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Abstract

A one-way quantum computer (QCC) works by only performing a sequence of one-qubit mea-
surements on a particular entangled multi-qubit state, the cluster state. No non-local operations
are required in the process of computation. Any quantum logic network can be simulated on the
QCC . On the other hand, the network model of quantum computation cannot explain all ways
of processing quantum information possible with the QCC. In this paper, two examples of the
non-network character of the QCC are given. First, circuits in the Clifford group can be performed
in a single time step. Second, the QCC-realisation of a particular circuit –the bit-reversal gate–
has no network interpretation.

1 Introduction

Recently, we introduced the concept of the “one-way quantum computer” in [1]. In this scheme, the
whole quantum computation consists only of a sequence of one-qubit projective measurements on a
given entangled state, a so called cluster state [2]. We called this scheme the “one-way quantum
computer” since the entanglement in a cluster state is destroyed by the one-qubit measurements and
therefore the cluster state can be used only once. In this way, the cluster state forms a resource for
quantum computation. The set of measurements form the program. To stress the importance of the
cluster state for the scheme, we will use in the following the abbreviation QCC for “one-way quantum
computer”.

As we have shown in [1], any quantum logic network [3] can be simulated on the QCC . On the other
hand, the quantum logic network model cannot explain all ways of quantum information processing
that are possible with the QCC . Circuits that realise transformations in the Clifford group –which
is generated by all the CNOT-gates, Hadamard-gates and π/2 phase shifts– can be performed by a
QCC in a single step, i.e. all the measurements to implement such a circuit can be carried out at the
same time. The best networks that have been found have a logical depth logarithmic in the number of
qubits [4]. In a simulation of a quantum logic network by a one-way quantum computer, the temporal
ordering of the gates of the network is transformed into a spatial pattern of the measurement directions
on the resource cluster state. For the temporal ordering of the measurements there seems to be no
counterpart in the network model. Further, not every measurement pattern that implements a larger
circuit can be decomposed into smaller units, as can be seen from the example of the bit-reversal gate
given in Section 3.2.
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The purpose of this paper is to illustrate the non-network character of the QCC using two examples
– first, the temporal complexity of circuits in the Clifford group, and second, the bit-reversal gate on
the QCC which has no network interpretation.

2 Summary of the one-way quantum computer

In this section, we give an outline of the universality proof [1] for the QCC . For the one-way quantum
computer, the entire resource for the quantum computation is provided initially in the form of a
specific entangled state –the cluster state [2]– of a large number of qubits. Information is then written
onto the cluster, processed, and read out from the cluster by one-particle measurements only. The
entangled state of the cluster thereby serves as a universal “substrate” for any quantum computation.
Cluster states can be created efficiently in any system with a quantum Ising-type interaction (at
very low temperatures) between two-state particles in a lattice configuration. More specifically, to
create a cluster state |φ〉C , the qubits on a cluster C are at first all prepared individually in a state
|+〉 = 1/

√
2(|0〉+ |1〉) and then brought into a cluster state by switching on the Ising-type interaction

Hint for an appropriately chosen finite time span T . The time evolution operator generated by this
Hamiltonian which takes the initial product state to the cluster state is denoted by S.

The quantum state |φ〉C , the cluster state of a cluster C of neighbouring qubits, provides in advance
all entanglement that is involved in the subsequent quantum computation. It has been shown [2] that
the cluster state |φ〉C is characterised by a set of eigenvalue equations

σ(a)
x

⊗

a′∈ngbh(a)

σ(a′)
z |φ〉C = ±|φ〉C , (1)

where ngbh(a) specifies the sites of all qubits that interact with the qubit at site a ∈ C. The eigenvalues
are determined by the distribution of the qubits on the lattice. The equations (1) are central for the
proposed computation scheme. It is important to realise here that information processing is possible
even though the result of every measurement in any direction of the Bloch sphere is completely random.
The reason for the randomness of the measurement results is that the reduced density operator for
each qubit in the cluster state is 1

21. While the individual measurement results are irrelevant for the
computation, the strict correlations between measurement results inferred from (1) are what makes
the processing of quantum information possible on the QCC .

For clarity, let us emphasise that in the scheme of the QCC we distinguish between cluster qubits
on C which are measured in the process of computation, and the logical qubits. The logical qubits
constitute the quantum information being processed while the cluster qubits in the initial cluster
state form an entanglement resource. Measurements of their individual one-qubit state drive the
computation.

