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This note discusses and compares – in theoretical respects – various old and new approaches
to numerical time integration for quantum dynamics: implicit vs. exponential midpoint rule;
splitting, Chebyshev and Lanczos approximations to the exponential; Magnus integrators; inte-
grators for almost-adiabatic quantum dynamics.

1 Introduction

This paper gives a concise review of numerical integrators for time-dependent Schrödinger
equations

iψ̇(t) = H(t)ψ(t) , ψ(0) = ψ0 . (1)

Numerical difficulties in the solution of such problems are due both to discretizing or mod-
eling in space (which is not considered here) and to discretization in time, on which the
focus is put in the present article. The computational Hamiltonian H(t) is a space dis-
cretization or other finite-dimensional model of H(t) = T + V (t) with a kinetic part such
as T = −(2m)−1∆x, and with a potential V (t) acting as a multiplication operator. Nu-
merical problems are caused by the unbounded nature of the Hamiltonian and the resulting
highly oscillatory behaviour of the wave function.

Several new and promising numerical methods have been devised in the last few years,
and an improved understanding of well-established methods could be gained. In this review
I will put a stronger emphasis on theoretical error bounds than is usual in computational
physics articles. This is not done out of mathematical vanity, but because theoretical insight
– together with numerical experiments – is important in identifying and comparing merits
and flaws of different methods, and in guiding the way to improved methods. It is also
useful to question the uncritical use of such universally accepted concepts as “second-order
scheme”, which may be misleading for the problem at hand.

We start from the classical implicit midpoint rule and compare it with the exponen-
tial midpoint rule. The latter method requires computing the exponential of the Hamilto-
nian applied to a vector, for which we discuss three computational approaches: Splitting,
Chebyshev and Lanczos approximations. As a way to enhance the accuracy of the expo-
nential midpoint rule, Magnus integrators are then discussed. In a final section, we turn to
novel integrators that are devised for treating almost-adiabatic quantum dynamics.
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2 The Implicit Midpoint Rule

Contrary to most of the classical numerical integrators, such as explicit or implicit Runge-
Kutta or multistep methods, the implicit midpoint rule

i
ψn+1 − ψn

∆t
= H(tn+1/2)

1
2 (ψn+1 + ψn) (2)

(with tn+1/2 = 1
2 (tn+1 + tn) and tn = n∆t) has a unitary propagator:

ψn+1 = r
(
−i∆tH(tn+1/2)

)
ψn with r(z) =

1 + 1
2z

1 − 1
2z

. (3)

This is an important qualitative feature which the numerical method shares with the exact
solution operator. It implies that the method preserves the L2 norm (or the Euclidean norm
in the spatially discretized situation):

‖ψn+1‖ = ‖ψn‖ ,

and hence is stable for arbitrary time steps ∆t.
A further useful property is the time reversibility of the numerical scheme: exchanging

n ↔ n + 1 and ∆t ↔ −∆t gives the same numerical method again. In terms of the
propagator function r(z), this is reflected by the property

r(−z) = r(z)−1,

which r(z) shares with the exponential ez.
But what can be said about the accuracy of the implicit midpoint rule? In the classical

ODE setting of bounded and smoothH(t), it is a well-known fact that the implicit midpoint
rule is a second-order method, that is, the error satisfies

‖ψn − ψ(tn)‖ = O(∆t2) (4)

uniformly for n∆t in a bounded time interval [t0, tend]. Such statements on the order of
a method should, however, be taken with caution in the present context: in our situation
of a (spatially discretized) Schrödinger equation (1), the norm of H(t) can be arbitrarily
large or even unbounded, and hence the classical numerical ODE theory does not apply.
Nevertheless, for the particular case of the implicit midpoint rule it can be shown that the
constant hidden in the O(∆t2) error bound is in fact independent of bounds of H(t). It
does depend, however, on bounds of Ḣ and Ḧ , and on the maximum of the norm of the
third time derivative of the solution ψ on the time interval under consideration. This latter
dependence on solution derivatives is an unpleasant feature: unless we start from spatially
very smooth initial data, the wave function ψ(t) is highly oscillatory in time, and hence
higher time derivatives can become large. Good accuracy can then be expected only for
very small time steps, and this is indeed what happens here. We emphasize that accuracy,
not stability, restricts the time step of the implicit midpoint rule applied to Schrödinger
equations. High temporal smoothness, when available, leads to good accuracy also with
larger time steps.
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3 The Exponential Midpoint Rule

