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Abstract

In this work an attempt to describe Bose-Einstein Condensation (BCE) for

a 1 dimensional system is made. In chapter 1 a brief introduction to BCE

out of statistical physics can be found.

In chapter 2, starting from the Bose-Hubbard Hamiltonian, a derivation for

the Gross-Pitaevski Equation 2.6 which is one of the central equations for

this description of BCE is done.

With the GPE the problem is solved for free particles in chapter 2.1. There

a Bogoliubov transformation is done, given in equation 2.15. The condi-

tions for this transformation, that the Hamiltonian is diagonal and that the

bosonic commutation relations are conserved, are other important equations

in solving the problem.

Chapter 2.2 finally describes how to solve the problem for an arbitrary poten-

tial V(R) via a Multi-Mode Bogoliubov transformation (MMB transforma-

tion), which is the extension of the Bogoliubov transformation in the previous

chapter. Here, in addition to the GPE also the 2 already mentioned condi-

tions have to be fulfilled.

Results of the two worked out problems can be found in chapter 3.1 and

3.2. Because of the work intensity of the MMB transformation I stopped

at the point where the Hamiltonian was diagonal and didn’t calculate any

properties like I did in the zero potential case.
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Introduction

When Einstein developed the quantum statistics for indistinguishable parti-

cles, based on a work of the Indian physicist Nathanel Bose, he discovered,

that a dilute gas of such particles can undergo a phase transition named

Bose-Einstein condensation. The fascinating thing about BCE is, that the

strange world of quantum mechanics and its effects actually can be seen by

the pure eye. This makes it interesting from a theoretical as well as from a

experimental point of view.

In this work the problem is solved for a one dimensional lattice using a field

theory approach. In principle, a contradiction occurs due to the mean field

nature of the present approximation: according to the Mermin– Wagner–

Hohenberg theorem which forbids spontaneously broken symmetry in sys-

tems with less than three dimensions. [3]

Nevertheless it is interesting to consider and spend time with such a problem

since it shows a way how to actually solve problems which are more compli-

cated as e.g.: the harmonic oscillator and it gives an insight in the big field

of mean field theory.
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Chapter 1

Thermodynamical Basics of the

Ideal Bose Gas

The following short introduction to BCE is, concerning the content, a sum-

mary of [2].

We consider noninteracting bosons with zero spin and mass m. The occu-

pation of an energy level with energy εp = p2

2m
is then given by the Bose-

Einstein-statistics:

〈np〉 = n̄p =
1

eβ(εp−µ) − 1
, (1.1)

with the inverse temperature β = 1
kbT

and the chemical potential µ.

Hence the total particle number is given by:

N =
∑
p

n̄p = N0 +
∑
p 6=0

n̄p (1.2)

From equation 1.1 we can see, that the chemical potential µ has to be

smaller than the smallest energy εp, which can be taken zero without loss

of generality. If the chemical potential approaches this smallest energy the
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occupation of the ground state N0 → ∞. Because of this problem we from

now on treat it separately.

For εp − µ > 0 we can expand 1.1 as a Taylor series:

n̄p =

∞∑
l=1

(
e−β(εp−µ)

)l
(1.3)

The total particle number is then given by:

N = N0 +
V

(2π~)3

∞∑
l=1

eβµl
∫
e
− p2l

2mkbT d3p (1.4)

Where we already replaced the sum over all discrete states by an integral
V

(2π~)3
∫
· · · d3p. This integral can be solved easily and leads to:

N = N0 +
V

λ3

∞∑
l=1

eβµl

l3/2
= N0 +

V

λ3
g3/2(e

βµ) , (1.5)

with the thermal de Broglie wavelength λ = 2π~√
2πmkbT

and the generalized

zeta-function g3/2(e
βµ). For a given particle number, equation 1.5 deter-

mines the chemical potential µ. At high temperatures T →∞, the chemical

potential has to approach −∞. For lower temperatures, on the other hand, it

has to approach zero. Equivalent to the chemical potential approaching zero

the limit for eβµ → 1 can be taken. Then the generalized zeta function can be

replaced by the Riemann zeta function ζ(3/2). As seen above the chemical

potential cannot be positive, why there has to be a certain temperature Tc

where µ = 0 for T < Tc. When the temperature exceeds this critical temper-

ature the number of particles in the ground state is still N0 = O(1) and can

be neglected. With this condition we can calculate the critical temperature

from equation 1.5:
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kBTc =
2π~2

m

(
N

ζ(3/2)V

)3/2

(1.6)

For temperatures lower than Tc the fraction of particles in the ground

state or condensed particles can be calculated from 1.5 as:

N0

N
= 1−

(
T

Tc

)3/2

(1.7)

This means, that at a temperature lower than Tc a macroscopic amount

of particles occupies the ground state and the fraction of condensed particles

approaches one as T becomes zero. On the other hand for temperatures

higher than Tc the number of condensed particles can be neglected.
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Chapter 2

Interacting Bosons

We now consider a simple model for interacting bosons described by the one

dimensional Bose-Hubbard-Hamiltonian:

H =
L∑

R=1

(V (R)− µ)ψ̂†Rψ̂R− t
L∑

R=1

(
ψ̂†Rψ̂R+1 + ψ̂Rψ̂

†
R+1

)
+
U

2

L∑
R=1

(ψ̂†R)2(ψ̂R)2 .

(2.1)

Where the first term corresponds to an external potential, which in this work

is chosen to be: V (R) = α(R − L
2
)2. This term also contains the chemical

potential, which insures particle conservation. The second term describes

the movement of the particles, where just hopping from a lattice point to

its nearest neighbors is included. The last part is the interaction potential

between 2 particles, where the potential V (R−R′) acts only on particles on

the same site:

V (R−R′) = UδRR′ . (2.2)

The bosonic field-operators ψ̂R and ψ†R obey the bosonic commutation

relations:
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[ψ(R′), ψ(R)†] = δR,R′

[ψ(R′)†, ψ(R)†] = 0

[ψ(R′), ψ(R)] = [ψ(R′)†, ψ(R)†] = 0 .

