Realistische Quantum Gates

Peter Pichler

27.06.2013

Inhaltsverzeichnis

- Einführung
 - Qubits
 - Quantum Gates
- 2 Realistische Funktion
 - Optimierung
 - Ergebnisse
- 3 Wechselwirkung mit zweitem Spin
 - Grundlagen
 - Ergebnisse
- Zusammenfassung

EINFÜHRUNG

Qubits

quantenmechanisch

Qubits

- quantenmechanisch
- 2 Niveau System

Qubits

- quantenmechanisch
- 2 Niveau System
- Superposition (Linearkombination)

Messung

Qubit im Zustand $|\psi\rangle=a\,|0\rangle+b\,|1\rangle$ Nach Messung: mit Wahrscheinlichkeit a^2 in Zustand $|0\rangle$ und mit Wahrscheinlichkeit b^2 in Zustand $|1\rangle$

Messung

Qubit im Zustand $|\psi\rangle=a\,|0\rangle+b\,|1\rangle$ Nach Messung: mit Wahrscheinlichkeit a^2 in Zustand $|0\rangle$ und mit Wahrscheinlichkeit b^2 in Zustand $|1\rangle$

Messung

Superposition wird durch Messung zerstört

• Spin $\frac{1}{2}$ -Teilchen

- Spin $\frac{1}{2}$ -Teilchen
- Polarisation von Photonen

- Spin $\frac{1}{2}$ -Teilchen
- Polarisation von Photonen
- Zwei metastabile Zustände eines Atoms

Quantum Gates

Um Algorithmen auszuführen, ist es notwendig Zustände zu manipulieren \Rightarrow Gates

NOT - Gate

$$\begin{pmatrix} a \\ b \end{pmatrix} = -\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_0 \\ b_0 \end{pmatrix}$$

Das NOT Gate dreht den Zustand um 180° . Es existiert klassisch und quantenmechanisch

Hadamard - Gate

$$\begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ b_0 \end{pmatrix}$$

Das Hadamard Gate dreht den Zustand um 90° . Es existiert nur quantenmechanisch

ullet Spin $\frac{1}{2}$ -Teilchen: oszillierendes, transversales Magnetfeld

- \bullet Spin $\frac{1}{2}\text{-Teilchen:}$ oszillierendes, transversales Magnetfeld
- Photonen: Laserpuls

- \bullet Spin $\frac{1}{2}\text{-Teilchen:}$ oszillierendes, transversales Magnetfeld
- Photonen: Laserpuls

In dieser Arbeit: Betrachtung von Spin $\frac{1}{2}$ -Teilchen in einem oszillierenden, transversalen Magnetfeld

Zeitabhängige Störung

$$f(t) = g(t)\Omega e^{it}$$

Hamilton Operator des Systems

$$\hat{H} = \epsilon \ket{1} \bra{1} + f(t) \ket{1} \bra{0} + f^*(t) \ket{0} \bra{1}$$

Zustand $|\psi\rangle=a(t)\,|0\rangle+b(t)\,|1\rangle$ liefert gekoppelte DGLn

$$\dot{a}(t) = -ig(t)e^{-i\epsilon t}b(t)$$

$$\dot{b}(t) = -ig^*(t)e^{i\epsilon t}a(t)$$

Ziel der Bachelorarbeit

• Eine realistische Funktion g(t) finden, die die beiden Gates in der kürzesten Zeit darstellt.

Ziel der Bachelorarbeit

• Eine realistische Funktion g(t) finden, die die beiden Gates in der kürzesten Zeit darstellt.

Restriktion: $\frac{dg(t)}{dt} \leq \frac{1}{\sigma}$

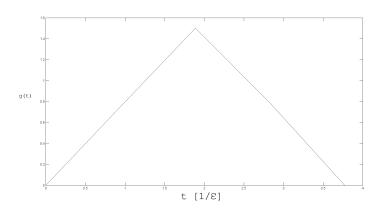
Ziel der Bachelorarbeit

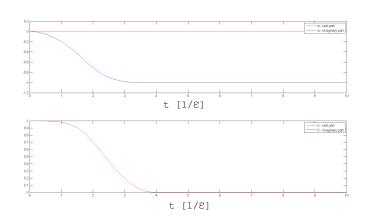
• Eine realistische Funktion g(t) finden, die die beiden Gates in der kürzesten Zeit darstellt.

