
Bachelorarbeit
Institut für Theoretische Physik

Computational Physics

Visualization of a simplified

terrestrial planet formation model

including gravitational force and

collisions

Advisor:
Univ.-Prof. Enrico Arrigoni

Theresa Mayer

Mat.Nr. 11777178



Visualization of terrestrial planet formation Theresa Mayer

Sommersemester 2022

2



Visualization of terrestrial planet formation Theresa Mayer

Contents

1 Motivation 5

2 Introduction 5
2.1 Terrestrial Planet Formation . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Theoretical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 N-body problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Analytical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Calculations and Results 9
3.1 Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Integration algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Initial condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Two Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Effects due to simplifications . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Conclusions 20

5 Bibliography 21

3



Visualization of terrestrial planet formation Theresa Mayer

Abstract

In this thesis a simplified visualization of the terrestrial planet formation from planetary
embryos to planets is presented. The program is written in python and results are
visualized using vpython. The purpose is to develop intuition for the role of gravity and
collision in planet formation. To analyse the accuracy of the program the results are
compared with the analytic solution of the two body problem and the conservation of
integrals is tested.
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1 Motivation

The goal of thesis is to give a visual insight into the terrestrial planet formation. To
realise this a program calculating and visualizing the time evolution was written. To
analyse its accuracy the results are compared to the analytically solvable two-body
problem and the conservation of integrals is tested.
It should be noted, that this simulation is not intended to depict real formations of
planetary systems. There are two reasons for this. First, for a more realistic situation
one has to consider effects which come with large computational efforts which would go
beyond the scope of this thesis. Second, this simulation should serve as a tool to help
build intuition for the problem.

2 Introduction

The aim of this thesis is to illustrate how a planetary system evolves from a system
containing many planetary embryos to a system of few planets. A very simplified ap-
proach is chosen, which only considers the classical gravitational force between massive
objects. All collisions are handled as total inelastic collisions. The implications of these
simplifications will be discussed in section 3.5.

2.1 Terrestrial Planet Formation

The following information is taken from [5]. See also [7] for more information.
In the early stages the sun is surrounded by a protoplanetary disk consisting of gas as
well as dust grains and ice particles. The first growth stage is dominated by hit and
stick collisions between dust grains and ice particles, forming particles up to millimeter
and centimeter sizes.

One idea to explain the growth up to meter and kilometer sizes, objects known as
planetesimals is formation by gravitational collapse.
To reach the size of planetary embryos there are two different growth regimes. Either
by planetesimal-planetesimal collision or by planetesimals accreting the remaining small
dust pebbles. Pebble accretion can be much faster and may, therefore explain the for-
mation of gas giant cores, since these have to form before the gaseous disk dissipates.
In the third stage planetary embryos evolve to planets. Typical masses for planetary
embryos are between lunar and Mars-like masses. This growth stage is marked by violent
giant collisions. This thesis focuses on the simulation of this large stage.
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2.2 Theoretical description

In the following the necessary relations for computation are given, taken from [2], see
also [9],[3].

2.2.1 N-body problem

In this thesis the case of a planetary system where N-1 objects revolve around one sun
is realized. The system is described by N objects interacting with each other via a
gravitational force. This is called the N-body problem.
According to Newton’s laws

mνaν = Fν (1)

Fν =
N∑
µ6=ν

Fνµ (2)

Fνµ = −Gmνmµ

r2
νµ

r̂νµ (3)

Here Fν is the total force acting on mν , which is given by the sum over the individual
forces between all objects Fνµ, in this case given by the gravitational force (3) and rνµ
points from mµ to mν .
This set of differential equations can not be solved analytically. Therefore, numerical
methods have to be used.
The choice of initial conditions for rν and ṙν are described in section 3.2.

