1. TIME-DEPENDENT PERTURBATION THEORY

We study a charged harmonic oscillator in an external electric field. The corresponding Hamiltonian reads

$$
\begin{aligned}
H & =H_{0}+H_{1} \\
H_{0} & =\hbar \omega_{0}\left(a^{\dagger} a+1 / 2\right) \\
H_{1} & =q E_{0} f(t) \hat{X} \\
& =q E_{0} \sqrt{\frac{\hbar}{2 m \omega_{0}}}\left(a^{\dagger}+a\right) f(t) \\
& :=\hbar \omega_{1}\left(a^{\dagger}+a\right) f(t) .
\end{aligned}
$$

The unperturbed Hamiltonian H_{0} has orthonormal eigenvectors $|n\rangle$ and eigenvalues

$$
E_{n}=\hbar \omega_{0}(n+1 / 2) \quad \text { with } n=0,1, \ldots
$$

Moreover, we have

$$
\begin{align*}
& \langle m| a|n\rangle=\sqrt{n} \delta_{m+1, n}=\sqrt{\max (n, m)} \delta_{m+1, n} \\
& \langle m| a^{\dagger}|n\rangle=\sqrt{n+1} \delta_{n+1, m}=\sqrt{\max (n, m)} \delta_{n+1, m} \tag{1}
\end{align*}
$$

In the eigen basis of H_{0}, the time-dependent Schrödinger equation reads:

$$
i \hbar \frac{d}{d t} \vec{c}(t)=H(t) \vec{c}(t) .
$$

The matrix elements of the Hamiltonian are

$$
H_{m n}(t)=\hbar \omega_{0}(n+1 / 2) \delta_{m n}+\hbar \omega_{1} f(t) \delta_{|m-n|, 1} \sqrt{\max (n, m)}
$$

or rather

$$
H(t)=\frac{\hbar \omega_{0}}{2}\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 \\
0 & 0 & 0 & 7 & 0 \\
0 & 0 & 0 & 0 & 9
\end{array}\right)+\hbar \omega_{1} f(t)\left(\begin{array}{ccccc}
0 & \sqrt{1} & 0 & 0 & 0 \\
\sqrt{1} & 0 & \sqrt{2} & 0 & 0 \\
0 & \sqrt{2} & 0 & \sqrt{3} & 0 \\
0 & 0 & \sqrt{3} & 0 & \sqrt{4} \\
0 & 0 & 0 & \sqrt{4} & 0
\end{array}\right)
$$

In order to solve the differential equation numerically, we consider a small time step Δt

$$
\vec{c}(t+\Delta t)=\overbrace{\left(\mathbf{1}-\frac{i}{\hbar} H(t) \Delta t\right)}^{V} \vec{c}(t)+O(\Delta t)^{2}
$$

This differencing scheme is not unitary and the norm $\|c(t)\|$ is not conserved. Alternatively, we write

$$
\begin{equation*}
\vec{c}(t+\Delta t)=\overbrace{\frac{1-\frac{i}{\hbar} H(t) \Delta t / 2}{1+\frac{i}{\hbar} H(t) \Delta t / 2}}^{U} \vec{c}(t)+O(\Delta t)^{2} \tag{2}
\end{equation*}
$$

The matrix U is obviously unitary and hence $\|c(t)\|=1 \forall t$. We rewrite eq. 2 into

$$
\begin{equation*}
\left(1+\frac{i}{\hbar} H(t) \Delta t / 2\right) \vec{c}(t+\Delta t)=\left(\mathbf{1}-\frac{i}{\hbar} H(t) \Delta t / 2\right) \vec{c}(t) \tag{3}
\end{equation*}
$$

which also known as Crank-Nicholson method. Since both matrices are tridiagonal, the set of linear equations can easily be solved by TridiagonalSolve. Initially (at time zero) the system be in the ground state of the unperturbed harmonic oscillator, i.e. $\vec{c}(0)=(1,0, \ldots, 0)^{T}$.

- Solve the time dependent Schrödinger equation numerically for the following time dependencies

$$
\begin{aligned}
& f(t)=1 \\
& f(t)=\cos \left(\omega_{2} t\right)
\end{aligned}
$$

- Plot c_{i} for the lowest 5 indices.
- Determine $\langle\hat{x}(t)\rangle$. (Hint: Use eq.1)
- Compare $\langle\hat{x}(t)\rangle$ with $x(t)$ of a classical system.
- Compare the result with time-dependent perturbation theory.
- Study the dependence on the parameters ω_{1}, ω_{2}, on the cutoff $n_{m} a x$ and on the size of Δt.
Remember:

$$
\begin{aligned}
p_{i \rightarrow f} & =\frac{2}{\hbar^{2}}\left|H_{i f}\right|^{2} \frac{\sin \left(\frac{\omega_{i f}}{2} t\right)^{2}}{\omega_{i f}} \\
\omega_{i f} & =\omega_{0}\left(n_{f}-n_{i}\right) .
\end{aligned}
$$

Analyze the probability $p_{n}(t)$ to find the System at time t in the n-th excited state. For time dependencies, it is useful to measure time in units of $1 / \omega_{0}$, which corresponds to setting $\omega_{0} \rightarrow 1, \omega_{1} \rightarrow \tilde{\omega}_{1}=\frac{\omega_{1}}{\omega_{0}}$, and $\omega_{2} \rightarrow \tilde{\omega}_{2}=\frac{\omega_{2}}{\omega_{0}}$

