
Technische Universität Graz

Bachelorarbeit Technische Physik

Quantum Computation

Tobias Kugel

Mat. Nr: 01530702

July 20, 2018

Contents

Contents

1 Introduction 2

1.1 Qubits . 2
1.2 Quantum system . 3

2 Quantum Gates 4

2.1 NOT-Gate . 4
2.2 Hadamard-Gate . 4
2.3 CNOT-Gate . 4
2.4 To�oli-Gate . 5

3 Quantum Algorithms 6

3.1 Query Operator . 6
3.1.1 Quantum Parallelism . 6

3.2 Deutsch's Algorithm . 7

4 Grover's Algorithm 8

4.1 Oracle Ô . 9
4.1.1 Oracle function f . 9
4.1.2 Phonebook example . 9

4.2 X̂ Operator . 10
4.3 Step by step analysis . 10
4.4 Geometrical visualization . 11
4.5 Iteration and time analysis . 12
4.6 Logic circuit . 13
4.7 Quantum counting . 15

4.7.1 Phase estimation . 16
4.7.2 Grover quantum counting . 16

1 Introduction

The quantum theory was postulated to explain physical phenomena which could not be
explained by classical physics anymore. The new insights enabled scientists to construct
computers which use the quantum mechanical properties to operate. These are the so-
called quantum computers. In the following subsections there will be a short introduction
of the key terms and relevant facts related to quantum computers.

1.1 Qubits

A Quantumbit, or qubit for short, is a 2-dimensional Hilbert space H2. [1] The states of
the bits 0 and 1 of a classical computer correspond to the qubit states |0〉 and |1〉. These
are quantum mechanical states with only two di�erent outcomes when being measured.
There are several opportunities to realize this so-called two state system.1 Using a
quantum mechanical property called superposition principle enables to generate more

1See: Einführung in Quantencomputer [2], P.29

2/18

1.2 Quantum system

states than the classical 0 and 1.1 A superposition is a linear combination of single
states.

|Ψ〉 =
n∑

k∈|0〉,|1〉

αk |k〉 (1)

A condition for every linear combination is the norm of the state:
∑n

k
|αk|2 = 1. When

measuring the state |Ψ〉 the probability to measure the state |k〉 is equal to the factor
|αk|2. [1] The qubits |0〉 and |1〉 get assigned to the vector form:

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
1.2 Quantum system

A quantum system is a 2n-dimensional Hilbert space out of n-qubits. [4] For example,
a quantum system with two qubits would be generated by a tensor product of the two
Hilberspaces H2⊗H2 = H4. There are four new basis vectors which form an orthogonal
system: |00〉,|01〉,|10〉 and |11〉. This is an example of how two combined states would
look like:

|Θ〉∈H4
= |Φ〉∈H2

⊗|Ψ〉∈H2
=

1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉) =
1

2
(|00〉+ |01〉+ |10〉+ |11〉)

(2)
The vector form of the new states is the tensor product of the single qubits:

|0〉⊗|0〉 = |00〉 =

1
0
0
0

 |0〉⊗|1〉 = |01〉 =

0
1
0
0

 |1〉⊗|0〉 = |10〉 =

0
0
1
0

 |1〉⊗|1〉 = |11〉 =

0
0
0
1

Taking this 4-dimensional system and creating an operation with a unary operator2 Ô
which only interacts with the second qubit is realized as follows:

|a〉 |a〉

|b〉 Ô Ô |b〉

Figure 1: A quantum operation with two qubits

Mathematically, the quantum operation of �gure 1 is the tensor product of the states:

(12 ⊗ Ô) |ab〉 = 12 |a〉 ⊗ Ô |b〉 (3)

1See: Quantum Computation and Quantum Information [3], P.15
2A unary operator maps only H2 → H2. [5], P.14

3/18

2 Quantum Gates

Quantum gates enable operations with qubits. They can be represented as matrices
which have to be unitary. (MM † = 1) That makes the operations always reversible
which means that there is never a loss of information throughout the whole computation
process. [1]

2.1 NOT-Gate

The NOT-gate is simply turning the qubit state from |0〉 to |1〉 and vice versa. This is
an illustration of how this gate works:

|a〉 N |a〉

Figure 2: NOT-Gate (a is the inverse of a)

The matrix representation of the NOT operation (�gure 2) on a single qubit is:

N =

(
0 1
1 0

)
(4)

2.2 Hadamard-Gate

The Hadamard-gate is a gate which does not exist in classical computing. It changes a
qubit into a superposition of two states by rotating it.1 This gives many new opportuni-
ties for computation processes.

|0〉 H
1√
2
(|0〉+ |1〉)

|1〉 H
1√
2
(|0〉 − |1〉)

Figure 3: Hadamard-Gates when operating a |0〉 and a |1〉 state.