2.2.2 Collisions

Collisions are considered to be inelastic. After a collision occurred instead of two objects
with masses m1 and m2 a new more massive object with M = m1 +m2 exists. The new
initial velocity is chosen in a way that conserves the total momentum.

m1v1 +m2v2 = Mv (4)

Furthermore, the center of mass (9) gives the new position of the new object. The
total energy and total angular momentum are not conserved, in the same way as given
by equations (5-7) during an inelastic collision, but transfered to internal energy and
angular momentum.
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2.2.3 Integrals

The planetary system considered is a closed system, i.e. no external forces, therefore
total momentum and total angular momentum are conserved. Furthermore, gravitational
forces are conservative and the total energy is conserved as well, while no collision occurs.
Consequently, the integrals are given by:

P =
N∑
i

miṙi = const. (5)

L =
N∑
i

mir× ṙi = const. (6)

E = T + U =

N∑
i

miṙ
2
i

2
− 1

2

N∑
ν,µ 6=ν

Gmνmµ

rνµ
= const. (7)

2.3 Methods

As mentioned above, there is no analytical solution for N > 3. For this reason, the time
evolution is calculated numerically. The program is written in python, see section 3.1
for more details. For the graphical simulation of the evolution of the system the vpython
(visual python) package was used.
As integration algorithm the Strömer-Verlet method was used. It is a two step algorithm
given by

ṙn+1/2 = ṙn−1/2 + a(rn)∆t

rn+1 = rn + ṙn+1/2∆t
(8)

For more details see [4]. In section 3.1.1 the advantages and disadvantages of this
algorithm are discussed in more detail.

2.3.1 Analytical solution

Kepler Problem

Here two objects interacting with each other via the gravitational force are considered.
The following arguments and relations are taken from [2] See also [9][3]
In three dimension two bodies have 2 · 3 = 6 degrees of freedom. However, there are
five conserved quantities: conservation of total momentum, total angular momentum
and total energy. Respectively, reducing the problem to: one particle, radial equation
(confined to one plain) and to a first order differential equation. The solution of the
differential equation can be given in form of an integral.
An analytic expression relates the two cartesian coordinates of one object, giving their
orbitals. This can be done using the following formulas.
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In the following the motion of the objects is restricted to the xy-plane and r1 and r2
describe the position of object 1 and 2 in cartesian coordinates. The relative coordinate
r and center of mass R are given by

R =
m1r1 +m2r2
m1 +m2

, r = r1 − r2 (9)

which can be related to r1 and r2 using

r1 = R +
m2

m1 +m2
r, r2 = R− m1

m1 +m2
r (10)

Using the Lagrange formalism, exploiting the conserved quantities and choosing cylin-
drical coordinates for the relative coordinates r = ρcos(φ)ex + ρsin(φ)ey + zez leads to
the following time dependent relations:

z(t) = 0 (11)

Ṙ = const. (12)

φ̇ =
l

µρ(t)2
(13)

ρ̇ =

√
2

µ

(
E − l2

2µρ(t)2

)
− U(ρ) (14)

as well as a relation between ρ and φ describing the orbital motion in the xy-plain

p

ρ
= 1 + εcos(φ) (15)

where

p =
l2

µα
, ε =

√
1 +

2El2

µα2
(16)

l ... total angular momentum
E ... total energy
µ ... reduced mass m1m2

m1+m2

α ... Gm1m2

There are three different forms of the orbital motion described by (16).

ε > 1 E > 0 Hyperbola

ε = 1 E = 0 Parabola

ε < 1 E < 0 Ellipse

(17)

For elliptical orbits ist is possible to find an expression for the period.

τ =
2πa

3
2√

G(m1 +m2)
, a =

p

1 − ε2
(18)
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3 Calculations and Results

3.1 Program

In this section a brief description of the program is given. It is written in python. The
program is a simple simulation of the evolution of an early planetary system containing
one star and planetary embryos. It takes into account the gravitational force and colli-
sions in the form of total inelastic collisions between all objects. The units are given in:
[t] = anno, [length] = AU , [mass] = msun.
The program can be split into three parts: creating the initial system, integrating over
time and simulating the results. To give an overview, the program will be explained in
the order of the program flow.

