Decoherence effects in Qubits

Literatur: A. Fisher notes (this should be enough): www.cmmp.ucl.ac.uk/~ajf/course_notes.pdf -(Mainly Sec. 4 there) Book by Breuer and Petruccione (you can borrow it from me) My quantum computer script (or references therein) http://itp.tu-graz.ac.at/~arrigoni/vorlesungen/quantumcomputer/qucomp.pdf Hamiltonian 1 Oubit: $H = E | 1 > \langle 1 |$ Electromagnetic field: $\sqrt{(l)} = f(l) |1\rangle \langle 0| + f(l)|0\rangle \langle 1|$ $H = H_0 + V(E)$ Example: $f(t) = Q \quad \ell \quad \Rightarrow \text{ resonance}$ Rabi oscillations (see script), realisation of NOT and Hadamard gates $|0\rangle = |S_2 = -\frac{1}{2}\rangle$ You can also use the spin basis $|1\rangle = |5_2 = +\frac{1}{2}$ So that $H = \frac{\xi}{5}G_{Z} + \frac{\xi}{5} + f(\xi)G_{+} + f'(\xi)G_{-}$

Decoherence and Loss : Open Quantum systems description via density matrix $\begin{pmatrix} 2 \\ 2 \\ \end{pmatrix}$ $\frac{d\ell}{dt} = -i \left[H, \ell \right]$ without dissipation Hint: use the "interaction representation" also called "rotating frame" 14/R = e iHot 14> Po = l'Hot Pl-iHot write new equation for C_{ρ} You can also work numerically if you want, we need it for the next part

2 effects of dissipation (see fisher chap 4) we consider here a very simple version with one Lindblad operator $\frac{d \ell}{d \ell} = -i \left[H, \ell \right] + \delta \left(L \ell L^{\dagger} - \frac{7}{2} \left\{ \ell, L^{\dagger} L \right\} \right)$ てくくら for dissipation: $| = 6^{-}$ You can work numerically (probably it still works analytically) • Study time evolution of density matrix without E field $(V_{\mathcal{IO}})$ See also fisher ullet It can be convenient to parametrize $\mathcal C$ according to fisher, Eq. 17 Start from a pure state 147 = Q10>+lr1) Plot several physical quantities Population of excited state (A) Tr C(K) 11) < 11 • Measure of coherence: Do time evolution, then transform with Hadamard then measure the difference of population of 177 AND 10Do the same with the phase channel $\begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix}$

Add full hamiltonian incuding electric field \square Start in and try to produce Hadamard or Not gate in the presence of dissipation Plot physical quantities versus time Plot "error" i.e. "process tomography": deviation from desired result V ZEX. Error All this is probably enough for your Bachelor. If you want to do more one could do the same with two qubits and analyze, e.g. entanglement.