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1 Introduction

Grover’s algorithm is one of the first conceived algorithms designed to take advantage
of the features a quantum computer offers. It is one of the algorithms often used in
examples to show the potential of quantum computers in certain areas. This bachelor
thesis aims at providing a broad insight into the workings of grovers algorithm using
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2 Basics for Grover’s Algorithm 3

various examples, which should make it very easy to understand of whats really going
on. This bachelor thesis relied heavily on the very well written, although in some parts
lacking paper by C. Lavor [9] and the quite interesting paper by E. Borbely [2]. Details
about what was done by the writer and what was copied or modified is to be found in
the begining of every section.

2 Basics for Grover’s Algorithm

This section of the bachelor thesis aims at providing some of the required mathematical
tools and physical background used later in this bachelor thesis. The template for this
section was served by [9], Sec. 3-4. The matrix representations of the required quantum
gates were taken from [4]. One part that will not be covered are tensor products. For
more information about tensor products, please refer to apppropriate literature.

2.1 Information representation

Compared to a classical computer, a quantum computer can use quantum states instead
of the classical ones. So, instead of talking about bits in quantum computing one usually
speaks of a qubit (quantum bit). Like the classical counterpart, a qubit can have the
state 0 or 1. The only difference is the notation, as in quantum mechanics quantum
states are usually written using the so called Dirac notation. We therefore speak of |0〉
and |1〉. Now, that we have pointed out the similarities between a qubit and a classical
bit, we may focus a bit in the way both differ. namely, a qubit can be in a linear
combination |ψ〉 of the states |0〉 and |1〉 which looks like

|ψ〉 = α|0〉 + β|1〉 (1)

having the normalization constraint

|α|2 + |β|2 = 1 (2)

This is a so called superposition of the states |0〉 and |1〉 with the amplitudes α and
β, where α and β are in general complex numbers. The states |0〉 and |1〉 represent the
computational basis. The vector representations of the states look like

|0〉 =
[

1
0

]

and |1〉 =
[

0
1

]

2.2 Multi-qubit states

To accomplish computational tasks on a quantum computer it is necessary to have
more than one qubit at once. Now we want to tackle how these states are represented
mathematicaly. We want to show this using a general two qubit state

|Ψ〉 = α|00〉 + β|01〉 + γ|10〉+ δ|11〉 (3)
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2 Basics for Grover’s Algorithm 4

with the normalization constraint

|α|2 + |β|2 + |γ|2 + |δ|2 = 1

Looking at Eq.3 we see that the states of the two qubits are binary numbers. One
may replace these binary numbers

|00〉, |01〉, |10〉, |11〉

with the decimal representations

|0〉, |1〉, |2〉, |3〉

This representation allows us to write a general n-qubit state |σ〉, which is nothing
less than a superposition of the 2n states |0〉, |1〉, ..., |2n− 1〉 (these states also represent
the computational basis). Mathematicaly this is written as

|σ〉 =
2n−1
∑

i=0

αi|i〉

having the generalized normalization constraint

2n−1
∑

i=0

|αi|2 = 1

One last aspect to show that a general 2 qubit state is not the product of two 1 qubit
states. Lets assume we have a qubit in the state |ψ〉 and another one in |µ〉 of the form

|ψ〉 = a|0〉 + b|1〉
|µ〉 = c|0〉 + d|1〉

The state arising from the two is represented by the tensor product

|ψ〉 ⊗ |µ〉 = (a|0〉 + b|1〉)⊗ (c|0〉 + d|1〉)
= ac|00〉 + ad|01〉 + bc|10〉 + bd|11〉 (4)

A general 2 qubit state Eq.3 is of the form Eq.4 only if

α = ac

β = ad

γ = bc

δ = bd

These equalities point out, that a general 2 qubit state (Eq.3) is of the form Eq.4 if

αδ = βγ

This result shows that the general 2 qubit state (Eq.3) is not a product of two 1 qubit
states. Two qubit states that are not a product of one-qubit states are called entangeled
states.
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2 Basics for Grover’s Algorithm 5

2.3 Computation and measurement

In this section we want to briefly discuss how a quantum computer actually executes
calculations and how to get to the result.

Measurement Let’s think about a general 1-qubit state introduced in Eq.1. We pre-
viousely introduced α and β as the amplitudes, but what do they actually mean? In
quantum mechanics a measurement of the state |ψ〉 gives either |0〉 or |1〉 with the re-
spective probabilities |α|2 and |β|2. After a measurement the superposition is effectively
destroyed and either one of the two basis states is returned with respective probability.
In quantum physics this process is called non-deterministic collapse. In many qubit envi-
ronments its commonplace to measure the quantum register (which consists of n-qubits)
qubit by qubit which yields the result of the computation with respective probability
given by the squared norms of the corresponding amplitudes in |ψ〉.

Computation As seen in the previous paragraph any attempt to see whats going on
in the quantum register leads to a non-deterministic collapse of the state to one of
its computational base vectors, thus preventing any further attempt to manipulate the
quantum register in and advantageous way. The only way to do quantum computing is
done using so called unitary operations. The reason is that a unitary operation doesn’t
lead to a collapse of the wave function as an application of one of these operators only
manipulates the amplitudes while keeping the normalization. That’s also the reason why
unitary operations are reversible, as theres always a way back to the state the system
was in before application of the operator.