Initial system First, an intital random system is created, with parameters which can be
chosen according to section 3.2. The parameters are:

• minimal and maximal mass of initial planetary embryos

• mass of the star

• minimal and maximal minimal distance of planetary embryos from the star

• maximal eccentricity

• maximal inclination

Within these parameters the properties of the planetary embryos are chosen ran-
domly via a uniform distribution. The initial velocity of the sun is set to zero.
Since the planetary embryos from the protoplanetary disc they are on a Kepler
orbit with eccentricities and inclination according to [8].Therefore, the initial ve-
locities of the planetary embryos are calculated according to the two body problem
between sun and the current planetary embryo. Equations (9) through (16) are
used to calculate initial positions and velocities. For reasoning see section 3.2.
Radii of the objects are calculated with a defined density % = 10−10%earth, see also
section 3.2 for more details.

Time evolution In the second part the time evolution is calculated by using equation
(1-3) to calculate the acceleration of each object and the Strömer-Verlet algorithm
(see section 3.1.1). To calculate the first half step needed for the algorithm the
Euler method is used. The time interval from zero to the a specified end time is
discretized into finite steps of dt. The following procedure is successively repeated
for each time step.
First, the algorithm checks whether or not a collision occurred. A collision takes
place, if the radii of two objects overlap more than 25%.
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Figure 1: Screenshot of the simulation. Simulation parameters: mmin = 3.7 · 10−8msun,
mmax = 6.3 ·10−8msun, dmin = 0.5AU , dmax = 5AU , mstar = 1msun, ε = 0.02,
inclination = 1, dt = 0.01a. Left: t = 1a, Right: t = 5002a

No collision The new accelerations are calculated using equation (1-3). The an-
alytically conserved quantities energy, total angular momentum and total
momentum are evaluated for each time step. If the current time is within
the time interval for which the results are graphically simulated, the current
position is saved for later use.

Collision In case of a collision the new initial conditions are calculated. For the
object with highest mass the new properties are calculated, all other objects
involved in the collision are deleted. Information from previous time steps
is retained. The new mass is the sum of the masses of the objects involved
in the collision and the new radius is calculated accordingly. The center of
mass R = 1∑

imi

∑
µmµrµ[2] is evaluated as the new position and the new

velocity is chosen to satisfy momentum conservation Ṙ = 1∑
imi

∑
µmµṙµ[2].

Afterwards the program follows the same procedure as if no collision occurred.

Simulation For the simulation the package vpython is used. Figure 1 shows two snap-
shots of the planetary embryos orbiting the sun. One at the beginning at t = 1
and another one after some time has past at t = 100. The red axes represents the
xy-plane while the grey axis represents the z-direction. As one can see in Figure
1, after 100 years collisions transpired and the number of planets decreased, while
their masses and consequently their radii increased.
Next to the simulation of the time evolution, three graphs, see figure 2, show the
analytical conserved quantities total momentum, total angular momentum and to-
tal energy. The red dots represent collisions. Total angular momentum and total
energy are not conserved after collisions.
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Figure 2: Screenshot of the graphs representing the conserved quantities in the simula-
tion. Simulation parameters: mmin = 3.7 · 10−8msun, mmax = 6.3 · 10−8msun,
dmin = 0.5AU , dmax = 5AU , mstar = 1msun, ε = 0.02, inclination = 1,
dt = 0.01a. Top left: Total momentum, Top right: Total angular momentum,
Bottom: Total energy
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3.1.1 Integration algorithm

The Strömer-Verlet-algorithm was chosen since it conserves momentum and angular
momentum exactly. It is also symplectic. The Strömer Verlet method is a two step
method. In contrast to the second order Runge-Kutta method the global error grows
linearly instead of quadratic.[4]
It is possible to find algorithms which conserve energy exactly, however this often results
in higher computational costs and it is not possible to conserve sympecticity, energy and
momentum simultaneously.[10]

3.2 Initial condition

An estimate for the number of planetary embryos forming during terrestrial growth is
given in [8] at 30-50 for massive objects or 500-1000 if the average mass corresponds to
one lunar mass. Planetesimals were neglected in this thesis due to computational time.
For simplicity a uniform distribution of mass was assumed, not considering a surface
density profile as in [8]. Minimal and maximal planet embryos masses where chosen
in accordance with the fact, that at this stage the primordial Solar System contained
5mearth of solid material between the orbits of Mercury and Jupiter.[5] Another con-
straint is the lunar mass as a minimal mass.[5]
Maximal eccentricities of 0.02 and maximal inclination of 1° as well as distances to the
sun between 0.5AU and 5Au have been chosen according to [8]
The unrealistic value of the density % = 10−10%earth is chosen in such a way, that the
planetary embryos remain visible during the simulation and also to allow for the forma-
tion of planets within a much smaller timescale, since collisions are more likely, than a
more realistic one of the order or 108 years mentioned in [6].