The matrix representation of a Hadamard-gate (�gure 3) is:

H =
1√
2

(
1 1
1 −1

)
(5)

2.3 CNOT-Gate

All the gates before were gates for operating single qubits. The CNOT-Gate needs a
quantum system of two qubits. It negates the second qubit only if there is a |1〉 at the
�rst qubit. This operation is equal to a modulo 2 (⊕) addition. All quantum circuits
can be constructed using only CNOT and unary gates. [5]

1See: Quantum Computation and Quantum Information [3], P.19

4/18

2.4 To�oli-Gate

|a〉 • |a〉

|b〉 |a⊕ b〉

Figure 4: CNOT Gate

The matrix representation of a CNOT gate (�gure 4) is:

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (6)

2.4 To�oli-Gate

The To�oli gate is a three qubit gate which is very important for quantum computation.
All quantum circuits can be constructed (in some approximated sense) using only To�oli
gates and Hadamard gates. [6]

|a〉 • |a〉

|b〉 • |b〉

|c〉 |c⊕ (a ∧ b)〉

Figure 5: To�oli-Gate

The To�oli gate (Figure 5) has three input and output bits. |a〉 and |b〉 are the control
bits. The third is a target bit that is �ipped if both control bits are set to |1〉, and
otherwise is left unchanged.

(a) NAND gate (b) FANOUT gate

Figure 6: (a) Qubit con�guration to perform NAND operations. (b) Qubit con�guration
to perform FANOUT operations.

In �gure 6, two examples of how to use the To�oli gate can be seen. Having NAND
gates (�gure 6 (a)) and NOT gates makes it possible to realize all possible logic circuits
like in classical computation. The FANOUT gate (�gure 6 (b)) is used to duplicate a
state.

5/18

The matrix representation of a To�oli gate (�gure 5) is:

Toffoli =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

(7)

3 Quantum Algorithms

3.1 Query Operator

The query operator is used to map the solution of a function f(x) : {0, 1}n → {0, 1} onto
a qubit.

|x〉 /n

Q̂f(x)

/n |x〉

|y〉 |y ⊕ f(x)〉

Figure 7: The query operator Q̂f(x) for the function f(x). The '/n' through the wire
represents a set of n-qubits.

For example, the query operator acting on the state: |x〉 1√
2

(|0〉 − |1〉)︸ ︷︷ ︸
= |y〉

results in the

state:

(−1)f(x) |x〉 1√
2

(|0〉 − |1〉)︸ ︷︷ ︸
= |y〉

. (8)

3.1.1 Quantum Parallelism

Quantum parallelism is a fundamental feature that is used by quantum algorithms.

|0〉⊗n /n H /n |Φ〉

Figure 8: Creation of a parallelized state. The '/n' through the wire represents a set of
-qubits.

By applying a Hadamard gate for every qubit a superpositioned state is created. (Fig-
ure 8) The state can be written as follows:

|Φ〉 =
1√
2n

2n−1∑
x=0

|x〉 (9)

6/18

3.2 Deutsch's Algorithm

|x〉 of equation 9 is the decimal representation of the set of qubits.
Using the state |Φ〉 for the query operator gives the result:

1√
2n

2n−1∑
x=0

(−1)f(x) |x〉 1√
2

(|0〉 − |1〉). (10)

The superpositioned state |Φ〉 has now information about all function values in its am-
plitudes although the query operator was applied only once. Thus, the function was
queried for more than one value simultaneously. Making use of this is called quantum
parallelism. [1]

3.2 Deutsch's Algorithm

Deutsch's Algorithm evaluates if the result of a function f(x) : {0, 1} → {0, 1} is the
same for both x or not.

|0〉 H x

Q̂f

x H

|1〉 H y y ⊕ f(x)

