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A.1 Imaginary time discretization

Continuous-time algorithms

Since we use the Suzuki-Trotter decomposition and discretize the imaginary time axis a
scaling of ∆τ → 0 is necessary to get rid of the Trotter-error. The scaling demands sev-
eral runs with different values for ∆τ . This time-consuming practice could be overcome
if we could simulate in continous imaginary time. A continuous-time DQMC-method
has been introduced by Rombouts and others [111] based on the decomposition of the
Boltzmann-factor into a series in the powers of the interaction V

e−β(H0+V ) = e−βH0 +

∞∑

m=1

(−β)m
∫ β

0
dtm . . . dt1

e−t1H0 V e−(t2−t1)H0 V . . . e−(tm−tm1)H0 V e−(β−tm)H0 V . (A.9)

By extending the V -term e−β(H0+V ) → e−βH0+(µ−βV ) the Hamiltonian changes only by
the constant factor −µ/β but enables us to write

e−βH0+(µ−βV ) = e−βH0 +

[ ∞∑

m=1

µm

∫ 1

0
dtm . . .

∫ t2

0
dtm

m∏

i=1

(

1 − β

µ
etiβH0 V etiβH0

)]

e−βH0 . (A.10)

The integral over the factor m ∈ [0,∞) and all sets of intervals 0 ≤ t1 ≤ . . . ≤ tm ≤ 1
is done via MC-sampling, which is done similarly to the DetQMC via decoupling of the
interaction via HS-transformation. Note that in continous time one has to integrate over
a large number of Poisson distributed time steps ∆τ of varying length.

For the pure Hubbard-model the discretization-free code is approximately as fast
as the code with the common ST-decomposition for the single time-step value ∆τ ∼
0.05. Fast updates are possible like in the conventional DetQMC. Both algorithms
scale similarly with increasing systemsize and decreasing temperature. The different
decomposition of the Hamiltonian leads to a different sign-problem behavior.

Recently, Rubtsov et al proposed a continuous time method, which is based on
an expansion into perturbation series without the need for auxiliary fields [112]. This
approach is especially favorable for long-range interactions and interactions non-local
in time. The convergence of the series expansion relies on the finite Hilbert-space of
fermionic systems.
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A.2 Fermionic sundry

Commutator relations

The anti-commutator relations for fermionic creators c†iσ and annihilators ciσ on site i
with spin σ are given by

{ciσ, cjσ′} = 0 , (A.11)

{c†iσ, c†jσ′} = 0 , (A.12)

{ciσ, c†jσ′} = δijδσσ′ . (A.13)

Spin operators

The spin operator at site i is given by

σi = (σx, σy, σz) =

((
0 1
1 0

)

,

(
0 −i
i 0

)

,

(
1 0
0 −1

))

, (A.14)

where σx, σy and σz are the Pauli matrices so that the fermionic operators can be written
as

σ+,i = σx,i + iσy,i = c†i↑ci↓ , (A.15)

σ−,i = σx,i − iσy,i = c†i↓ci↑ , (A.16)

σz,i =
1

2

(

c†i↑ci↑ − c†i↓ci↓
)

=
1

2
(ni↑ − ni↓) . (A.17)

Grand canonical trace of fermionic degrees of freedom

We show that the trace over fermionic degrees of freedom can be expressed in form of a
determinant. A given Hamiltonian bilinear in its fermion operators can be straightfor-
wardly diagonalized [69, 74, 72] to

H =
∑

α

aα c†αcα , (A.18)

with the relations

cα =
∑

i

〈
α
∣
∣i
〉
ci and c†α =

∑

i

〈
i
∣
∣α
〉
c†i , (A.19)
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A.3 Hubbard-Stratonovich transformation mutations

where the operators cα result from a unitary transformation to the basis of N -particle
states

∣
∣α
〉

where H is diagonal. Given the diagonal form, the trace over the fermions
can be written as a determinant

tr e−H = tr e−
P

α aαc†αcα

= tr
∏

α

e−aαc†αcα =
∏

α

∑

nα=0,1

e−aαnα

=
∏

α

(1 + e−aα) . (A.20)

We see that the evolution of the N -particle state is the superposition of the propagation
of each particle independently. This holds for any linear superposition of the eigenstates
of H and any product of matrices, choosing the basis where they can be represented in
bilinear (orthogonal) form. Thus we can write

tr e−H = tr e−
P

ij c†i Aijcj e−
P

ij c†i Bijcj

= tr e−
P

ν γνnν

=
∏

ν

∑

nν=0,1

e−γνc†νcν

=
∏

ν

(

1 + e−γν

)

= det
(

1 + e−Ae−B
)

. (A.21)

A.3 Hubbard-Stratonovich transformation mutations

There exist various HS-transformations and approximations, developed to minimize
phase space, computation time and with the intention to reduce the influence of the
fermionic sign problem. Here, we present examples for specific interaction terms with
products of different orders of fermionic operators.