This method is obtained by formally replacing r(z) by exp(z) in the formula (3) of the
implicit midpoint rule:

ψn+1 = exp
(
−i∆tH(tn+1/2)

)
ψn . (5)

Of course, instead of solving systems of linear equations, we now have to scope about how
to compute the exponential of a large matrix. We will consider this aspect in the following
sections and assume for the time being that the matrix exponential times a vector can
be computed efficiently. We note that the above exponential midpoint rule again has a
unitary propagator and it is time-reversible. It offers improved accuracy over the classical
implicit midpoint rule: it satisfies a second-order error bound (4), but contrary to before,
the constant hidden in the O-notation is now independent of the time derivatives of the
wave function ψ(t)5, 3. The result3 is

‖ψn − ψ(tn)‖ ≤ C∆t2 max
t∈[t0,tend]

‖Dψ(t)‖

under the assumption on the commutators ([A,B] = AB −BA)

‖[H(t), H(s)]φ‖ ≤ c ‖Dφ‖ for all t, s and φ.

Since the commutator of the Laplacian with a multiplication operator is a first-order dif-
ferential operator, this condition holds with the gradient operator D = ∇x in the spatially
continuous case of H(t) = (2m)−1∆x +V (t) with a smooth bounded potential V (t), and
with a discrete gradient in cases of spatially discretized problems8.

This theoretical fact explains – and numerical experiments confirm – that much larger
time steps than with the classical implicit midpoint rule can be taken to achieve the same
accuracy, in particular in cases of low regularity of the wave function.

4 Strang Splitting

A standard approach to computing the exponential of H = T + V is to use the symmetric
splitting (known as Strang splitting or Marchuk splitting or symmetric Trotter splitting in
different communities)

exp(−i∆t(T + V ))ψ ≈ exp(−i∆t T/2) exp(−i∆tV ) exp(−i∆t T/2)ψ . (6)

The right-hand side is often much cheaper to compute. For instance, this is the case when
T is a spectral discretization of the negative Laplacian −(2m)−1∆x, which is diagonalized
by fast Fourier transforms, and V is represented by a diagonal matrix. Only the exponen-
tials of diagonal matrices, which are trivially computed, are required in this situation.

The symmetric splitting is a second-order scheme:

‖ exp(−i∆tT/2) exp(−i∆tV ) exp(−i∆tT/2)ψ − exp(−i∆t(T + V ))ψ‖ = O(∆t2) .

Here again, such an order statement must be taken with caution. This error bound is easily
obtained by using the series expansion of the exponential, but then the O-term depends on
the norms of T and V . Since T is typically a discretized Laplacian, such an estimate is of
no use here. A second-order error bound that allows for an unbounded T has been derived
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only recently8. Under reasonable conditions on the commutators [T, V ] and [T, [T, V ]] and
assuming bounds on V , it is shown that such an estimate holds with ‖Tψ‖ appearing in the
constant of the O(∆t2) estimate. The spatial regularity of ψ thus enters the error. If only
an energy bound ψ∗Hψ ≤ B is available, then the order of convergence of the splitting
scheme may decrease to one. Numerical experiments confirm this theoretically predicted
order reduction.

5 Chebyshev Approximation

When a computationally efficient splitting is not available, or when there is little spatial
regularity in the problem, an alternative is to compute the exponential of H as a whole,
using polynomial approximations to the exponential. In the Chebyshev approach, this
requires bounds for the extreme eigenvaluesEmin and Emax of H (which is here assumed
to be given as a spatial discretization). One then uses a truncated Chebyshev expansion of
exp(−ix) on the interval [∆tEmin,∆tEmax]:

exp(−ix) ≈
m∑

n=0

cn Pn(x) , where Pn(x) = Tn

(
2x− ∆tEmax − ∆tEmin

∆tEmax − ∆tEmin

)

with the usual Chebyshev polynomials Tn(ξ) for the interval [−1, 1]. Then, one uses the
approximation

exp(−i∆tH)ψ ≈

m∑

n=0

cn Pn(∆tH)ψ

which is computed efficiently using Clenshaw’s algorithm. This requiresmmultiplications
Hφ of the Hamiltonian H with a vector. Concerning the quality of the approximation,
there is nearly no error reduction for m ≤ 1

