Hamiltonian

$$
\begin{aligned}
& H= \sum_{R}(V(R)-\mu) \psi_{R}^{+} \psi_{R} \\
&-t \sum_{R}\left(\psi_{R}^{+} \psi_{R+1}+h \cdot C .\right) \\
&+\frac{U}{2} \sum_{R}\left(\psi_{R}^{+}\right)^{2} \psi_{R}^{2} \\
& {\left[\psi_{R}, \psi_{R^{\prime}}^{+}\right]=\delta_{R R I} \quad(\text { CF. HARMONLC OSIILLATOR }) } \\
& \text { 1- DIMENSIONAL LATIILE: } \quad R=1 \cdots N
\end{aligned}
$$

PERIODIC BOUNAARY CONDITIQNS: $R+N \equiv R$
$N(R)$ TAKE IT ARBITRARY
EXAMPLES

- HARManc Patential $V(R)=\alpha\left(R-\frac{N}{2}\right)^{2}$ (WHICH is NON PERIOD,C)
- Appraximatecy harmanol \rightarrow PERIODicity farcea

$$
V(R)=-2 \beta \cos \frac{2 \pi R}{N}
$$

$$
\psi(R)=\varphi(R)+b_{R}
$$

$$
q_{\text {NUMBER }}
$$

- Bosonir op ERATOR

$$
\begin{aligned}
& {\left[b_{R,} l_{R I}^{+}\right]=\delta_{R R I}} \\
& \quad \text { INSERT IN HI IN }
\end{aligned}
$$

(1) CONDITION:

TERM LINEAR IN $b(R)$ VANISHES

$$
\begin{aligned}
& \text { GROSS-PITAEVSNI EQUATION } \\
& \begin{array}{c}
\left((V(R)-\mu)+U|\varphi(R)|^{2}\right) \varphi(R)+E(\varphi(R+1)+\varphi(R)) \\
=0
\end{array}
\end{aligned}
$$

\Rightarrow SOLVE NUMERICALLY:

- Start from a $\varphi(R)=\varphi_{0}$
- solve eigenvalue equation (FAR EVALM, EVEC $\varphi(R)$) STALEST μ
- use new ctr) AND reiterate untll convergence

The part above could be already enough for a Bachelor, depending on how long it takes

Next step: Bogolubov approximation (is actually also on Books):
TAME H WITH N(R)=O

$$
\Rightarrow \varphi(R)=\varphi \quad \text { CONSTANT }
$$

\Rightarrow SIMPLE EQUATION FOR φ

- RESTRICT TO TERMS

QUADRATIC IN b
(NEGLECT b^{3}, b^{4})

- fourier transform

$$
\begin{aligned}
& h_{R}=\frac{1}{\sqrt{N}} \sum_{k} e^{i k R} h_{k} \\
& h_{R}^{+}=\frac{1}{\sqrt{N}} \sum_{k} e^{-i k R} h_{k}^{+}
\end{aligned}
$$

- Quadratic h will contain terms

$$
\cdots h_{k}^{+} b_{n}+\cdots h_{n}^{+} b^{+}-k+b_{n} h_{-n}
$$

- Bogolubov transformation

$$
\begin{aligned}
& b_{k}=\mu_{k} a_{n}+v_{n} a_{-k}^{+} \\
& h_{k}^{+}=\mu_{k}^{*} a_{n}^{+}+v_{k}^{*} a_{-n} \\
& \left(b_{-n}^{+}=\cdots \text { svst pvT } n \rightarrow-n\right)
\end{aligned}
$$

TAUE M, N REAL

- Choose μ_{n}, v_{n} sugn that
(1) Comivtation rules are
FULLFILLED

$$
\left[a_{n}, a_{n^{\prime}}^{+}\right]=\delta_{n, n^{\prime}}
$$

(2) H Becames diagonal

$$
\text { CONST }+\sum_{n} \varepsilon_{n} a_{n}^{+} a_{n}
$$

IN CASE YOU REALLY DIDN'T HAVE ENOUGH! CONSIDER $V(R) \neq 0$

AgAIN:
CONSIDER TERM QUADRATIC IN $b(R)$ (NEGLEGT 3, 4 ORDER: BQGOLIUBOV APPROXIMATION)

NUMERICRLY SOLE QVAORATIC harlltomian VIA MULTI-MODE BOGOLUBOV TRANSFORMATION

- write in vector notation

$$
\begin{aligned}
& B^{+} \equiv\left(b_{1}^{+} \cdots l_{N}^{+} b_{1} \cdots b_{N}\right) \\
& B=\left(B^{+}\right)^{+}
\end{aligned}
$$

$$
H=\text { cong }+B^{+} M B+\theta\left(b^{3}\right)
$$

TRANSF QRMAT ON

$$
\begin{aligned}
& B=U P \\
& P^{+} \equiv\left(p_{1}^{+} \cdots p_{N}^{+} p_{1} \cdots p_{N}\right)
\end{aligned}
$$

MUST SATISFY CORRECT COMMTATION RULES

$$
\begin{aligned}
& {\left[p_{i}, p_{j}^{+}\right]=\delta_{i y}} \\
& {\left[\mu_{i}, p_{j}\right]=0}
\end{aligned}
$$

in matrix notation

$$
\left[B, B^{+}\right]=\left[P, p^{+}\right]=\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & -I
\end{array}\right) \equiv S
$$

condition

$$
\left[B, B^{+}\right]=U\left[p, p^{+}\right] U^{+}=U S U^{+}=S
$$

2° CONDITION:
hamiltonian diagonal

$$
B^{+} M B=P^{+} U^{+} M U P
$$

$U^{+} M U=D \quad$ DIAGONAL MATRIX

HON TO SOLVE: SEE KNAP ET. AL. (STARTING BELOW E9.15 UNTIL Eq. 18
SEE ALSO APPENDIX A
NOTICE $~$ HERE $S^{\prime}=S$)