2.4 Required gates

Because of the chosen quantum network model (instead of a Turing machine model),
we require gates, which perform the unitary evolution from the initial state to the one
that contains the solution. Consequently you will be introduced to all required Gates in
terms of the way they work and their matrix representation. [4] was used as template
for this subsection. The following quantum gates will be required:

Hadamard Gate As mentioned in the first chapter, one reason, why quantum comput-
ers can work significantly faster than classical ones, leads back to a quantum property
called ’Quantum Parallelism’ also refered to as ’superposition’. In order to move a quan-
tum register into a superposition, the so-called Hadamard-Gate is used. The Hadamard
Gate is a one-qubit Gate. The Hadamard Gate works by moving a Qubit in the state
|0〉 to

H|0〉 = 1√
2
(|0〉 + |1〉)

On the other hand the application of the Hadamard Gate on |1〉 yields

H|1〉 = 1√
2
(|0〉 − |1〉)
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2 Basics for Grover’s Algorithm 6

Once a superposition is created it can also be destroyed by applying the Hadamard Gate
to the qubit whose state is in a superposition. Therefore

H 1√
2
(|0〉 + |1〉) = |0〉

The matrix representation of H looks like

Hadamard Gate

H =
1√
2

(

1 1
1 −1

)

H

Figure 1: Circuit symbol for Hadamard Gate

Controlled-Not Gate The Controlled-Not Gate is a 2-qubit gate. It expects two input
qubits, one target qubit and one control qubit. The target qubit is only flipped, if the
control qubit is set to one. The Controled-Not Gate will be represented by the capital
letter C.
In order to get an idea, how the Controlled-Not gate works, watch the following example,

C|00〉 = |00〉
C|01〉 = |01〉
C|10〉 = |11〉
C|11〉 = |10〉

The Controlled-Not Gate posseses the following matrix representation

Controlled-Not Gate

C =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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Figure 2: Circuit symbol for Controlled-Not Gate

Toffoli-Gate The Toffoli-Gate is a 3 qubit gate. It requires 3 input qubits, one being
the target qubit and the other two act as control qubits.
From now on the Toffoli-Gate is represented by the capital letter T. The Toffoli-Gate
works in the following way,

T |000〉 = |000〉
T |001〉 = |001〉
T |010〉 = |010〉
T |011〉 = |011〉
T |100〉 = |100〉
T |101〉 = |101〉
T |110〉 = |111〉
T |111〉 = |110〉

The Toffoli-Gate has the following matrix representation

Toffoli Gate

T =

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
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Figure 3: Circuit symbol for Toffoli

Not-Gate When one considers the action of the one qubit Not-Gate, it is found that
the gate has the following effect on the qubit under consideration:

X|0〉 = |1〉
X|1〉 = |0〉

Thus it is easily found, that the matrix that represents this gate is of the following
form

NOT Gate

X =

(

0 1
1 0

)

X

Figure 4: Circuit symbol for NOT Gate

3 Grovers’Algorithm

This section had its foundation in [9]. The subsection dealing with Inversion about
average is based on the work by E. Borbely [2] and Lov K. Grover [5].
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3 Grovers’Algorithm 9

3.1 Introduction

Consider the following problem:
One has an unstructured database with N elements, which in turn are not ordered.
How many attempts would it take on average until the element of ones desire is found?
Classically it would take N

2 , as the classical approach is limited to look for only one
element at once. It shall later be demonstrated that the quantum mechanical approach,
also commonly refered to as Grover’s algorithm, is able to find the desired element in
O(

√
N) trials, when N = 2n

3.2 Grover Interation

Now we want to list the steps taken during the execution of Grover’s Algorithm:

1. Initialize the quantum register in a uniformly distributed superposition

2. Being called Oracle, this operator (or this set of quantum logic) marks the desired
element by changing the sign of the probability amplitude, while leaving the others
in their respective state

3. This step is commonly called ”Inversion about average” for reasons we shall later
discuss in detail. It increases the amplitude of the searched element and at the
same time decreases the others amplitude

These 3 steps are generally called Grover Iteration. One has to perform this itera-
tion approximately

√
N times, as we are going to see later, to be able to meassure the

searched element with probability close to 1.

3.2.1 Creating a superposition

Now, that the proceedings in general are known, we shall delve deeper into the inner
workings of Grover’s Algorithm. We start with generating a uniformly distributed super-
position. In order to do that, one must know, that the algorithm requires two registers
to execute properly. The first contains n qubits and the second one a single qubit. From
Sec. 2.1 we know, that each single qubit can encode 2 states at a given time. Therefore,
n qubits can represent N = 2n states. So, back to generating the superposition.
This can easily be achieved by initializing the first register in the state |Ψ〉 = |0〉 ⊗ |0〉 ⊗
. . . ⊗ |0〉 and afterwards by applying the Hadamard operator H to each single qubit (or
equivalently by applying the operator H⊗n). This results in
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3 Grovers’Algorithm 10

|Ψ〉 = H|0〉 ⊗ . . .⊗H|0〉

= (
|0〉+ |1〉√

2
)⊗ . . .⊗ (

|0〉+ |1〉√
2

)

= (H|0〉)⊗n

=
1√
N

N−1
∑

i=0

|i〉

As required this superposition is truely equally distributed with a probability ampli-
tude of 1√

N
for each element that can be encoded (pay attention, that n is the number

of qubits in the first register, whereas N is the amount of encodeable elements).