Orbital degeneracy

Following [83] we give a type of HS-transformation useful in the presence of orbital
degeneracy. In this case the Hubbard term is written as

HU = U
∑

i

∑

ν≤ν′

∑

σ≤σ′

(1 − δνν′δσσ′) niνσnν′σ′

=
U

2

∑

i

(ni − Norb)
2 +

U

2
(2Norb − 1)

∑

i

ni , (A.22)
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where ν = 1, . . . , Norb is an orbital index and ni =
∑

νσ niνσ. The quadratic term can
be transformed to

exp

(

−∆τ
U

2
(ni − Norb)

2

)

=
1

4

∑

mi(l)=±1

∑

si(l)=±1

γmi
exp

(

i si(l)ηmi

√

∆τU/2 (ni − Norb)
)

+ O(∆τ4) ,

(A.23)

where γm = 1+
√

6
3 m, and ηm =

√

2
(
3 −

√
6m
)
. Although this is just an approximation,

the error of O(∆τ4) is much smaller than the one done within the Trotter slicing. Here,
we used a transformation with complex weights. This kind of approximation turns out
to be useful in the case of a W -term

HW = W
∑

i

K2
i , with Ki =

∑

σδ

(

c†iσci+δ,σ + c†i+δ,σciσ

)

, (A.24)

in the context of superconductivity [98].

Long range interaction

For increasing range of an intersite interaction the decoupling into additional auxiliary
fields becomes intractable because of the expanding phase space which has to be explored
by the simulation. An alternative is to couple the auxiliary fields not only to the local
spin or charge density, but also to the bosonic fields of other sites (orbitals). For example,
Negele and Orland [114, 82] generalize the HS-transformation by writing

exp

(
1

2
nTMn

)

∼
∫

dx exp

(

−1

2
xTM−1x + xTn

)

(A.25)

∼
∫

dy exp

(

−1

2
yTMy + yT Mn

)

, (A.26)

where nT = (n1, n2, . . .) is a vector of electron occupation numbers in orbitals 1, 2, . . . , N
and the eigenvalues of M are positive. In Eq. (A.25) the electronic charge n couples to
the local bosonic field x, which is coupled to itself via M−1, where M−1 is long ranged
but M is assumed to be short ranged. Thus M in the second integral Eq. (A.26), with
x = My, may provide limited interaction range via electron-boson coupling yT Mn and
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A.3 Hubbard-Stratonovich transformation mutations

boson-boson coupling yT My. For a general repulsive interaction Vij ≥ 0 one may write

exp



−∆τ
∑

<ij>

Vij ninj



 = exp



∆τV0

∑

i

n2
i − ∆τ

∑

<ij>

Vij ninj





× exp

(

−∆τV0

∑

i

n2
i

)

. (A.27)

Here, the first exponent can be expressed with Eq. (A.25), or Eq. (A.26) with a bosonic
field whose components couple to the local density and to each other. The second term
has the form of an on-site repulsion, which may be interpreted as a second intermediate
field coupled to the local electronic spin density only.

Inter-site Coulomb repulsion

Gabriel et al [151] rewrite the inter-site Coulomb interaction in the extended Hubbard
Hamiltonian. Instead of the standard HS-transformation they write the interaction in
terms of density operators instead of spin-density operators to be able to expand them
into series. This way the updating time of the auxiliary fields is reduced from the need of
four auxiliary fields to a single one per dimension. A severe drawback of this procedure
is that a discretization error of O(∆τ) occurs for observables. Using the relations of the
density operators

(ni − nj)
2 = n2

i + n2
j − 2ninj → ninj =

1

2

(
n2

i + n2
j − (ni − nj)

2
)