To process quantum information with this cluster, it suffices to measure its particles in a certain
order and in a certain basis, as depicted in Fig. 1. Quantum information is thereby propagated through
the cluster and processed. Measurements of σz-observables effectively remove the respective lattice
qubit from the cluster. Measurements in the σx-eigenbasis are used for “wires”, i.e. to propagate logical
quantum bits through the cluster, and for the CNOT-gate between two logical qubits. Observables
of the form cos(ϕ)σx ± sin(ϕ)σy are measured to realise arbitrary rotations of logical qubits. For
cluster qubits to implement rotations, the basis in which each of them is measured depends on the
results of preceding measurements. This introduces a temporal order in which the measurements have
to be performed. The processing is finished once all qubits except a last one on each wire have been
measured. The remaining unmeasured qubits form the quantum register which is now ready to be
read out. At this point, the results of previous measurements determine in which basis these “output”
qubits need to be measured for the final readout, or if the readout measurements are in the σx-, σy- or
σz-eigenbasis, how the readout measurements have to be interpreted. Without loss of generality, we
assume in this paper that the readout measurements are performed in the σz-eigenbasis.
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quantum  gate

information  flow

Figure 1: Quantum computation by measuring two-state particles on
a lattice. Before the measurements the qubits are in the cluster state
|φ〉C of (1). Circles ⊙ symbolise measurements of σz, vertical arrows are
measurements of σx, while tilted arrows refer to measurements in the
x-y-plane.

Here, we review two points of the universality proof for the QCC : the realisation of the arbitrary
one-qubit rotation as a member of the universal set of gates, and the effect of the randomness of the
individual measurement results and how to account for them. For the realisation of a CNOT-gate see
Fig. 2 and [1].

An arbitrary rotation UR ∈ SU(2) can be achieved in a chain of 5 qubits. Consider a rotation in
its Euler representation

UR(ξ, η, ζ) = Ux(ζ)Uz(η)Ux(ξ), (2)

where the rotations about the x- and z-axis are Ux(α) = exp
(

−iασx

2

)

and Uz(α) = exp
(

−iασz

2

)

.

Initially, the first qubit is in some state |ψin〉, which is to be rotated, and the other qubits are in
|+〉. After the 5 qubits are entangled by the time evolution operator S generated by the Ising-type
Hamiltonian, the state |ψin〉 can be rotated by measuring qubits 1 to 4. At the same time, the state
is also transfered to site 5. The qubits 1 . . . 4 are measured in appropriately chosen bases, viz.

Bj(ϕj) =

{ |0〉j + eiϕj |1〉j√
2

,
|0〉j − eiϕj |1〉j√

2

}

(3)

whereby the measurement outcomes sj ∈ {0, 1} for j = 1 . . . 4 are obtained. Here, sj = 0 means that
qubit j is projected into the first state of Bj(ϕj). In (3) the basis states of all possible measurement
bases lie on the equator of the Bloch sphere, i.e. on the intersection of the Bloch sphere with the
x− y-plane. Therefore, the measurement basis for qubit j can be specified by a single parameter, the
measurement angle ϕj . The measurement direction of qubit j is the vector on the Bloch sphere which
corresponds to the first state in the measurement basis Bj(ϕj). Thus, the measurement angle ϕj is
equal to the angle between the measurement direction at qubit j and the positive x-axis. For all of
the gates constructed so far, the cluster qubits are either –if they are not required for the realisation
of the circuit– measured in σz , or –if they are required– measured in some measurement direction in
the x − y-plane. In summary, the procedure to implement an arbitrary rotation UR(ξ, η, ζ), specified
by its Euler angles ξ, η, ζ, is this: 1. measure qubit 1 in B1(0); 2. measure qubit 2 in B2

(

(−1)s1+1ξ
)

;
3. measure qubit 3 in B3 ((−1)s2η); 4. measure qubit 4 in B4 ((−1)s1+s3ζ). In this way the rotation
U ′

R is realised:
U ′

R(ξ, η, ζ) = UΣUR(ξ, η, ζ). (4)

The random byproduct operator
UΣ = σs2+s4

x σs1+s3

z (5)
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Figure 2: Realisation of the required gates on the QCC . CNOT-gate between
neighbouring qubits, the Hadamard gate and the π/2 phase gate.

can be corrected for at the end of the computation, as explained next.
The randomness of the measurement results does not jeopardise the function of the circuit. De-

pending on the measurement results, extra rotations σx and σz act on the output qubits of every
implemented gate, as in (4), for example. By use of the propagation relations

UR(ξ, η, ζ)σs
zσ

s′

x = σs
zσ

s′

x UR((−1)sξ, (−1)s′

η, (−1)sζ), (6)

CNOT(c, t)σ(t)
z

st

σ(c)
z

sc

σ(t)
x

s′

tσ(c)
x

s′

c = σ(t)
z

st

σ(c)
z

sc+st

σ(t)
x

s′

c+s′

tσ(c)
x

s′

c CNOT(c, t), (7)

these extra rotations can be pulled through the network to act upon the output state. There they can
be accounted for by properly interpreting the σz-readout measurement results.

