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1 Introduction 3

1 Introduction

The term spintronics 1 arised from the relatively new approach of using the electrons spin
magnetic moment to create microelectronic devices. Behaviors the electron exhibits in
particular magnetic junctions often derive from quantum effects associated with the spin
magnetic moment as an additional degree of freedom. These quantum effects boosted
the number of effects available for creating microelectronic devices.

In fact, the discovery of the GMR (Giant Magneto Resistance) effect in 1988 can
be considered the birth of spintronics. Because of the importance of the new field of
research and of the already developed applications, the discoverers of this effect have
been awarded the nobel price of physics in 2007 [3].

This thesis aims at describing the fundamental theories of spintronics and at giving
a review of the basic spintronic devices that have already been developed. The goal is
not to give detailed information on the newest developments, because things become
obsolete quickly in this fast-paced field of research.

The fist part (section 2) deals with fundamentals of spin injection, spin-dependent tun-
neling and relaxation. A basic model of the behaviour of particles and spin in solid state
systems is described, aiming at giving an idea what happens in a metal/semiconductor
when an electrical field is applied. Calculations are made F/N Junctions are described
as a basic model of spin injection which leads to an understanding of the spin valve
effect.

The second chapter (section 3) deals with the two most important effects in today’s
realized applications.

2 Fundamentals

2.1 spin injection

This approach follows in principle the treatment of [2], Sec. II A-B. The difference lies
in the parallel examination of spin and particles. Moreover, some calculations have been
reproduced and steps have been given more exactly.

The term spin injection refers to injection of nonequilibrium spin from a ferromagnetic
region (non-zero polarization) into a non-ferromagnetic region (mostly a conductor).
This can be seen as the transfer of spin polarization by electrical current. It has to be
distinguished from the reverse effect called spin extraction.

The first examinations aim at getting an explicit representation of the particle den-
sity n(x, t) and spin density s(x, t) functions of electrons, which give us the simplest
model of what happens at border regions (e.g. electrical contact between iron and alu-
minum).

1composed of spin and electronics, also (formerly) called magnetoelectronics
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2 Fundamentals 4

2.1.1 Drift-Diffusion Model

Particle density and spin density quantities can be expressed in terms of spin up (↑) and
spin down (↓) electron densities:

n = n↑ + n↓ (1)
s = n↑ − n↓ (2)

If one can find a representation of n(x, t), it’s easy to get one for s(x, t) as well.

Derivation of the drift-diffusion equations for n and s - random walk
Now consider electrons moving through a metal or a semiconductor under the influ-

ence of an electric field E. They can scatter off impurities, phonons or boundaries.
A good first approximation of how electrons behave in such a system is the one-dimensional
random walk.
The basic quantities that define the random walk are

v . . . velocity of an electron moving through the crystal

l . . . distance the electron moves before changing its direction (mean free path)

In order to get a constant step time τ = l
v , it is important that the electric field is not

strong enough to change the velocity significantly:

∆v = |eE
m
τ | � v (3)

∆v . . . change of the velocity during one step

m . . . mass of the electron

e . . . charge of the electron

The average velocity can be changed by influence of the field and due to friction of the
electron, which is proportional to the average velocity itself:

v̇av = −eE
m
− vav

τ

Supposing that vav is constant, another important quantity can be obtained:

drift velocity . . . vd = −eEτ
m

(
(3)
� v

)
(4)

The electron density n at time t can be expressed by the densities at time t − τ and
positions x+ l respectively x− l and the propabilities p+ and p− that a particle moves
right or left (p+ + p− = 1):

n(x, t) = n(x− l, t− τ)p+ + n(x+ l, t− τ)p− (5)
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2 Fundamentals 5

Considering here also the spin magnetic moment, this balance equation can also be
written for spin-up and spin-down densities:

n↑(x, t) = n↑(x− l, t− τ)(1− w)p+ + n↑(x+ l, t− τ)(1− w)p−
+ n↓(x− l, t− τ)wp+ + n↓(x+ l, t− τ)wp−

(6)

where w is the propability that spin flips in the time of τ . So the first two terms describe
the ratio of the densities in the case of that the spin didn’t flip during the last step, the
second two if it did flip.
Expanding this into a taylor series around x and t, one gets:

n↑(x, t) ≈ n↑(1− w)− l∆p
∂n↑
∂x
− τ

∂n↑
∂t

+
1
2
l2
∂2n↑
∂x2

+ n↓w

From this it follows that

∂n↑
∂t

=
1
2
l2

τ︸︷︷︸
D

∂2n↑
∂x2
− l

τ︸︷︷︸
v

∆p

︸ ︷︷ ︸
vd

∂n↑
∂x
− w

τ
(n↑ − n↓)