, (A.28)

n2
i = (ni↑ + ni↓)

2 = n2
i↑ + n2

i↓ + 2ni↑ni↓ = ni + 2ni↑ni↓ , (A.29)
∑

<ij>

(n2
i + n2

j) = nnn

∑

i

n2
i , (A.30)

- where nnn stands for the number of nearest neighbors – we write

HU + HV + Hµ = H̃U + H̃V + H̃µ + const. , (A.31)
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with the interaction terms and the chemical potential in the form

H̃U = −Ueff

2

∑

i

(ni↑ − ni↓)
2 , (A.32)

H̃V = −V

2

∑

<ij>

(ni − nj)
2 , (A.33)

H̃µ = −µeff

∑

i

ni , (A.34)

Ueff = U + nnnV , (A.35)

µeff = µ − 1

2
(nnnV − U) , (A.36)

by introducing the effective couplings Ueff and µeff containing the shares of additional
arising terms of similar form. Applying the discrete Hubbard-Stratonovich transforma-
tion we obtain

e
1
2
∆τV (ni−nj)2 =

1

2

∑

φij=±1

eλ φij(l) (ni−nj) ,

e
1
2
∆τV (ni−nj)

2
= 1 +

1

2
∆τV (ni − nj)

2 + O(∆τ2) . (A.37)

On the other hand via expanding the inter-site coupling term into series we obtain for
the extended Hubbard coupling

1

2

∑

φij±1

eλ φij(l) (ni−nj) =
1

2

∑

φij=±1

λφij(l) (ni − nj) + λ2 φ2
ij(l) (ni − nj)

2 + O(∆τ2)

= 1 + λ2(ni − nj)
2 + O(∆τ2)

= 1 +
1

2
∆τV (ni − nj)

2 + O(∆τ2) . (A.38)

The on-site Hubbard coupling is treated as usual, where the number of Ising spins in the
extended Hubbard coupling has been reduced from 4 per site and dimension to a single
one per site and dimension. The total computation time (including the measurements)
is only reduced by a factor ≈ 0.85 due to the vanishing computational effort updating
the auxiliary fields in contrast to the matrix-matrix products. In the special case of the
used parameter set the extended Hubbard coupling plays the leading role in the system.

Spin-charge separation

In one-dimensional interacting fermion systems the limited number of nearest neighbors
allows spin- (magnon) and charge- (exciton) excitations to spread separately in the
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Fig. A.1: Particle excitations near the Fermi-edge in (a) a Fermi liquid for dimension D = 2, 3 with quasi-
particle-weight 0 < Z < 1 (b) a Luttinger liquid in one dimension with vanishing quasi-particle-weight
Z → 0; vF , vs, vc denote the dispersion Fermi-velocity, spin- and charge-velocity, respectively.

system. This means that bands in the one particle Green’s function split up indicating
two different propagation velocities. In higher dimensional systems the presence of the
field of the surrounding sites makes ferromatgnetic alignment very unlikely and spin and
charge excitations are confined to move in conjunction.

The occurance of spin-charge separation is evident in the one-dimensional Hubbard
model [158], as well as predicted for sodium vanadate ladder via spin-pseudospin model
by Ohta and others [159] and indicated by the CPT-spectra of the one-particle Green’s
function by Aichhorn and coworkers [142]. In the QMC-spectra this effect is not visible
due to the finite resolution of the Maximum Entropy process. Zacher and others over-
come this problem as they directly fit to exponentials to the imaginary time displaced
Green’s function [160]. This method is of use only in the case one can justify to ex-
pect only two dominant excitations in the low energy spectrum. A useful indicator for
spin-charge separation is a vanishing spin-gap while the charge gap stays finite.

Note, since spin-charge separation is usually brought in common with effective models
like the Luttinger-liquid, the system must not nescessarily be described by them. The
rising gap for any finite repulsive site coupling pushes away the low energy physics from
the Fermi-edge. The primary excitations near the Fermi-edge for the Fermi-liquid and
the Luttinger-liquid are sketched in Fig. A.1. In the Luttinger-liquid (dimensions D < 2
only) no stable quasi-particles exist. The Fermi-liquid instead (as a model for quasi
free electrons) shows quasiparticle excitations with diverging lifetime. Both types have
the linear dispersion relations in common. For gapped systems these dispersions are
generally quadratic and the system can neither be described by Luttinger- nor Fermi-
liquid-theory.
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A.4 Details on the DetQMC method

This section gives specific details how to obtain some of the equations described in Ch.3.