↑ ↑ ↑ ↑
|Φ0〉 |Φ1〉 |Φ2〉 |Φ3〉

Figure 9: Quantum circuit for Deutsch's algorithm. Q̂f is the query operator gate. (See
�gure 7)

Figure 9 shows the quantum circuit for Deutsch's algorithm. The input state

|Φ0〉 = |01〉 (11)

is sent through two Hadamard gates and gives

|Φ1〉 =
|0〉+ |1〉√

2

|0〉 − |1〉√
2

. (12)

Equation 8 shows that applying Q̂f to the state |x〉 1√
2
(|0〉−|1〉) results in (−1)f(x) |x〉 1√

2
(|0〉−

|1〉). Applying Ûf |Φ1〉 gives two possibilities:

|Φ2〉 =

± |0〉+|1〉√

2

|0〉−|1〉√
2

if f(0) = f(1)

± |0〉−|1〉√
2

|0〉−|1〉√
2

if f(0) 6= f(1).

(13)

Applying a Hadamard gate on the �rst qubit again yields:

|Φ3〉 =

± |0〉 |0〉−|1〉√

2
if f(0) = f(1)

± |1〉 |0〉−|1〉√
2

if f(0) 6= f(1).

(14)

7/18

Measuring the �rst qubit state always gives |0〉 or |1〉 as an outcome. Through this, it is
possible to �nd out whether or not the function is the same for every x. The quantum
algorithm for this evaluation is faster than a classical one which would need at least two
evaluations of f(x). [3]

4 Grover's Algorithm

A computer's searching process for elements in a database can be very time-consuming.
Grover's algorithm is a fast quantum search algorithm which is also known as quantum
search database algorithm. When searching a domain of size N with M solution elements

the quantum search requiresO(
√

N
M) steps whereas classical algorithms require in average

O(0.5NM) steps. [7]

Ô X̂

Ŷ

|0〉⊗n /n H⊗n

Oracle

|x〉 → (−1)f(x) |x〉

/n H⊗n
|0〉 → |0〉
|x〉 → − |x〉
x > 0

/n H⊗n

w
ork

q
u
b
its

...
...

...

↑ ↑ ↑ ↑
|Φ0〉 |Φ1〉 |Φ2〉 |Φ3〉

Figure 10: Grover's operator Ĝ consisting of the Ô and the X̂ operator. (Ĝ = X̂Ô) The
'/n' through the wire represents a set of n-qubits.

Grover's algorithm consists of two main operations. The Oracle operator Ô and the
'inversion about the mean' operator X̂. Figure 10 shows the connection of these two.
Basically, there is a wave function with all possible indices of the search domain entries
superpositioned. The algorithm transforms the amplitudes of the search solutions in a
way that their probability of getting measured increases whilst the amplitude of all non-
solution indices decreases. In section 4.2 and 4.1 the Oracle Ô and the operator X̂ get
described. One Grover iteration is Ĝ = X̂Ô.
Due to the fact that quantum operations always have to be reversible there is always
at least one work qubit for this algorithm. (See section 2) An example of a work qubit
would be the |y〉 qubit in �gure 7. This qubit is only needed for the query operator to
�ip the amplitude for solutions of the function f .

8/18

4.1 Oracle Ô

O(
√

N
M)

|0〉 /n Ĥ⊗n

Ĝ Ĝ Ĝ

. . .

Ĝ

. . .

. . .

. . .

w
ork

q
u
b
its

...
. . .

. . .

︷ ︸︸ ︷

Figure 11: Grover's algorithm. The '/n' through the wire represents a set of n-qubits.

Figure 11 shows iterations of the Grover operator. The last step is the measurement
of the wave function which ideally gives the solutions. In subsection 4.3 there is a step
by step analysis of the operations inside a Grover operator.

4.1 Oracle Ô

To understand the concept of the algorithm it is possible to treat the Oracle Ô like a
black box whose only task is to �ip the amplitude of the search solutions by 180◦ using
quantum parallelism. (See section 3.1.1) Nevertheless, this section will specify the Oracle
and give some simple examples.

