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A fundamental challenge in science is the quantitative prediction of time-
dependent nonlinear phenomena. While dynamical simulation was one of the
first applications of computers, the problems treated, the methods used, and
their implementation have all changed a lot. Astronomers use simulation to
study the history and long term evolution of the solar system. Molecular sim-
ulations are essential for the design of new materials and for drug discovery.
Simulation can replace or guide experiment, which often is difficult or even im-
possible to carry out as our ability to fabricate the necessary devices is limited.

At the boundaries of different modeling regimes, it is found that computa-
tions based on the fundamental laws of physics are under-resolved in the text-
book sense of numerical methods. Because of the vast range of scales involved in
modeling even relatively simple biological or material functions, this limitation
will not be overcome by simply requiring more computing power. One therefore
has to develop numerical methods which capture crucial structures even if the
method is far from “converging” in the mathematical sense. In this context,
we are forced increasingly to think of the numerical algorithm as a part of the
modeling process itself. A major advance in this area has been the development
of structure-preserving or “geometric” integrators which maintain conservation
laws, dissipation rates, or other key qualitative features of the continuous dy-
namical model. Conservation of energy and momentum are fundamental for
many physical models; more complicated invariants are maintained in applica-
tions such as molecular dynamics and play a key role in determining the long
term stability of methods. In mechanical models (biodynamics, vehicle simula-
tion, astrodynamics) the available structure may include constraint dynamics,
actuator or thruster geometry, dissipation rates and properties determined by
nonlinear forms of damping.

Features such as symplecticity or time-reversibility are now widely recognized
as essential properties to preserve by numerical schemes, owing to their physical
significance. This has motivated a lot of research [SSC94, HW96, HLW02] and
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led to many different classes of geometric integrators (symplectic and symmetric
methods, volume-preserving integrators, Lie-group methods, etc.). In practice,
a few simple schemes such as the Verlet method or the Störmer methods have
been used for years with great success in molecular dynamics or astronomy.
However, they now need to be further improved (with respect to accuracy and
computational cost) in order to fit the tremendous increase of complexity and
size of the models.

1 Schrödinger equation and highly oscillatory

problems

1.1 Schrödinger equation

In quantum mechanics, the evolution of particles with the time is driven by the
Schrödinger equation which we write as

iε
∂ψ

∂t
= Hψ, (1)

where ψ = ψ(x, t) is the wave function depending on the spatial variables x =
(x1, . . . , xN ) with xn ∈ R

d (e.g., with d = 1 or 3 in the partition) and the
time t ∈ R. Here, ε is a (small) positive number representing the scaled Planck
constant and i is the complex imaginary unit. The Hamiltonian operator H is
written

H = T + V

with the kinetic and potential energy operators

T = −

N∑

j=1

ε2

2mj

∂2

∂x2
j

and V = V (x),

where mj > 0 is a particle mass and where the real-valued potential V acts as
a multiplication operator on ψ.

The Schödinger equation (1) exhibits a symplectic structure that we describe
now: Let us write ψ = v + iw the real and imaginary parts of ψ ∈ L2(RD,C),
where D = N × d. The functions v and w are thus functions in the real Hilbert
space L2(RD,R). We denote the complex inner product by 〈·, ·〉 and the real
inner product by (·, ·).

As H is a real operator, Eq. (1) can be written

εv̇ = Hw,

εẇ = −Hv,
(2)

or equivalently, with the canonical structure matrix

J =

(
0 −1
1 0

)
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and the Hamiltonian

H(v, w) = 1
2 〈ψ,Hψ〉 = 1

2 (v,Hv) + 1
2 (w,Hw) (3)

for ψ = v + iw (we use the same symbol H as for the operator), this becomes
the canonical Hamiltonian system (see eqn. (4) below)

(
v̇

ẇ

)
= ε−1J−1∇H(v, w).

This fundamental mathematical structure of the Schrödinger equation im-
plies in particular the conservation of the energy function (3) for the exact
solution of (1). Moreover, approximating numerically the Schrödinger equation
needs roughly two stages: the space approximation and the time discretization.
The first step can be realized in many different ways, with the particular concern
of reducing the number of degrees of freedom to make the system numerically
tractable without destroying the quantum effects of the initial equation. In gen-
eral, this reduction is achieved by doing a symplectic projection onto a finite
dimensional submanifold of L2 (this is the Dirac-Frenkel-McLachlan principle,
see for instance [Lub05] and the reference therein). After this projection step,
the obtained system of differential equations possesses a symplectic structure.
Moreover, due to the semi-classical parameter ε or to small parameters in the
space discretisation, these systems are naturally higly oscillatory.

After this dimension reduction, the next difficulty is to discretize these highly
oscillatory hamiltonian systems with respect to the time. This is a very general
and important problem in numerical analysis .

1.2 Hamiltonian systems

Like the Schrödinger equation (1), there are many different systems in nature
whose evolution is accurately described by Hamiltonian systems of equations.
These can be derived from a variational principle and have the following form
(see (2)):

ṗ(t) = −∇qH(p(t), q(t)) ∈ Rn

q̇(t) = ∇pH(p(t), q(t)) ∈ Rn (4)

with some prescribed initial values (p(0), q(0)) = (p0, q0) and for some scalar
function H , called the Hamiltonian, which in this situation is an invariant of
the problem. Physically, it represents the (constant) energy of the system.