3.3 Accuracy

The accuracy of the results are examined by comparing to the analytical solution of the
two body problem and studying whether or not the integrals are conserved.

3.3.1 Two Body Problem

To test the accuracy of the program, the results are compared to the analytical solution
of the two body problem. In the following the results are shown for different time steps
dt, as well as the effect of different initial conditions.
In this section the masses are given by m1 = 1msun and m2 = 10−5msun representing a
planet revolving around the sun. The integration is carried out for up to 104 years. The
initial conditions for φ = 0 are calculated given a specific ρ(0) = ρmin and ε. Equations
(9) through (16) are used to calculate initial positions and velocities of the two bodies.
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Figure 3: The figure shows the evolution of different quantities over time obtained with
different time steps dt for the two body problem. Maximal ρdiff shows the
maximal difference of ρ compared to the analytic solution over time. Period
describes the sidereal period of the planet, error bars are given by the size of
one time step. Energy averaged over one Period shows the average of E in
units of msunAU2

a2
. Trajectory shows the trajectory of r over 100 Periods, to

illustrate how the trajectory diverges from the analytic solution. The black
line in Period and Trajectory give the analytic solution.

In figure 3 different quantities are shown to evaluate the accuracy of the algorithm for var-
ious time steps. ρ and ε where chosen according to typical orbits in the solar system , see
section 3.2. To estimate the divergent from the analytic solution the difference between

the numeric and analytic values of ρ(φ) are compared: ρdiff =
|ρanalytic(φ)−ρnumeric(φ)|

ρanalytic(φ) .
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Table 1: maximal error in ρ after 104 years with ρmin = 1 and ε = 0.02
dt: size of time step, ρdiff : error of ρ

dt [years] ρdiff [%]

0.1 23.17
0.05 8.94
0.01 4.27

0.005 4.12
0.0025 4.09

As can be seen from the first graph in figure 3 the error of ρ(φ) reaches its maximum
after some finite time smaller than 104 years. The larger dt the faster the maximum
error is reached and the larger its value.
Equation (15) only defines the trajectory and not the evolution over time. To see if the
time revolution of the numeric solution is relatable to the analytic one the period of
one orbit is checked. For the numerical solution this was calculated by evaluating the
time until φ = 0, the analytic value is calculated with (18). The time necessary for one
full orbit should not change over time. The period seems to be stable when using the
Strömer-Verlet method for the two body problem, with some error due to the finite size
of the time step. However, it only comes close to the analytical value for dt ≤ 0.01
The Strömer-Verlet algorithm in general does not conserve energy, see section 3.1.1. Es-
pecially for dt > 0.01 large oscillation can be seen even for the averaged energy. Smaller
values of dt seem to resemble the integral of energy more closely.
Due to the arguments above in general dt will be chosen ≤ 0.01.
The runtime is of O( 1

dt), see section 3.4. For a time > 103 years errors for dt =
0.01, 0.005, 0.0025 are of the same order of magnitude, as can be seen in figure 3. Table
3.3.1 shows that for dt < 0.01 there is no significant decrease of the maximum error.
Therefore, to minimize computational cost unless stated otherwise dt = 0.01 is used.