(2.3)

In the condensed phase these are split into a term φ(R) describing the

condensate and one operator b̂R which treats the fluctuation around this

value [4, p. 350].

ψ̂R = φ(R) + b̂R

ψ̂†R = φ(R) + b̂†R .
(2.4)

Where φ(R) is a real number, not an operator. A problem with that ap-

proach is, that it violates particle conservation, since ψ̂R acting on a vector

destroys a particle at R. The number φ(R) however leaves the state un-

changed.

Substituting 2.4 into the Hamiltonian 2.1 leads to 1:

1See Appendix A for detailed calculation.
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H =
∑
R

[
(V (R)− µ)|φ(R)|2 +

U

2
|φ(R)|4 − 2tφ(R + 1)φ(R)

]
+

b̂R

[
(V (R)− µ)φ(R) + U |φ(R)|2φ(R)− t(φ(R− 1) + φ(R + 1))

]
+

b̂†R

[
(V (R)− µ)φ(R) + U |φ(R)|2φ(R)− t(φ(R− 1) + φ(R + 1))

]
+

b̂†Rb̂R

(
(V (R)− µ) + 2U |φ(R)|2

)
+
U

2
φ(R)2

(
b̂2R + (̂b†R)2

)
− t
(
b̂†Rb̂R+1 + b̂Rb̂

†
R+1

)
+

U

2

(
2(b̂†R)2b̂Rφ(R) + 2b̂†Rb̂

2
Rφ(R) + (b̂†R)2b̂2R

)
.

(2.5)

Because of the Hamiltonian being stationary in the operators b̂R and b̂†R,

the terms linear in these have to vanish. This leads to the Gross-Pitaevskii

equation (GPE), which can be used to determine the condensate amplitude

φ(R):

(
(V (R)− µ) + U |φ(R)|2)

)
φ(R)− t(φ(R + 1) + φ(R− 1)) = 0 . (2.6)

2.1 Free particles - Calculating the fluctua-

tions

It has to be emphasized that the general approach made in this chapter is not

my idea and can be found a variety of literature e.g.: [4]. All the calculations

for this specific problem on the other hand were done by myself.

The GPE determines the condensate density on lattice site R, |φ(R)|2.
Despite that, the size of fluctuations around this value is interesting. There-
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fore it’s the next step to solve this problem by including terms up to the

second order in the annihilation and creation operators b̂R and b̂†R.

To simplify the problem it is first solved for free particles, where V (R) ≡ 0.

With that there is no dependency on R in the Hamiltonian and therefore the

average occupation of the lattice is also independent of the lattice site. This

means φ(R) is the same for all R and from now on it will simply be written

as φ. Consequently the GPE reads:

(
U |φ|2 − µ

)
φ− 2tφ = 0 , (2.7)

or

|φ|2 =
2t+ µ

U
. (2.8)

With the condensate density |φ|2 being the same on every place, an ex-

pression for the chemical potential can be found:

µ =
N

L
U − 2t = nU − 2t , (2.9)

with N the total number of particles and n the particle density.

With 2.8 the Hamiltonian 2.5 simplifies to:

H =
∑
R

[
− µ|φ|2 +

U

2
|φ|4 − 2tφ2

]
+

b̂†Rb̂R

(
− µ+ 2U |φ|2

)
+
U

2
φ2b̂2R +

U

2
φ2(̂b†R)2 − t

(
b̂†Rb̂R+1 + b̂Rb̂

†
R+1

)
,

(2.10)

Here, terms of third and fourth order in the fluctuation operators have

been neglected, what is correct in the low density limit.
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2.10 can be written as:

H = C +
∑
R

Ab̂†Rb̂R +B

(
b̂2R + (̂b†R)2

)
− t
(
b̂†Rb̂R+1 + b̂Rb̂

†
R+1

)
, (2.11)

with the position independent constants:

C =
∑
R

(
− µφ2 +

U

2
φ4 − 2tφ2

)
=
L(µ+ 2t)(µ− 2t)

2U

A = −µ+ 2Uφ2 = µ+ 4t

B =
U

2
φ2 = t+

µ

2
.

(2.12)

Now the creation and annihilation operators are expanded into the basis of

the free particle (in other words, we perform a Fourier transformation):

b̂R =
1√
L

∑
k

eikRb̂k

b†R =
1√
L

∑
k

e−ikRb̂†k .
(2.13)

Because of the periodic boundary conditions k is restricted to k = 2π
L
n , n ∈

N . Normally n would be chosen to be in [0, L − 1], in this work however

it is convenient to take n symmetric from [−L−1
2
, L−1

2
] if L is odd or from

[−L
2
, L
2
− 1] if it is even.

Substituting the Fourier transformation into the Hamiltonian 2.11 leads to2:

H = C +
∑
k

(A− 2t cos k)b̂†kb̂k +B

(
b̂kb̂−k + b̂†kb̂

†
−k

)
. (2.14)

2See Appendix B for detailed calculation.
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The goal, to diagonalize this Hamiltonian, will be achieved by using a

Bogoliubov transformation:

b̂k = ukâk + vkâ
†
−k

b̂†k = u∗kâ
†
k + v∗kâ−k

b̂−k = u−kâ−k + v−kâ
†
k

b̂†−k = u∗−kâ
†
−k + v∗−kâk

(2.15)

The parameters uk and vk have to be determined in a way that, assuming

one set of operators already obeys the commutation relation 2.3 (this oper-

ators will be âk and â†k), the other set (b̂k and b†k) also obeys it. The last

requirement for the coefficients will be that the Hamiltonian gets diagonal.