Now let’s turn to the second register (it’s purpose is going to be uncovered later on).

The second register starts being in the state |1〉. By applying a hadamard gate, the
resulting state is

|−〉 = |0〉 − |1〉√
2

By having the second register in a superposition, we can now discuss the oracle in
more detail.

3.2.2 The oracle

As indicated prevoiusely, the oracle’s responsibilities are to detect the desired element
and insert it’s probability amplitude. It’s action is best described by the following
function

f : {0, . . . , N − 1} → {0, 1} with f(i) =

{

1 if i is the searched element

0 otherwise

This is a classical function capable of evaluating one element at once. In a quantum
computer on the other hand, we want to deploy a ”function” which makes good use of
the previousely introduced quantum parallelism.
At this point we try to build a linear unitary operator which in turn depends on f so
that

Uf (|i〉|j〉) = |i〉|j ⊕ f(i)〉 where ⊕ means addition modulo 2

Here we introduced the so called oracle operator Uf . The equation includes |i〉 which
represents the first register that was previousely initialized in a evenly distributed super-
position. |j〉 was used to represent the second register. Now we shall verify the outcome,
when one applies the operator Uf to both registers.
First we have to denote the fact that
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3 Grovers’Algorithm 11

1⊕ f(i) =

{

0 for i = i0

1 for i 6= i0
(5)

which is obvious, as only when both bits are 1 the bit can be marked with a negative
sign. Having Equation 5, we can now easily obtain a more useful form of Uf .

Uf (|i〉|−〉) = Uf (|i〉|0〉) − Uf (|i〉|1〉)√
2

=
|i〉f(i)− |i〉|1 ⊕ f(i)〉√

2

= (−1)f(i)|i〉|−〉

Having Uf in this form we can now finally show the action of Uf on the two registers

|ΨF 〉|−〉 = Uf (|Ψ〉|−〉)

=
1√
N

N−1
∑

i=0

Uf (|i〉|−〉)

=
1√
N

N−1
∑

i=0

(−1)f(i)|i〉|−〉

|ΨF 〉 is the resulting state. |−〉 doesn’t change.
Truely, we achieved our final goal of having the searched state marked by a negative

sign.

As previousely indicated, we have made use of quantum parallelism, which allows us
to see all elements at once. At this point one may be reminded that this information is
not available classically, as any measurement at this point will with a high probability
result in a wrong outcome.

3.2.3 The Grover operator

Now, that theres the oracle operator in place, its time to define the grover operator.

We start recalling what the grover operator is supposed to do: It should increase the
amplitude of the searched element and at the same time decrease all other elements
amplitudes.
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3 Grovers’Algorithm 12

It turns out that this operator is represented by

Grover operator

G = 2|Ψ〉〈Ψ| − I (6)

We are not deriving the operator directly, as this would go beyond this bachelor thesis,
but for further reading please refer to [6], hence we try to get more insights in the inner
working of the grover iteration.

In order to do so, there are two major ways of explaining the grover iteration.

• Inversion about average

• Rotating the vector |Ψ〉 towards |i0〉 (which is the solution) in a real vector subspace
of the Hilber space

|0〉 |1〉 |2〉 |3〉

|4〉

|5〉
|6〉 A

Figure 5: Before inversion about average operation is applied. Note that the only state
with negative amplitude is |4〉

|0〉 |1〉 |2〉 |3〉

|4〉

|5〉 |6〉 A

Figure 6: After inversion about average operation is applied. Note that now |4〉 is the
only state whoese amplitude increased while the others have decreased in mag-
nitude. Its also noteworthy, that the amplitudes of all states have changed sign.
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Inversion about average We are now going to start first with ”Inversion about aver-
age”. As seen in Fig.5, A denotes the average amplitude over all states, so that, if ai
is the amplitude of the ith state, the average is 1

N

∑N
i=1 ai Therefore the operation of

the grover operator results in an increased (decreased) amplitude of each state by the
amount it was below (above) the average before the grover operator was applied. Now
we prove that the grover operator really can be seen as an inversion about average. We
know the grover operator is of the form Equation 6. According to [5] and [2], one can
rewrite the operator to be

G = 2P − I

where P is the projection operator and I is the identity operator.

and its matrix representation [2] is

D =











2
N

− 1 2
N

. . . 2
N

2
N

2
N

− 1 . . . 2
N

...
...

. . .
...

2
N

2
N

. . . 2
N

− 1











To proceed further we should state an important property of the projection operator:
P acting on any vector |Ψ〉 gives a vector |Ψ̃〉, whose components are individually equal
to the average of all components.

Now we see what happens after applying G to a vector |Ψ〉

G|Ψ〉 = (2P − I)|Ψ〉 = 2P |Ψ〉 − |Ψ〉

=
N
∑

i=0

a′i|i〉 with a′i = (
2

N
− 1)ai +

∑

i 6=j

2

N
aj

a′i = −ai +
N
∑

j=0

2

N
aj

a′i + ai =
N
∑

j=0

2

N
aj

a′i + ai = 2A with A =
1

N

N
∑

j=0

aj

a′i = 2A− ai

by using ai = A+∆ we get a′i = A−∆ which indeed shows, that the vector was inverted
about the average.