Green’s function

The last step in Eq. (3.36) is given here more detailed

δij − Gσ
ij(τl, τl) = . . .

= Bσ
l . . .Bσ

1 (1 + Bσ
L . . .Bσ

1 )−1Bσ
L . . .Bσ

l+1

= Bσ
l . . .Bσ

1

1

(1 + Bσ
L . . .Bσ

1 )
Bσ

L . . .Bσ
l+1

=
(Bσ

1 )−1 . . . (Bσ
l )−1

(Bσ
1 )−1 . . . (Bσ

l )−1
Bσ

l . . .Bσ
1

1

(1 + Bσ
L . . .Bσ

1 )

× Bσ
L . . . Bσ

l+1

(Bσ
L)−1 . . . (Bσ

l+1)
−1

(Bσ
L)−1 . . . (Bσ

l+1)
−1

=
1

(Bσ
1 )−1 . . . (Bσ

l )−1

1

(1 + Bσ
L . . .Bσ

1 )

1

(Bσ
l+1)

−1 . . . (Bσ
L)−1

=
[
(Bσ

l+1)
−1 . . . (Bσ

L)−1(Bσ
1 )−1 . . . (Bσ

l )−1 + 1
]−1

where we dropped the indices for the matrix elements ij for simplicity. To get the
expression for the Green’s function in Eq. (3.37)

δij − Gσ
ij(τl, τl) =

[
1 + (Bσ

l+1)
−1 . . . (Bσ

L)−1(Bσ
1 )−1 . . . (Bσ

l )−1
]−1

ij

Gσ
ij(τl, τl) = −

[
1 + (Bσ

l+1)
−1 . . . (Bσ

L)−1(Bσ
1 )−1 . . . (Bσ

l )−1
]−1

ij
+ δij ,
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from Eq. (3.36) use

Gσ(τl, τl) = −
[
1 + (Bσ

l+1)
−1 . . . (Bσ

L)−1(Bσ
1 )−1 . . . (Bσ

l )−1
]−1

+ 1

= −
[
1 + (Bσ

l . . .Bσ
1B

σ
L . . . Bσ

l+1)
−1
]−1

+ 1

= − 1

1 + 1
Bσ

l
...Bσ

1Bσ
L...Bσ

l+1

+ 1

= −
Bσ

l . . .Bσ
1B

σ
L . . .Bσ

l+1

1 + Bσ
l . . .Bσ

1B
σ
L . . .Bσ

l+1

+ 1

=
−Bσ

l . . . Bσ
1B

σ
L . . .Bσ

l+1 + (Bσ
l . . .Bσ

1B
σ
L . . .Bσ

l+1 + 1)

Bσ
l . . .Bσ

1B
σ
L . . .Bσ

l+1 + 1

=
1

Bσ
l . . .Bσ

1B
σ
L . . .Bσ

l+1 + 1

=
[
1 + Bσ

l . . .Bσ
1B

σ
L . . .Bσ

l+1

]−1
.

A.5 Spectral functions in experiments

In this section we want to give a brief discussion of the physical ideas of the experimental
setup used to obtain spectral functions to be found in this work. Actual literature on
this topic can be found in Ref. [161].

One particle Green’s function

The spectrum A is the Fourier-transform of the one-particle Green’s function G

A(k, ω) = lim
η→0

1

π
Im G(k, ω + iη) , (A.39)

G(r, t) =
∑

σ

−i Θ
〈
{cσ(r, t), c†σ(0, 0)}

〉
. (A.40)

It reflects the behavior of single electron (hole) excitations. Based on the photo-electric
effect (discovered by Hertz, 1887) in angle-resolved photo-emission spectroscopy (ARPES)
single-frequency light (e.g. in the UV-range) is sent onto a thin specimen of the material
of interest and bombards out electrons. The incident phonons cause emission of electrons
which are then detected in with respect to their intensity, momentum and kinetic energy
ω. These information allow the direct relation to the properties of the electron in the
specimen by exploiting the conservation law for energy