D . . . diffusion coefficient2

Because of (Eq. 4), ∆p must be � 1. So one finds the

drift-diffusion equations for n↑(x, t) and n↓(x, t)

∂n↑
∂t

= D
∂2n↑
∂x2

− vd
∂n↑
∂x
− w

τ
(n↑ − n↓) (7c)

∂n↓
∂t

= D
∂2n↓
∂x2

− vd
∂n↓
∂x
− w

τ
(n↓ − n↑) (7d)

2According to S. Pramanik, S. Bandyopadhyay, M. Cahay (see [7]), especially in quantum wires, the
spin diffusion coefficient and the charge diffusion coefficient are not the same and can differ vastly.
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Finally, adding (substracting) these equations (see Eq. 1 and 2) leads to

Drift-Diffusion Equation for n(x, t) and s(x, t)

∂n

∂t
= D

∂2n

∂x2
− vd

∂n

∂x
(8)

∂s

∂t
= D

∂2s

∂x2
− vd

∂s

∂x
− s 1

τs︸︷︷︸
= 2w

τ

(9)

τs . . . spin relaxation time,

Solutions to the diffusion equations

In the case of E = 0
(4)⇒ vd = 0, one can look only at the diffusion, without the distur-

bance of drift. Let there be an initial number of particles N0, with spin S0 for the spin
case. This gives the initial conditions

n(x, 0) = N0δ(x) (10)
s(x, 0) = S0δ(x) (11)

It can be easily shown that the standard deviation evolves with time as

σ(t) =
√

2Dt

in d = 1 dimension. A solution can be guessed, since diffusion takes place at the length-
scale ∼

√
Dt:

n(x, t) = N0
1√
Dt

f

(
x√
Dt

)
For spin, another function of time can be expected to play a role in the solution, in which
the spin relaxation time τs has to be included as divisor. This leads to the separation
ansatz

s(x, t) = N0
1√
Dt

f

(
x√
Dt

)
g

(
t

τs

)

charge (particle)
Using the ansatz for eq. (8)(remember

spin
For this case, additionally using η := t

τs

vd = 0) and substituting ξ := x√
Dt

gives for the argument for g leads to
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the diff. equation. This result is slightly

(−2∗η+1)−2∗ηg
′

g
= − 1

f

(
ξf ′ + 2 ∗ f ′′

)
= λ

(12)

different from that obtained in [2], Eq.
with λ . . . separation parameter
Both sides can be solved independently:

II.22. The factor 1/2 is missing there.

f ′′ +
ξ

2
f ′ +

1
2
f = 0 The right hand side is almost the same as

for the charge case, except that the equa-
tion now is inhomogeneous because of the
separation constant. The left hand side
is just a linear differential equation and
can be integrated easily, resulting into an
exponential function.

Solutions to the diffusion equations for n(x, t) and s(x, t)

n(x, t) =
N0√
4πDt

e−
x2

4Dt (13)

s(x, t) =
S0√
4πDt

e−
x2

4Dt e−
t
τs (14)

The initial condition can be considered as particles released at a point in space. The
result of this model is that the Dirac Distribution dissolves into a Gaussian, finally
leading to a homogeneous distribution of the particles when going to infinite time. In
the spin case, the relaxation term leads to decay of spin, meaning that it is not conserved.

In fig. 1, the solutions are presented for the case of silicon. The initially released
particles simply diffuse, leading to a homogeneous distribution, whereas spin additionally
relaxes. After some time, relaxation dominates the diffusion, leading to spin s ≈ 0 at
t = 200 ns.

charge (particle)
For particles, the overall number is a

spin
Spin is not a conserved quantity, it de-

constant:

N0 =
∫ ∞
−∞

xn(x, t)dx

cays exponentially:

S =
∫ ∞
−∞

xs(x, t)dx = S0 exp
(
−t
τs

)
The standard deviation at time t = τs

gives an idea of how far spin diffuses until

bachelor’s thesis - Christoph Gleichweit



2 Fundamentals 8

it relaxes:

σ =
√

2Dτs =
√

2Ls
with Ls . . . spin diffusion length.

solutions to the spin drift-diffusion-equation
If the electric field does not vanish (E 6= 0), solving eq. 9 analytically is difficult. For

this approach a numeric solution is suitable enough to get an idea of what difference a
non-zero drift makes for diffusing spin.

The following examinations are based on numeric calculations using Wolfram Mathematica
TM3

for the case of electrons in silicon. Mathematica’s function NDSolve is able to solve
numerically many different types of ordinary differential equations as well as partial dif-
ferential equations. The spin drift-diffusion equation (Eq. 9) in principle is of the type
of the heat equation, which can be solved by NDSolve.