Now we want to pay attention to the case, when all except one component are equal
to a value l, which is approximately 1√

N
. The other single remaining component is nega-

tive. Thanks to the fact that only one amplitude is different the average is close to bein
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equal to l. Now it becomes clear, that all those components, which are close to being
equal to l won’t change significantly as a result of the inversion about average, whereas
the one component with negative sign now in turn becomes positive and its magnitude
increases by approximately 2l.

|i0〉

|Ψ〉

2Θ

Uf |Ψ〉

G|Ψ〉

2Θ

Figure 7: Rotation

Rotation of the vector towards the solution We are now going to examine the geo-
metric interpretation of the actions of the grover operator.
Given the fact that all operators and amplitudes occuring in a grover iteration are real,
we know that all states of the quantum computer are located in a real vector subspace
of the Hilbert space. This allows us to nicely show the rotation of a vector |Ψ〉 towards
the solution |i0〉 by taking |i0〉 and |Ψ〉 as base vectors (non orthogonal basis).
In Fig. (to be included afterwards) it can be seen, that the base vectors |Ψ〉 and |i0〉
form an angle smaller than 90 since the following condition 〈Ψ|i0〉 = 1√

2n
with 0 <

〈Ψ|i0〉 < 1 holds true. Thus, its obious thaht when theres a large amount of states that
the angle will be close to 90.
Before we can start, we need some equations to derive the actions of the operators
occuring during one iteration.

The resulting state after application of the oracle can be written as
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|Ψo〉 = |Ψ〉 − 2√
2n

|i0〉

= |Ψ〉 − 2√
N

|i0〉

where |i0〉 denotes the searched element. Now |i0〉 is a state of the computational basis
and as such the following relation holds true

〈Ψ|i0〉 =
1√
2n

=
1√
N

(7)

[9]
The last thing we need is the effect of the grover operator on the state |Ψ1〉. We shall

call the resulting state |ΨG〉
|ΨG〉 = (2|Ψ〉〈Ψ| − I)|Ψ〉

=
2n−2 − 1

2n−2
|Ψ〉+ 2√

2n
|i0〉

Before we can finally start our analysis, we have to stress that both, the oracle and the
grover operator are unitary operators. They therefor keep the unit norm. From the first
two equations we can see, that |Ψ〉 rotates 2Θ degrees clockwise, as

〈Ψ|Ψo〉 = 〈Ψ|(|Ψ〉 − 2√
2n

|i0〉)

= 1− 2

2n
= 1− 1

2n−1

cos 2Θ = 〈Ψ|Ψo〉 = 1− 1

2n−1
(8)

Thanks to the second equation one can calculate the angle 2Θ′ after applying the grover
operator

〈Ψ|ΨG〉 = 〈|(2
n−2 − 1

2n−2
|Ψ〉+ 2√

2n
|i0〉)

=
2n−2 − 1

2n−2
+

2

2n

= 1− 1

2n−1

cos 2Θ′ = 〈Ψ|ΨG〉 = 1− 1

2n−1
(9)

We see that 2Θ′ = 2Θ and therefore Ψo rotates 4Θ counterclockwise towards |i0〉.
This result means, that the amplitude of |i0〉 increases, while the other amplitudes

decrease with respect to their original values in |Ψ〉. At this point a measurement will
return |i0 more likely than it originally would have. One can also see, why you have to
apply the grover iteration repeatedly, as the angle 2Θ becomes smaller the more states
there are available (as seen in Fig.7).
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4 Grovers algorithm for a database of size 8 16

3.3 Ideal amount of iterations to attain the max probability

Now we want to examine how many times the grover operator needs to be applied to
reach the answer with highest possible probability.

According to Fig.7 we get

〈Ψ|i0〉 =
1√
2n

=
1√
N

= cos(
π

2
−Θ) = sinΘ

for |Ψ〉 and |i0〉.
We know that we have to get |Ψ〉 close to |i0〉 , thus requiring a rotation by an angle

of approximately π
2 . Therefore we get a rotation of

Θ + 2kΘ =
π

2

after k iterations. This leads right to

(2k + 1)Θ ∼= π

2

and as the amount of required iterations has to be an integer we have to round the
result

k = round(
π

4Θ
− 1

2
)

with sinΘ ≈ Θ = 1√
N

we get

Ideal amount of Iterations

k =
π

4

√
N (10)

iterations to find |i0〉 with high probability.

4 Grovers algorithm for a database of size 8

This section is based upon [9]
Here we want to show how Grover’s algorithm works for an imaginery database with

8 elements.
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4.1 Prequesites

To encode all 8 entries, we need 3 qubits in the first register, whereas an additional qubit
is required in the second one to mark the desired element. Using Eq.10, we know that

k =
π

4

√
8 ≈ 2 (11)

This means we need two iterations to get the searched element with high probability.
In case that we would have used a classical computer instead, it would have required us
at least 4 queries to attain the searched element with a probability greater than 1/2.

Our imaginery quantum computer will be described in every state (namely |Ψ0〉, |Ψ00〉,
|Ψ1〉, |Ψ10〉, |Ψ2〉, |Ψ20〉

Initially, the state of the first register is

|Ψ0〉 = H⊗3|000〉 = 1

2
√
2

7
∑

i=0

|i〉 (12)

which means that the quantum computer is initialized in the required evenly dis-
tributed superposition.

