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Abstract

This bachelor theses deals with non-linear dynamics i.e. the analysis of non-linear (or-
dinary) differential equations. The named topic includes treatments of phase and state
spaces as well as stability analysis with different techniques. In this sense, a mainly
numerical discussion of chaotic phenomena is carried out.
In the first section, a mathematical introduction is given. The developed mathematics is
than applied to the Duffing oscillator which is an extension of Hooks law. The Duffing
oscillator will be treated with and without damping and forcing. To discuss occurring
chaotic behaviour, numerical calculations are used.
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1 Introduction

Differential equations are essential in the description of natural phenomena. Neverthe-
less, most students on university only come across ordinary linear differential equations.
This type of ODE has the speciality that the variable which is differentiated, only ap-
pears linearly. An example for this would be Hook’s Law: m∂2x

∂t2
= −kx. The benefits of

describing phenomena with linear ODEs is that they are often solvable with analytical
methods, even if the coefficients are not constant (e.g. k = k(t)). Also they obey the
principle of superposition. Therefore, one could add two or more particular solutions
together and the result is still a solution of the linear ODE. This advantages are so
markedly that even non-linear systems, like the oscillation of a pendulum, get converted
into a linear problem, although the resulting solution is not exact.

In contrast to linear ODEs, the analytical solution of non-linear systems is only possible
in very special cases (e.g. the Kepler problem). Therefore, this bachelor thesis tries
to explain how to gather information about non-linear ODEs without having to solve
them. For example, the combination of graphical- and linearisation-techniques as well
as the utilization of some mathematical theorems (like the Poincare-Bendixson theorem
or Lyapunov functions) will give a good understanding of what is going on.

Even though the in the last paragraph stated procedure is useful in many cases, non-
linear systems can increase in complexity very fast. Such complex non-linear ODEs often
exhibit chaotic behaviour (how ’chaos’ is defined will be discussed later). In this cases,
the mathematical analysis gets complicated and therefore I used numerical methods
to discuss the occurring phenomena. Nevertheless, this results should be as generally
applicable as possible.

Lastly, the question arises, why one puts so much effort into exploring non-linear ODEs,
if he just could put the equation into a computer. The issue is that a computer solved
differential equation is only valuable for the calculated situation. What the system does
in a more universal case, is often not clearly visible. This is in contrast to linear ODEs,
where the behaviour of one solution could be applicable to a more general situation (due
to the superposition principle). Additionally, a more general approach gives a better
understanding of nature and its underlying principles.

In writing this bachelor thesis, there were mainly three books involved. The first is
’Classical Mechanics’ by John R. Taylor. This work covers a wide range of classical
mechanics and in this context treats also chaos theory in a very short and visual way.
Secondly ’Nonlinear Dynamics an Chaos’ form Steven H. Strogatz is a book, wich goes
more in depth. Strogatz explains the concepts of this topic in a verry practical ori-
ented way. For mathematically more precise treatments ’An Introduction to Dynamical
Systems and Chaos’ by G. C. Layek is suitable.

A basic knowledge in real and vector calculus as well as linear algebra is required to
understand the concepts that will be established.
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2 Mathematical methods

2.1 Basic Concepts

An ordinary differential equation has the general form

F (t, x(t), ẋ(t), ...x(n)(t)) = 0 (1)

where x(n)(t) denotes the n-th derivative of x in respect to time dnx(t)
dtn . A differential

equation is said to be of ’order n’ if n is the highest derivative in the expression. For a
linear ODE, every x(n)(t) has to occur only to the power of one (x(t)1):

g(t) + a1(t)x(t) + a2(t)ẋ(t) + .... = 0

However, in the non-linear case there are no limitations in the dependence of F (t, x(t), ...)
from x(t) and its derivatives. Some examples are:

sin(x(t)) + ẋ(t) = 0

ẍ2(t) + 2ẋ3(t) = 0

2tex(t) − ẋ(t) = 1

In the following discussion the notation is simplified to x := x(t).

The easiest differential equations are into the order of one. But even if a higher order
ODE is given, it can be transformed to a system of ODEs with order one. This may be
done by defining v := ẋ and a := v̇ = ẍ. The only problem is that one now has to solve
a system of equations, which are not strictly independent. An example would be:

sin(x) + ẍ+ ẋ = 0

↓
ẋ = v

v̇ = −sin(x)− v

In the next chapter it will become clearer why it is helpful to express every ODE in this
form.

A system is called autonomous if it depends explicitly on time. In the previous exam-
ples this was not the case. But we can also convert an autonomous equation into a set
of order one ODEs:

ẍ+ x = sin(ωt)

↓
ẋ = v

v̇ = sin(g)− x
ġ = ω

Furthermore, in favour of a more geometric approach, different ’spaces’ can be defined[1]:
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1. If one define a space out of the generalised coordinates, it is called configuration
space. In the examples above, the configuration space is one dimensional, since it
only consists out of the coordinate x.