Nevertheless this turns out to be possible only for indices k 6= 0, because for

k = 0:

(A− 2t)b̂†0b̂0 +B

(
b̂0b̂0 + b̂†0b̂

†
0

)
=

(µ+ 2t)b̂†0b̂0 +
µ+ 2t

2

(
b̂0b̂0 + b̂†0b̂

†
0

)
.

A Bogoliubov transformation is for such an arrangement of coefficients not

possible. This can also be seen by looking at equation 2.21 where k = 0

would lead to a singularity, because of dividing by zero.

The state k = 0 corresponds to the ground state where in 2.4 the creation

and annihilation operators have been replaced by the condensate amplitude

φ(R), where
∑

R |φ(R)|2 = N0.

Since we are interested in BEC, where a big fraction of particles is in the

ground state, there is no big difference between the Fock-states:
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b̂0|N0, N1, ...〉 =
√
N0|N0 − 1, N1, ...〉

b̂†0|N0, N1, ...〉 =
√
N0 + 1|N0 + 1, N1, ...〉

(2.16)

Here the above mentioned violation of particle conservation can be seen:

The replacement of the operators by a number leads to a violation of parti-

cle conservation. For that reason we work in the grand-canonical ensemble

and ensure particle conservation by introducing the chemical potential as a

Lagrange multiplier [3, p. 23].

The Bogoliubov transformation is now done for all indices except k = 0.

First the numbers uk and vk are chosen to be real. Then the commutator

[b̂k, b̂
†
k] is calculated and it is assumed, that âk and â†k already are bosonic

operators:

[b̂k, b̂
†
k] = u2k[âk, â

†
k] + v2k[â

†
−k, â−k] + ukvk

(
[âk, â−k] + [â†−k, â

†
k]

)
= u2k − v2k

!
= 1 .

(2.17)

Now the commutator [bk, b−k] is calculated which has to vanish:

[b̂k, b̂−k] = uku−k[âk, â−k] + vkv−k[â
†
k, â
†
−k] + [âk, â

†
k]

(
ukv−k − u−kvk

)
= ukv−k − u−kvk

!
= 0

(2.18)

This condition can be fulfilled by:
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vk = v−k

uk = u−k .
(2.19)

Plugging the Bogoliubov transformation 2.15 into the Hamiltonian 2.14

leads to:

H =C +
3

2
(µ+ 2t)N0∑

k 6=0

â†kâk

(
u2k(A− 2t cos k) +Bukvk

)
+Bukvkâ

†
−kâ−k+

∑
k 6=0

âkâ
†
kBukvk + â−kâ

†
−k

(
v2k(A− 2t cos k) +Bukvk

)
+

∑
k 6=0

â†kâ
†
−k

(
(A− 2t cos k)ukvk +B(v2k + u2k)

)
+

∑
k 6=0

âkâ−k

(
(A− 2t cos k)ukvk +B(v2k + u2k)

)
(2.20)

To get rid of the restrictions to the sums u0 = v0 = 0 can be defined,

because with that the sum can again be over all allowed k values.

Demanding the Hamiltonian to be diagonal, uk and vk have to satisfy the

equation:

(A− 2t cos k)ukvk +B(v2k + u2k) = 0

(A− 2t cos k)vk

√
1 + v2k +B(2v2k + 1) = 0 ,

where condition 2.17 was used to get to the second line.

Hence the coefficients uk,vk for the transformation for all k 6= 0 are given by:
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vk =

√
−1

2
+

(µ+ 4t− 2t cos k)

2
√

(µ+ 4t− 2t cos k)2 − (2t+ µ)2

uk =

√
1

2
+

(µ+ 4t− 2t cos k)

2
√

(µ+ 4t− 2t cos k)2 − (2t+ µ)2

u−k = uk

v−k = vk

(2.21)

To diagonalize the Hamiltonian 2.20 we use the bosonic commutation relation

and replace âkâ
†
k with 1 + â†kâk:

H =

(
C + v2k(A− 2t cos k) + 2Bukvk

)
+

3

2
(µ+ 2t)N0∑

k

â†kâk

(
u2k(A− 2t cos k) + 2Bukvk

)
∑
k

â†−kâ−k

(
v2k(A− 2t cos k) + 2Bukvk

) (2.22)

Because of the allowed values for k, and the coefficients at the creation and

annihilation operators in the second line of 2.22 being symmetric around zero
3 the Hamiltonian can be simplified to:

H =

(
C + v2k(A− 2t cos k) + 2Bukvk

)
+∑

k

â†kâk

(
(u2k + v2k)(A− 2t cos k) + 4Bukvk

) (2.23)

The minimum energy is obtained by setting all excitations â†kâk = 0,

therefore the constant term in the first line in this equation is the ground

3v−k = vk, u−k = uk and cos (−k) = cos k
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state energy. The final resulting Hamiltonian is given by:

H =
L(µ+ 2t)(µ− 2t)

2U
+
∑
k

+v2k
[
(µ+ 4t)− 2t cos k

]
+ (µ+ 2t)ukvk+

3

2
(µ+ 2t)N0 +

∑
k

â†kâk

(
(u2k + v2k)(µ+ 4t− 2t cos k) + 2(µ+ 2t)ukvk

)
(2.24)

Again reminding, that for the index k = 0 the Bogoliubov transformation

was impossible. Just formally the transformation coefficients u0 and v0 were

defined zero, to be able to let the summation go over all allowed values of k.

This means although in equation 2.24 it looks like there is a number operator

of the ground state â†0â0, the energy of that state is zero and therefore that

term doesn’t contribute.

Equation 2.24 is mathematically identical to several harmonic oscillators with

the ground state energy E0 and different excitation energies Ek which would

correspond to the energiesteps ~ωk in the harmonic oscillator.