The sizes of the physical quantities in silicon at T = 300K and E = 103V cm−1 are as
follows:

Quantity4 Value
D 10−4 m2/s ([10])
τs 50 ns ([2])
vd 104 m/s ([1])
ni 1016m−3 ([5])

These are used to simulate the case of a thin wire with an area cross-section of A ≈
10−12m2, having a initial spin density of5 s0 = Ani = 104/m:

a) no electric field applied, no given spin current
This simple case simulates the behaviour of spin when there is no influence on the
spin density, except of relaxation and diffusion.

∂s

∂t
= D

∂2s

∂x2
− s

τs
; t ∈ [0, 500ns], x ∈ [0, 100µm]

The boundary conditions must be specified for both edges, and have been chosen to:

s(0, t) = s(d, t) = s0

with d = 100µm being the distance between the right and the left boundary, which
has been chosen to give particles enough space to diffuse.

The initial condition also has to be specified:

s(x, 0) = s0

3Version 7.0.0
5Under the assumption of that the spin density is of the same order of magnitude as the charge carrier

density

bachelor’s thesis - Christoph Gleichweit
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Figure 1: Solutions to the diffusion equations: a) n(x, t) and b) s(x, t). The constants
have been chosen to approximately match the case for silicon: D ≈ 4·10−3m2/s
(at T = 300K, E = 103V cm−1, see [10]) and τ ≈ 50ns (as discussed in [2], sec
IV.E2), N0 = 104m−1
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2 Fundamentals 10

meaning that at t = 0, the area between the two points has a constant density.

The resulting solution is plotted in Fig. 2. At a sufficient spatial distance from the
boundary s(0, t), the value of the solution evaluates exactly to 1/e at t = τs = 50 ns,
as it is expected from an exponential decay of spin over time. The spatial, as well
as the time dependent decay of spin can be seen in the figure. After a certain time,
the initial condition does not play a role anymore, resulting into the expected pure
spatial exponential decay. This is called the steady state.

b) non-zero electric field, no given spin current
A generated spin drift is linearly dependent on the applied electric field (Eq. 4). For
this case, the field has been chosen to be oscillating:

∂s

∂t
= D

∂2s

∂x2
− vd sin(ωt)

∂s

∂x
− s

τs
; t ∈ [0, 500ns], x ∈ [0, 700µm]

The boundary- and initial conditions again have have been chosen to:

s(0, t) = s(d, t) = s(x, 0) = s0

and ω = 5 · 107/sec, which leads to a good visualization on what is going on in the
system when the field raises and decreases. The resulting solution is plotted in Fig. 3.
The electric field injects the spin into the region between the boundaries. Especially
interesting is the evolution of the waves. When looking at a peak, one can see that,
when following the way further into space, it moves also a little bit in time. Raising
the relaxation time would result into broader peaks, while raising the drift velocity
gives a deeper propagation into space.

c) oscillating spin current, spin pumping
Another possibility to inject spin is to control the gradient of s at the boundary,
which is the condition for spin pumping.

∂s

∂t
= D

∂2s

∂x2
− s

τs
; t ∈ [0, 500ns], x ∈ [0, 100µm]

For this case only one boundary has to be chosen:

s(0, t) = s0

The initial condition stays the same:

s(x, 0) = s0

The difference now is the following condition:

∂s

∂x
|x=0= j0 sin(ωt), ω = 5 · 107/sec

bachelor’s thesis - Christoph Gleichweit
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Figure 2: Numerical solution delivered by Mathematica of the spin drift-diffusion equa-
tion for the case of no drift and no spin current.

where6 j0 = 2 · 106m−2. Fig. 4 shows the results. The difference between the case
of the electric field and this one is, that an electric field can only inject spin which
is already existing at the boundary, whereas the spin pumping boundary condition
allows to bring new spin into the system due to the derivative.

d) both oscillating spin drift and current
As a last example, both the drift term and the derivative at the boundary can be
used to inject spin.

∂s

∂t
= D

∂2s

∂x2
− vd sin(ωt)

∂s

∂x
− s

τs
; t ∈ [0, 300ns], x ∈ [0, 700µm]

Boundary- and initial conditions are as follows:

s(0, t) = s(x, 0) = s0,
∂s

∂x
|x=0= j0 sin(16 · ωt)

where again ω = 5 · 107/sec. With the factor 16 in front of ω, the result is a beating
wave, where the spin pumping part lets raise the spin over 1 with the higher frequency.
The drift part then pulls the gained spin further away as long as is is positive. When
the sign changes, the spin flowes back to the edge, which produces the curve for all
the peaks of the pumped spin. Fig. 5 shows the results.