4.2 Grovers algorithm at work

Suppose that the desired element is the 5th which would equal |5〉 = |101〉 in binary
encoding.

In order to evaluate the state of the quantum computer after every computational
step, we introduce

|u〉 = 1√
7

7
∑

i=0∧i 6=5

|i〉 = |000〉 + |001〉 + |010〉 + |011〉 + |100〉 + |110〉 + |111〉√
7

(13)

Using |u〉, we can rewrite |Ψ〉 as

|Ψ〉 =
√
7

2
√
2
|u〉+ 1

2
√
2
|101〉

At the next step, we apply the oracle operator Uf , which has the following effect

Uf (|101〉|−〉) = −|101〉|−〉
Uf (|i〉|−〉) = |i〉|−〉, if i 6= 5

Applying the oracle operator on |Ψ0〉 results in

|Ψ10〉|−〉 = Uf (|Ψ〉|−〉) = |000〉 + |001〉 + |010〉 + |011〉 + |100〉 + |110〉 + |111〉 − |101〉
2
√
2

|−〉
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Here we can see the oracles effet upon the state |Ψ〉 as now, theres one element (|101〉)
with a minus sign. Reqriting |Ψ10〉 using Eq.13 we get

|Ψ10〉 =
√
7

2
√
2
|u〉 − 1

2
√
2
|101〉 = |Ψ〉 − 1√

2
|101〉

At the next step we apply the grover operator

G = 2|Ψ〉〈Ψ| − I

|Ψ11 = G|Ψ10〉

= (2|Ψ〉〈Ψ| − I)(|Ψ〉 − 1√
2
|101〉)

= |Ψ〉 − 2√
2

1√
8
|Ψ〉+ 1√

2
|101〉

= |Ψ〉 − 1

2
|Ψ〉+ 1√

2
|101〉

=
1

2
|Ψ〉+ 1√

2
|101〉

=

√
7

4
√
2
|u〉+ 5

4
√
2
|101〉

At the begining of our final iteration, we have yet again to apply the oracle operator
(note that the second register is ommited, as it always remains in the state |−〉)

|Ψ20〉 = Uf (|Ψ11〉|−〉) =
√
7

2
√
2
|u〉 − 5

4
√
2
|101〉

Rewriting this expression again by using Eq.13, we have

|Ψ20 =
1

2
|Ψ〉 − 3

2
√
2
|101〉

The last application of the grover operator results in

|Ψf 〉 = G|Ψ20〉 = −
√
7

8
√
2
|u〉+ 11

8
√
2
|101〉

4.3 The result

Now, we want to check with which probability we would be measuring |101〉

P =

∣

∣

∣

∣

11

8
√
2

∣

∣

∣

∣

2

≈ 0, 945

We get |101〉, which corresponds to the 5th element with a probability of around 94, 5%
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5 Implementing grovers algorithm using quantum gates

This section has its foundations in [9]. After all previous considerations one might ask
how to implement grovers algorithm on a physical quantum computer.

5.1 Generalized Toffoli Gate

n-1
control
qubits

target
qubit

|j1〉|j1〉
|j2〉|j2〉

|jn−1〉|jn−1〉
|jn〉 Xj1j2...jn−1 |jn〉

Figure 8: Generalized Toffoli gate.

n-1
control
qubits

n-2
work
qubits

target
qubit

|j1〉 |j1〉
|j2〉 |j2〉
|j3〉 |j3〉

|jn−1〉 |jn−1〉

|jn〉 Xj1j2...jn−1 |jn〉

|0〉 |0〉
|0〉 |0〉

|0〉 |0〉
|0〉 |0〉

Figure 9: Decomposition of the generalized Toffoli gate in terms of Toffoli gates.

5.2 Circuit for oracle operator

Here one can find the circuit diagram for the oracle operator The given example is an
operator working on a 3 qubit system. It selects the state |101〉. Please mind, that one
has to apply two symetrical NOT-Gates, in case the ith binary digit of i0 is 0. In this
case it would be the second qubit, where we have to apply the NOT-Gates.
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XX

|−〉|−〉

Figure 10: Decomposition of I − 2 |101〉 〈101|, which simulates Uf that searches number
5.

5.3 Circuit for grover operator

n

qubits

X

H

X

X

X

X

X

X

X

H

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉 |ψ5〉

iIiI

Figure 11: Circuit for 2 |0〉 〈0| − I. Note the presence of the imaginary unit, which does
not affect the real character of the operator.

5.4 Example using presented gates

Now at last we have a working example using the previousely presented physical imple-
mentation of the two operators. This example is a very basic one intended to be very
easy to comprehend. The quantum system consists of N = 2 and the element we’re
looking for is |11〉.

In order to accomplish the task of easy understandability, we’re going to examine the
system after every application of a quantum gate.