4.1.1 Oracle function f

As described in section 3.1, it is possible to query a function simultaneously for more
than one value. For Grover's algorithm it is assumed that there is an unsorted list with
a domain of 2n entries. In addition to this, there is a function f(x) which gives the
element of the lists entry with the index x whereas x ∈ {x0, x1, ..., x2n−1} is the binary
representation of a natural number N . Searching is de�ned as �nding out at which
indices x the list entry is y. For this there needs to be another function fy that queries
f(x) and returns 1 if the list entry equals y and 0 if it does not.

fy(x) =

{
0 if f(x) 6= y

1 if f(x) = y
(15)

These functions implemented are the preconditions for an Oracle. [1]

4.1.2 Phonebook example

M. Charemza gives an example of how the Oracle functions can be seen.1 He wrote that
the unsorted list can be compared to the entries in a phonebook. Each row on the list
represents an entry in the phonebook, the telephone number, with the index xi. The
only way to �nd a certain telephone number is by checking each line and �nding out

1See: An Introduction to Quantum Computing [1], P.46

9/18

4.2 X̂ Operator

if the telephone number is equal to the wanted one. The current place where checking
the line is x and the number we want to �nd is y at position x. The phonebook itself
represents fy and checking for each line is fy(x) which results in 1 if the line has the
right number, and 0 if it has not.

4.2 X̂ Operator

This operator is also called 'inversion about the mean' operator. It consists of the oper-
ations

X̂ = Ĥ⊗nŶ Ĥ⊗n. (16)

The operator Ŷ �ips the amplitude for every qubit by 180◦ except the |0〉 qubit.

Ŷ = 2 |0〉 〈0| − 1 (17)

Applying the Ĥ⊗n on both sides gives the X̂ operator:

X̂ = 2 |Φ〉 〈Φ| − 1. (18)

The state |Φ〉 is the same as in equation 9. In section 4.4 the geometrical relevance of
this operator gets discussed.

4.3 Step by step analysis

The change of the single states of one Grover iteration Ĝ will be described using the
marked states at the bottom line of �gure 10. The function of the single operations will
be discussed in the next subsections. The starting state is:

|Φ0〉 = |0〉⊗n ⊗ |work qubits〉 . (19)

For reasons of convenience the ⊗ |work qubits〉 will be left out for the other parts. After
applying the Hadamard gate to all n gates there is a superpositioned state of every index.

|Φ1〉 =
1√
2n

2n−1∑
x=0

|x〉 (20)

To understand the single steps it is assumed to know that out of 2n = N elements there
are M solutions to the search problem. Therefore, the wave function is split into two
parts. The sum with the ′ indicates the elements which are not a solution of the problem
and the ′′ indicates the solution elements.

|α〉 =

′∑
|x〉 and |β〉 =

′′∑
|x〉 (21)

The same wave function of equation 20 with the new variables is:

|Φ1〉 =
1√
2n

(|α〉+ |β〉). (22)

In the next step the Oracle Ô gets applied and gives:

|Φ2〉 =
1√
2n

(|α〉 − |β〉). (23)

10/18

4.4 Geometrical visualization

At last the result of the X̂ operation yields:

|Φ3〉 =
1√
2n

[(
2((N −M)−M)

N
− 1

)
|α〉+

(
2((N −M)−M)

N
+ 1

)
|β〉
]
. (24)

By analyzing the prefactors it is already evident that the |β〉 states prefactor increases
whilst the other decreases.

4.4 Geometrical visualization

Figure 12: The geometrical visualization of one Grover iteration.

For a geometrical visualization two normalized states get de�ned. (|α〉 and |β〉 are de�ned
like in equation 21.)

|x〉 =
1√

N −M
|α〉 and |y〉 =

1√
M
|β〉 (25)

Then |Φ1〉 is

|Φ1〉 =

√
N −M
N

|x〉+

√
M

N
|y〉 (26)

By applying the Oracle Ô this vector is mirrored around the |x〉 axis.

|Φ2〉 =

√
N −M
N

|x〉 −
√
M

N
|y〉 (27)

The X̂ gate transforms the vector |Φ2〉 into this state:

|Φ3〉 =

(
2N − 4M

N
− 1

)√
N −M
N︸ ︷︷ ︸

= C1

|x〉+

(
2N − 4M

N
+ 1

)√
M

N︸ ︷︷ ︸
= C2

|y〉 (28)

11/18

4.5 Iteration and time analysis

Because all of the states |Φi〉 are normalized it is possible to say that√
N −M
N

= cos(ϑ) and

√
M

N
= sin(ϑ). (29)