6The value of j0 has been chosen in order to provide an insight into the results mathematically, rather
than being physically realistic
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Figure 3: Numerical solution delivered by Mathematica of the spin drift-diffusion equa-
tion for the case of an oscillating electric field derived by Mathematica.
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Figure 4: Numerical solution delivered by Mathematica of the spin drift-diffusion equa-
tion for the case of an oscillating spin current derived by Mathematica.
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Figure 5: Numerical solution delivered by Mathematica of the spin drift-diffusion equa-
tion for the case of both an oscillating electric field and oscillating spin current
with different frequencies.
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2.1.2 electrical spin and charge currents

Naturally, electronics as well as spintronics rely on having a current flowing through any
kind of material. Again looking at the drift-diffusion equation (Eq. 8, 9), one can see
that factoring out ∂

∂x leads to the continuity equations

∂n

∂t
+

∂

∂x

[
−eτ
m
En−D∂n

∂x

]
= 0 (15)

∂s

∂t
+

∂

∂x

[
−eτ
m
Es−D∂s

∂x

]
= − s

τs
(16)

µ = eτ
m . . . electron mobility

The expressions in the brackets are

electron (particle) current . . . J = −µEn−D∂n
∂x

(17)

spin (particle) current . . . Js = −µEs−D∂s

∂x
(18)

Furthermore, when multiplying with charge one obtains

electrical (charge) current . . . j = −eJ = −σE − eD∂n
∂x

(19)

spin (charge) current . . . js = −eJs = −σsE − eD
∂s

∂x
(20)

σ = eµn . . . conductivity

σs = eµs . . . spin conductivity

Now polarization can be expressed easily:

density spin polarization . . . Pn =
n↑ − n↓

n
=
s

n
(21)

current spin polarization . . . Pj =
j↑ − j↓
j

=
js
j

(22)

Influence of an electric field
If a static electric field E = −∇φ is applied, (Eq. 19) can be written as

j = −σ∇φ+ eD∇n

In a system where the particle density changes across the sample, a term for ∇n is
needed.
Considering a Fermi gas in equilibrium, the particle density is given by

n(r) =
∫ ∞

0
dεN (ε)f(ε− eφ− η)

where7

7For a more detailed description, see [2] or the courses on statistical- and solid state physics
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ε . . . Energy of the state

N (ε) . . . density of states per unit volume

f(ε− η − eφ) = 1
e(ε−η−eφ)/kBT+1

. . . Fermi-Dirac Distribution

The total electron energy is ε − eφ. So the density of the gas can be rewritten as a
function of the chemical potential η minus the energy eφ of the electric field.

n(r) = n0(η + eφ)

That means, in contrast to the case of having no field applied, only the energy of the
electrons changes.
For this dependency, an expression for ∇n can be obtained. Consequently for the elec-
trical current one obtains

j = −σ∇φ+ eD∇n = −σ∇φ+ eD
∂n0

∂η
e∇φ

j = ∇φ
(
−σ + e2D

∂n0

∂η

)
When speaking of equilibrium, j must be zero, leading to

Einstein’s Relation

σ = e2D
∂n0

∂η
(23)

recognizing that ∂n0
∂η = N (Ef ), where Ef is the fermi energy.

The aim is to get an expression for j 6= 0. In order to go on with the same approach
there must be some assumptions made:

• The electron distribution depends only on the energy of the electron state

• The chemical potential η still makes sense, meaning that relating the change of
the internal energy to the change of particle density as a physical quantity is
reasonable.

• Adding another energy term η1 = eµ(x), where µ is the electrochemical potential8,
to the chemical potential describes the current flow. This quantitiy represents the
chemical potential caused by the charge of the electron in a system of a non-zero
electric field.

8Here, the term from [12] is used, instead of “quasichemical potential” which is used in [2]. It sounds
more convenient to me because the quantity is related to the electric potential.
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• Einstein’s relation (Eq. 23) still holds 9

Then (Eq. 19) helps in getting a useful expression now:

j = ∇φ
(
−σ + e2D

∂n0

∂η

)
+ e2D

∂n0

∂η
∇µ

The terms within brackets vanish, so the last term makes the difference to the equilibrium
case. Using Einstein’s relation (Eq. 23) leads to

Charge current in a diffusive regime

j = σ∇µ (24)

This is an important result of the drift-diffusion model for spin injection.
The next steps aim at getting an equation for µ since this quantity seems to be impor-
tant for spin injection.