2∆t(Emax −Emin), but very rapid, superlinear
error decay for m growing beyond that bound15. The error is not influenced by regularity
properties of ψ, as opposed to the situation of the Strang splitting. However, refining the
space discretization increases Emax and thus requires a higher degree m or a reduction of
the time step ∆t.

6 Lanczos Approximation

A different, and according to our numerical experience often more efficient approach to
polynomial approximation of the product of the matrix exponential times a vector, is by
using the Lanczos process10, 13. This approach to computing the exponential was proposed
in the context of quantum dynamics12, and its convergence properties have meanwhile been
analyzed4. The symmetric Lanczos process generates recursively an orthonormal basis
Vm = [v1 · · · vm] of the mth Krylov subspace Km(H,ψ) = span (ψ,Hψ, . . . , Hm−1ψ)
such that

HVm = VmLm + [0 · · · 0 βmvm+1].

This requires m multiplications of H with a vector, where m is chosen much smaller than
the dimension of the problem. The symmetric tridiagonalm×mmatrixLm = V T

mHVm is
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the orthogonal projection of H onto Km(H,ψ). This is used in the approximation2, 4, 12, 14

exp(−i∆tH)ψ ≈ Vm exp(−i∆t Lm)V T
mψ

with V T
mψ = [10 · · ·0]T . The matrix exponential exp(−i∆tLm) is computed cheaply

from the eigendecompositionLm = QmDmQ
T
m, with diagonal Dm, via

exp(−i∆tLm) = Qm exp(−i∆tDm)QT
m .

The Lanczos process is stopped if

βm

∣∣∣
(
exp(−i∆tLm)

)
m,m

∣∣∣ < tol,

where (·)m,m denotes the (m,m) entry of the matrix, and tol is a user-specified tolerance.
This stopping criterion is motivated6 by a generalization of a residual bound which is the
most popular stopping criterion for solving linear systems. The convergence behaviour as a
function ofm is similar to Chebyshev approximation of the same degree in cases where the
eigenvalues of H are densely distributed in the interval [Emin, Emax], but convergence can
be much more rapid when there are eigenvalue gaps within this interval4. Moreover, this
approach takes advantage of preferred eigendirections in the vector ψ. It does not require
a priori estimates of the extreme eigenvalues. On the other hand, the Lanczos process
needs the computation of scalar products of vectors that are not required in the Chebyshev
approach.

7 Magnus Integrators

In the Magnus approach11, the solution of (1) is represented as

ψ(tn + ∆t) = exp(Ωn)ψ(tn), (7)

where Ωn is given as a series composed of integrals of commutators of
A(t) = −iH(tn + t), the Magnus series

Ωn =

∫ ∆t

0

A(τ) dτ−
1

2

∫ ∆t

0

[∫ τ

0

A(σ) dσ,A(τ)
]
dτ

+
1

4

∫ ∆t

0

[∫ τ

0

[∫ σ

0

A(µ) dµ,A(σ)
]
dσ,A(τ)

]
dτ (8)

+
1

12

∫ ∆t

0

[∫ τ

0

A(σ) dσ,
[∫ τ

0

A(µ) dµ,A(τ)
]]
dτ + . . . .

For smooth bounded matrices A(t) the remainder in (8) is of size O(∆t5), and hence the
truncated series inserted into (7) gives a higher-order approximation to the solution value
ψ(tn + ∆t) for small ∆t. A simpler expression that agrees with the truncated series up to
terms of size O(∆t5), is given in terms of the univariate integrals1

Bk =
1

∆tk+1

∫ ∆t/2

−∆t/2

tkA( 1
2∆t+ t) dt
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as Ωn = ∆t B0 − ∆t2[B0, B1] + O(∆t5). The integrals Bk can be replaced by suitable
quadrature, e.g., by the fourth-order Gauss or Simpson rule. Using this approximation in
(7) gives a time-reversible, unitary method of order 4:

ψn+1 = exp(Ω̂n)ψn with Ω̂n = ∆t B0 − ∆t2[B0, B1]. (9)

In Blanes et al.1, methods of order 6 requiring 4 commutators, and methods of order 8
requiring 10 commutators are also constructed. See Iserles et al.7 for a detailed review of
Magnus integrators.