The circuit diagram looks as

5.4.1 The actual computation

At step one we put the registers into a superposition

|Ψ1〉 =
1√
2
(|0〉+ |1〉) ⊗ 1√

2
(|0〉+ |1〉) = 1

2
(|00〉 + |01〉 + |10〉+ |11〉)

As expected, the two qubits are in a evenly wighted superposition.

bachelor’s thesis - Manuel Auer



5 Implementing grovers algorithm using quantum gates 21

H H X X H

H H X H H X H

H H

|0〉 |1〉

|0〉 |1〉

|1〉 |1〉

|Ψ1〉 |Ψ2〉 |Ψ3〉 |Ψ4〉 |Ψ5〉 |Ψ6〉 |Ψ7〉 |Ψ8〉

Figure 12: Searching state |11〉 using quantum gates

Next up is the application of the oracle

|Ψ2〉 =
1

2
[(|00〉 + |01〉+ |10〉)(|0〉 − |1〉) + |11〉

(|1〉 − |0〉)]

=
1

2
(|00〉 + |01〉 + |10〉 − |11〉)

We see, that the oracle selected the searched element by negating it’s amplitude.
Now, we have to apply Hadamard gates to the first 2 qubits

|Ψ3〉 =
1

4
[(|0〉 + |1〉)(|0〉 + |1〉) + (|0〉 + |1〉)(|0〉 − |1〉)

+ (|0〉 − |1〉)(|0〉 + |1〉) + (|0〉 − |1〉)(|0〉 − |1〉)]

=
1

2
(|00〉 + |01〉 + |10〉 − |11〉)

After applying a NOT gate to |Ψ3〉 we have

|Ψ4〉 =
1

2
(|11〉 + |10〉 + |01〉 − |00〉)

A Hadamard gate now becomes applied to the second qubit

|Ψ5〉 =
1

2
√
2
[|1〉(|0〉 − |1〉) + |1〉(|0〉 + |1〉)

+ |0〉(|0〉 − |1〉) − |0〉(|0〉 − |1〉)]

=
1√
2
(|10〉 − |01〉)

Application of the CNOT gate gives

|Ψ6〉 =
1√
2
(|11〉 − |01〉)
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Again we have to apply a Hadamard gate to the second qubit

|Ψ7〉 =
1

2
[|1〉(|0〉 − |1〉) − |0〉(|0〉 − |1〉)]

=
1

2
(|10〉 − |11〉 − |00〉 + |01〉)

Negating the qubits using NOT gates lets us have

|Ψ8〉 =
1

2
(|01〉 − |00〉 − |11〉+ |10〉)

We have the final state after applying Hadamard gates to both qubits

|Ψ9〉 =
1

4
[(|0〉 + |1〉)(|0〉 − |1〉) − (|0〉 + |1〉)(|0〉 + |1〉)

− (|0〉 − |1〉)(|0〉 − |1〉) + (|0〉 − |1〉)(|0〉 + |1〉)]

=
1

4
(4|11〉) = |11〉

5.4.2 The result

As expected for this setup, Grover’s algorithm returned the desired element with 100%
probability after only one iteration.

6 Grovers algorithm implemented using libquantum

One subject of this bachelor thesis was to show grovers algorithm on a classical computer.
During the work on this topic, it was found, that a very good and solid implementation
already came along with an open source quantum computation simulation library called
libquantum [1]. It was thus chosen to deliver its source code altough a little bit mod-
ified to provide a better educational experience along with this bachelor thesis. These
modifications consist of various comments in the source code to create a link between
the computational implementation and the work done in Sec.5.4.1

Listing 1: Grovers algorithm implemented using libquantum

1 /∗ grover . c : Implementat ion o f Grover ’ s search a l gor i t hm
2

3 Copyright 2003 Bjoern Butscher , Hendrik Weimer
4

5 This f i l e i s par t o f l ibquantum
6

7 l i bquantum i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify
8 i t under the terms o f the GNU General Pub l i c License as pu b l i s h e d
9 by the Free Sof tware Foundation ; e i t h e r ve r s i on 3 o f the License ,
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10 or ( at your opt ion ) any l a t e r ve r s i on .
11

12 l i bquantum i s d i s t r i b u t e d in the hope t ha t i t w i l l be u se fu l , bu t
13 WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Pub l i c License f o r more d e t a i l s .
16

17 You shou ld have r e c e i v e d a copy o f the GNU General Pub l i c License
18 a long wi th l ibquantum ; i f not , wr i t e to the Free Sof tware
19 Foundation , Inc . , 51 Frank l in S t ree t , F i f t h Floor , Boston ,
20 MA 02110−1301 , USA
21

22 ∗/
23

24 #include <quantum . h>
25 #include <s td i o . h>
26 #include <math . h>
27 #include <s t d l i b . h>
28 #include <time . h>
29

30 #ifdef M PI
31 #define p i M PI
32 #else

33 #define p i 3.141592654
34 #endif

35

36

37 /∗
38 This func t i on e f f e c t i v e l y r e p r e s en t s the o rac l e operator .
39 ∗/
40 void o r a c l e ( int s tate , quantum reg ∗ r eg )
41 {
42 int i ;
43

44

45 for ( i =0; i<reg−>width ; i++)
46 {
47 /∗ t h i s i f−cond i t i ona l makes sure , t ha t f o r example ,
48 in case we look f o r the e lement 101 ,
49 we end up having 111 , s imply because
50 we couldn ’ t i n v e r t the ampli tude ,
51 i f t h i s wasn ’ t the case .
52 For more in format ions ,
53 p l e a s e r e f e r to the bache lor ’ s
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54 t h e s i s Sec 4.2
55