(Degenerate) Ferromagnetic Conductors
Ferromagnets are considered as a source of nonequilibrium spin. In fact, because of

the differences of various quantities for spin-up and spin-down (namely minority- and
majority-) electrons in ferromagnets, (Eq. 24) must be written to distinguish between
the two possibilities:

j↑(↓) = σ↑(↓)∇µ↑(↓) (25)

The conductivities and average quasichemical potentials can be expressed as

σ = σ↑ + σ↓ (26)
σs = σ↑ − σ↓ (27)

µ =
µ↑ + µ↓

2
(28)

µs =
µ↑ − µ↓

2
(29)

N = N↑ +N↓ (30)
Ns = N↑ −N↓ (31)

9In eq. 19, one can see that in this model the current j depends only linearly on E and ∇n. It is
essential that the electron density n does not depend on the Field.
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N↓(ε) N↑(ε)
ferromagnetic metal
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Figure 6: Schematic drawing of the density of states of electrons depending on spin
(degenerate conductors). The differences between a normal metal and a ferro-
magnetic metal are shown.

Going on with (Eq. 25) and using it for expressing the particle- and spin charge
currents (Eq. 20 leads to,19) again:

j = j↑ + j↓ = σ∇µ+ σs∇µs (32)
js = j↑ − j↓ = σs∇µ+ σ∇µs (33)

Extracting ∇µ from the first equation

∇µ =
1
σ

(j − σs∇µs) (34)

and putting this in the second one gives

js =

Pσ︷︸︸︷
σs
σ

(j − σs∇µs) + σ∇µs

= Pσj −
(
σ2
s

σ
− σ2

σ

)
∇µs

= Pσj −

(
(σ↑ − σ↓)2

σ
−

(σ↑ + σ↓)
2

σ

)
∇µs

= Pσj + 4
σ↑σ↓
σ
∇µs

(35)

with Pσ . . . conductivity spin polarization. Taking the gradient of the equation under
the assumption that the charge current does not change in space (steady state):

∇js = 4
σ↑σ↓
σ
∇2µs (36)

Another different expression for ∇js containing information about µs is needed. When
speaking of degenerate conductors, only electrons at the Fermi level contribute to cur-
rents. Consequently, the deviations from the chemical potential can be considered small,
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whereby the particle density n↑(↓) can be expanded into

n↑(↓) = n↑(↓)0(η + eµ↑(↓) + eφ) ≈ n↑(↓)0 +
∂n↑(↓)0

∂η
(eµ↑(↓) + eφ)

which, when adding up the two possibilities, leads to

n = n0 + eN (µ+ φ) + eNsµs

In fact, in degenerate conductors local charge neutrality can be imposed, which means
that n = n0:

N (µ+ φ) +Nsµs = 0⇒ µ+ φ = −Nsµs
N

(37)

Doing the same for the spin density gives

s = s0 + eNs(µ+ φ) + eNµs
(Eq. 37)

= s0 + eµs

(
−N

2
s

N
+N

)
(Eq. 30,31)

= s0 + eµs
− (N↑ −N↓)2 + (N↑ +N↓)2

N↑ +N↓

= s0 + 4eµs
N↑N↓
N

(38)

This can be used now to get the second expression for ∇js. According to (Eq. 20, 16),
in the steady state

∇Js = − s

τs

For Ferromagnets, substracting s0 from (Eq. 38) gives the nonequilibrium spin density

δs = s− s0 (39)

so that one finally obtains

∇js = e
δs

τs
= 4e2µs

τs

N↑N↓
N

(40)

That is the desired second relation for ∇js. Using it in combination with (Eq. 36, 23)
leads to the important result

∇2µs = e2µs
τs

N↑N↓
N

σ

σ↑σ↓

= e2µs
τs

N↑N↓
N

e2D↑N↑ + e2D↓N↓
e2D↑N↑e2D↓N↓

=
µs
τs

D↑N↑ +D↓N↓
ND↑D↓

=
µs

τs
N

N↑
D↓

+
N↓
D↑
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Diffusion Equation for the spin electrochemical
potential in the steady state

∇2µs =
µs
L2
s

(41)

Ls =
√
D̄τs . . . spin diffusion length

D = N
N↑/D↓+N↓/D↑ . . . generalized diffusivity

or spin averaged diffusion coefficient [12]

Note: From (Eq. 40) one can see that µs is proportional to the nonequilibrium spin
density δs:

δs = 4eµs
N↑N↓
N

Therefore, the electrochemical potential is used for describing spin injection and is also
called spin accumulation.

2.1.3 F/N junction

A widespread basic model for spin injection is the Ferromagnet/Nonferromagnet junc-
tion. The more compact approach of [12], which was originally introduced by Rashba
([9]) will be used for the following.
The next steps consist of continuing with the steady state, and looking at electrons
moving in one direction through a contact between a ferromagnetic (index F ), and a
paramagnetic metal (index N) (or a degenerate semiconductor).