Beside the energies, also the eigenstates can be constructed. There the

occupation of a certain normal mode k is introduced as a quantum num-

ber and the state itself is given by the occupation of all accessibly states:

|Nk1 , Nk2 , ..., NkL−1
〉

E0 =
L(µ+ 2t)(µ− 2t)

2U
+ v2k

[
(µ+ 4t)− 2t cos k

]
+ (µ+ 2t)ukvk +

3

2
(µ+ 2t)N0

Ek =(u2k + v2k)

(
(µ+ 4t)− 2t cos k

)
+ 2(µ+ 2t)ukvk

(2.25)

Therewith it is possible to calculate the expectation value of the occupa-

tion of different states, excluding the ground state, using the Bose-Einstein-
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statistics 1.1 for different temperatures T. But we have to be careful doing

that, because the chemical potential µ is in this case already included in the

energy in a non linear way. This means instead of εp − µ just εp has to be

taken.

With that the occupation of the ground state can be calculated using equa-

tion 1.2:

N0 = N −
∑
p 6=0

n̄p . (2.26)

In the continuous case the sum over all nonzero momenta would be replaced

by V
(2π~)D

∫
· · · d~p, with D the number of spatial dimensions.

In the discrete case it is possible just to add them together since the number

of k-states is limited.

2.2 Arbitrary potential V (R) - Multi-Mode

Bogoliubov Transformation

The next step is to diagonalize the Hamiltonian, including terms up to second

order in the fluctuation operators with an external potential V (R). This will

be achieved using a multi-mode Boguliubov Transoformation.

The Hamiltonian, from where we start in this chapter, is given in equation

2.5 4:

H =
∑
R

[
(V (R)− µ)|φ(R)|2 +

U

2
|φ(R)|4 − 2tφ(R + 1)φ(R)

]
+

b̂†Rb̂R

(
(V (R)− µ) + 2U |φ(R)|2

)
+
U

2
φ(R)2

(
b̂2R + (̂b†R)2

)
−

t

(
b̂†Rb̂R+1 + b̂Rb̂

†
R+1

)
+O(b̂3) .

(2.27)

4The average values φ(R) were calculated with the GPE 2.6, hence terms linear in
the fluctuation operators have already vanished. Terms of third or higher order in the
fluctuation operators are neglected
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This Hamiltonian is written in vector notation:

H = ∆ + ~B†M ~B +O(b̂3, (b̂†)3) . (2.28)

With the vectors B and B† defined as (Nambu-notation):

~B† = (b†1, . . . , b
†
L, b̂1, . . . , b̂L)

~B = ( ~B†)† = (b̂1, . . . , b̂L, b
†
1, . . . , b

†
L)T

,

(2.29)

We could, at this point, try just to take the Hamiltonian from equation 2.5

and construct the matrix M, but would soon discover that the matrix is not

hermitian. Therefore we have to remember, that this particular Hamiltonian

was obtained using the bosonic commutation relations and with that the

internal symmetry of the Hamiltonian was lost. This has to be cured by

replacing following terms in 2.5 with:

b̂†Rb̂R =
1

2
(b̂†Rb̂R + b̂Rb̂

†
R + 1)

(b̂†Rb̂R+1 + b̂Rb̂
†
R+1) =

1

2
(b̂†Rb̂R+1 + b̂R+1b̂

†
R + b̂Rb̂

†
R+1 + b̂†R+1b̂R)

If the goal is just to make the matrix hermitian, replacing b̂†Rb̂R would not

be necessary. Nevertheless it has to be done, because otherwise the energies

would be negative. The problem with that is, that the energy gets lower the

more particles are in the state, what would result in an infinite occupation

of this state.

This whole procedure produces a constant term ∆:

∆ =
∑
R

[
(V (R)− µ)φ(R)2 +

U

2
φ(R)4 − 2tφ(R + 1)φ(R) + ζ(R)

]
, (2.30)
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and the 2L × 2L dimensional matrix5 M (for detailed calculation see

Appendix D):

M =



ζ(1) −t̄ −t̄ η(1)

−t̄ . . . . . . . . .
. . . −t̄ . . .

−t̄ −t̄ ζ(L) η(L)

η(1) ζ(1) −t̄ −t̄
. . . −t̄ . . .

. . . . . . −t̄
η(L) −t̄ −t̄ ζ(N)


, (2.31)

with the place dependent functions

ζ(R) =
1

2

[
(V (R)− µ) + 4φ(R)2

]
η(R) =

U

2
φ(R)2

t̄ =
t

2

The multi-mode Bogoliubov transformation transforms the operators B

into a set of quasiparticle creation and annihilation operators P via an in

general not unitary transformation U where B = UP . The transformation

U has to conserve the bosonic commutation relation:

Sij := [ ~Bi, ~B
†
j ] = ±δij . (2.32)

The sign of the distribution depends on the order of multiplication of the

operators b̂i and b̂†i and is with the chosen definition of the vectors B and B†

positive for the first L entries and negative from L+ 1 to 2L.

5All not listed entries are zero.
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Consequently the matrix S is an involution 6 and given by:

S =

(
I 0

0 −I

)
. (2.33)

With I the L-dimensional identity matrix. This leads to the first condition

for the transformation7 U:

[ ~B, ~B†] = U [~P , ~P †]U † = USU †
!

= S . (2.34)

At this point it is worth mentioning, that the commutator of two vectors

of creation and annihilation operators has to be defined first, what is done

in equation E.2. Furthermore U has to be a real transformation for this

condition.

Using S2 = I, this relation can be rewritten as:

USU † = S

USU †S = I

U−1USU †SU = U−1U

U †SU = S (2.35)

The second condition is, that the Hamiltonian has to be diagonal:

~B†M ~B = ~P †U †MU ~P
!

= ~P †D~P

=⇒ U †MU = D
(2.36)

6S ◦ S = I or S = S−1
7See Appendix E for a derivation for this formula.
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with a diagonal matrix D.

The following construction of the transformation U and the proofs that

both conditions can be fulfilled are taken from [1].