As with the previously considered methods, the order statements must be taken with
caution in the case of unbounded operatorsH(t). It turns out3 that the above method retains
fourth order independently of the norm of H(t) in the situation of H(t) = T + V (t) with
T a discretization of the negative Laplacian (with maximum eigenvalue Emax ∼ ∆x−2)
and with a smooth potential V (t), under a rather mild time step restriction

∆t
√
Emax ≤ Const.

We remark that this holds in spite of the fact that here the Magnus expansion is generally
a divergent series. Convergence of the Magnus series would require a more stringent time
step restriction ∆t Emax ≤ c (≈ 1).

8 Integrators for Almost-Adiabatic Quantum Dynamics

A different situation from that considered so far occurs in the treatment of problems of the
type

iεψ̇ = H(t)ψ (0 < ε� 1) (10)

with a small parameter ε (which, in self-consistent field approaches, would correspond to
the square root of the mass ratio of light and heavy particles, such as electrons and ions).
Here it is assumed that H(t) varies slowly compared to the fast time scale ε. All of the
previously considered integrators require time steps ∆t� ε. For ε→ 0 and ∆t > ε, they
do not approximate the adiabatic limit as given by the quantum-adiabatic theorem.

Numerical integrators that give good approximations to (10) with relatively large time
steps ∆t > ε, have recently been derived9. These integrators are devised for situations
where H(t) is expensive to evaluate, but the substantially occupied eigenstates and eigen-
values of H(t) can be obtained at comparatively small additional computational cost. This
situation occurs in particular in reduced, relatively low-dimensional models, which are of-
ten appropriate for the description of near-adiabatic behaviour. Let H(t) be diagonalized
as

H(t) = Q(t)Λ(t)Q(t)T , Λ(t) = diag(λk(t))

with an orthogonal matrix Q(t). (This can be extended to the situation where only a few
of the lower eigenstates are computed9.) The numerical integrator is not applied directly
to (10), but to an equivalent equation for the variable η(t) defined by

Q(t)Tψ(t) = exp
(
−
i

ε
Φ(t)

)
η(t) with Φ(t) =

∫ t

0

Λ(τ) dτ .

464



Up to a rapidly rotating phase, η is the coefficient vector with respect to the eigenbasis
representation of ψ. Then η solves the differential equation

η̇(t) = exp

(
i

ε
Φ(t)

)
W (t) exp

(
−
i

ε
Φ(t)

)
η(t) (11)

with the skew-symmetric matrix W = Q̇TQ. The right-hand side of (11) is bounded
(though highly oscillatory), and hence η is smoother than ψ. As long as the eigenvalues of
H(t) remain well-separated, η(t) stays O(ε) close to the initial value η(0).

The simplest method is based on freezing the slow variables η, Λ and W over a time
step and integrating analytically over the highly oscillatory exponentials. This gives the
method9

ηn+1 = ηn−1 + 2h
(
S(tn) •E(Φn) •Wn

)
ηn, (12)

where the bullets • denote the entrywise product of matrices, S(t) is the matrix
with entries sinxkl/xkl with xkl = ∆t(λk(t) − λl(t))/ε, and E(Φ) is the matrix
with entries exp( i

ε (φk − φl)). Wn is a finite difference approximation to W (tn):
Wn = (2∆t)−1(Q(tn+1) −Q(tn−1))

TQ(tn), and Φn is the Simpson rule approximation
to the integral Φ(tn).

This method forms the basis for more accurate schemes also derived in the article9 .
That paper also gives an extension to adaptive time steps to treat avoided crossings of
eigenvalues, where non-adiabatic behaviour with sudden energy redistributions occurs.
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