2. If the system is not explicitly dependant on time, one can define a space out of the
generalised coordinates and its derivatives, the so called phase space. In case the
ODE is of second order and there are n generalised coordinates, the phase space
is 2n-dimensional. In the example above this would correlate to a space spanned
by x and v.

3. If the system is autonomous, another coordinate is added. The space is now
(2n+1)-dimensional and gets called state space. The state space of the last
example above consists out of x, v and t. Provided that there is no explicit time
dependence, phase and state spaces are equivalent.

The solution of a ODE traces a continuous path through the configuration space but
also through phase and state space. These paths are called trajectories and for every
initial condition there exists a different one. If we view a trajectory in state space, they
also never cross. This follows out of the uniqueness theorem for initial value problems1:
Imagine two crossing trajectories. If someone would try to solve the initial value problem
at the point of intersection, there would be two solutions to the same ODE (correspond-
ing to the two trajectories), which contradicts the uniqueness theorem. Equally, this is
true for trajectories in phase space, assuming the system is not autonomous.

2.2 Non chaotic Systems

The methods an techniques developed in this section are applicable to all ODEs, yet
most useful in the case of a one- or two-dimensional state space. As higher dimensions
are treated, more complex phenomena appear and the following approaches may be
insufficient.

2.2.1 A Geometric Approach

It was shown that every ODE can be expressed in terms of a system consisting of
order one equations. A system like this may be interpreted as a vector field ~̇y = f(y)
where ~̇y = (ẋ, v̇, ..., ġ(t)). This gets clearer in a few examples taken out of the book
’NONLINEAR DYNAMICS AND CHAOS’ by Steven H. Strogatz:
Consider the ODE sin(x) = ẋ. This is already a first order differential equation and can
be imagined as ’flow on a line’. A phase portrait of the stated system is visualised in
Figure 1. Now, lets place an imaginary particle in this flow. Because ẋ > 0 slightly on
the right of the origin, a particle placed there will be carried along the flow to the right
until it hits x∗ = π. At x∗ = π the velocity ẋ is zero (labeled by ∗) and the particle stays
there forever. The same would be true supposing the particle is placed exactly at one
point with the condition sin(x∗) = 0→ ẋ = 0. This points are called fixed points and

1A unique solution is not always possible, but in practise there are very few occasions in which the
solution is ambiguous. For more informations see [2] pages 26-28
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it is recognisable that there are two types of them: stable and unstable fixed points.
Particles are attracted to stable fixed points and repelled from the unstable ones. Also,
if placed at a unstable fixed point, a little disturbance is enough to ge the dynamics
going.[2]

Figure 1: Schematic sketch of a one dimensional flow

The situation gets a bit more subtle in handling two dimensional ODEs. The flow in
phase space is now two dimensional, since determined by two components ~̇y = (ẋ, v̇). In
trying to sketch this so called direction field, consisting of arrows ~̇y in the phase space,
one can get a reasonable understanding of the solutions behaviour. Following example
is also taken from Strogatz:
Consider the system

v̇ = −v
ẋ = x+ e−v

In sketching a corresponding phase portrait or direction field, the first step would be
to find fixed point where (ẋ, v̇) = (0, 0). This is the case for point (x∗, v∗) = (−1, 0).
Secondly, the nullclines should be found. These are curves where ẋ = 0 or v̇ = 0.
At nullclines the flow is purely in x- or v-direction and therefore also changes sign2.
Notably, intersection points of two nullclines define fixed points. Following, the ODE
has nullclines v(x) = 0 and x(v) = −e−v. The last step is to draw arrows ~̇y = (ẋ, v̇) at a
few representative positions (x, v). The result of this prcedure is shown in Figure 2.

Figure 2: Schematic sketch of a few arrows and the nullclines

2this is only true because we are requiring a continuous curve and flow
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Out of the gathered information we can extract the behaviour of the whole system
by simply applying that trajectories should never cross and are continuous. The final
direction field in phase plane, including some trajectories, is pictured in Figure 3.

Figure 3: Direction field including trajectories

It is notable that another type of fixed point can appear in two dimensions: a saddle
point. This type of fixed point is attractive in one direction and repulsive in another.

Limit cycles are another phenomenon appearing in at least two dimensional phase
space. Limit cycles are isolated closed trajectories. The term ’isolated’ means, that
there are no fixed points or other limit cycles in an arbitrarily close neighbourhood of
an object - all sufficiently near trajectories either approach or move away from it.[1]
An example of a limit cycle is given by Strogatz as3:

ṙ = r(1− r2)
Θ̇ = 1

Note that this system is expressed in polar coordinates. It is representing a flow with
constant angular velocity but a non constant radial component. For this ODE a limit
cycle is found by setting ṙ = 0 following r∗ = 1. For r < 1 the flow points outward
(ṙ < 0) and in case r > 1 it points inward. A corresponding phase portrait is shown in
Figure 4. The limit cycle in this example is stable: It attracts all trajectories. However,
there can also be repelling and half stable cycles. Also it should be noted that a limit
cycle has not to be a perfect cycle, it can have an arbitrary shape as long as it is isolated
and closed.