Very often, besides the Hamiltonian function, there exist other invariants
for such systems (e.g., linear momentum, angular momentum, etc.): when there
exist n invariants in involution, the system (4) is said to be integrable.

A fundamental property of Hamiltonian systems is that their exact flow (i.e.,
the exact solution of equations (4) is a symplectic transformation [HLW02]). In
addition, integrable Hamiltonian systems behave in a very remarkable way: as
a matter of fact, their invariants persist under small perturbations, as shown in
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the celebrated theory of Kolmogorov, Arnold and Moser [Kol54, Arn63, Mos62,
HLW02]. This behaviour motivates, in accordance with the aims of geometric
integration, the introduction of symplectic numerical flows that approximate
the exact flow when, as occurs in practice, no closed expressions can be found
for the solution of (4). Symplectic integration methods preserve the symplectic
structure of the Hamiltonian system and it has been shown that they also pre-
serve a modified Hamiltonian function over exponentially long intervals of time.
The theory sustaining this remarkable result, known as Backward error analy-

sis, plays indeed a fundamental role in the analysis of geometric integrators: it
basically states that the solution obtained by a numerical scheme of this kind
can be considered, up to small error terms, as the exact solution of a modified
system, close in a certain sense to the original one. This interpretation is the
key to many theoretical results describing the qualitative behaviour of numerical
schemes applied to Hamiltonian systems (see for instance [HLW02]).

1.3 Highly-oscillatory problems

A simple yet representative model of Hamiltonian system whose solutions are
highly-oscillatory in character is given by the second-order differential system

q̈ = −∇V (q), (5)

where the potential V (q) is a sum of potentials V = W + U acting on different
time-scales, with ∇2W positive definite and ‖∇2W‖ >> ‖∇2U‖. This is typi-
cally a situation arising after the space discretisation of an infinite dimensional
equation like the Schrödinger equation (1). In this case, W is a finite dimen-
sional representation of an unbounded operator, which automatically leads to
high eigenvalues ω for the Hessian matrix ∇2W .

In order to get a bounded error propagation in the linearized equations for
a given explicit numerical method, the step size h must be restricted according
to

hω < C,

where C is a constant depending on the numerical method and ω is the largest
frequency of the problem, i.e. in this situation the square root of the largest
eigenvalue of ∇2W . In applications to molecular dynamics for instance, fast

forces deriving from W (short-range interactions) are much cheaper to evaluate
than slow forces deriving from U (long-range interactions). In this case, it thus
seems highly desirable to design numerical methods for which the number of
evaluations of slow forces is not (at least not too much) affected by the presence
of fast forces.

This step size restriction is intimately linked to the natural existence of two
(or more) time-scales in the system. Another very undesirable consequence of
these largely different time-scales is the failure of backward error analysis, for
which all bounds of error terms involve the product hω. This prevents one from
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drawing any conclusion from the existence of a modified system and so an alter-
native theory has to be proposed. Recently, Cohen, Hairer and Lubich [CHL03]
have introduced the so-called modulated Fourier expansion, which brings new
light on the behaviour of highly-oscillatory Hamiltonian systems. In their ap-
proach they consider first the (somewhat idealized) situation of two blocks of
frequencies, where one corresponds to the frequency zero and the other one is
scaled by a large parameter. Their contribution explains in particular the good
behaviour of certain Gautschi type methods, as far as preservation of the total
energy and almost invariance of oscillatory energies is concerned.

Another typical example of highly-oscillatory systems encountered in quan-
tum dynamics are equations where the time-dependent Schrödinger equation is
the model to be used, but coupled with a classical mechanical system. Assuming
that the Laplacian operator has been discretized in space, one indeed gets

iψ̇(t) =
1

ε
H(t)ψ(t), (6)

where H(t) is a finite-dimensional matrix and where ε typically is the square-
root of a mass-ratio (say electron/ion for instance) and is small (ε ≈ 10−2).
Through the coupling with classical mechanics (H(t) is obtained by solving
some equations from classical mechanics), we are confronted once again to two
different time-scale, 1 and ε. In this situation also, it is thus desirable to devise
a numerical method able to advance the solution by a time-step h > ε. Equa-
tion (6) also appears when describing the evolution of quantum discrete-level
systems in an almost-adiabatic regime. Here the challenge for the numerical
is to approximate adequately both the adiabatic invariants of the problem and
transition probabilities between different states.

2 Major objectives of the project

2.1 Hagedorn wave packets

In the previous collaboration [FL06], Erwan Faou and Christian Lubich derived
a numerical scheme for the approximation of (1) using Gaussian wave packets
in the sense of [Hel76]. In Gaussian wave packets dynamics, an approximation
to the wave function ψ(x, t) solution of (1) is actually sought for in the form

u(x, t) = eiφ(t)/ε
N∏

k=1

ϕk(xk, t) (7)

with

ϕk(xk, t) = exp
( i
ε

(
ak(t) |xk − qk(t)|2 + pk(t) · (xk − qk(t)) + ck(t)

))
, (8)

where |·| and · denote the Euclidean norm and inner product on R
d, respectively.