To summarise, any quantum logic network can be simulated on a one-way quantum computer. A
set of universal gates can be realised by one-qubit measurements and the gates can be combined to
circuits. Due to the randomness of the results of the individual measurements, unwanted byproduct
operators are introduced. These byproduct operators can be accounted for by adapting measurement
directions throughout the process. In this way, a subset of qubits on the cluster C is prepared as the
output register. The quantum state on this subset of qubits equals that of the quantum register of the
simulated network up to the action of an accumulated byproduct operator. The byproduct operator
determines how the measurements on the output register are to be interpreted.

3 Non-network character of the QCC

3.1 Logical depth D = 1 for circuits in the Clifford group

The Clifford group of gates is generated by the CNOT-gates, the Hadamard-gates and the π/2-phase
shifts. In this section it is proved that the logical depth of circuits belonging to the Clifford group
is D = 1 on the QCC , irrespective of the number of logical qubits n. For a subgroup of the Clifford
group, the group generated by the CNOT- and Hadamard gates we can compare the result to the best
known upper bound for quantum logic networks where the logical depth scales like O(log n) [4].

The Hadamard- and the π/2-phase gate are, compared to general SU(2)-rotations, special with
regard to the measurements which are performed on the cluster to implement them. The Euler angles
(2) that implement a Hadamard- and a π/2-phase gate are, depending on the byproduct operator on
the input side, given by ξ = ±π/2, η = ±π/2, ζ = ±π/2 and ξ = 0, η = ±π/2, ζ = 0, respectively.
See Fig. 2. A measurement angle of 0 corresponds to a measurement of the observable σx and both
measurement angles π/2 and −π/2 correspond to a measurement of σy. A change of the measurement
angle from π/2 to −π/2 has only the effect of interchanging the two states of the measurement basis
in (3), but it does not change the basis itself.

In general, cluster qubits which are measured in the eigenbasis of σx, σy or σz can be measured at
the same time. The adjustment of their measurement basis does not require classical information gained
by measurements on other cluster qubits. As described in [1], σz-measurements are used to eliminate
those cluster qubits which are not essential for the circuit. As shown in Fig. 2, the cluster qubits

4



Figure 3: This measurement pattern implements a bit-reversal gate.
Each square represents a lattice qubit. The squares in the extreme left
column marked with white circles denote the input qubits, they on the
right-most column denote the output qubits. Note that blank squares
can represent either σz measurements or empty lattice sites.

essential for the implementation of the CNOT-gate between neighbouring qubits, the Hadamard- and
the π/2-phase gate are all measured in the σx- or σy-eigenbasis. The general CNOT can be constructed
from CNOT-gates between neighbouring qubits. This can be done in the standard manner using the
swap-gate composed of three CNOT-gates. Hence also the general CNOT-gate requires only σx- and
σy-measurements. Therefore, all circuits in the Clifford group can be realised in a single step of parallel
measurements.

3.2 The bit-reversal gate

The measurement pattern shown in Fig. 3 realises a bit-reversal gate. In this example, it acts on four
logical qubits, reversing the bit order, |x3x2x1x0〉 → |x0x1x2x3〉. Reconsidering the circuit of CNOT-
gates and one-qubit rotations depicted in Fig. 1, the network structure –displayed in gray underlay–
is clearly reflected in the measurement pattern. One finds the wires for logical qubits “isolated” from
each other by areas of qubits measured in σz and “bridges” between the wires which realise two-qubit
gates.

For the bit-reversal gate in Fig. 3 the situation is different. To implement this gate on n logical
qubits, the cluster qubits on a square block of size 2n − 1 × 2n − 1 all have to be measured in the
σx-eigenbasis. The circuit which is realised via this measurement pattern cannot be explained by
decomposing it into smaller parts. There is no network interpretation –as there is for Fig. 1– for the
measurement pattern displayed in Fig. 3.