In contrast to limit cycles, centers are closed orbits that are not isolated. Nearby
trajectories are neither repelled nor attracted. An example would be the simple harmonic
oscillator: For every initial condition there is a closed orbit in phase space but trajectories
never ’jump’ to another cycle because energy is conserved.

3A physical example would be a driven damped harmonic oscillator: After a finite time the oscillation
has settled down to match the driving frequency.
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Figure 4: Phase portrait of a limit cycle at r = 1

2.2.2 Stability Analysis

Until now, we relied on geometric approaches to classify the stability of a fixed point.
Nevertheless, this can also be done by analytical methods, in first place linearisation:
Given an arbitrary system

ẋ = f(x, v)

v̇ = g(x, v)

the fixed points are given by f(x∗, v∗) = 0 and g(x∗, v∗) = 0. To extract information
about stability, one would like to know the behaviour of the system near the fixed points.
In a close surrounding of (x∗, v∗) the ODEs can be approximated by a linear system. To
get the linearisation, one can use Taylor expansion to the first order or simply the ’total
differential’ evaluated at the fixed points. Defining u := x − x∗, h = v − v∗, the result
is:

u̇ =
∂f

∂x
u+

∂f

∂v
h

ḣ =
∂g

∂x
u+

∂g

∂v
h

or simpler: (
u̇

ḣ

)
= J

(
u
h

)
with J the Jacobian Matrix, evaluated at the fixed points:

J =

∂f
∂x

∂f
∂v

∂g
∂x

∂g
∂v


(x∗,v∗)

Since this is now a linear ODE with constant coefficients, the particular solutions are
given by (

x
v

)
= eλnt

(
v1
v2

)
n
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where λn denotes the n-th eigenvalue of J (which is either purely real or complex conju-
gated to the other) with corresponding eigenvector ~vn. The general solution is a linear
combination of all particular terms. The qualitative behaviour of the solution i.e. the
trajectories is mainly characterised by the eigenvalues:

1. Re(λn) > 0: The solution is exponentially growing in the direction of the n-th
eigenvector. If λn has also an imaginary part, the solution is a spiralling out
trajectory. This can be argued by rewriting the analytical solution with eulers
formula.

2. Re(λn) < 0: The solution is exponentially decreasing in the n-th eigendirection. If
λn has an imaginary part, the solution is a spiralling in trajectory.

3. Re(λn) = 0: The solution is neutrally stable: Trajectories near neutrally stable
points stay close to it, but are not attracted nor repelled. In the complex case this
would lead to the (in 2.2.1) mentioned ’centers’.

Figure 5 shows the behaviour of trajectories in th different cases4.

Figure 5: Schematic sketch of trajectories

It should be noted that the linearisation does not give a appropriate picture in cases
where a small disturbance could change the behaviour drastically. An example is the
center, which can turn into a spiralling in/out trajectory by a little perturbation. There
are a few techniques to rule out or proof the existence of centers.

The first method to prove that closed orbits (including centers and limit cycles) exist, is
by using the Poincaré-Bendixson Theorem. The definition of this theorem is taken
from Strogatz:
’Suppose that

1. R is a closed, bounded subset of the plane

2. ~̇x = ~f(~x) is a continuously differentiable vector field on an open set containing R

4It could be the case, that the eigenvalues are degenerated. This Situation is covered in more detail by
Strogatz[2] or Layek[1]
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3. R does not contain any fixed points; and

4. There exists a trajectory C that is ’confined’ in R, in the sense that it starts in R
an stays in R for all future times.

Then either C is a closed orbit or it spirals toward a closed orbit as t → ∞. In either
case, R contains a closed orbit.’[2]
This theorem is visualised in Figure 6. Poincaré-Bendixson is only applicable to two-
dimensional spaces and restricts the ways a trajectory can ’move’. In three dimensions,
this theorem does no longer apply and that is the reason chaos only appears in three or
higher dimensional state spaces.

Figure 6: Poincaré-Bendixon Theorem

Another way of proofing that centers exist, is by using energy conservation. If a
system is conservative, there are two key predictions[1]:

1. There are no attracting fixed points. This would lead to a loss in energy

2. If (x∗, v∗) is an isolated fixed point and linearisation predicts a center, then this
actually is a center, if (x∗, v∗) is a local extrema of the energy function.

A generalisation of energy functions can be found in terms of the so called Lyapunov
Function. A Lyapunov function L(x, ẋ, ...) is a continuously differentiable function with
L > 0 for all (x, v) 6= (x∗, v∗) and L = 0 for (x, v) = (x∗, v∗) . The function must not
be defined on the whole plane - it is sufficient to define it on an open subset D ⊆ <n as
long as there are no other fixed point in the neighbourhood of (x∗, v∗). If such a function
exists, following theorem applies[1]:
Given a Lyapunv function L. If

1. L̇ < 0 in D\{0}then the fixed point attracts all trajectories (asymptotically stable5)

2. L̇ > 0 in D then the fixed point repels all trajectories (unstable)

3. L̇ = 0 in D the Lyapunov function reduces to the energy function (neutrally stable)

It has to be pointed out that there is no systematic way in deriving a Lyapunov function

5The term ’stable’ includes asymptotically and neutrally stable fixed points.
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[1].