In figure 4 one can see two different effects contributing to the error. Parameters have
been chosen for illustrative purposes, the behaviour is analogous for ρ > 0.3, ε < 0.9 and
dt = 0.01.
First, the shapes of the ellipses don’t overlap. As one can see from equation (16) the
eccentricity depends on the energy. The numerically calculated energy however, oscil-
lates with the orbital period τnumeric = 3.09a. Since at τnumeric

2 the energy is higher than
Eanalytic = Enumeric(0) the turning point ρmax is larger than for the analytic solution.
The fact that energy is not conserved with the Strömer-Verlet algorithm (see section
3.1.1) is therefore, responsible for the deformation of the ellipses.
Furthermore, the numeric trajectory has apsidal precession. The analytic solution of the
mere two body problem does not have precession. The apsidal precession arises due to
small perturbations[2] in this case caused by the finite time step size. While for the two
body problem it is clear, that especially for large ε this will lead to substantial deviation
from the analytic solution its effect on the n-body problem isn’t. Since, for n-planetary
bodies revolving around the sun the interacting force between the planets can be seen as
a perturbation of the potential of the two body problem.[2] It is difficult to say, whether
or not the apsidal precession due to the finite step size is small compared to the apsidal
precession because of additional planets in the system.
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Figure 4: Trajectory and energy for ρmin = 0.5AU , ε = 0.7, dt = 0.03a. The error on
the left side is large due to a larger dt and larger ε than in figure 3. On the
right side the oscillations in energy, due to the errors of numerical integration
are displayed.

As can be seen from Figure 5 the accuracy of the calculations strongly depends on the
initial conditions. A smaller distance leads to larger errors. One reason for this is, that
the planets mass is constant. Therefore, the one with the smaller ellipse will be faster
and a larger distance is covered during each time step dt. Since, the acceleration depends
on the position, this will make the numerical integration less accurate.
The dependency on ε is not as easily explained. The higher the eccentricity the larger
the oscillations of energy. For the three different eccentricities these change by at least
one order of magnitude. A change in energy will also lead to a deformation of the ellipse
as can be seen in 4. Eccentricities and energy are connected through equation (16)
For ε = 0.00, 0.02 the errors are of the order of 10−2 for the trajectories and relative
energy oscillations are not larger than 10−3. For the initial conditions relevant for this
system (see section 3.2) the results are therefore, viable. Per contra, larger eccentricities
have to be treated with care and minimal distances have to be considered to estimate
the solutions viability. Since, adding planets to a one planet sun system can be treated
as a perturbation [2], a change in order of magnitudes of ε is deemed to be unlikely.
However, this assumption may need further investigation.
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Figure 5: This figure shows the maximal ρdiff and energy for ε = 0.00, 0.02, 0.7 and
ρmin = 0.5, 1, 5 AU.The system was integrated over 10000 years. On the left
side maximal ρdiff is shown on the right side the total energy can be seen.
The inlays are magnified snippets to show the energy oscillations.

3.3.2 Integrals

Analytically total momentum, total angular momentum and energy should be conserved,
see equation (5-7). To estimate the accuracy of the program over time a system with 50
planets and no collisions was evaluated over 100 000 years. The corresponding integrals
are shown in figure 6.
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Figure 6: Integrals over a time of 100 000 years, for 50 planets and no collisions. Average
energy is the energy averaged over 100 years.

As discussed in section 3.1.1 the Strömer-Verlet method conserves total momentum and
total angular momentum. The maximal fluctuations from 0 in P are of order 10−17 and
the maximal relative fluctuation in L are of the order of 10−9. This is also reflected with
the upper two graphs in figure 6.
In the two lower graphs in figure 6 one can see that energy as well as the averaged
energy both drift to higher values and the solution becomes unstable. However, the
relative change at t = 105a is 6.3% and for t = 5 · 104a is 2.8%. Below t = 2 · 104a the
relative error is below 1%. So while the energy is not stable, results up to t = 5 · 104a
preserve energy well.
The reason for the jumps in energy are not clear. Since, no collision occured the change
in energy must be due to numerical errors. One reason for this large jumps instead
of a continuous might be the dependence of E on ε which is illustrated in figure 5. If
due to interactions with other planets or numerical error the eccentricity of an orbit was
increased significantly this may cause the energy to jump due to higher numerical errors.
If this is the case, allowing collisions may make the solution more stable, since according
to [8] collisions will circularize the orbit. However, this was not further investigated.
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Table 2: parameters and standard deviation
pi...parameters of polynomial