Note that some variables are defined differently as it is done in the cited

work. For example the matrix M was there defined as SM.

Multiplying equation 2.36 from the left with US and using equation 2.34

leads to:

USU †MU = USD

SMU = USD
(2.37)

Because of S and D being both diagonal matrices, also their product is

diagonal. Hence equation 2.37 is an eigenvalue equation of the matrix SM

with eigenvalues ei = (SD)ii = ±Dii. The sign of the diagonal elements is

again positive for the first L entries and negative for the last L+1 to 2L ones.

Since the Matrix SM is not hermitian its not guaranteed, that it has real

eigenvalues, but that is necessary from a physical point of view, because the

eigenvalues ei represent the excitation energies, which, of course, have to be

real. In addition to this they also must not be negative, because otherwise

the energy would not be bound from below.

When the eigenvalues ei turn out to be complex or negative this indicates

an instability in the the system, which means that the approximation done

here of neglecting third and fourth order terms in the fluctuation operators

was insufficient. In this work however the energies are real and positive for

the harmonic potential.

We are left with the proof, that condition 2.35 can really be fulfilled:

It should be shown that:
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X := U †SU = S . (2.38)

The eigenvalue equation can be written as:

U−1SMU = D ,

exploiting the hermiticity of M, X and D leads to:

XD = U †SSMU = U †MU = (U †MU)† = (XD)† = DX

or with other words:

[X,D] = 0 .

Commutating operators can be diagonalized simultaneously, we have just to

be careful when the eigenvalues of SM are degenerated to use a proper linear

combination of the eigenvectors of the subspace.

With X being diagonal its not hard to transform it into S where all diagonal

elements are ±1. It’s enough just to replace U by UV where:

Vii =
1√
|Xii|

.

This is only possible if Xii 6= 0 ∀ i. But thats always fulfilled, because if we

assume Xll = ~UlS~Ul = 0 where ~Ul is the l-th column of U, then S~Ul would be

orthogonal to ~Ul and hence be an element of the 2N − 1 dimensional space

Rl orthogonal to ~Ul. From 2.38 we get that the vectors ~U1, ..., ~Ul−1, ~Ul+1, ~U2N

also belong to the space Rl and hence, assuming that all eigenvectors are

orthogonal 8, span Rl. From 2.38 also follows, that S~Ul is orthogonal to all

of these vectors ~U1, ..., ~Ul−1, ~Ul+1, ~U2N and thus cannot be part of the space

Rl. Which proves that the assumption ~UlS~Ul = 0 cannot be true.

Since the product of two diagonal matrices commutes (VD=DV) the

8Eigenvectors to degenerate eigenvalues were already chosen orthogonal.
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eigenvalue equation is still valid, but the transformation UV is not guar-

anteed to be unitary, since the eigenvectors may not be normalized:

M(UV ) = (MU)V = (UD)V = (UV )D .

But now:

X̄ii = (V U †SUV )ii = (V XV )ii =
Xii√
X2
ii

= sgn(Xii) (2.39)

The only problem which has to be faced is, that for all diagonal values of

X which are negative also the corresponding energies have to be negative.

Furthermore the number of negative eigenvalues has to be L, since in SD

half of the entries are negative. But this turns out to be true for this model

with the harmonic potential for all tested cases.

Having insured, that both conditions, the bosonic commutation relations and

the Hamiltonian being diagonal can be fulfilled, the Hamiltonian is given by:

H = ∆ + ~P †D~P = ∆ +
L∑
i=1

Diip̂
†
i p̂i +

2L∑
i=L+1

Dii p̂ip̂
†
i︸︷︷︸

1+p̂†i p̂i

= ∆ + tr(D)i>L +
L∑
i=1

(Dii +Di+L,i+L)p̂†i p̂i .

(2.40)

tr(D)i>L means , that the trace of D, which is given by
∑

iDii, is performed

just over indices i which are greater than L.
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Chapter 3

Results

3.1 Free Particles in 1 Dimension

The average value of the number operators
〈
ψ̂†Rψ̂R

〉
, which were first intro-

duced in 2.1 and were split in a condensate contribution φ(R) and a operator

b̂R in equation 2.4, is given by:

〈ψ̂†Rψ̂R〉 = |φ(R)|2 + 〈b̂†Rb̂R〉 (3.1)

Since the external potential V (R) is zero this values are place indepen-

dent and can be calculated for any index R. For convenience R = 0 is chosen

and the place will not be denoted any more.

The simple expression for the condensate density φ2 reads from 2.8:

φ2 =
2t+ µ

U

The expectation value of the fluctuation operators 〈b̂†b̂〉 has to be calculated
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since only the expectation values for the set of operators âk is known:〈
b̂†0b̂0

〉
=

1

L

〈∑
k,k′

e−ik
′0eik0b̂†k′ b̂k

〉
=

1

L

∑
k,k′ 6=0

〈
(ukâ

†
k + vkâ−k)(uk′ âk′ + vk′ â

†
−k′)

〉
=

1

L

∑
k,k′ 6=0

(
ukuk′

〈
â†kâk′

〉
+ vkvk′

〈
â−kâ

†
−k′︸ ︷︷ ︸

δk,k′+â
†
−kâ−k

〉
+ ukvk′

〈
â†kâ

†
−k′

〉
+ uk′vk

〈
â−kâk′

〉)

=
1

L

∑
k,k′ 6=0

(
(ukuk′ + vkvk′)

〈
â†kâk′

〉
+ vkvk′δk,k′

)
=

1

L

∑
k 6=0

(
(u2k + v2k)

〈
â†kâk

〉
+ v2k

)

Since the values

〈
â†kâ

†
−k′

〉
and

〈
â−kâk′

〉
are zero anyway, because they

transform one orthogonal basis state into another. With the same argument

the expression

〈
â†kâk′

〉
can be replaced by

〈
â†kâk

〉
δk,k′ .