Restriktion: $\frac{dg(t)}{dt} \leq \frac{1}{\sigma}$

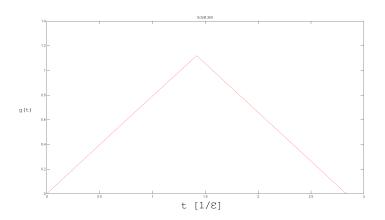
② Betrachten eines zweiten Spins, der mit dem ersten wechselwirkt ⇒ Dichtematrixformalismus

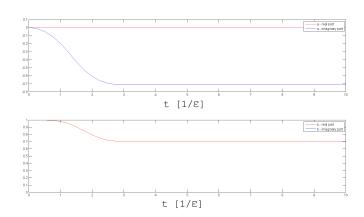
REALISTISCHE FUNKTION


Minimierung einer Kostenfunktion


Kostenfunktion

$$K(y,\tau) = \Delta(y) \cdot 10^3 + \tau$$


ERGEBNISSE


NOT Gate

Hadamard Gate

WECHSELWIRKUNG MIT ZWEITEM SPIN

Wechselwirkung mit Umgebung

Zustand vor Messung (Wechselwirkung mit Umgebung) $|\psi_0\rangle = (a|0\rangle + b|1\rangle) \otimes |U\rangle$

Wechselwirkung mit Umgebung

Zustand vor Messung (Wechselwirkung mit Umgebung) $|\psi_0\rangle = (a|0\rangle + b|1\rangle) \otimes |U\rangle$ Zustand nach Messung $|\psi_1\rangle = (a|0\rangle \otimes |U_0\rangle + b|1\rangle \otimes |U_1\rangle)$

Wechselwirkung mit Umgebung

Zustand vor Messung (Wechselwirkung mit Umgebung)

$$|\psi_0\rangle = (a|0\rangle + b|1\rangle) \otimes |U\rangle$$

Zustand nach Messung

$$|\psi_1
angle = \left(a\ket{0}\otimes\ket{U_0} + b\ket{1}\otimes\ket{U_1}
ight)$$

Wechselwirkung

nach Messung nicht mehr trennbar

Hamilton Operator

ungestört

$$\hat{H}_0 = \epsilon(\ket{1}ra{1}\otimes I)$$

Hamilton Operator

ungestört

$$\hat{H}_0 = \epsilon(\ket{1}\bra{1}\otimes I)$$

Gate - Term

$$\hat{H}_1 = f(t)(|1\rangle\langle 0|\otimes I) + f^*(t)(|0\rangle\langle 1|\otimes I)$$

Hamilton Operator

ungestört

$$\hat{H}_0 = \epsilon(\ket{1}\bra{1}\otimes I)$$

Gate - Term

$$\hat{H}_1 = f(t)(|1\rangle\langle 0|\otimes I) + f^*(t)(|0\rangle\langle 1|\otimes I)$$

Wechselwirkungs - Term

$$\hat{H}_{WW} = J\hat{\mathbf{S}}_{S}\hat{\mathbf{S}}_{T}$$

Schrödingergleichung

$$\frac{d}{dt} \begin{pmatrix} a_{00} \\ a_{01} \\ a_{10} \\ a_{11} \end{pmatrix} = -i \begin{pmatrix} \frac{J}{4} & 0 & f^*(t) & 0 \\ 0 & -\frac{J}{4} & \frac{J}{2} & f^*(t) \\ f(t) & \frac{J}{2} & -\frac{J}{4} + \epsilon & 0 \\ 0) & f(t) & 0 & \frac{J}{4} + \epsilon \end{pmatrix} \begin{pmatrix} a_{00} \\ a_{01} \\ a_{10} \\ a_{11} \end{pmatrix}$$

