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Qubits in Quantum Computing

Qubits: analogon to bits in classical computing
— has to have 2 distinct states

Any 2-level-system could be used. Examples:
m Photon polarization
m Energy levels in molecules / atoms
m Spin of an electron

Logical operations (NOT, OR, ...) have to be performed on the
qubit
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Mathematical Description of Qubits

Qubits are elements of a 2-dimensional Hilbert-space H?:

) = a(t) [1) + b(t) V)

— coefficients a(t), b(t) hold dynamics
— could be denoted as (a(t), b(t))T
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2-Level-System

Hamiltonian for Qubits

Ho = wo 1) (1]

assigns energy wy to spin-up-state and 0 to spin-down

—iwpt

a(t) =

solution: €
" b(t)=0

} Larmor precession
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Description of EM-Field

Hamiltonian with electromagnetic field

Matrix representation in the {|1),|])}-basis:

. et
e = (% 5 )
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Solution to time dependent Hamiltonian

Plug into Schrédinger equation for state (a(t), b(t)) T,

i%a(t) = wp + f(t) - b(t)

d

"ab(t) = f*(t) - a(t)

Solution considering EM-field with |¢(t = 0))

(07

a(t) = e~ z(etwo)t . (cos(Bt) + iﬁ

sin(6t))
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NOT-Gate

Resonant case: e =wg > A =a=0and 8 = Q.

a(t) = e ™ot cos(Qt)
b(t) = —isin(Qt)

Choose interaction time 7 = 55 — a(7) =0, b(7) = —i
al: 1—-0
o 0D e b=
(NOT-Operation)
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The Density Matrix

Definition

pr=> pildi) (gl with Y pi=1
i=1 i=1

Distinguish between mixed / pure state.

p describes pure state <=

d N
von Neumann-equation: a,ﬁ(t) = —i[H(t),p(t)]

unitary time evolution: p(t) = U(t, to)p(to) Ut (t, to)
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The Density Matrix for spin-1/2-systems

Bloch-sphere representation

P = (P, P,, P;): expectation value of the spin S= (§X,§y, S,)
— Polarization

Note: 5 describes a pure state if and only if |P| = 1

_(aa* ab*\ 1/ 1+P, Pc—iP,
P=\ab bb*) “2\Pc+iP, 1-P,
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Decoherence

A state is called decoherent, if "its interference is supressed” .

?Michael A Nielsen and Isaac L Chuang. Quantum Computation and
Quantum Information. 10th Anniversary Edition. Cambridge University Press,
2010. 1SBN: 978-1-107-00217-3.

(A) = (| Aly) = (a* (1] + b* (L)A(al1) + bIL))
= aa*A11 + bb* Ay + b*aAx + ba" A1

interference term

For the density operator: off-diagonal elements vanish
For the Bloch-sphere: |P| decreases
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The problems so far

Von Neumann-equation describes isolated system.
Does not produce certain effects:

m Dissipation of energy (Larmor precession)
m Change in entropy (|P| = const.)

m Statistical physics: there are no isolated systems — assume
(random) interactions of the system with the environment

TH(7()) = Te(0(0)0 01 (1) 0(2) o0 (1)) = Tr(73)
=1

—> pure state remains pure for all times
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Open system

SYSTEM ENVIRONMENT m Assume:
A ~(E t=0:p=pxpkE)
p e o
m Reduced density matrix:
p(t) = Trenv p

Define the Dynamical map: V(t): p(0) — p(t)

Lindblad has shown? that under certain assumptions, such time
evolution can be written as a quantum mechanical master equation
preserving the properties of p (positiveness, convexity).

?Goran Lindblad. "On the generators of quantum dynamical semigroups”.
In: Communications in Mathematical Physics 48 (1976), pp. 119-130.
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The Lindblad equation

3200 = ~TAOHO + 3 (Lol - 3{ELL. 0} )

n>0

= —i[A(t).5(t)] + Da(t)] =: L[p(¢)]

Form: Lindblad-operator = unitary evolution + dissipation
L, ... Lindblad operators
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Lindblad operators

What is the meaning of the Lindblad operators [u?

u~ o produce amplitude damping

~ ™~

[
ml,~0; produce phase damping

Note: one can consider more than one Lindblad operator
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Treatment as an Open Quantum System

m Qubit in presence of dissipation
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Amplitude damped Qubit

Choose Itu =/~

Py (t) = ( — yosin(wot) + xo Cos(wot))e*%’f
Py(t) = (yo cos(wot) + xo sin(wot))e—%t
Pz(t) =—-1+ (Zo + 1)e—”rt

— amplitude damping occurs (P,(t — o0) = —1)
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Amplitude damped Qubit

x(t) /y(t) / z(t)
o
T
]