~ω = Ekin + φ + |EB| , (A.41)
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Fig. A.2: Schematic functionality of a) angle-resolved photo-emission spectroscopy (ARPES) b) angle-
resolved inverse photo-emission spectroscopy (ARIPES) measurements which are associated with the
spectrum of the one particle Green’s function.

where the photon energy must equal the sum of kinetic energy Ekin, binding energy
EB, and work function. The latter is a specific property of the material and gives the
minimum energy necessary to emit a single electron (~ω = φ). This equation is valid
under the assumption that the contribution of photon momenta are negligible. Similarly,
the momenta of the electrons in the material are obtained from the conservation law of
momentum with the measured angle the electron leaving the specimen. The measured
intensity as a function of energy and momentum can be related to the electron Green’s
function via the so-called sudden approximation1 so that I(k, ω) ∝ A(k, ω). Peaks in
the spectrum provide information about the nature and lifetime of quasi-particle states
up to a resolution of ≈ 2 meV and are broadened due to scattering processes in the
specimen.

Charge-charge correlations

Charge density excitations

χCC(k, ω) = FT (C(r, t)) = FT
〈
n(r, t), n(0, 0)

〉
−
〈
n
〉2

, (A.42)

are measured by electron energy loss spectroscopy (EELS). A collimated beam of mono-
chromatic, high-energetic (170keV) electrons is shot at a thin specimen. By measuring
the angle, intensity and energy of the penetrating electrons the energy-loss and their
momenta are obtained. The scattering intensity is normalized via the volume-plasmon
leading to the loss-function L(k, w) which is related to C(k, ω).

1In the sudden approximation for the final state negigible interaction between the photoelectron and
the remaining N − 1 electron system is assumed.
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A.5 Spectral functions in experiments

Spin-spin correlations

Similarly to the other two methods, spin-spin excitations

χSS(k, ω) = FT(S(r, t)) =
1

2π

∫ +∞

−∞
dt
∑

k

ei(kr−ωtS(r, t) , (A.43)

with S(r, t) =
〈
S(r, t), S(0, 0)

〉
,

are acquired by measuring the cross-section of scattered neutrons which is related via
Fourier-transformation to

〈
S(t)S(0)

〉
. A formal derivation of scattering polarized neu-

trons by a lattice of spins, showing the connection to the two-point correlation function
is given in the appendix of Binney and others [162]. The neutrons, heavy compared to
electrons and equipped with spin 1/2, interact with the atomic moments of the material
revealing their magnetic properties. The wavelength of the impacting neutrons has to
be comparable for the inter-atomic spacings of the material of interest.
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[19] J. Lüdecke, A. Jobst, and S. van Smaalen. Acentric Low-Temperature Superstruc-
ture of NaV2O5. Phys. Rev. Lett., 82(18):3633, 1999.

[20] S. van Smaalen, P. Daniels, and L. Palatinus. Orthorhombic versus monoclinic
symmetry of the charge-ordered state of NaV2O5. cond-mat/0108067, 2001.

[21] K. Ohwada, Y. Fujii, N. Takesue, M. Isobe, and Y. Ueda. Devil’s Staircase-Type
Phase Transition in NaV2O5 under High Pressure. Phys. Rev. Lett., 87:86402,
2001.

[22] N. M. Bogoliubov and V. E. Korepin. The Role of quasi-one-dimensional Structures
in High-Tc Superconductivity. J. Mod. Phys. B, 3(3):427, 1988.

[23] E. Dagotto and T. M. Rice. Surprises on the Way from One- to Two-Dimensional
Quantum Magnets: The Ladder Materials. Science, 271:618, 1996.

[24] D. Poilblanc, E. Orignac, S.R. White, and S. Capponi. Resonant magnetic mode
in superconducting 2-leg ladders. cond-mat/0402011, 2004.

[25] M. Imada, A. Fujimori, and Y. Tokura. Metal-insulator transitions. RMP, 70:1039,
1998.

[26] J. Spitaler, E. Ya. Sherman, C. Ambrosch-Draxl, and H. G. Evertz. Proceedings of
the summer school: DFT Beyond the Ground State. Physica Scripta, T109(159),
2004.

[27] J. Hubbard. Electron correlations in narrow energy bands I, II, II. Proc. R. Phys.
Soc. London, A 276:238, A 277:237, A 281:401, 1963.

