Simple NOT-Gate

Decoherence & Dissipation 0000

Open Quantum System

Decoherent NOT-Gate

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Decoherence Effects in Qubits Projektpraktikum

Peter Wriesnik

Institute of Theoretical and Computation Physics Graz University of Technology

November 28, 2012

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
Outline			

1 A Simple Model for NOT-Gate

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
Outline			

1 A Simple Model for NOT-Gate

Introduction to Qubits

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
Outline			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1 A Simple Model for NOT-Gate

- Introduction to Qubits
- Interaction with Electromagnetic Field (NOT-Gate)

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
Outline			

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

1 A Simple Model for NOT-Gate

- Introduction to Qubits
- Interaction with Electromagnetic Field (NOT-Gate)
- 2 Decoherence & Dissipation

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
Outline			

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

1 A Simple Model for NOT-Gate

- Introduction to Qubits
- Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation

The Density Matrix

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
000000	0000	00000	
Outline			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1 A Simple Model for NOT-Gate

- Introduction to Qubits
- Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation

- The Density Matrix
- Effect of decoherence

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
Outline			

- **1** A Simple Model for NOT-Gate
 - Introduction to Qubits
 - Interaction with Electromagnetic Field (NOT-Gate)
- 2 Decoherence & Dissipation
 - The Density Matrix
 - Effect of decoherence
- 3 Treatment as an Open Quantum System

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
Outline			

- 1 A Simple Model for NOT-Gate
 - Introduction to Qubits
 - Interaction with Electromagnetic Field (NOT-Gate)
- 2 Decoherence & Dissipation
 - The Density Matrix
 - Effect of decoherence
- 3 Treatment as an Open Quantum System
 - The Lindblad equation

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
Outline			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1 A Simple Model for NOT-Gate

- Introduction to Qubits
- Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation

- The Density Matrix
- Effect of decoherence

3 Treatment as an Open Quantum System

- The Lindblad equation
- Qubit in presence of dissipation

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
Outline			

- 1 A Simple Model for NOT-Gate
 - Introduction to Qubits
 - Interaction with Electromagnetic Field (NOT-Gate)
- 2 Decoherence & Dissipation
 - The Density Matrix
 - Effect of decoherence
- 3 Treatment as an Open Quantum System
 - The Lindblad equation
 - Qubit in presence of dissipation
- 4 NOT-Gate in Presence of Dissipation

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
Outline			

- 1 A Simple Model for NOT-Gate
 - Introduction to Qubits
 - Interaction with Electromagnetic Field (NOT-Gate)
- 2 Decoherence & Dissipation
 - The Density Matrix
 - Effect of decoherence
- 3 Treatment as an Open Quantum System
 - The Lindblad equation
 - Qubit in presence of dissipation
- 4 NOT-Gate in Presence of Dissipation
 - Quantum Channels

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
Outline			

1 A Simple Model for NOT-Gate

- Introduction to Qubits
- Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation

- The Density Matrix
- Effect of decoherence

3 Treatment as an Open Quantum System

- The Lindblad equation
- Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation

- Quantum Channels
- Entropy change

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
000000	0000	00000	000000000

1 A Simple Model for NOT-Gate

- Introduction to Qubits
- Interaction with Electromagnetic Field (NOT-Gate)
- 2 Decoherence & Dissipation
 - The Density Matrix
 - Effect of decoherence
- **3** Treatment as an Open Quantum System
 - The Lindblad equation
 - Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation

- Quantum Channels
- Entropy change

Simple NOT-Gate ●00000	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
Qubits in Qua	antum Computing		

Qubits: analogon to bits in classical computing

Simple NOT-Gate ●00000	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
Qubits in Qua	antum Computing		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Qubits: analogon to bits in classical computing \rightarrow has to have 2 distinct states

Simple NOT-Gate ●00000	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
Qubits in Qua	antum Computing		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Qubits: analogon to bits in classical computing \rightarrow has to have 2 distinct states