From this point these average values can be calculated using the Bose-

Einstein statistics 1.1 for a given temperature T. For T = 0 all these values

are zero and the fluctuation reduces to:

〈
b̂†0b̂0

〉
=

1

L

∑
k 6=0

v2k (3.2)

If the number of lattice sites L is increased the number of k-states increases,

what means there are more states closer to k = 0. So it is interesting to

calculate the behavior of v2k for small values of k. Therefore the cosine terms
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are expanded into its series up to second order in k:

v2k = −1

2
+

µ+ 2t(1 +
k2

2
+O(k4))

2

√(
µ+ 2t+ tk2 +O(k4)

)2

− (µ+ 2t)2

= −1

2
+
µ+ 2t(1 +

k2

2
+O(k4))

2|k|
√

4t2 + 2µt+O(k2)
∼
|k|�1

1

|k|

This means, that even at zero temperature the fluctuations will diverge as

the thermodynamic limit is made since the sum over all discrete k states

becomes a integral which diverges. This behavior is illustrated in figure 3.1.

That this happens is not surprising since BEC can only take place in systems

with more than one dimension. To be precise it occurs in the two dimensional

case if the gas is trapped or in the free case just at zero temperature. For

three dimensions BEC can take place also for a free gas for higher tempera-

tures than zero [3].
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Figure 3.1: Expectation value of the fluctuation
〈
b̂†R=0b̂R=0

〉
for different

values of L. The model parameter were set to: t = U = 1 and n = N
L

= 10.
As expected the fluctuation diverges logarithmically with growing L.

3.2 Particles in a Harmonic Potential

In that case a potential V (R) = α(R − L
2
)2, with arbitrary constant α, was

used. Again the expectation value of the number operator can be calculated

as:

〈ψ̂†Rψ̂R〉 = |φ(R)|2 + 〈b̂†Rb̂R〉 . (3.3)

φ(R) is determined by the Gross-Pitaevskii equation:
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(
(V (R)− µ) + U |φ(R)|2)

)
φ(R)− t(φ(R + 1) + φ(R− 1)) = 0 .

This equation has ot be solved numerically, because the particle interac-

tion term U |φ(R)|2 makes an analytical approach impossible. Finding the

solutions can be done using an iteration, where we start with a certain φ0

calculate with that the particle interaction term U |φ(R)|2. After doing that

a simple eigenvalue equation remains. Then we use the eigenvector to the

smallest eigenvalue µ as the new φ0 and iterate until it converges.

The eigenvalue equation for each iteration step is then given by:

Mφ = µφ . (3.4)

With the hermitian and real matrix:

M =


V (1) + U |φ0(1)|2 −t 0 · · · −t

−t V (2) + U |φ0(2)|2 −t · · · 0
...

...
...

. . .
...

−t 0 · · · −t V (L) + U |φ0(L)|2

 .

(3.5)

However this procedure is not very stable and just gives results for a very

limited range of parameters U, t and N0. Because of this I decided to use

another approach. The normalization of the condensate amplitude is:

N0 −
∑
R

|φ(R)|2 = 0 (3.6)

Together with the GPE this can be considered as a L+1 dimensional function
~F (~y) from which we want to know the zeros. ~y is a L+1 dimensional vector

with φ(1), ...φ(L) as the first L entries and with the chemical potential µ as

the last.

The zeros of this function can be easily found using the Newton algorithm:
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~yn+1 = ~yn − (J(yn))−1 ~F (~yn) , (3.7)

with J the jacobi matrix of ~F .

This procedure works pretty well. However we have to make sure that we

truly find a state where the energy is minimal. The left hand side of the

GPE is dE
dφ(R)

. If the jacobi matrix

J(R,R′) =
d2E

dφ(R) dφ(R′)

is positive definite (all eigenvalues are positive for hermitic matrices), φ(R)

is a local minimum. Note that the jacobi matrix J(R,R′) is except the last

row and column1 the same as the one that was used in the Newton algorithm

3.7.

In figures 3.2, 3.3 and 3.4 the results of the Newton algorithm for different

values of the hopping strength t, the interaction strength U and the number

of particles in the ground statetN0 can be seen. As expected higher values

of these parameters cause the particles to spread out more over the whole

lattice, although their potential energy2 increases.

1The last row in the Jacobi matrix used in the Newton algorithm came from the
normalization 3.6. The last column from the derivations of the GPE regarding the chemical
potential.

2In this case I mean with potential energy just the contribution of the external poten-
tial V(R), although the energy from the interaction term U |φ(R)|2 would also count as
potential energy.
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Figure 3.2: |φ(R)| as a function of the lattice site R for different values of
the hopping strength t. As t increases the particles spread out over the
whole lattice, although they have a higher potential energy at the borders.
The model parameter for the calculation were set to: α = 1, U = 1 and
N0 = 100.
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Figure 3.3: |φ(R)| as a function of the lattice site R for different values of
the interaction strength U. Again the particles spread out more the higher
the value of U is chosen. The model parameter for the calculation were set
to: α = 1, t = 1 and N0 = 100.
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Figure 3.4: |φ(R)| as a function of the lattice site R for different values of
number of particles in the ground state N0. Like in the cases before a higher
value of the parameter N0 lets the particles spread out over the whole chain.
On first thought one could assume that the form of the curve should stay the
same, just the hight differs when changing N0. This is because in the GPE
φ(R) contributes quadratically and not just linearly. So instead of increasing
φ(R) at a certain place R much more energy can be saved if the particles
move to the borders. The model parameter for the calculation were set to:
α = 1, t = 10 and U = 5.