2.2.3 Introduction to bifurcation Theory

Suppose an ODE
ẋ = r + x2

which is not only dependant on its variable x but also on the parameter r.[2] As we alter
r, the qualitative behaviour of the system changes. In the case r < 0, there are two fixed
points - one attracting and one repelling. As we increase the value of r the points are
approaching each other and coalescence. This happens for r = 0 at x∗ = 0. When r is
positive there are no fixed points left (Figure 7).

Figure 7: Phase portrait at different values of r

This process of ’destroying’ or ’creating’ fixed points is called a bifurcation. It is typical
for non-linear systems and also happens at higher dimensions6.
To illustrate this phenomenon in a better way, bifurcation diagrams are used. They
visualize the existence of fixed points at different values of r. A example is shown in
Figure 8.

Figure 8: Bifurcation diagram of ẋ = r + x2

6Bifurcations can appear in many different types and they play a crucial role in analysing the behavior
of systems. For a visual introduction see Strogatz[2]
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2.3 Chaotic Systems

In the last section, some methods in analysing non-linear systems were derived. This
techniques are also applicable in state spaces with higher dimensions than two. Neverthe-
less, the trajectories can exhibit more complex behaviour in three or higher dimensions -
chaos appears. How to extract information out of chaos, is explained in the following.

2.3.1 Definition an requirements for Chaos

The term ’chaos’ is not uniquely defined, but Strogatz points to following three key
features every chaotic system should have:[2]
A system is said to be chaotic if

1. Its long-term behaviour is aperiodic. This means, the trajectories do not settle
down to fixed points, periodic orbits, etc. as t→∞.

2. It is deterministic i.e. there are no random parts or noise.

3. It is sensitive dependent on initial condition so that nearby trajectories seperate
exponentially fast.

An ODE can exhibit chaos if the state space is higher than two dimensional. Further-
more, in case a system is hamiltonian and autonomous i.e. conservative, it can only be
chaotic if it is non integrable. An ODE is said to be integrable when it has as many
constants of motion as degrees of freedom in configuration space.[1]

Note that the definition of chaos is not only applicable to continuous systems but also
to iterated maps7. These iterated maps are way easier to analyse and therefore I will
use them in the following to explain some basic concepts.

2.3.2 Orbit Diagrams and Lyapunov Exponent

The standard example for a chaotic system is the logistic map

xn+1 = rxn(1− xn)

It can be used to describes the growth of a population (or spread of a virus) where r is
the growth parameter. Also it is practical to confine x to the interval [0, 1] and therefore
0 ≤ r ≤ 4.

If r < 1 the population always shrinks and goes to zero for any starting value x0. In
case 1 < r < 3 population grows until it hits a maximum value, where it stays - a fixed
point [3]. The behaviour changes when r is put even higher. For r = 3.4 a two cycle
appears: the population jumps between two ’fixed points’. At r = 3.5 a four-cycle and
at r = 3.55 an eight-cycle is present (Figure 9).

7also known as ’difference equation’ or simply ’map’
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Figure 9: Two- and four-cycle of the logistic map

This process is called period doubling and continues until a (finite) threshold value
r∞ ≈ 3.569[3]. This also has the consequence that the points at which a period doublings
occur, must get closer and closer as else r∞ would not be finite. In fact, if rn defines
the value where the n-th period doubling appears, the distance between two successive
doublings gets smaller by an approximately constant factor[2]:

δ = lim
n→∞

rn − rn−1
rn+1 − rn

= 4.669...

This is the first Feigenbaum number and a mathematical constant like π or e.8

Until now, the system did not exhibit chaos since for any value r < r∞ the solution was
periodic. That changes if r > r∞: For some values of r the solution gets aperiodic and
never repeats itself. The whole history of period doubling can be visualised in an orbit
diagram9 like Figure 10. Here the value of xt is plotted, after each iteration.

Figure 10: Orbit diagram of the logistic equation

For a periodic solution, there are only a finite amount of points that are visited over and
over again. Therefore only one, two, four,... single lines are visible in the left half of this

8there is also a second Feigenbaum number. See Strogatz page 380
9Orbit diagrams of ODEs can be created by plotting the value of the solution at every multiple of its

period time T
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plot, corresponding to the one-, two-, four-,... cycles (Figure 9). The period doubling
(and the decrease in spacing between rn and rn+1) is also clearly apparent. However, at
r∞ the plot gets messy, corresponding to the fact that the pattern never rereads. Also it
is visible that periodic windows appear in the ’chaotic regime’. For this values of r > r∞
the behaviour is periodic.[3]