[28] E. H. Lieb and F. Y. Wu. Absence of Mott Transition in an Exact Solution of the
Short-Range, One-Band Model in One Dimension. Phys. Rev. Lett., 20(25):1445,
1968.

118



Bibliography

[29] M. Karbach and G. Müller. Introduction to the Bethe Ansatz I, II, III. cond-
mat/9809162, cond-mat/9809163, cond-mat/0008018, 1998, 2000.

[30] F. Gebhard. The Mott Metal-Insulator Transition. Springer, Berlin Heidelberg,
1997.

[31] A. Auerbach. Interacting Electrons and Quantum Magnetism. Springer, New York,
1994.

[32] S. Watanabe and M. Imada. Thermodynamic Relations in Correlated Systems.
cond-mat/0412602, 2004.

[33] J. E. Hirsch. Charge-Density-Wave to Spin-Density-Wave Transition in the Ex-
tended Hubbard model. Phys. Rev. Lett., 53(24):2327, 1984.

[34] M. G. Zacher. Elektronische Anregungen des eindimensionalen Hubbard-Modells
mit längerreichweitigen Wechselwirkungen. Diploma thesis, Bayerische Julius-
Maximiliam-Universität Würzburg, 1996.

[35] M. Nakamura. Mechanism of CDW-SDW Transition in One Dimension. J. Phys.
Soc. Jpn., 68(10):3121, 1999.

[36] M. Nakamura. Tricritical behavior in the extended Hubbard chains. Phys. Rev.
B, 61(24):16377, 2000.

[37] A. W. Sandvik, L. Balents, and D. K. Campbell. Ground State Phases of
the Half-Filled One-Dimensional Extended Hubbard Model. Phys. Rev. Lett.,
92(23):236401, 2004.

[38] M. Vojta, A. Hübsch, and R. M. Noack. Phase diagram of the quarter-filled
extended Hubbard model on a two-leg ladder. Phys. Rev. B, 63:045105, 2001.

[39] R. T. Clay and S. Mazumdar. Rung-singlet charge-ordering in α′-NaV2O5. cond-
mat/0305479, 2003.

[40] T. Holstein. Studies of polaron motion I, II. Ann. Phys. (N.Y.) 8:325, 8:343, 1959.

[41] I. G. Lang and Yu. A. Firsov. Kinetic theory of semiconductors with low mobility.
Sov. Phys. JETP, 16(5):1301, 1963.

[42] J. E. Hirsch and E. Fradkin. Phase diagram of one-dimensional electron-phonon
systems. II. The molecular-crystal model. Phys. Rev. B, 27(7):4302, 1983.

[43] M. Hohenadler. Numerical investigation of strongly correlated electron-phonon
models. PhD thesis, Technische Universität Graz, 2004.

119



Bibliography

[44] H. De Raedt and A. Lagendijk. Computer Simulation Study of Bipolaron Forma-
tion. Z. Phys. B - Condensed Matter, 65:43, 1986.

[45] J. Bonca and S. A. Trugman. Bipolarons in the extended Holstein Hubbard model.
Phys. Rev. B, 64(9):094507, 2001.

[46] M. Acquarone, M. Cuoco, C. Noce, and A. Romano. Variational study of the
extended Hubbard-Holstein model on clusters of variable site spacing. Phys. Rev.
B, 64(3):035110, 2001.

[47] A. S. Alexandrov and N. F. Mott. Polarons and Bipolarons. World Scientific, 1996.

[48] E. Fradkin. Field Theories of Condensed Matter Systems. Frontiers in Physics,
Addison-Wesley, 1998.

[49] B. L. Cerchiai and P. Schupp. Symmetries of an extended Hubbard Model. cond-
mat/9605121v1, 1996.

[50] H. Tasaki. The Hubbard Model: Introduction and Selected Rigorous Results.
cond-mat/9512169, 1995.

[51] E. Lieb. The Hubbard Model: Some Rigorous Results and Open Problems. cond-
mat/9311033, 1993.

[52] D. K. Ghosh. Nonexistence of Magnetic Ordering in the One- and Two-
Dimensional Hubbard Model. Phys. Rev. Lett., 27(23):1584, 1971.

[53] N. D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromagnetism in
one-or twodimensional isotropic Heisenberg models. Phys. Rev. Lett., 17(22):1133,
1966.

[54] E. H. Lieb. Two theorems on the Hubbard model. Phys. Rev. Lett., 62(10):1201,
1989.