Contact Region
To use the diffusion equation (Eq. 41), the boundary conditions at the contact must

be known.
In this model, the current spin polarization is set to be continuous

Pj,F (0−) = Pj,N (0+) ≡ Pj (42)

This means that scatterings are neglected. Moreover, the electrochemical potential is
discontinous at x = 0 (see Fig. 7), so a boundary condition can be found to get the
value of the current at that point:

j↑(↓) = Σ↑(↓)
[
µ↑(↓)N (0)− µ↑(↓)F (0)

]
= Σ↑(↓)∆µ↑(↓)(0)
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∆µ

µ ,

x
L Fs L Ns

F N

0

Figure 7: Principal drawing of the F/N junction, showing that the electrochemical po-
tentials µ are discontinous. (From [12], Fig.7)

where Σ = Σ↑ + Σ↓ refers to to conductivity of the contact, which is of course spin-
dependent. Again adding an subtracting, respectively, leads to

j = Σ∆µ(0) + Σs∆µs(0)
js = Σs∆µ(0) + Σ∆µs(0)

Out of these two equations, the term for the current polarization at the contact can be
obtained by eliminating ∆µ(0):

Pj,c =
js
j

=
Σ↑ − Σ↓

Σ︸ ︷︷ ︸
PΣ

+
∆µs(0)

j

4Σ↓Σ↑
Σ︸ ︷︷ ︸
Rc

(43)

Now, there is an expression for the drop of the spin electrochemical potential at x = 0:

∆µs(0) = Rcj (Pj − PΣ) (44)

By dividing (Eq. 35) by j, the equation for the current polarization can be obtained:

Pj = Pσ +
1
j

4σ↓σ↑
σ
∇µs (45)

The differences between the two regions are as follows:

Ferromagnetic Region Nonmagnetic Region

For this case, the current polarization is Here, σ↓ = σ↑, and therefore Pσ = 0.
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x

µs C NF

Figure 8: Behavior of the spin electrochemical potential at the contact region (plotted
Eq. 48 and 49) .

Pj,F (0)=Pσ,F+ 1
j

4σF,↓σF,↑
σF

∇µs,F (0) (46)

Consequently,

Pj,N (0)= 1
j

4σN,↓σN,↑
σN︸ ︷︷ ︸
σN

∇µs,N (0) (47)

To get the value of µs,F , the diffusion equation (Eq. 41) can be used.
The differences between the two regions are as follows:

boundary conditions

µs,F (−∞) = 0 µs,N (∞) = 0

diffusion equations

∇2µs,F =
1

L2
s,F

µs,F ∇2µs,N =
1

L2
s,N

µs,N

solutions

µs,F (x) = µs,F (0)ex/Ls,F (48) µs,N (x) = µs,N (0)e−x/Ls,N (49)

gradients

At x = 0, one gets simple terms for the gradients of the electrochemical potentials.

∇µs,F =
µs,F
Ls,F

(50) ∇µs,N = −
µs,N
Ls,N

(51)

Putting this back into (Eq. 46) and (Eq. 47) finally leads to

Pj,F (0) = Pσ,F +
1
j

µs,F (0)
RF

(52) Pj,N (0) = −1
j

µs,N (0)
RN

(53)
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where the effective resistances are

RF =
σF

4σF,↓σF,↑
Ls,F (54) RN =

1
σN

Ls,N (55)

Finally, as the expressions for the current polarizations for all the three cases are known,
one can use the continuity condition (Eq. 42) to get the

Spin Injection Efficiency

〈Pσ〉R = Pj =
RcPΣ +RFPσ,F
Rc +RF +RN

(56)

〈Pσ〉R means that Pσ is averaged over the three regions and weighted by the effective
resistances. The term in the denominator is the effective equilibrium resistance of the
whole junction.

spin accumulation
Using the expression for the current polarization in the N region (Eq. 53) and again

taking the continuity (Eq. 42) into account, one finds

µs,N (0) = −jPjRN (57)

The two cases are

j < 0: spin injection j > 0: spin extraction
electrons flow from F to N, spin accu- electrons flow from N to F, spin accu-

mulation is positive µs,N (0) > 0 mulation is negative µs,N (0) < 0

2.1.4 nonequilibrium resistance - spin bottleneck effect

The overall resistance of the contact is expected to be

R = R̃F + R̃c + R̃N

where R̃X stands for the effective resistances of the regions. When thinking of spin
injection, spin accumulation is not zero except of µs,F (−∞) = 0, which leads to an
additional resistance

R = R̃F + R̃c + R̃N + δR (58)

δR ist the correction of the junction resistance for the non-equilibrium case of non-zero
spin accumulation. This additional contribution can be calculated by the following:
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Integrating (Eq. 34) and noting that Pσ,N = 0, the conditions for all 3 regions can be
found:

Ferromagnet: µF (0)− µF (−∞) = jR̃F − Pσ,Fµs,F (0) (59)

Contact: µN (0)− µF (0) = jR̃c − PΣ (µs,N (0)− µs,F (0)) (60)

Nonmagn. Region: µN (∞)− µN (0) = jR̃N (61)

and for the entire resistance (Eq. 58)

µN (∞)− µF (−∞) = j(R̃F + R̃c + R̃N + δR) (62)

Putting the resistances of the 3 regions into the last equation leads to

δR = (PΣ − Pσ,F )µs,F (0)− PΣµs,N (0) = −Pσ,Fµs,F (0) + PΣ (µs,F (0)− µs,N (0))︸ ︷︷ ︸
∆µs(0). . . potential drop

The next step consists of replacing the remaining spin electrochemical potential by the
expression obtained at x = 0 for the current polarization (Eq. 52) and using the derived
term for the potential drop at the contact (Eq. 44):

δR = −Pσ,F (Pj − Pσ,F )RF − PΣ(Pj − PΣ)Rc

Finally, using (Eq. 56) for Pj leads to

Nonequilibrium Resistance

δR =
RN (P 2

ΣRc + P 2
σ,FRF ) +RFRc(Pσ,F − PΣ)2

RF +Rc +RN
> 0 (63)

What causes this additional resistance?
When spin accumulation is not zero, there will be always nonequilibrium spin ranging

from the ferromagnetic area to the contact region. Spin can be imagined to “pile up” at
the contact, which leads to diffusion oriented opposite to the direction of the current flow.
In other words, part of the polarized electrons flow back to the ferromagnet, leading to
this additional resistance of the junction, which is also called the spin bottleneck effect.
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2.1.5 the conductivity mismatch problem

There are two interesting cases regarding the proportions of the three different region’s
resistances:

Rc � RN,RF: transparent contact Rc � RN,RF: tunnel contact

This can be considered the ordinary case Here the contact dominates the whole junc-
of of a contact between a ferromagnetic tion.
and a non-ferromagnetic material.

spin injection efficiency

(Eq. 56) evaluates for the two cases to

Pj =
RF

RN +RF
Pσ,F Pj = PΣ

nonequilibrium resistance δR (Eq. 63)

δR =
RNRF
RN +RF

P 2
σ,F δR =

RNRcP
2
Σ +RFRc(Pσ,F − PΣ)2

Rc

But here it is essential to consider also
the difference between RN and RF .
If RN ≈ RF the efficiency is high:

Pj ≈ Pσ,F
This is the case for injection from ferro-
magnetic metals(semiconductors) to non-
ferrom. metals(semiconductors).

The more interesting case is the one in which the non-magnetic material has a higher
resistance, for instance a ferromagnet. metal - nonmagnet. semiconductor junction:

Rc � RN � RF: transparent contact Rc � RN � RF tunnel contact
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Pj ≈
RF
RN

Pσ,F � Pσ,F

δR ≈ RFP 2
σ,F ≈ RF (� RN )

Pj = PΣ

δR ≈ RNP 2
Σ

Spin injection efficiency is highly reduced, Here, there is no such problem. Injec-
this is called the conductivity mismatch tion efficiency is determined by the con-
problem, because this is the case if the con- tact conductance polarization, and the nonequi-
ductivities of the two meterials are greatly librium resistance is about the same mag-
different. nitude of the nonmagnetic region’s resis-

tance.

2.2 spin relaxation and dephasing

The following explanations are taken from [12], Sec IV A. and are indended for giving
some basic idea of spin decay.

The process of equilibration of spin is one of the most important to understand when
building devices. Nonequilibrium spin must exist long enough in order to obtain mea-
surable effects.
Given an ensemble of particles with spin density s, exposed to a magnetic field B =
B0êz + B1(t). The z-component of s then has a non-zero equilibrium value s0,z. In this
case, s obeys the following equations:

bloch equations

∂sx
∂t

= γ(s×B)x −
sx
T2

∂sy
∂t

= γ(s×B)y −
sy
T2

∂sz
∂t

= γ(s×B)z −
sz − s0,z

T1
with

γ =
gµB

~
. . . electron gyromagnetic ratio

There are two characteristic times regarding equilibration: the spin relaxation time10

T1 and the spin dephasing time11 T2.

relaxation time time it takes for the spin along the static field to decay. If the z-
component of the B-field is non-zero, the electron ensemble must exchange its

10longitudinal time
11transversal time
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energy with the surrounding particles. For instance, this can happen by phonon
generation in the lattice, referred to as thermal equilibration.

dephasing time time for the decay of the transversal component. The spin precession
about the longitudinal axis initially occurs in phase. Over the time, spatial and
temporal fluctuations of the precession’s frequency lead to decay of this time.