That transforms |Φ1〉 into

|Φ1〉 = cos(ϑ) |x〉+ sin(ϑ) |y〉 (30)

and |Φ3〉 into
|Φ3〉 = cos(3ϑ)︸ ︷︷ ︸

= C1

|x〉+ sin(3ϑ)︸ ︷︷ ︸
= C2

|y〉 . (31)

This makes it graphically comprehensible that the X̂ gate mirrors the |Φ2〉 state around
the |Φ1〉 state. (Figure 12 shows the vector states |Φi〉) Therefore it can be said that:

Ĝk |Φ1〉 = cos((2k + 1)ϑ) |x〉+ sin((2k + 1)ϑ) |y〉 . (32)

In this base one Grover iteration equals the matrix:

Ĝ =

(
cos(2ϑ) −sin(2ϑ)
sin(2ϑ) cos(2ϑ)

)
(33)

The probability to measure one of the solutions after k iterations is:

Psol = |sin((2k + 1)ϑ)|2 (34)

4.5 Iteration and time analysis

With equation 32 the number of necessary iterations for reasonable measurement results
can be found out. It is the goal to �nd k the number of iterations where the vectors
projection on the |y〉 axis is maximized. Therefore, the angle (2k + 1)ϑ needs to be as
close to π

2 (90◦) as possible. Assuming that M ≤ N
2 the following approximation is used:

ϑ = sin−1

(√
M

N

)
≈
√
M

N
. (35)

Setting (2k + 1)
√

M
N = π

2 gives an upper bound for k.

k ≤ π

4

√
N

M
(36)

This shows that Grover's algorithm needs to perform O(
√

N
M) iterations to yield a solu-

tion of the search with high probability. [8]
If M ≥ N

2 the number of iterations needed by the search algorithm increases with M .
There are search tasks where it is not known whether the number of solutions M is
greater or smaller than N

2 . There is an approach which helps to prevent the case that the
iterations increase. The idea is to double the number of elements in the search space by
adding an extra qubit. (2N = 2n+1) As a consequence of that, always less than half of

12/18

4.6 Logic circuit

the elements are solutions. [3] Running the search algorithm with that augmented input
register gives a new upper bound for the iterations k:

k ≤ π

4

√
2N

M
(37)

This approach still increases the number of iterations but helps keeping track of how
many iterations are needed.

4.6 Logic circuit

A boolean function of a logic circuit has the same constraints and properties as the
Oracle function f . A boolean function maps: fB : Bn → B, where B = {0, 1}. When
implementing a boolean function as the Oracle function, the truth table of the boolean
function can be seen as the list with all the 2n binary combinations as an index. The
list entry would be 0 if the index is not a solution of the boolean function and 1 if the
index is a solution. Due to the outcome which is only 1 and 0 the boolean function does
not need a further constraint like fy. It always searches for the entry 1. As an example,
suppose to have the boolean function fB = (a ∧ b) ∧ c.

Table 1: The truth table of the boolean function fB = (a ∧ b) ∧ c.
a b c fB
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

13/18

4.6 Logic circuit

Implementing this function into an Oracle looks like that:

fB

|a〉 •
|b〉 •
|c〉 •

|0〉 N̂ •

|0〉 N̂ •

|1〉 Ĥ

↑ ↑
|Φ0〉 |Φ1〉

Figure 13: Boolean function fB implemented into the Oracle operator. The dashed line
boxes are the AND-gates. (See �gure 6 a)

The starting state is:
|Φ0〉 = |abc〉 ⊗ |001〉︸ ︷︷ ︸

work qubits = |x〉

(38)

whereas the last three qubits are work qubits. After the application of the new Oracle
gate the state is:

|Φ1〉 = (−1)fB(a,b,c) |a, b, c〉︸ ︷︷ ︸
query qubits

∣∣x′〉 . (39)

This is a valid Oracle wavefunction, whereas only the query qubits are relevant for the
consecutive algorithm.