Regarding all this, the evidence of an aperiodic behaviour is strong and therefore the first
criterion of chaos (subsection 2.3.1) is fulfilled. To investigate the sensitive dependence
on initial condition, we define the so called lyapunov exponent λ. For an ODE it is
defined in the following way:
Let δ0 be the (absolute) separation of two trajectories in phase space at t = 0 and δ(t) at
a later time. Than δ(t) is nearly exponentially dependant on t:

δ(t) ≈ δ0eλt

So the Lyapunov exponent can be calculated as

λ =
1

t
ln

(
δ(t)

δ

)

The definition of λ for discrete systems is similar (see Strogatz page 375). One would
expect that for λ < 0 the behaviour should be non chaotic because every separation
shrinks, whereas for λ > 0 it would be chaotic, as close initial conditions are separating
exponentially fast. It is helpful to plot the (mostly numerical) calculated lyapunov
exponents in dependence of a varying parameter. In case of the logistic map, λ(r) is
plotted in Figure 11.

Figure 11: Lyapunov exponents for different growth parameters

The from the orbit diagram (Figure 10) expected behaviour appears: If r < r∞ the
lyapunov exponent is less or equal than one (it is one at the points of period doubling).
This corresponds to a non chaotic regime. If r∞ is passed, λ(r) gets positive. This states
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that trajectories are sensitive to initial conditions since separation between them grows
exponentially. Also it is visible, that periodic windows appear for some r > r∞, where
λ(r) < 0.

2.3.3 Universality

The ’route to chaos’ i.e. period doubling process, was developed for the case of the
logistic map. However, it turns out that this behaviour is unique, in the sense that it
applies to other systems as well. In fact: All unimodal maps have the same qualitative
chaotic behaviour in terms of period doubling, periodic windows and also the appearance
of Feigenbaums numbers [2]. An unimodal map is an iterated map for which the plot of
xn against xn+1 has only one peak (Figure 12).

Figure 12: Plot of xn against xn+1 for the logistic map

This uniqueness also applies approximately to continuous cases like ODEs.[2] For some
highly dissipative systems a plot of local maxima in phase space can be made, which
leads to a unimodal map. For demonstration of this concept take the Lorenz equation.
This is a third order ODE and delivers a very simplified model of atmospheric air flows:

ẋ = σ(y − x)

ẏ = rx− y − xz
ż = xy − bz

For specific values of the parameters, chaotic behaviour is observed. As Strogatz points
out, this is happening for σ = 20, b = 8/3 and r = 28 [2]. A plot of the three dimensional
phase portrait is shown in Figure 13.
In the right plot of Figure 13 the behaviour of the trajectories in the y-z-plane is visible:
The trajectory starts at a positive value of y and moves right to the left side of the
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Figure 13: Phase portrait of the Lorenz system

origin. There it spirals around a few times until it wents back to the other side. Now
define zn as the n-th local maximum of this curve in z-direction. If zn is plotted against
zn+1, a nearly unimodal map appears - universality applies (Figure 14).[2]

Figure 14: Plot of zn against zn+1 for the Lorenz system
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2.3.4 Strange Attractors and Poincaré-Sections

When looking at Figure 13 one notices: A trajectory on an arbitrary point in phase space
is attracted to a finite subset of the space. The trajectory seems to move around in this
subset forever (they do not escape to infinity). Objects like this generally occur in chaotic
systems and are called Strange attractors. At first glance it seems counter-intuitive
that an aperiodic trajectory can move in a finite subset of space without crossing itself.
In fact, this is only possible because the strange attractor has a fractal nature. A fractal
is an object which has structures at arbitrarily small scales, therefore having an infinite
surface while remaining a finite area. In some cases fractals are also self similar: as one
zooms into the fractal, the same structures repeats over and over again [1].10

To illustrate the fractal nature of the strange attractor, we take a (two-dimensional) slice
through the phase plane. Now we record only the intersection points of the trajectories
with this slice. This is called a Poincaré-Section. It is illustrated schematically in the
left picture of Figure 15 A prototypical example of a Poincaré-Section is shown on the
right side (in this case the Hénon map).

Figure 15: Poincaré-Section. Left: Schematically. Right: Hénon map

If looking closely at one of the peaks of the Poincaré-Section in Figure 15, the self
similarity is visible. Another example of fractal behaviour is covered in section 3.

10The actual definition is more refined. See Layek page 577
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3 Treatment of Duffing’s Equation

The Duffing oscillator (or Duffing equation) is an extension of the simple harmonic
oscillator by a cubic term. Therefore it could be used to model a spring which has a non
constant stiffness. The duffing equation in its most general form is 11

ẍ+ γẋ+ αx− βx3 = Fcos(ωt)

In this section I will try to analyse the behaviour of this equation in different cases.