∑
i=0 pix

i, ∆pi...standard deviation of pi
p2 [s] ∆p2 [s] p1 [s] ∆p1 [s] p0 [s] ∆p0 [s]

with collision
t=10 000

0 - 8.3 · 10−2 0.3 · 10−2 166 4

with collision
t=1000

1.4 · 10−5 0.1 · 10−5 3.3 · 10−2 0.3 · 10−2 20 2

without collision
t=1000

1.86 · 10−2 0.07 · 10−2 −1.5 0.3 51 21

3.4 Runtime

There are two major parameters which affect the runtime. The number of time steps
and the number of planets.
Due to the program structure the program’s runtime goes linearly with the number of
time steps. The parameters determining the number of time steps are the step size and
the total time #steps = t

∆t .
The dependence on the number of planets n is not as straightforward. Without any
collisions between the planets the runtime is of O(n2) as can be seen from the second
graph in figure 7. This is due to the fact, that for calculating the gravitational force the
evaluation of a double sum over all planets is necessary.

However, allowing collisions drastically reduces the runtime. This allows the evalua-
tion for n O(103) and long time intervals O(104) years on a standard desktop computer
in a few minutes.
This change in behaviour of the runtime is due to the decreasing number of planets over
time. How large the effect is depends on the collision probability, which is indirectly
proportional to the density of a planet % and the width of the orbital radius distribution.
Furthermore, as can be seen from the first graph in figure 7 the behaviour changes from
quadratic to linear, when increasing the time by an order of magnitude. The indicated
change is a result of the change in collision frequency over time. Most planets collide
early and the number of planets reduces notably within the first few years. For longer
time intervals the relative time with many planets is therefore shorter.

The data points where fitted with different polynomials using the python polyfit function
for different degrees (up to O(n4)). The best results are given in Table 3.4.
In general it can be said, that the runtime is quadratic. However, allowing collisions will
reduce the runtime.
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Figure 7: Runtime with and without collision for a given time t. Except for the density
% parameters where chosen according to section 3.2. For the upper graph
% = 3 · 10−3msun

AU3 , for the lower one % = 1030msun
AU3 making collisions almost

impossible. Minimal distance to the sun is between 0.5AU and 5AU

3.5 Effects due to simplifications

In this section the possible effects of assumptions made during this thesis are discussed.

The lower densities of planets leads to a higher collision rate resulting in a faster forma-
tion time, than realistic scenarios where the timescale is of order 108[6].

The initial mass distribution can strongly affect the final formation process.[8][7] Us-
ing a density profile may therefore change the simulation outcome. Observations of
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protoplanetary discs show different possibilities for the surface density profile.[6]

Including a Jupiter like planet during terrestrial planet formation corresponds closer
to the situation during terrestrial planet formation in our solar system.[8] Including a
gas giant during terrestrial planets formation plays critical role in shaping the terrestrial
planets.[5]

Interactions with small objects like planetesimals are necessary for the low eccentric-
ity values seen in our solar system.[8] Damping due to drag from a dissipating disk may
also play a role in reducing eccentricities.[6]

Treating collision more accurately will also effect the outcome of the calculations.[1] If
hit and run collisions as well as fragmentation are included the resulting planets masses
are lower and eccentricities are smaller.

4 Conclusions

A program for the visualization of a simplified terrestrial planet formation process due
to gravitational force and collisions was written. Collisions were handled as totally in-
elastic. Strömer-Verlet was used as an integration algorithm.

Two pictures of the visualization can be seen in figure 1. As time progresses colli-
sions occur, which reduces the number of planets and increases their size.
The agreement of the simulation with the analytic solution of the two body problem
strongly depend on the chosen parameters. It improves with the distance to the star
and declines for high eccentricities.
Total momentum and total angular momentum are conserved, while for long integration
periods in the order of 104 years an upward drift in energy occurs.
In general the runtime for the N-body problem scales quadratically with the number of
objects, however allowing collisions affect this behaviour and reduces the runtime.

Possibilities for more realistic simulations include: considering the effects of surface den-
sity profile on the initial mass distribution, inserting a Jupiter like planet at the start of
the simulation, involving planetesimals and describing collisions more accurately.
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