Any 2-level-system could be used. Examples:

Photon polarization

Simple NOT-Gate ●00000	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
Qubits in Qua	antum Computing		

Qubits: analogon to bits in classical computing \rightarrow has to have 2 distinct states

Any 2-level-system could be used. Examples:

- Photon polarization
- Energy levels in molecules / atoms

Simple NOT-Gate ●00000	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
Qubits in Qua	antum Computing		

Qubits: analogon to bits in classical computing \rightarrow has to have 2 distinct states

Any 2-level-system could be used. Examples:

- Photon polarization
- Energy levels in molecules / atoms
- Spin of an electron

Simple NOT-Gate ●000000	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
Qubits in Qua	antum Computing		

Qubits: analogon to bits in classical computing \rightarrow has to have 2 distinct states

Any 2-level-system could be used. Examples:

- Photon polarization
- Energy levels in molecules / atoms
- Spin of an electron

Logical operations (NOT, OR, $\ldots)$ have to be performed on the qubit

Simple NOT-Gate

Decoherence & Dissipation

Open Quantum System

Decoherent NOT-Gate

Mathematical Description of Qubits

Qubits are elements of a 2-dimensional Hilbert-space \mathcal{H}^2 :

Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Mathematical Description of Qubits

Qubits are elements of a 2-dimensional Hilbert-space \mathcal{H}^2 :

$$\ket{\psi} = a(t) \ket{\uparrow} + b(t) \ket{\downarrow}$$

Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate 000000 Mathematical Description of Qubits

Qubits are elements of a 2-dimensional Hilbert-space \mathcal{H}^2 :

$$\ket{\psi} = a(t) \ket{\uparrow} + b(t) \ket{\downarrow}$$

\rightarrow coefficients a(t), b(t) hold dynamics

Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate 000000

Mathematical Description of Qubits

Qubits are elements of a 2-dimensional Hilbert-space \mathcal{H}^2 :

$$\ket{\psi} = a(t) \ket{\uparrow} + b(t) \ket{\downarrow}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- \rightarrow coefficients a(t), b(t) hold dynamics
- \rightarrow could be denoted as $(a(t), b(t))^T$

Simple NOT-Gate 00●000	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
2-Level-Syste	m		

Hamiltonian for Qubits

$$\hat{H}_0 = \omega_0 \ket{\uparrow} ig< \uparrow$$

assigns energy ω_0 to spin-up-state and 0 to spin-down

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Simple NOT-Gate 00●000	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
2-Level-System	m		

Hamiltonian for Qubits

$$\hat{H}_0 = \omega_0 \ket{\uparrow} ig\langle \uparrow \mid$$

assigns energy ω_0 to spin-up-state and 0 to spin-down

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

solution:
$$\begin{array}{c} a(t) = e^{-i\omega_0 t} \\ b(t) = 0 \end{array}
ight\}$$
 Larmor precession

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
000000			

1 A Simple Model for NOT-Gate

Introduction to Qubits

Interaction with Electromagnetic Field (NOT-Gate)

- 2 Decoherence & Dissipation
 - The Density Matrix
 - Effect of decoherence
- 3 Treatment as an Open Quantum System
 - The Lindblad equation
 - Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation

- Quantum Channels
- Entropy change

Simple NOT-Gate

Decoherence & Dissipation

Open Quantum System

Decoherent NOT-Gate

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Description of EM-Field

Hamiltonian with electromagnetic field

$$egin{aligned} \hat{H} &= \hat{H}_0 + \hat{H}_I(t) \ \hat{H}_I(t) &= f(t) \left|\uparrow\right\rangle \left\langle\downarrow\right| + f^*(t) \left|\downarrow\right\rangle \left\langle\uparrow
ight| \ ext{with } f(t) = Qe^{-i\epsilon t} \end{aligned}$$