Mit dem Zustand

$$|\psi\rangle = a_{00}(t)|00\rangle + a_{01}(t)|01\rangle + a_{10}(t)|10\rangle + a_{11}(t)|11\rangle$$

Reduzierte Dichtematrix

Zustand

$$|\psi\rangle = \sum_{S,T} c_{ST} |S\rangle \otimes |T\rangle$$

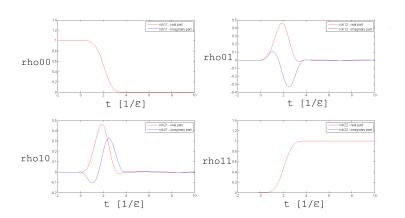
Dichtematrix

$$\rho_{SS'} = \sum_{T} c_{ST} c_{S'T}^*$$

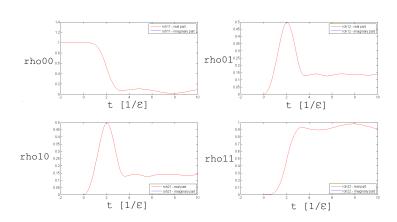
Dichtematrix unverschränkt: NOT Gate

$$\hat{
ho}_{SS'} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Zustand vor Gate: $|\psi(t=t_0)\rangle=|0\rangle$


Dichtematrix unverschränkt: Hadamard Gate

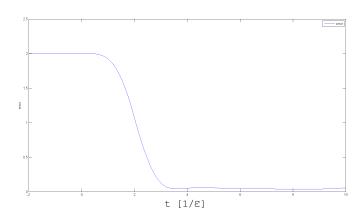
$$\hat{
ho}_{SS'} = rac{1}{2} egin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}$$


Zustand vor Gate: $|\psi(t=t_0)
angle=|0
angle$

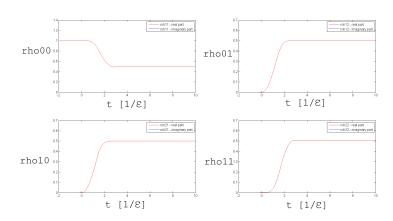
ERGEBNISSE

J=0; NOT Gate

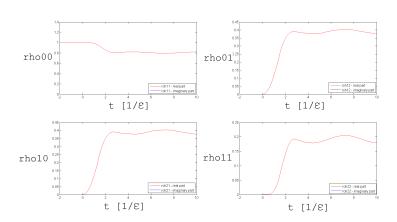
J=0.3; NOT Gate

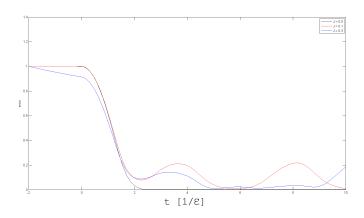


Fehler


Abweichung der Dichtematrix vom ungestörten Wert

$$\mathit{error} = \mathit{tr} \left(\left| \hat{
ho}_{\mathit{SIM}} - \hat{
ho}_{\mathit{NOT}}
ight|^2
ight)$$


Fehler NOT Gate; J=0.3


J=0; Hadamard Gate

J=0.3; Hadamard Gate

Fehler Hadamard Gate

ZUSAMMENFASSUNG

• Simulation des NOT - und Hadamard - Gates

- Simulation des NOT und Hadamard Gates
- Auffinden einer realistischen Funktion

- Simulation des NOT und Hadamard Gates
- Auffinden einer realistischen Funktion ⇒ Dreiecksfunktion

- Simulation des NOT und Hadamard Gates
- Auffinden einer realistischen Funktion ⇒ Dreiecksfunktion
- Auswirkung der Wechselwirkung

- Simulation des NOT und Hadamard Gates
- Auffinden einer realistischen Funktion ⇒ Dreiecksfunktion
- Auswirkung der Wechselwirkung ⇒ Verbesserungsmöglichkeit: Unter Einfluss der Wechselwirkung Gates Bauber"realisieren