Matlab simulation:

The evolution of the wavefunction after each Grover iteration can be simulated with a
Matlab program.1 The Oracle, as it is in �gure 13, is used for this Grover's algorithm
simulation. In this case it is known that there is a search space of 8 elements with one
solution. (See truth table 1) Through this it is possible to predict the number of Grover
iterations needed to �nd a solution with the help of equation 36 which was derived in
section 4.5.

k ≤ π

4

√
N

M
= 2.22⇒ 2 iterations (40)

There will be listings of the code output for each iteration. The starting state is equiva-
lent to |Φ1〉 of �gure 10 and the last three qubits are the work qubits.

| phi1> = 0.35355|000001 > + 0.35355|001001 > + 0.35355|010001 >
+ 0.35355|011001 > + 0.35355|100001 > + 0.35355|101001 >
+ 0.35355|110001 > + 0.35355|111001 >

1E-Mail tobiaskugel@student.tugraz.at for the source code and simulation graphs

14/18

4.7 Quantum counting

Applying the Grover operator gives:

G∗ | phi1> = 0.17678|000001 > + 0.17678|001001 > + 0.17678|010001 >
+ 0.17678|011001 > + 0.17678|100001 > + 0.17678|101001 >
+ 0.17678|110001 > + 0.88388|111001 >

The probability to measure the already known solution |111〉 |x′〉 is already Psol =
|0.88388|2 ≈ 0.78 increased after one operation. The second operation gives:

G∗G∗ | phi1> = − 0.088388|000001 > − 0.088388|001001 > − 0.088388|010001 >
− 0.088388|011001 > − 0.088388|100001 > − 0.088388|101001 >
− 0.088388|110001 > + 0.97227|111001 >

The probability of measuring the solution |111〉 |x′〉 is now Psol = |0.97227|2 ≈ 0.95
which is already a reasonable value for the predicted two operations. Applying the op-
erator one more time gives:

G∗G∗G∗ | phi1> = −0.30936|000001> − 0.30936|001001 > − 0.30936|010001 >
− 0.30936|011001 > − 0.30936|100001 > − 0.30936|101001 >
− 0.30936|110001 > + 0.57452|111001 >

The probability to measure the solution Psol = |0.57452|2 ≈ 0.33 decreases again which
means that doing more operations does not give a better result. By knowing the number
of solutions and the size of the search space it is possible to �nd the solutions of the
boolean function even without any information about its composition before.
A more complex problem occurs if there is an Oracle with a completely unknown boolean
function implemented. The goal is to �nd all the queries which are solutions to the, at
this point unknown, function. With the help of Grover's algorithm it is possible to �nd
the queries which are a solution of the problem with less operations than in a classical
way. For this application of the algorithm the number of solutions is not known in
advance. The so-called phase estimation technique gives a prediction about the number
of it. It will be discussed in section 4.7.
Another application for Grover's algorithm is �nding the solutions of a 3-SAT1 problem.
Finding solutions to these problems within a reasonable amount of computation time is
still one of the most challenging problems in computer science. S.T. Cheng and M. H. Tao
wrote an article about making Grover's algorithm work for solving 3-SAT problems. [9]
A big disadvantage of using boolean functions in quantum algorithms is that the number
of total qubits grows very fast. For example, the simple circuit of �gure 13 needs already
two work qubits to be realized. The more qubits there are in a quantum system the
harder it is to realize it in an experiment.

4.7 Quantum counting

There are searching tasks where the number of solutions M is not known in advance.
Combining Grover's algorithm with the phase estimation technique, which is based upon
the quantum Fourier transformation, gives us the possibility to estimate the number of
solutions M .

1A complex boolean function. SAT is an abbreviation for satis�ability.

15/18

4.7 Quantum counting

4.7.1 Phase estimation

Assume there is an unitary operator Û with the eigenvector |u〉 and the eigenvalue e2πiϕ.
The goal of the phase estimation algorithm is to estimate ϕ. The algorithm uses two
registers. The �rst contains t qubits with the initial state |0〉. The size of this register
depends on the number of digits of accuracy we want to estimate ϕ and the probability
we wish the phase estimation to be successful. The second register needs as many qubits
as the operator Û needs to operate. The phase estimation is performed in three stages.
The �rst contains out of these operations:

|Φ0〉 |Φ1〉
↓ ↓

|0〉 Ĥ . . . • 1√
2
(|0〉+ e2πi(2

t−1ϕ) |1〉
...

...
...r1 |0〉 Ĥ • . . . 1√

2
(|0〉+ e2πi(2

1ϕ) |1〉

|0〉 Ĥ • . . . 1√
2
(|0〉+ e2πi(2

0ϕ) |1〉

|ΨUr2〉 /n Û20 Û21 . . . Û2t−1 |ΨUr2〉
′

Figure 14: The �rst stage of the phase estimation circuit. r1 marks the �rst register with
t qubits. The state |ΨUr2〉 is the state of the second register. The '/n' through the wire
represents a set of n-qubits.