56

57 ∗/
58 i f ( ! ( s t a t e & (1 << i ) ) )
59 {
60 quantum sigma x ( i , r eg ) ;
61 }
62 }
63

64 /∗ now we have to app ly the g e n e r a l i z e d t o f f o l i ga t e .
65 See more in Sec . 4 .1 ∗/
66 quantum to f f o l i ( 0 , 1 , reg−>width+1, reg ) ;
67

68 for ( i =1; i<reg−>width ; i++)
69 {
70 quantum to f f o l i ( i , reg−>width+i , reg−>width+i +1, reg ) ;
71 }
72

73 quantum cnot ( reg−>width+i , reg−>width , r eg ) ;
74

75 for ( i=reg−>width−1; i >0; i−−)
76 {
77 quantum to f f o l i ( i , reg−>width+i , reg−>width+i +1, reg ) ;
78 }
79

80 quantum to f f o l i ( 0 , 1 , reg−>width+1, reg ) ;
81

82 /∗ again we have to app ly the NOT−ga te ∗/
83 for ( i =0; i<reg−>width ; i++)
84 {
85 i f ( ! ( s t a t e & (1 << i ) ) )
86 quantum sigma x ( i , r eg ) ;
87 }
88

89 }
90

91

92 /∗
93 This func t i on r ep r e s en t s the grover operator
94 ∗/
95 void i n v e r s i on ( quantum reg ∗ r eg )
96 {
97 int i ;

bachelor’s thesis - Manuel Auer



6 Grovers algorithm implemented using libquantum 25

98 // we have to app ly NOT ga t e s to a l l q u b i t s
99 // see more in Sec . 4 .4

100 for ( i =0; i<reg−>width ; i++)
101 quantum sigma x ( i , r eg ) ;
102

103 //we have to app ly a Hadamard ga te
104 // to the l a s t q u b i t in the f i r s t r e g i s t e r
105 quantum hadamard ( reg−>width−1, r eg ) ;
106

107 // here we merely d i s t i n g u i s h i f we
108 // have on ly 3 q u b i t s in our r e g i s t e r
109 // i f t h a t s the case we don ’ t need to
110 // app ly the g e n e r a l i z e d To f f o l i ga t e
111 //and can use the T o f f o l i ga t e i n s t e ad
112 i f ( reg−>width==3)
113 quantum to f f o l i ( 0 , 1 , 2 , r eg ) ;
114

115 else

116 {
117 // here we have to app ly the g e n e r a l i z e d
118 // To f f o l i ga t e
119 quantum to f f o l i ( 0 , 1 , reg−>width+1, reg ) ;
120

121 for ( i =1; i<reg−>width−1; i++)
122 {
123 quantum to f f o l i ( i , reg−>width+i , reg−>width+i +1, reg ) ;
124 }
125

126 quantum cnot ( reg−>width+i , reg−>width−1, r eg ) ;
127

128 for ( i=reg−>width−2; i >0; i−−)
129 {
130 quantum to f f o l i ( i , reg−>width+i , reg−>width+i +1, reg ) ;
131 }
132

133 quantum to f f o l i ( 0 , 1 , reg−>width+1, reg ) ;
134 }
135 //and at a f t e r the computation we have
136 // to make sure we app ly the
137 //Hadamard ga te to the l a s t q u b i t again
138 quantum hadamard ( reg−>width−1, r eg ) ;
139

140 //same f o r the NOT gate
141 for ( i =0; i<reg−>width ; i++)
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142 quantum sigma x ( i , r eg ) ;
143 }
144

145 /∗ t h i s f unc t i on r ep r e s en t s a s i n g l e
146 grover i t e r a t i o n ∗/
147 void grover ( int target , quantum reg ∗ r eg )
148 {
149 int i ;
150 // here we app ly the o rac l e operator
151 o r a c l e ( target , r eg ) ;
152 // b e f o r e we can app ly the grover
153 // operator i t s e l f
154 //we have to app ly hadamard ga t e s
155 // to a l l q u b i t s f i r s t
156 for ( i =0; i<reg−>width ; i++)
157 quantum hadamard ( i , r eg ) ;
158 // here we app ly the grover operator
159 i n v e r s i on ( reg ) ;
160 //and here we have again to app ly
161 //hadamard ga t e s to a l l
162 // q u b i t s
163 for ( i =0; i<reg−>width ; i++)
164 quantum hadamard ( i , r eg ) ;
165

166 }
167 /∗ the entry C func t i on ∗/
168 int main ( int argc , char ∗∗ argv )
169 {
170 quantum reg reg ; // t h i s i s the quantum r e g i s t e r
171 int i , N, width=0; // de f i n e requ i red
172 // v a r i a b l e s f o r l oops ( i ) , the searched number
173 //and r e g i s t e r width
174

175 srand ( time ( 0 ) ) ;
176

177 // ge t the command l i n e arguments
178 i f ( argc==1)
179 {
180 p r i n t f ( ”Usage : grover [ number ] [ [ qub i t s ] ] \ n\n” ) ;
181 return 3 ;
182 }
183 // s e t the searched number
184 N=ato i ( argv [ 1 ] ) ;
185
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186 // in case the user s e t the r e g i s t e r width
187 // e x p l i c i t l y , we s t o r e t ha t in q i d t h
188 i f ( argc > 2)
189 width = ato i ( argv [ 2 ] ) ;
190