Figure : Plot of the time evolution obtained before. v = 0.05, wp = 1. At
t = 0, the system was prepared with a polarization 1/+/3-(1,1,1)7
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NOT-Gate with Amplitude Damping Channel

Again, use [u =0,
Full Hamiltonian A = Hy + I-AI/(t), plug into Lindblad equation

d ) ~
= 2QP; sin(et) — woPy _EPX

d gl
EPY = —2QP; cos(et) + woPx _EPy
d

1P = 2Q(Py cos(et) + Pxcos(et)) —(1+ Px)

— numerical solution
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NOT-Gate with Amplitude Damping Channel

[1.546,-0.945] &

x(t) / y(t) / z(t)

Figure : Time evolution of a NOT-Gate with [u = /76~ (amplitude
damping). wo = ¢ =1 (resonance), @ =1, v = 0.05.



Decoherent NOT-Gate
coeo

NOT-Gate with Phase Damping Channel




Decoherent NOT-Gate
coeo

NOT-Gate with Phase Damping Channel

Use different Lindblad operator: Zu = ﬁ&z



Decoherent NOT-Gate
coeo

NOT-Gate with Phase Damping Channel

Use different Lindblad operator: Zu = ﬁ&z

d

= 2QP;sin(et) — woy —2Ax

d

&Py = —2QP; cos(et) + wox —2\y
d

aPz = 2Q(Py cos(et) + x cos(et))



Decoherent NOT-Gate
coeo

NOT-Gate with Phase Damping Channel

Use different Lindblad operator: Zu = ﬁ&z

d

= 2QP;sin(et) — woy —2Ax

d

&Py = —2QP; cos(et) + wox —2\y
d

aPz = 2Q(Py cos(et) + x cos(et))

Difference to amplitude damping: no (direct) damping of P,
occurs




Decoherent NOT-Gate
coeo

NOT-Gate with Phase Damping Channel

Use different Lindblad operator: Z# = \f)\a'z

d

= 2QP;sin(et) — woy —2Ax

d

&Py = —2QP; cos(et) + wox —2\y
d

aPz = 2Q(Py cos(et) + x cos(et))

Difference to amplitude damping: no (direct) damping of P,
occurs —> Phase Damping Channel
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NOT-Gate with Phase Damping Channel

x(t) / y(t) / z(t)

Figure : Time evolution of a qubit considering a noisy phase damping
channel. wy = e =1 (resonance), @ =1, A = 0.05.



Decoherent NOT-Gate
000000

NOT-Gate in Presence of Dissipation

m Entropy change



Decoherent NOT-Gate
®00000

Entropy in Quantum Systems




Decoherent NOT-Gate
®00000

Entropy in Quantum Systems

From probability theory: S = —3". p; - In(p;)



Decoherent NOT-Gate
®00000

Entropy in Quantum Systems

From probability theory: S = —3". p; - In(p;)
— measure information



Decoherent NOT-Gate
®00000

Entropy in Quantum Systems

From probability theory: S = —3". p; - In(p;)
— measure information

von Neumann-entropy

S=-Tr(p-In(p))




Decoherent NOT-Gate
®00000

Entropy in Quantum Systems

From probability theory: S = —3". p; - In(p;)
— measure information

von Neumann-entropy

S=-Tr(p-In(p))

Note: S = 0 if and only if p describes a pure state



Decoherent NOT-Gate
®00000

Entropy in Quantum Systems

From probability theory: S = —3". p; - In(p;)
— measure information

von Neumann-entropy

S=-Tr(p-In(p))

Note: S = 0 if and only if p describes a pure state
maximally entangled state: p = 31 — S = In(2)
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Long time evolution, phase damped

x(t) / y(t) / z(t)

0 20 40 60 80 100
t

Figure : NOT-Gate under consideration of a phase damping
(L, = ﬁ&z). Again, wg = € =1 (resonance), Q =1, A = 0.05
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Long time evolution, amplitude damped

x(t) / y(t) / z(t)

0 20 40 60 80 100
t

Figure : NOT-Gate under consideration of an amplitude damping. Again,
wo = € =1 (resonance), Q =1, A =0.05
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Entropy change

S(t)

0 50 100 150 200
t

Figure : Long time evolution of a NOT-operation under consideration of
an amplitude damping. Again, wp = ¢ =1 (resonance), Q =1, A = 0.05.
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Entropy of amplitude damped qubit

0.7 - i

0.6 - B

0.5 - B

0.4 B

S(t)

0.1 | B

0 50 100 150 200
t

Figure : Change in the von Neumann-entropy of a simple qubit (no EM
interaction) considering amplitude damping as discussed before.
Parameters are Q = 1, v = 0.05.
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Thank you for your attention.
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