3.1 Unforced Duffing Oscillator without Damping

By setting δ = 0 and F = 0 we receive the undamped unforced Duffing oscillation
ẍ+αx−βx3 = 0. To simplify the situation further, set α = 1. Furthermore, the system
can be rewritten into first order ODEs:

ẋ = v (2)

v̇ = −x+ βx3 (3)

Now, the first step is to calculate the fixed points of the system. This is done by simply
setting the left side of equations 2-3 to zero and solving for x and v. There are three
solutions:

p∗1 = (x,∗ v∗) = (0, 0)

p∗2 = (
1√
β
, 0)

p∗3 = (
−1√
β
, 0)

In order to analyse the stability of this points, the Jacobian matrix is calculated:

J =

∂ẋ
∂x

∂ẋ
∂v

∂v̇
∂x

∂v̇
∂v

 =

 0 1

−1 + 3βx2 0


The eigenvalues are given throgh

λ1/2 =
√
−1 + 3βx2

Which type the fixed point is, is obtained by the eigenvalue evaluated at p∗n:

λ1/2(p
∗
1) = ±i

λ1/2(p
∗
2) = λ1/2(p

∗
3) = ±

√
2

11If β is positive, the stiffness of the spring gets weaker as x gets larger. For negative β it gets stronger.
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Points p∗2 and p∗3 have two eigenvalues with different signs. This means that the trajecto-
ries are approaching the fixed points in one of the eigendirections and are moving away
from them in another → they are saddle points. The associated eigenvectors are:

~v1(p
∗
2) = ~v1(p

∗
3) = (1/

√
2, 1)

~v2(p
∗
2) = ~v2(p

∗
3) = (−1/

√
2, 1)

For the fixed point p∗1 the analysis is subtler. The eigenvalues tell that p∗1 is a center, but
centers can be disrupted by small non-linear terms (Section 2.2.2). Nevertheless, this
is a conservative system and therefore this fixed point actually is a center! In the next
step, the phase portrait has to be constructed. Firstly, the fixed points, eigenvectors and
nullclines are drawn . The nullclines are given by v(x) = 0, x(v) = 0 and x(v) = ±1√

β
.

Also some representative arrows are plotted. This can be done by simply looking at
the eigendirections of the fixed points. Now, the phase portrait can be completed in a
straight-forward way. This process and the result is sketched in Figure 16.

Figure 16: Phase portrait of Equations 2 and 3 including a bifurcation diagram
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The physical interpretation of this phase portrait is the following: In the case that a
particle is places in the green encircled section i.e. it has small energy, it oscillates.
For very small values of x this oscillation is approximately harmonic. A particle placed
outside this pot ( 1√

β
< x < −1√

β
) will drift away to infinity as t→∞ with ever increasing

velocity. Also particles placed between x = 1√
β

and x = −1√
β

can escape. They lose a bit

of energy at first but nevertheless escape to infinity as time goes on.

In the fourth picture of Figure 16 a bifurcation diagram of this system is drawn. It shows
that the saddle points go to infinity when β is very small. Therefore, the behaviour
becomes more similar to the classical case of Hooks-law. For negative β the saddle
points get complex. This does not mean that they have no influence on the trajectories.
Hence, the behaviour is now that of a spring with increasing stiffness as the particle gets
farther away from the origin.

3.2 Unforced Duffing Oscillator with Damping

This section deals with the damped Duffing equation. It can be created by introducing
a velocity dependant term which decreases the energy of the system. In our case a term
−v3 is added, leading to a simpler long term behaviour compared to a term −v:

ẋ = v (4)

v̇ = −x+ βx3 − v3 (5)

It can be checked that fixed points, eigenvalues and eigenvectors are the same as in the
case of the undamped unforced oscillator, so

p∗1 = (x,∗ v∗) = (0, 0) −→ λ1/2(p
∗
1) = ±i

p∗2 = (
1√
β
, 0) −→ λ1/2(p

∗
2) = ±

√
2

p∗3 = (
−1√
β
, 0) −→ λ1/2(p

∗
3) = ±

√
2

For points p∗2 and p∗3 the stability is defined by the linearisation (they are saddle points).
Nevertheless, p∗1 is now not necessarily a center because the system is not conservative.
From a physical perspective we would argue that a particle near the center should spiral
inwards because it loses energy through friction or similar processes.

To prove this hypothesis mathematically, a Lyapunov function can be used (as described
in section 2.2.2). Since it is assumed that energy is decreasing because of damping, the
energy function is a potential Lyapunov function:

L =
v2

2
+
x2

2
− βx4

4
(6)

Lets verify if all conditions for a Lyapunov function are fullfilled:

1. L(x, v) > 0 except L(p∗1) = 0: This is not true since x4 is appearing with a negative
sign in equation 6. Nevertheless, it is possible to define the Lyapunov function only
on a subset D of space where L(x,v) is larger than zero. The ’Lyapunov theorem’
then only applies to this subset. Also it is clear that L(p∗1)=0.
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2. L̇(x, v) < 0 except for the origin: By calculating L̇ as L̇ = v̇v+vx−βvx3 = −v4 ≤ 0
we see that the derivative is less than zero everywhere except the x-axis. It is not
possible to simply remove the x-axes from D since than the Lyapunov function
would not be continuously differentiable. However, in the present case the x-axes
is little of a problem because it has measure zero. This can be argued by the
qualitative behaviour of trajectories.

The subspace D where L > 0 is satisfied, is sketched on the left of Figure 17.