Simple NOT-Gate

Decoherence & Dissipation

Open Quantum System

Decoherent NOT-Gate

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Description of EM-Field

Hamiltonian with electromagnetic field

$$\begin{split} \hat{H} &= \hat{H}_0 + \hat{H}_I(t) \\ \hat{H}_I(t) &= f(t) \left| \uparrow \right\rangle \left\langle \downarrow \right| + f^*(t) \left| \downarrow \right\rangle \left\langle \uparrow \right| \\ & \text{with } f(t) = Q e^{-i\epsilon t} \end{split}$$

Matrix representation in the $\{|\uparrow\rangle, |\downarrow\rangle\}$ -basis:

$${\cal H}(t) = egin{pmatrix} \omega_0 & Q \cdot e^{-i\epsilon t} \ Q \cdot e^{i\epsilon t} & 0 \end{pmatrix}$$

 Simple NOT-Gate
 Decoherence & Dissipation
 Open Quantum System
 Decoherent NOT-Gate

 0000
 000
 0000
 000000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Solution to time dependent Hamiltonian

Plug into Schrödinger equation for state (a(t), b(t))':

 Simple NOT-Gate
 Decoherence & Dissipation
 Open Quantum System
 Decoherent NOT-Gate

 00000
 0000
 00000
 000000000

Solution to time dependent Hamiltonian

Plug into Schrödinger equation for state (a(t), b(t))':

$$i rac{\mathrm{d}}{\mathrm{d}t} a(t) = \omega_0 + f(t) \cdot b(t)$$

 $i rac{\mathrm{d}}{\mathrm{d}t} b(t) = f^*(t) \cdot a(t)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 Simple NOT-Gate
 Decoherence & Dissipation
 Open Quantum System
 Decoherent NOT-Gate

 0000
 000
 0000
 0000
 00000000

Solution to time dependent Hamiltonian

Plug into Schrödinger equation for state $(a(t), b(t))^T$:

$$i rac{\mathrm{d}}{\mathrm{d}t} a(t) = \omega_0 + f(t) \cdot b(t)$$

 $i rac{\mathrm{d}}{\mathrm{d}t} b(t) = f^*(t) \cdot a(t)$

Solution considering EM-field with $|\phi(t=0)\rangle = |\uparrow\rangle$

$$a(t) = e^{-\frac{i}{2}(\epsilon + \omega_0)t} \cdot \left(\cos(\beta t) + i\frac{\alpha}{\beta}\sin(\beta t)\right)$$
$$b(t) = -\frac{Q \cdot i}{\beta}e^{-i\frac{\Delta}{2}t}\sin(\beta t)$$

Simple NOT-Gate ○○○○○●	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
NOT-Gate			

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Simple NOT-Gate ○○○○○●	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
NOT-Gate			

<u>Resonant case:</u> $\epsilon = \omega_0 \rightarrow \Delta = \alpha = 0$ and $\beta = Q$.

Simple NOT-Gate ○○○○○●	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
NOT-Gate			

Resonant case:
$$\epsilon = \omega_0 \rightarrow \Delta = \alpha = 0$$
 and $\beta = Q$.

$$a(t) = e^{-i\omega_0 t} \cos(Qt)$$

 $b(t) = -i \sin(Qt)$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Simple NOT-Gate ○○○○○●	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
NOT-Gate			

Resonant case:
$$\epsilon = \omega_0 \rightarrow \Delta = \alpha = 0$$
 and $\beta = Q$.

$$a(t) = e^{-i\omega_0 t} \cos(Qt)$$

 $b(t) = -i\sin(Qt)$

Choose interaction time
$$au=rac{\pi}{2Q}
ightarrow {\it a}(au)=$$
 0, ${\it b}(au)=-i$
Simple NOT-Gate ○○○○○●	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
NOT-Gate			

Resonant case:
$$\epsilon = \omega_0 \rightarrow \Delta = \alpha = 0$$
 and $\beta = Q$.