To calculate the fluctuations 〈b̂†Rb̂R〉 of the mean occupation |φ(R)|2, first

the multi-mode Bogoliubov transformation UV has to be constructed. U

consists of the eigenvectors of the matrix SM, with M defined in equation

2.31. This eigenvalue equation arises from the condition of the Hamiltonian

to be diagonal. In addition to this a orthogonal basis from a degenerate

subspace of SM has to be choosen.
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The matrix V, on the other hand, arises from the second condition on the

transformation: to conserve the bosonic commutation relation (see equation

2.34). V is a diagonal matrix and insures that the commutator of two p-

operators is really 1 and not just a number, what normally occurs in the

numeric calculations. Furthermore the order of the eigenvectors has to be

changed since S is strictly defined with diagonal elements +1 for the first L

indices and −1 for the other half.

With that it is known how the operators ~B transforms into the operators
~P . From the latter the expectation value (equation 1.1) is known, since the

Hamiltonian is diagonal in them.

Since all the above mentioned procedures are pretty time consuming to pro-

gram I decided not to calculate any of the properties and stop at the point

where I have calculated the energies and the Multi-Mode Bogoliubov trans-

formation.
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Appendix A

Substituting the Bogoliubuv

approximation into the

Hamiltonian

Starting from the Hamiltonian:

H =
∑
R

(V (R)− µ)ψ̂†Rψ̂R︸ ︷︷ ︸
H1

− t
∑
R

ψ̂†Rψ̂R+1 + ψ̂Rψ̂
†
R+1︸ ︷︷ ︸

H2

+
U

2

∑
R

(ψ̂†R)2(ψ̂R)2︸ ︷︷ ︸
H3

,

and substituting:

ψ̂R = φ(R) + b̂R ,

leads for the first term called H1 to:

H1 =
∑
R

(V (R)− µ)(|φ(R)|2 + φ(R)b̂†R + φ(R)b̂R + b̂†Rb̂R) ,

35



equally the next term of the Hamiltonian H2 is given by:

H2 = −t
∑
R

2φ(R)φ(R + 1) + b̂R+1φ(R) + b̂Rφ(R + 1)+

b̂†R+1φ(R) + b̂†Rφ(R + 1) + b̂†Rb̂R+1 + b̂Rb̂
†
R+1 .

With an index transformation R + 1 = R′ and using the periodic boundary

conditions in the terms linear in b̂R+1 and b̂†R+1, H2 can be written as:

H2 = −t
∑
R

2φ(R)φ(R + 1) + b̂Rφ(R− 1) + b̂Rφ(R + 1)+

b̂†Rφ(R− 1) + b̂†Rφ(R + 1) + b̂†Rb̂R+1 + b̂Rb̂
†
R+1 .

Similar calculation for the last term H3:

H3 =
U

2

∑
R

φ(R)4 + 2b̂Rφ(R)2φ(R) + 2b̂†Rφ(R)2φ(R)+

b̂2Rφ(R)2 + (̂b†R)2φ(R)2 + 4|φ(R)|2b̂†RbR+

2(b†R)2b̂Rφ(R) + 2b̂†Rb
2
Rφ(R) + (b†R)2b̂2R .

Adding those three parts together and collecting terms like exponents in the

fluctuation operators results in equation 2.5.
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Appendix B

Performing the Fourier

transformation for the free

particles

Starting point is the Hamiltonian:

H =C +
∑
R

Ab̂†Rb̂R︸ ︷︷ ︸
H1

+B(b̂2R + (̂b†R)2)︸ ︷︷ ︸
H2

−t
(
b̂†Rb̂R+1 + b̂Rb̂

†
R+1

)
︸ ︷︷ ︸

H3

.

A Fourrier transformation given in equations 2.13 is performed. Again the

Hamiltonian is split up into 3 parts. For the first term called H1:

H1 =
∑
R

A
1

L

∑
k,k′

ei(k−k
′)Rb̂†k′ b̂k

=
∑
k,k′

Ab̂†k′ b̂k
1

L

∑
R

ei(k−k
′)R

=
∑
k,k′

Ab̂†k′ b̂kδk,k′ =
∑
k

Ab̂†kb̂k .

(B.1)
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Where a representation of the delta distribution (the Kronecker delta in

that case) δk,k′ = 1
L

∑
R e

i(k−k′)R was used in the second line.

Fourier transforming the second term leads to:

H2 = B
∑
R

b̂2R + (b̂†R)2

= B
∑
k,k′

1

N

∑
R

ei(k
′+k)Rb̂kb̂k′ + e−i(k

′+k)Rb̂†kb̂
†
k′

= B
∑
k,k′

(b̂kb̂k′ + b̂†kb̂
†
k′)δk,−k′

= B
∑
k

b̂kb̂−k + b̂†kb̂
†
−k

Finally the last term becomes:

H3 = −t
∑
R

b̂†Rb̂R+1 + b̂Rb̂
†
R+1

= −t
∑
k,k′

(eik
′
b̂†kb̂k′ + e−ikb̂kb̂

†
k′)

1

N

∑
R

ei(k−k
′)R

︸ ︷︷ ︸
δk,k′

= −t
∑
k

eikb̂†kb̂k + e−ik(1 + b̂†kb̂k)

= −t
∑
k

eik − 2t
∑
k

b̂†kb̂k cos k

Where in the third line the bosonic commutation relations were used. That

the set operators b̂k and b̂†k really obey them is shown in Appendix C.
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Appendix C

Proof of conservation of

bosonic- commutation relation

The proof will be done for an expansion of operators b̂R and b̂†R in an arbitrary

set of orthonormal functions ψk(R) with operators b̂k and b̂†k:

b̂R =
∑
k

ψk(R)b̂k

b̂†R =
∑
k

ψ∗k(R)b̂†k
(C.1)

Multiplying the first line with ψ∗k′ and the second one with ψk′ and sum-

ming over all R leads to:

∑
R

b̂R ψ
∗
k′(R) =

∑
k

b̂k
∑
R

ψk(R)ψ∗k′(R) = b̂k′∑
R

b̂†Rψk′(R) =
∑
k

b̂†k
∑
R

ψ∗k(R)ψk′(R)︸ ︷︷ ︸
δk,k′

= b̂†k′ (C.2)
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Calculation now the commutator [b̂k, b̂
†
k]:

[b̂k, b̂
†
k′ ] =

∑
R,R′

ψ∗k(R)ψk′(R
′) [b̂R, b̂

†
R′ ]︸ ︷︷ ︸

δR,R′

=
∑
R

ψ∗k(R)ψk′(R) = δk,k′ . (C.3)

That the commutators [b̂†k, b̂
†
k′ ] and [b̂k, b̂k′ ] vanish is trivial.