Figure 17: Left: Subset D. Right: Subset Ω

When looking at Figure 17, another problem is recognized: There are (against the
assumptions made in 2.2.2) two fixed points in the neighbourhood of p∗1. How can one
be sure that this saddle points do not repel or attract trajectories in D (in fact, they
do)? To avoid this problem, a trapping area is constructed. This is a subset Ω ⊆ D on
whose surface ∂Ω the flow points inward (Figure 17 right). In this region every trajectory
has to spiral inward to the origin!

To construct Ω, it is reasonable to restrict the space to all points where −1√
β
< x < 1√

β

which leads to the expression Ω = {L < 1
4β}. A prove that all trajectories point inward

or are tangential, is done as follows:

1. Let ~n be a normal vector pointing outward on ∂Ω and ~̇y = (ẋ, v̇) be the direction
of flow. For the flow to point inward, the scalar product < ~n, ~y > has to be less or
equal to zero (Figure 18).

2. To evaluate this, write ∂Ω = {L = 1
4β} ↔

1
4β = L(x, v) in parametric form:

CL := ∂Ω =

(
x

±
√

1
2β − x2 + βx4

w

)
(7)

3. In order to find the normal vector, first calculate the tangential vector ~τ = dCL
dx
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and then rotate ~τ by 90◦ to get ~n. There are two normal vectors, one for each sign
of ~v:

~n+ =

(
−βx3+x

v
1

)
for v > 0

~n− =

(
βx3+x
v
−1

)
for v < 0

4. The dot products turns out to be

< ~n+, ~y >= −v3 for v > 0

< ~n−, ~y >= v3 for v < 0

which is always equal or less than zero. �

It should be noted that the region Ω has not to be a maximal basin of attraction.
Nevertheless, it is assured that in Ω all trajectories are attracted by p∗1 because a suitable
Lyapunov function exists and no trajectories can escape out of Ω or are attracted by
other fixed points.

Figure 18: Sketch of ~y and ~n

For drawing the phase portrait of this system, the last step is to find the nullclines.
Setting the left sides of the ODE to zero one gets v(x) = 3

√
−x+ βx3 and v(x) = 0.

Now, on the left of Figure 19 there are some representative arrows of the flow plotted.
Out of them the whole phase portrait can be drawn (Figure 19 right).

The physical interpretation is following: all particles placed in the trapping region will
spiral down to the origin i.e. they oscillate with ever decreasing amplitude. Some
particles placed outside of the trapping region also get attracted by the fixed point p∗1.
This means that they are slowed down by friction by such an extend that they cannot
escape the potential gap any more. However, other particles have enough energy to
escape to infinity. This is possible because in more distant regions the energy gained
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Figure 19: Left: Nullclines with representative arrows. Right: Sketch of the phase plot

by the potential of this system (which raises like x4) is greater than the energy lost by
friction (∼ v3).

If the phase portrait is drawn with more accuracy, it can be seen that all trajectories
that escape to infinity, converge: They get closer to the nullcline v(x) = 3

√
−x+ βx3 as

time passes. This result can also be derived by another qualitative argument: Looking
at the first quadrant of the phase portrait, one recognises that the flow points toward
the right at the left side of the nullcline. So every trajectory which is not attracted by
the origin eventually passes through this nullcline. By inspecting equations 4 and 5, it
is also clear that ẋ is relatively small for big x (because v̇ is much larger). When x is
large, ẋ gets noticeably only in the near neighbourhood of the nullcline where x3 and
v3 in eq. 5 cancel. As a whole this means: The trajectories pass through the nullcline
and are ’pressed’ against it by the flow on the other side. This behaviour can also be
quantified:
For large x the nullcline gets:

lim
x→∞

v(x) = lim
x→∞

3
√
−x+ βx3 = 3

√
βx

This can be solved in terms of time t:

x(t) = C1e
3√βt

v(t) = C2e
3√βt

where C1/2 are constants that can be evaluated by specifying a value of v and x at a
specific (not to early) time. Hence, the behaviour of this system for t→∞ is described
in the case of attraction and escaping.

3.3 Forced Duffing Oscillator with Damping

The systems treated in the last two sections are non chaotic. If, in addition to a damping
term, a forcing term is introduced, the system exhibits chaos. In case of a harmonic
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forcing, the equation of motion looks like:

ẍ+ γẋ+ αx− βx3 = Fsin(ωt)

The chaotic behaviour does vary dependent on the initial conditions and values of the
constants. In our case the constants are chosen to be γ = 0.295, α = 0.2, β = −1 and
ω = 1 with initial conditions v0 = 0 and x0 = 0.1. Therefore the ODE becomes:

ẋ = v

v̇ = −0.295v − 0.2x3 − x3 + Fsin(g)

ġ = ω

This system of equations has a three dimensional state space which is the minimal
condition for becoming chaotic. In the following, the strength of forcing (expressed by
F ) is varied and the route to chaos is analysed in a numerical way.