[55] T. Koma and H. Tasaki. Decay of superconducting and magnetic correlations in
one and two dimensional Hubbard models. Phys. Rev. Lett., 68(21):3248, 1992.

[56] T. Koma and H. Tasaki. Symmetry breaking and long range order. Commun.
Math. Phys., 158:191, 1993.

[57] M. Fischer, P. Lemmens, G. Els, G. Güntherodt, E. Ya. Sherman E. Morre,
C. Geibel, and F. Steglich. Spin-gap behavior and charge ordering in α′-NaV2O5

probed by light scattering. Phys. Rev. B, 60(10):7284, 1999.

[58] M. V. Mostovoy and D. I. Khomskii. Charge ordering and opening of spin gap in
NaV2O5. Sol. St. Comm., 113:159, 1999.

120



Bibliography

[59] E. V. L. de Mello and J. Ranninger. Dynamical properties of small polarons. Phys.
Rev. B, 55(22):14872, 1997.

[60] H. Fehske, J. Loos, and G. Wellein. Lattice polaron formation: Effects of non-
screened electron-phonon interaction. Phys. Rev. B, 61(12):8016, 1999.

[61] J. M. Robin. Spectral properties of the small polaron. Phys. Rev. B, 56(21):13634,
1997.

[62] M. Hohenadler, H. G. Evertz, and W. von der Linden. Quantum Monte Carlo and
variational approaches to the Holstein model. Phys. Rev. B, 69(2):24301, 2004.

[63] M. Hohenadler and W. von der Linden. Temperature- and quantum phonon effects
on the Holstein-Hubbard bipolaron. cond-mat/0409573, 2004.

[64] M. Hohenadler, M. Aichhorn, and W. von der Linden. Spectral function of the
Holstein-Hubbard bipolaron. cond-mat/0405391, 2004.

[65] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equations of state calculations by fast computing machines. J. Chem. Phys.,
21:1087, 1953.

[66] M. Troyer and U. J. Wiese. Computational complexity and fundamental limitations
to fermionic quantum Monte Carlo simulations. cond-mat/0408370, 1998.

[67] D. P. Landau and K. Binder. A Guide to Monte Carlo Simulations in Statistical
Physics. Cambridge Univ. Press, 2000.

[68] R. P. Feynman. Atomic Theory of the lambda Transition in Helium. Phys. Rev.,
91(6):1291, 1953.

[69] W. von der Linden. A quantum Monte Carlo approach to many-body physics.
Phys. Rep., 220:53, 1992.

[70] H. G. Evertz. The Loop Algorithm. Advances in Physics, 52:1, 2003.

[71] J. E. Hirsch. Monte Carlo Study of the Two-dimensional Hubbard model. Phys.
Rev. Lett., 51(20):1900, 1983.

[72] J. E. Hirsch. Two-dimensional Hubbard model: Numerical simulation study. Phys.
Rev. B, 31(7):4403, 1985.

[73] S. R. White, D. J. Scalapino, and R. L Sugar. Numerical study of the two-
dimensional Hubbard model. Phys. Rev. B, 40(1):506, 1989.

[74] R. Blankenbecler, D. J. Scalapino, and R. L Sugar. Monte Carlo calculations of
coupled boson-fermion systems. I. Phys. Rev. D, 24(8):2278, 1981.

121



Bibliography

[75] D. J. Scalapino and R. L Sugar. Monte Carlo calculations of coupled boson-fermion
systems. II. Phys. Rev. B, 24(8):4295, 1981.

[76] Y. Nambu and G. Jona-Lasinio. Dynamical Model of Elementary Particles
based on an Analogy with Superconductivity I, II. Phys. Rev. 122(1):345, 1960,
124(1):246 1961.

[77] D. J. Gross and A. Neveu. Dynamical symmetry breaking in asymptotically free
field theories. PRD, 10(10):3235, 1974.

[78] M. Suzuki. Comm. Math. Phys., 51:183, 1976.

[79] M. Suzuki, S. Miyashita, and A. Kuroda. Monte Carlo Simulation of Quantum
Spin Systems. I. Prog. Theor. Phys., 58(5):1377, 1977.

[80] H. F. Trotter. On the product of semi-groups of operators. Proc. Amer. Math.
Soc., 10:545, 1959.