191 //now we have to check i f the width o f
192 // the quantum r e g i s t e r
193 // a l l ows complete encoding o f the
194 // entered number i f t h a t s not the case w
195 // iden the r e g i s t e r approp r i a t e l y
196 i f ( width < quantum getwidth (N+1))
197 width = quantum getwidth (N+1);
198

199 // crea te a new r e g i s t e r i n i t i a l i z e d
200 // in the s t a t e 0
201 r eg = quantum new qureg (0 , width ) ;
202 // i n v e r t the l a s t b i t so i t i s in
203 // the s t a t e 1
204 quantum sigma x ( reg . width , &reg ) ;
205

206 // here we crea te the even ly d i s t r i b u t e d
207 // supe rpo s i t i on
208 for ( i =0; i<r eg . width ; i++)
209 quantum hadamard ( i , &reg ) ;
210

211 //and app ly a hadamard ga te to the l a s t
212 // an q u i l l a q u b i t to have i t in s t a t e
213 // |0> − |1>
214 quantum hadamard ( reg . width , &reg ) ;
215

216 //now we l e t the user know how many
217 // i t e r a t i o n s i t w i l l t ake to have the f i n a l
218 // r e s u l t
219 p r i n t f ( ” I t e r a t i n g %i t imes \n” , ( int ) ( p i /4∗ s q r t(1<< r eg . width ) ) ) ;
220

221 // execu te the grover i t e r a t i o n the amount
222 // p r e v i o u s l y d i s p l a y ed to the user
223 for ( i =1; i<=pi /4∗ s q r t (1 << r eg . width ) ; i++)
224 {
225 p r i n t f ( ” I t e r a t i o n #%i \n” , i ) ;
226 grover (N, &reg ) ;
227 }
228

229 // again app ly a hadamard ga te to the l a s t
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230 // q u b i t
231 quantum hadamard ( reg . width , &reg ) ;
232

233 r eg . width++;
234 // execu te a ph y s i c a l measurement
235 quantum bmeasure ( reg . width−1, &reg ) ;
236

237 for ( i =0; i<r eg . s i z e ; i++)
238 {
239 i f ( r eg . node [ i ] . s t a t e == N)
240 p r i n t f ( ”\nFound %i with a p r ob ab i l i t y o f %f \n\n” , N,
241 quantum prob ( reg . node [ i ] . amplitude ) ) ;
242 }
243 // d e l e t e the c rea t ed quantum r e g i s t e r
244 //and f r e e memory
245 quantum delete qureg (&reg ) ;
246

247 return 0 ;
248 }

7 Possible types of quantum computers

7.1 Solid state quantum computing device

A very young but promising approach has been demonstrated back in May 2009 by the
group of L. DiCarlo which in short is quantum computing on a solid state device. This
approach is a rather complex one and requires a profound background in order to un-
derstand it. As this would go far beyond the scope of this bachelor thesis only a small
summarising excerpt of the paper [3] is given:

This device is based on a quantum bus architecture quantum bus architecture which
uses an on-chip transmission line cavity to couple, control, and measure qubits. We
augment the architecture with flux-bias lines that tune individual qubit frequencies, per-
mitting single-qubit phase gates. By pulsing the qubit frequencies to an avoided crossing
where a σz⊗σz interaction turns on, we are able to realize a two-qubit conditional phase
(c-Phase) gate. Operation in the strong-dispersive regime of cQED allows joint readout
that can efficiently detect two-qubit correlations. Combined with single-qubit rotations,
this enables tomography of the two-qubit state. Through an improved understanding of
spontaneous emission and careful microwave engineering, we are now able to combine
state-of-the-art ≈ 1µs coherence times into a two-qubit device. This allows sufficient
time to concatenate ≈ 10 gates, realizing simple algorithms with fidelity greater than 80%

Further details are found in [3].
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7.2 NMR quantum computing

This short summary is taken from Wikipedia [10]:
NMR quantum computing uses the spin states of molecules as qubits. NMR differs from
other implementations of quantum computers in that it uses an ensemble of systems, in
this case molecules. The ensemble is initialized to be in the thermal equilibrium state.
Operations are performed on the ensemble through magnetic pulses applied perpendicular
to a strong, static field created by a very large magnet.

For further reading, please refer to [8]

7.3 Trapped ion quantum computer

Implementing quantum computers using trapped ions is one of the oldest approaches.
A short summary is taken from Wikipedia [11]:
A Trapped ion quantum computer is a type of quantum computer. Ions, or charged
atomic particles, can be confined and suspended in free space using electromagnetic fields.
Qubits are stored in stable electronic states of each ion, and quantum information can be
processed and transferred through the collective quantized motion of the ions in the trap
(interacting through the Coulomb force). Lasers are applied to induce coupling between
the qubit states (for single qubit operations) or coupling between the internal qubit states
and the external motional states (for entanglement between qubits). The fundamental
operations of a quantum computer have been demonstrated experimentally with high ac-
curacy (or ”high fidelity” in quantum computing language) in trapped ion systems and a
strategy has been developed for scaling the system to arbitrarily large numbers of qubits
by shuttling ions in an array of ion traps. This makes the trapped ion quantum com-
puter system one of the most promising architectures for a scalable, universal quantum
computer.

An exeptional overview is given by the paper of the group of Haeffner [7].
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