The first sign of a route to chaos is the period doubling discussed in section 2.2.3. If F is
increased from a value of F = 6.0 upwards, the period of the solution (after the system
has settled down) doubles. This is plotted in Figure 20.

Figure 20: Period doubling behaviour

At F = 6.0 the period is π, as expected from a linear forced oscillator. If increased
further, the period gets longer: At F = 8.5 it is 2π and at F = 8.7 it is 4π (the four
period in Figure 20 is only visible by closer inspection). After a threshold-value of
F∞ ≈ 8.9 is passed, the motion gets aperiodic and never repeats.

In order to clarify this result, an orbit diagram is made (Figure 21). This is done by
plotting the value of x(t) after each period T = 2π.
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Figure 21: Bifurcation plot of the Duffing oscillator

This plot looks similar to that of the logistic map (Figure 10). This is no coincidence, as
explained later. Out of the orbit diagram, it is possible to calculate the first Feigenbaum
number. The first five bifurcations are determined to:

n F δn
1 7.11± 0.01 −
2 8.547± 0.005 5.2± 0.1
3 8.825± 0.001 4.9± 0.1
4 8.8831± 5−4 4.63± 0.01
5 8.8957± 5−4 −


where δn was calculated by

δn =
Fn − Fn−1
Fn+1 − Fn

Only after five doublings, one gets a value close to the exact Feigenbaum number

δ = lim
n→∞

Fn − Fn−1
Fn+1 − Fn

= 4.669...

The second method of determining if a system behaves chaotically, is by calculating its
Lyapunov exponents. In general there are n different Lyapunov exponents λn. One for
each dimension in phase space. Nevertheless, in most cases the biggest exponent does
dominate. In this case I calculated the Lyapunov exponent by using the euclidean norm
δ(t) =

√
(x− x′)2 + (v − v′)2 where δ(t) is the difference between two nearby trajectories

y(x, v) and y′(x′, v′).

In Figure 22 the relation log
(
δ(t)
δ(0)

)
is plotted for F = 9.3. It shows that the difference

d(t) between two nearby trajectories grows exponentially. However, this exponential
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growth does only last a limited time. Since the trajectories can not escape to infinity
but are attracted by a strange attractor (Section 2.3), they can just separate by a finite
amount.

Figure 22: Increase of d1 = δ(t) with logarithmic y-axes

If the approximately linear growing part of the curve in Figure 22 is fitted with a straight
line, the Lyapunov exponent λ is given by the slope. For F ∈ [6.7, 9.3], that was done
and is plotted in Figure 23. This plot supports the assumption that the system exhibits
chaos in some areas.12

In the next step I will show, why the duffing oscillator exhibits chaos in a similar way
to the logistic map. To show this, it is useful to make the system a bit more dissipative
and therefore increasing the constant γ to γ = 0.31. It was said in chapter 2.3.4 that,
in the case a unimodal map can be extracted from the system, universality will apply13.
To extract a unimodal map out of the Duffing oscillator, the phase portrait is plotted
in Figure 24. Note that trajectories cross in this plot because we decreased the dimen-
sionality of the ODE by instead of plotting state space, we are only plotting the phase
space (i.e. ignoring the time dimension).

To extract a map out of Figure 24, one takes the local minima xn from the x-component
of the phase space trajectory and plot xn against xn+1. This results in the unimodal
map shown in Figure 25 - universality applies (at least approximately).

12It has to be noted that the λ has not been calculated with high accuracy at the lows of this plot (e.g.
between F=7.9 and F=8.1). This was due to numerical difficulties.

13Only systems with a ’high’ dissipation show this behaviour. This is the reason why γ is increased. On
the other hand, the remaining phenomena discussed in this section are better visible with γ = 0.295
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Figure 23: Lyapunov exponent for F ∈ [6.7, 9.3]

Figure 24: Phase plot of the duffing oscillator
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Figure 25: Unimodal map extracted from the Duffing oscillator

The phase plot of Figure 24 displays a strange attractor. To verify that this actually is
a strange attractor, it is helpfull to take a Poincaré section of the trajectories. To do
that, I calculated the solution of the ODE for a time t ∈ [0, 50000] and recorded the
intersection of the state space trajectorie at every multiple of 2π (since the period time
is T = 2π). In Figure 26 the result is plotted. One can see the, form a strange attractor
expected, self similar (fractal) behaviour: As we zoom into the red marked area, the
structure repeads. In the third graph of 26 the numerical limits of my calculation was
reached. Nevertheless, this self similarity would go on to arbitrarily small scales.

All the numerical analysis in this section has shown that the forced Duffing oscillator
indeed exhibits chaos. A strong indicator of this was the appearance of a unimodal map
and the Feigenbaum number. Both point toward a strong connection to iterated maps
like the logistic map, which both show the same features. However, in some areas the
behaviour could be expected to be non chaotic: For F < F∞ period doubling appears
and the solution is periodic. This is also true for some values greater then F∞.

29



Nonlinear Dynamics Raphael Wilhelmer

Figure 26: Poincaré section for γ = 0.295
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