[81] P. Valasek. Numerische Simulation von Vielteilchensystemen. PhD thesis, Bay-
erische Julius-Maximiliam-Universität Würzburg, 1996.

[82] E. Y. Loh Jr. and J. E. Gubernatis. Stable Numerical Simulations of Models of
Interacting Electrons in Condensed-Matter Physics, in Electronic Phase Transi-
tions. W. Hanke and Yu. V. Kopaev (Eds.), Elsevier Science Publishers B. V.,
New York, 1992.

[83] A. Muramatsu. Quantum Monte Carlo Methods in Physics and Chemistry: Quan-
tum Monte Carlo for Lattice Fermions. M. P. Nightingale and C. J. Umrigar
(Eds.), NATO Science Series Vol. :343-373, Kluwer Academic, Dordrecht, 1999.

[84] H. Endres. Physik des Hubbard-Modells zwischen einer und zwei Dimensionen.
PhD thesis, Bayerische Julius-Maximiliam-Universität Würzburg, 1996.

[85] P. Valasek. Electron-Phonon Wechselwirkung im Hubbard-Modell: Quantum-
Monte-Carlo Untersuchungen. Diploma thesis, Bayerische Julius-Maximiliam-
Universität Würzburg, 1993.

[86] R. Preuss. Dynamik von Hubbard Modellen. PhD thesis, Bayerische Julius-
Maximiliam-Universität Würzburg, 1996.

[87] M. G. Zacher. From one to two dimensions: Numerical and analytical studies on
strongly correlated electron systems. PhD thesis, Bayerische Julius-Maximilians-
Universität Würzburg, 1999.

122



Bibliography

[88] C. Dahnken. Elektronische Anregungen des Hubbard-Modells mit langreichweit-
iger Wechselwirkung. Diploma thesis, Bayerische Julius-Maximiliam-Universität
Würzburg, 1998.

[89] J. Hubbard. Calculation of Partition Functions. Phys. Rev., 3(2):77, 1959.

[90] J. E. Hirsch. Discrete Hubbard-Stratonovich transformation for fermion lattice
models. Phys. Rev. B, 28(7):4059, 1983.

[91] J. E. Hirsch. Connection between world-line and determinantal functional-integral
formulations of the Hubbard model. Phys. Rev. B, 34(5):3216, 1986.

[92] W. Nolting. Grundkurs Theoretische Physik 7 - Viel-Teilchen-Theorie. Springer,
Berlin Heidelberg, 2002.

[93] A. L. Fetter and J. D. Walecka. Quantum Theory of Many-Particle Systems.
McGraw-Hill, New York, 1971.

[94] L. Pollet, S. M. A. Rombouts, K. Van Houcke, and K. Heyde. Optimal Monte
Carlo updating. Phys. Rev. E, 70(5):56705, 2004.

[95] D. Loison, C. L. Qin, K. D. Schotte, and X. F. Jin. Canonical local algorithms for
spin systems: heat bath and Hastings methods. Eur. Phys. J. B, 41:395, 2004.

[96] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C – 2nd edition. Cambridge Univ. Press, 1999.

[97] D. Eckert. Phononen im Hubbard Modell. Diploma thesis, Bayerische Julius-
Maximiliam-Universität Würzburg, 1997.

[98] F. F. Assaad. SU(2)-spin Invariant Auxiliary Field Quantum Monte-Carlo
Alorithm for Hubbard models. cond-mat/9806307, 1998.

[99] E. Y. Loh Jr, J. E. Gubernatis, and R. T. Scalettar. Sign problem in the numerical
simulation of many-electron systems. Phys. Rev. B, 41(13):9301, 1990.

[100] R. T. Scalettar, R. M. Noack, and R. R. P. Singh. Ergodicity at Large Couplings
with Determinantal Monte Carlo. Phys. Rev. B, 44(19):10502, 1991.

[101] K. Hukushima and K. Nemoto. Exchange Monte Carlo Method and Application
to Spin Glass Simulations. J. Phys. Soc. Jpn., 65(6):1604, 1995.

[102] E. Marinari and G. Parisi. Simulated Tempering: a New Monte Carlo Scheme.
Eur. Phys. Lett., 19(6):451, 1992.

[103] M. Daghofer. Berechnung thermodynamischer Suszeptibilitä mit Exakter Diago-
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