The bit reversal gate can be understood in a similar way to teleportation. Here we give an expla-
nation for the bit-reversal gate on four qubits, but the argument can be straightforwardly generalised
to an arbitrary number n of logical qubits. In Fig. 3 we have the set of input qubits I = {i1, . . . , i4},
their neighbouring qubits M = {m1, . . . ,m4} and the set of output qubits O = {o1, . . . , o4}. All the
qubits required for the gate form the set Q. Further, we define the “body” G of the gate as the set
G = Q\(I ∪M ∪O). As in [1], the standard setting to discuss a gate is the following: 1.) Prepare the
input qubits I in an input state |ψin〉 and the remaining qubits each in |+〉. 2.) Entangle the qubits
in Q by S, the unitary transformation generated by the Ising-interaction Hint. 3.) Measure the qubits
in I ∪M ∪ G, i.e. all but the output qubits, in the σx-eigenbasis. Due to linearity we can confine
ourselves to input states of product form |ψin〉 = |α〉i1 ⊗ |β〉i2 ⊗ |γ〉i3 ⊗ |δ〉i4 . The output state we get
after step 3 in the above protocol is |ψout〉 = UΣ |δ〉o1

⊗ |γ〉o2
⊗ |β〉o3

⊗ |α〉o4
. There, the multi-local

byproduct operator UΣ belongs to a discrete set and depends only on the results of the measurements.
The entanglement operation S on the qubits in Q can be written as a product S = SMGO SIM
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where SMGO entangles the qubits in M ,G and O and SIM entangles the input qubits in I with their
neighbours in M . SMGO and SIM commute. Further, let P denote the projection operator which
describes the set of measurements in step 2 of the above protocol. Then, the projector P can be
written as a product as well, P = PG PIM . There, PG denotes the projector associated with the
measurements on the set G of qubits, and PIM the projector associated with the measurements on I
and M . Now note that PG commutes with SIM , because the two operators act non-trivially only on
different subsets of qubits. Therefore, the above protocol is mathematically equivalent to the following
one: 1′.) Prepare the input qubits I in an input state |ψin〉 and the remaining qubits each in |+〉. 2′.)
Entangle the qubits in M , G and O by SMGO. 3′.) Measure the qubits in G. 4′.) Entangle the qubits
in I and M by SIM . And 5′.) Measure the qubits in I and M .

The quantum state of the qubits in I, M and O after step 3′ in the second protocol is of the form
|Ψ〉IMO = |ψin〉I ⊗ |Φ〉MO. As a consequence of the eigenvalue equations (1) of the unmeasured state
of the qubits in M , G and O, the state |Φ〉MO obeys the following set of eight eigenvalue equations:

σ
(m1)
x σ

(o4)
z |Φ〉MO = ±|Φ〉MO, σ

(m1)
z σ

(o4)
x |Φ〉MO = ±|Φ〉MO, and the three remaining pairs of equations

with (m1, o4) replaced by (m2, o3), (m3, o2) and (m4, o1). The sign factors in these equations depend
on the results measured in step 3′ of the second protocol. The eigenvalue equations determine the
state |Φ〉MO completely. It is the product of four Bell states |B〉: |Φ〉MO =l.u. |B〉m1o4

⊗ |B〉m2o3
⊗

|B〉m3o2
⊗ |B〉m4o1

, where |B〉 = 1/
√

2(|+〉|1〉 + |−〉|0〉) and “=l.u.” means equal up to possible local
unitarities σx, σz on the output qubits in O. The entanglement operation SIM in step 4′ together with
the local measurements PIM in step 5′ has the effect of four Bell measurements on the qubit pairs
(ik,mk), k = 1 . . . 4, in the basis {1/

√
2(|0〉ik

|±〉mk
± |1〉ik

|∓〉mk
)}.

The second protocol –which is mathematically equivalent to the first– is thus a teleportation scheme.
In steps 2′ and 3′ Bell pairs between intermediate qubits mk ∈ M and the output qubits are created.
The first qubit in M forms a Bell state with the last qubit in O, and so on:
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In steps 4′ and 5′ a Bell measurement on each pair of qubits (ik,mk) is performed. In this way,
the input state |ψin〉 is teleported from the input to the output qubits, with the order of the qubits
reversed. As in teleportation, the output state is equivalent to the input state only up to the action
of a multi-local unitary operator which is specified by two classical bits per teleported qubit. In the
case of the bit-reversal gate the role of this operator is taken by the byproduct operator UΣ.

Please note that there is no temporal order of measurements here. All measurements can be carried

out at the same time. The apparent temporal order in the second protocol was introduced only as a
pedagogical trick to explain the bit-reversal gate in terms of teleportation.

4 Conclusion

In this paper, we have shown that the network picture cannot describe all ways of quantum information
processing that are possible with a one-way quantum computer. First, circuits which realise unitary
transformations in the Clifford group can be performed on the QCC in a single time step. This includes
in particular all circuits composed of CNOT- and Hadamard gates, for which the best known network
has a logical depth that scales logarithmically in the number of qubits. Second, we presented an
example of a circuit on the QCC , the bit-reversal gate, which cannot be interpreted as a network
composed of gates. These observations motivate a novel computational model underlying the QCC ,
which is described in [5].
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