3 giant- and tunnel magneto resistive effects

There are a number of different effects in special junctions where spin plays an important
role, whereas the GMR and TMR effects are the most common ones. In fact, there is
not a universal well-grounded theory for any of these phenomena, rather than adjusted
models for given particular junctions.
Therefore this section aims at giving an idea of what is going on in the fields of GMR
and TMR, in which the explanations in principle follow the ones of [6], with additional
support of [11] and [8].

3.1 giant magneto resistance (GMR)

GMR is famous because of the already developed devices e.g. used in magnetic hard
disks read-heads. Moreover, it is the phenomena which caused the kick-off of the new
spintronic field of research.
The way a GMR-device basically behaves is that resistance is low for parallel-aligned
magnetizations, and high for the anti-parallel case. Exchange interaction splits the two
spin subbands, resulting in a different DOS for each of the possible spin orientations.
Making one of the two magnetic layers fixed, so that no external field can change the
orientation of magnetization, the resistance of the junction can be controlled by applying
an external field either parallel to the fixed layer or anti-parallel.
Unfortunately, this very simplified description gives just an idea of what is happening
or what is supposed to happen in GMR circuits. However, there are two common ge-
ometries, current in plane (CIP) and current perpendicular to plane (CPP) (see Fig. 9).
The CPP structure (used in Fig. 10) is the one which is easier to analyze theoretically,
but the CIP method was first used in devices because of easier fabrication [6].

For the following descriptions, the term majority(minority) electron refers to a particle
with spin parallel(antiparallel) to the magnetization of the ferromagnet.

3.1.1 CIP - current in plane GMR

Because of the splitted spin subbands, there is a difference between the conductivities
of the two spin orientations (σ↑ 6= σ↓, see Sec. 2.1.2). Usually, the majority electrons
carry the current primarily and scatterings are weaker than for the others. If the two
layers are anti-aligned, an electron with the majority spin magnetic moment in one layer
would be a minority electron in the other one. Consequently, for this case, resistance
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Figure 9: principal layout of current (a) in plane and (b) perpendicular to plane GMR
devices ([12], Fig.3)

does not differ between spin-up and spin down particles.
But if the layers are aligned, going through the junction is “easier” for one of the orien-
tations. In fact, overall resistance is greater than for the anti-aligned state.
For the CIP geometry it is essential that the size layers fulfills special conditions: The
electron mean free path is the critical length scale, which is different for majority- and
minority electrons. The nonmagnetic layer must be smaller than the electron mean free
path, the ferromagnetic layer smaller than the majority electron’s mean free path.

3.1.2 CPP - current perpendicular to plane GMR

Figure 10 shows the situation in a FNF-junction for the CPP case. This geometry can
be modeled greatly by the approach used for the F/N junction (see sec. 2.1.3). Spin
accumulation for the injecting part has in principle the same structure as drawn in Fig.
7. For the detecting part, it makes a difference if the two FM-layers are aligned or
anti-aligned: the polarization of the nonmagnetic region leads to more electrons in the
spin-up(down) state as there would be in equilibrium. So if the ferromagnet at the
detector is magnetized in the other direction, the propability to scatter is higher for
electrons, as there are not enough states for them. As long as the length scale of the
nonmagnetic region is about the same as the spin relaxation length Ls, one can expect
a measureable difference in resistance.

3.2 tunnel magneto resistance (TMR)

In this geometry, between two magnetic materials, there is an insulating thin barrier,
forming the magnetic tunnel junction (see Fig. 11). The principles of tunnel magneto
resistance can be understand by again looking at the density of states of electrons.
The spin subbands are splitted, namely the DOS at the Fermi level is different for the
two electron species. Under the constraint that spin is conserved during the tunneling
process, an electron cannot switch the subband. The difference in resistance between
the aligned- and antialigned state comes from the different tunneling rate of the two
cases. The commonly cited model is the one of Jullier̀e ([4]), who derived an expression
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Ø. . . forbidden transition

Figure 10: Basic concept of a spin valve: spin polarized transport in a FM-NFM-FM
CPP junction. Note that the nonmagnetic region is quite large in contrast to
MTJs (see TMR). ([8], Fig. 2)

Insulator

Ferromagnetic metals

Figure 11: Geometry of a magnetic tunnel junction ([8], fig. 6)
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for the

TMR Ratio

TMR =
RAP −RP

RP
=
GP −GAP

GAP
(64)

with
R . . . resistance
G . . . conductance
P . . . parallel measurement
AP . . . anti-parallel measurement

In fact, this model is not accurate concerning various effects regarding temperature
dependence and the size of the barriers. That is the reason why the derivation will not
be mentioned here.
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