Hence it has been proven, that if the set of operators b̂R and b̂†R obey the

commutation relation so do the operators b̂k and b̂†k.
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Appendix D

Calculating the 2L× 2L matrix

for the multi-mode Bogoliubov

transformation

The goal is to find a matrix M which fulfills:

~B†M ~B =
∑
R

[
ζ(R)(b̂†Rb̂R+b̂Rb̂

†
R)+η(R)

(
b̂2R+(̂b†R)2

)
−t̄
(
b̂†Rb̂R+1+b̂R+1b̂

†
R+b̂Rb̂

†
R+1+b̂

†
R+1b̂R

)]
.

(D.1)

The product B†MB can be rewritten as:
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~B†M ~B =
2L∑
m=1

B†m

2L∑
n=1

MmnBn =
2L∑
m=1

B†m

( L∑
k=1

Mmkbk +
2L∑

l=L+1

Mmlb
†
l

)

=
L∑
i=1

L∑
k=1

Mikb
†
ibk +

L∑
i=1

2L∑
l=L+1

Milb
†
ib
†
l+

2L∑
j=L+1

L∑
k=1

Mjkbjbk +
2L∑

j=L+1

2L∑
l=L+1

Mjlbjb
†
l

(D.2)

Because the multiplication of a Matrix with a vector is linear it is usefull

to split the sum into three terms and calculate the Matrix Mi for each of

them individually.

The first term of D.1 leads to:

~B†M1
~B

!
=
∑
R

ζ(R)(b̂†Rb̂R + b̂Rb̂
†
R) . (D.3)

With the last line of equation D.2 it can be seen, that M1 has to fulfill:

M1,ij =


ζ(i) · δi,j , ∀ i, j ∈ [1, L]

ζ(i− L) · δi,j , ∀ i, j ∈ [L+ 1, 2L]

0 , else

(D.4)

The matrix M2 has to satisfy:

~B†M2
~B =

∑
R

η(R)

(
b̂2R + (̂b†R)2

)
(D.5)
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Equating coefficients from D.2 gives the matrix M2:

M2,ij =


η(i) · δi+L,j , ∀ i ∈ [1, L] , j ∈ [L+ 1, 2L]

η(i) · δi,j+L , ∀ i ∈ [L+ 1, 2L] , j ∈ [1, L]

0 , else

(D.6)

M3 finally has to fulfill:

~B†M3
~B =

∑
R

−t̄
(
b̂†Rb̂R+1 + b̂R+1b̂

†
R + b̂Rb̂

†
R+1 + b̂†R+1b̂R

)
, (D.7)

so that:

M3,ij =



−t̄ · δi+1,j ∀ i ∈ [1, L− 1]

−t̄ · δi,j+1 ∀ j ∈ [1, L− 1]

−t̄ · δi+1,j ∀ i ∈ [L+ 1, 2L− 1]

−t̄ · δi,j+1 ∀ j ∈ [L+ 1, 2L− 1]

−t̄ for i = L and j = 1

−t̄ for i = 1 and j = L

−t̄ for i = 2L and j = L

−t̄ for i = L and j = 2L

0 , else

(D.8)

This complicated expression means, that if M3 is divided into four sectors,

like it is done in 2.31, it is an matrix with the element −t̄ above and under

the main diagonal of the upper left and lower right sector. In addition to

this there are four extra entries at the corners of these sectors because of the

periodic boundary condition.

The whole matrix M is then simply given by the sum of all of these 3

matrices, what proofs 2.31.
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Appendix E

Derivation of the condition for

the commutation relations for

the multi-mode Bogoliubov

transformation

The goal to derivate that if ~B = U ~P then:

[ ~B, ~B†] = U [~P , ~P †]U † , (E.1)

will be achieved in matrix notation. Therefore it is important first to de-

fine what actually the commutator of two vectors is. The simple expression

[ ~B, ~B†] = ~B ~B† − ~B† ~B is in fact not even defined, since the ~B ~B† is a matrix

of operators and ~B† ~B is a scalar operator.1

Because the commutator just makes sense for single elements of these vectors

1 ~B is a column vector and ~B† a row vector.
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like in 2.32 we can see that:

[ ~B, ~B†] = ~B ~B† −
(

( ~B†)T ( ~B)T
)†

(E.2)

leads to the desired matrix S. Unlike in matrices with scalar entries it’s not

allowed to simplify ( ~B†)T ( ~B)T to ( ~B ~B†)T , because the operators doesn’t com-

mute. This can be recognized by just looking on the first diagonal entries of

both expressions.

With the commutator defined it is possible to plug in the multi mode Bo-

goliubov transformation ~B = U ~P :

[ ~B, ~B†] = U ~P ~P †U † −
(

(~P †U †)T (U ~P )T
)†

= U ~P ~P †U † −
(

(U †)T~(P †)T ~P TUT

)†
= U ~P ~P †U † − (UT )†

(
(~P †)T (~P )T

)†
UT

= U [~P , ~P †]U †

The last line is only correct if U is assumed to be a real transformation (all

entries are real).

Note that in the second line instead of (~P †U †)T the expression (U †)T~(P †)T

can be written, because the multiplication of an operator from ~P † with a

scalar element of U commutes.
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