As seen in section 4.4, it is possible to write every state of the second register of �gure
14 as a superpositioned state of the eigenvectors of the operator Û . The �rst stage of this
algorithm maps the phasefactors of the new state onto the qubits of the �rst register.
The �rst state |Φ0〉 of �gure 14 is:

|Φ0〉 = |000〉 ⊗ |ΨUr2〉 (41)

and after applying the gates we yield:

|Φ1〉 =
1√
2t

2t−1∑
x=0

e2πiϕk |x〉 ⊗ |ΨUr2〉
′

(42)

|ΨUr2〉
′
is the state of the second register after the application of the gates. The second

stage is an application of an inverse Fourier transform on the �rst register. The third
and �nal stage is to measure the state of the �rst register and evaluate ϕ. [3]

4.7.2 Grover quantum counting

One Grover iteration in the basis of |x〉 and |y〉 which was used for the geometrical
visualization in section 4.4 is equal to the matrix (equation 33):

Ĝ =

(
cos(2ϑ) −sin(2ϑ)
sin(2ϑ) cos(2ϑ)

)

16/18

4.7 Quantum counting

The eigenvalues of this matrix are

λ1 = ei2ϑ and λ2 = ei(2π−2ϑ). (43)

For an easier analysis of the next calculations the elements of the second register are
doubled by adding one qubit. Using equation 29: sin2(ϑ) = M

2N gives the correlation
between the angle and the search elements M and N . Applying the phase estimation
circuit of �gure 14 gives an estimate of ϑ to an accuracy of m bits, with a probability of
success of at least 1− ε. To achieve this there need to be t = m+ [log(2 + 1

2ε)] qubits in
the �rst register.

|0〉 Ĥ . . . •

F−1

R
egister

1

...
...

|0〉 Ĥ • . . .

|0〉 Ĥ • . . .

|0〉 Ĥ

Ĝ20 Ĝ21

. . .

Ĝ2t−1

. . .

|0〉 ĤR
egister

2

|0〉 Ĥ

|0〉 Ĥ

|0〉 Ĥ

Figure 15: The circuit for �nding the number of solutions of a search problem. Register 1
marks the �rst register with t qubits. Register 2 marks the Grover algorithm register
with n+1 qubits. F−1 is the inverse Fourier transform.

Figure 15 shows the use of Grover operations in a phase estimation algorithm like
�gure 14. The measurement gives an estimate of the angle ϑ. Using the correlation
sin2(ϑ) = M

2N the number of answers is:

M = sin2(ϑ)2N. (44)

The absolute error of that value has the upper bound

|∆M | <
(√

2MN +
N

2m+1

)
2−m. [3] (45)

17/18

References

References

[1] M. Charemza. An introduction to quantum computing. - (2005).

[2] Prof. Dr. Arrigoni, Einführung in Quantencomputer. - (2010).

[3] M. A. Nielsen, I. L. Chuang. Quantum Computation and Quantum Information:

10th Anniversary Edition. Cambridge University Press, 2010.
doi:10.1017/CBO9780511976667

[4] R. B. Griffiths. Hilbert Space Quantum Mechanics. - (2014).

[5] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, H. Weinfurter. Elementary gates for

quantum computation. Phys. Rev. A 52 (1995) 3457.
doi:10.1103/PhysRevA.52.3457

[6] Y. Shi. Both To�oli and controlled-NOT Need Little Help to Do Universal Quantum

Computing. Quantum Info. Comput. 3 (2003) 84.

[7] J. A. Jones, M. Mosca, R. H. Hansen. Implementation of a quantum search

algorithm on a quantum computer. Nature 393 (1998) 344.
doi:10.1038/30687

[8] M. Boyer, G. Brassard, P. Høyer, A. Tapp. Tight Bounds on Quantum Search-

ing. Fortschritte der Physik 46 (1998) 493.
doi:10.1002/(SICI)1521-3978(199806)46:4

[9] S.-T. Cheng,M.-H. Tao. Quantum cooperative search algorithm for 3-SAT. Journal
of Computer and System Sciences 73 (2007) 123 .
doi:10.1016/j.jcss.2006.09.003

18/18