Here, ak = αk + iβk (with βk > 0) is a complex width parameter, ck = γk + iδk
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is a complex phase parameter, and φ is a real phase. The parameters qk ∈ Rd

and pk ∈ Rd represent the position and momentum average. In [FL06], Faou
& Lubich derived a numerical method to approximate the the evolution of the
parameters ak(t), ck(t), pk(t) and qk(t) of the Gaussian. This scheme turns to
be a symplectic integrator, that is and operator preserving the natural sym-
plectic structure of the Gaussian wave dynamics equations inherited from the
symplectic structure of the Schrödinger equation. This implies nice properties
of the algorithm over very long time (in particular, the conservation of energy).
Moreover, this algorithm is consistent with the semi-classical limit ε→ 0, where
the algorithm converges towards the well known Verlet integrator widely used
in classical molecular dynamics (see [HLW03]) .

One of the goal of the MIMOL project is the studying of a natural extension
of this work: The approximations of the Schrödinger equation by products
of complex Gaussians with polynomials. As the degrees of these polynomials
increase, the corresponding submanifold of L2 is expected to fill in the whole
L2 space, making this representation more accurate than Gaussians only.

Representing the polynomials in a basis of scaled Hermite polynomials is very
appropriate in 1 space dimensions [Bil03], but in the multi-dimensional case,
simply taking tensor products of Hermite polynomials (be it with a moving
frame of coordinates) turns out to lead to a number of both theoretical and
computational difficulties. These are overcome in an alternative extension to
higher dimensions due to Hagedorn [Hag98]. While the beautiful theoretical
properties of this approach are evident from [Hag98], it appears that so far they
have not been put into use in computational algorithms.

This work is in progress (see [FLG07]). Erwan Faou, Christian Lubich and
Vasile Gradinaru have derived a new algorithm using Hagedorn wavepackets.
The goal for 2008 are the following:

• Implement the algorithm using sparse grid to be used without prohibitive
cost in multidimensional problems. This extension to sparse grid is in the
continuity of the work of V. Gradinaru (see [Gra07, Graar].

• Justify the algorithm: this relies on semi-classical analysis, together with
space approximation, as done in [EF07]. The hope is to obtain uniform
convergence estimates with respect to the semi-classical parameter ε.

2.2 Highly oscillatory problems

The main second goal of this project is to address, at least partially, some of the
difficulties encountered when solving highly-oscillatory Hamiltonian systems. In
particular, we will proceed along the following lines:

• For the simplest case of the highly-oscillatory nonlinear system

q̈ +
1

ε2
Ω2q = g(q) (9)
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with g(q) = −∇U(q) and

Ω =

(
0 0
0 ωI

)
,

we aim at deriving a new explicit expansion of the exact solution (and
concurrently of the numerical solution) based on the explicit introduction
of two time-scales (a technique usually referred to in the literature as
WKB-expansions):

q(t) := q(t, τ) =
∑

j≥0

ω−jXj(t, τ) =
∑

j≥0

ω−j
∑

k

X
j
k(t)eikτ (10)

where τ = tω is the fast time. Though closely related to the modulated
Fourier expansion, this expansion can be derived explicitly. It can further
be indexed with trees in the form

q(t) :=
∑

u∈T

ω−ρ(u)xu(t)eikκ(u)F (u)(q0, q̇0) (11)

where the index set T is made of appropriately chosen trees and where ρ,
κ are integer functions of u, F (u)((q0, q̇0)) a function based on derivatives
of g and xu(t) a polynomial in t depending on u. This algebraic studying
is closely related to recent works done by members of the project: see
[Mur99, CM07, CFM06, HLW02].

Apart from studying the long-term behavior of the exact solution and
of the numerical one with the help of (10), along the lines of Cohen,
Hairer and Lubich [CHL04], we also intend to derive new order conditions
-using expansion (11)- dealing with the different regimes one encounters.
According to the respective sizes of h and ω−1, different terms dominate
the expansion, and matching them in the expansions of both the numerical
and the exact solutions, lead to conditions on the method. The goal is
to obtain the ”classical” order conditions for various regimes: h ≤ ω−1,
h ≡ ω−1, h ≡ ω−1/2, and develop new criteria for measuring the quality
of the approximation obtained by numerical methods: for instance if the
averaging of both the exact solution and the numerical approximation
coincide up to a certain order.

• As the next step, we will generalize the treatment to the multiple frequency
case, when the matrix Ω in (9) has the form

Ω =

(
0 0

0 Ω̃

)
, Ω̃ = diag(ω1, ω2, . . . , ωk).

Here the non-resonance conditions to be imposed on the numerical schemes
have to be carefully analyzed.

• Almost simultaneously we will proceed to designing new methods espe-
cially tailored for the system (9) and based on the terms encountered in
the WKB-expansion, in particular exponential integrators.
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• We will analyze different partial differential equations which, after space
discretization, result in systems of the form (9) with a specific treatment
of (6).
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