$$a(t) = e^{-i\omega_0 t} \cos(Qt)$$

 $b(t) = -i \sin(Qt)$

Choose interaction time $au=rac{\pi}{2Q}
ightarrow a(au)=$ 0, b(au)=-i

$$\begin{array}{cc} |a|: & 1 \to 0 \\ |b|: & 0 \to 1 \end{array} \end{array} \Longrightarrow |\uparrow\rangle \to |\downarrow\rangle \\ (\text{NOT-Operation}) \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
	0000		

- 1 A Simple Model for NOT-Gate
 - Introduction to Qubits
 - Interaction with Electromagnetic Field (NOT-Gate)
- Decoherence & Dissipation
 The Density Matrix
 Effect of decoherence
- 3 Treatment as an Open Quantum System
 - The Lindblad equation
 - Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation

- Quantum Channels
- Entropy change

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
The Density	Matrix		

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Decoherence & Dissipation $\circ \circ \circ \circ$

Open Quantum System

Decoherent NOT-Gate

The Density Matrix

Definition

$$\hat{
ho} := \sum_{i=1}^{n} p_i \ket{\phi_i} ra{\phi_i} \quad ext{ with } \sum_{i=1}^{n} p_i = 1$$

Simple NOT-Gate	Decoherence & Dissipation ●000	Open Quantum System 00000	Decoherent NOT-Gate
The Densit	v Matrix		

$$\hat{
ho} := \sum_{i=1}^{n} p_i \ket{\phi_i} ra{\phi_i} \quad ext{ with } \sum_{i=1}^{n} p_i = 1$$

Distinguish between mixed / pure state.

Simple NOT-Gate	Decoherence & Dissipation ●000	Open Quantum System 00000	Decoherent NOT-Gate
The Density	Matrix		

$$\hat{\rho} := \sum_{i=1}^{n} p_i \ket{\phi_i} ra{\phi_i} \quad \text{with } \sum_{i=1}^{n} p_i = 1$$

Distinguish between mixed / pure state.

$$\hat{
ho}$$
 describes pure state $\iff \hat{
ho}^2 = \hat{
ho} \iff {\sf Tr}(\hat{
ho}^2) = 1$

Simple NOT-Gate	Decoherence & Dissipation ●000	Open Quantum System 00000	Decoherent NOT-Gate
The Density	Matrix		

$$\hat{\rho} := \sum_{i=1}^{n} p_i \ket{\phi_i} ra{\phi_i} \quad \text{with } \sum_{i=1}^{n} p_i = 1$$

Distinguish between mixed / pure state.

$$\hat{
ho}$$
 describes pure state $\iff \hat{
ho}^2 = \hat{
ho} \iff {\sf Tr}(\hat{
ho}^2) = 1$

von Neumann-equation: $rac{\mathrm{d}}{\mathrm{d}t}\hat{
ho}(t)=-i[\hat{H}(t),\hat{
ho}(t)]$

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
The Density	Matrix		

$$\hat{\rho} := \sum_{i=1}^{n} p_i \ket{\phi_i} ra{\phi_i} \quad \text{with } \sum_{i=1}^{n} p_i = 1$$

Distinguish between mixed / pure state.

 $\hat{
ho}$ describes pure state $\iff \hat{
ho}^2 = \hat{
ho} \iff {\sf Tr}(\hat{
ho}^2) = 1$

von Neumann-equation: $\frac{\mathrm{d}}{\mathrm{d}t}\hat{\rho}(t) = -i[\hat{H}(t),\hat{\rho}(t)]$ unitary time evolution: $\hat{\rho}(t) = \hat{U}(t,t_0)\hat{\rho}(t_0)\hat{U}^{\dagger}(t,t_0)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Simple NOT-Gate
 Decoherence & Dissipation
 Open Quantum System
 Decoherence

 00000
 0000
 00000
 00000
 00000

Decoherent NOT-Gate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Decoherence & Dissipation $0 \bullet 00$

Open Quantum System

Decoherent NOT-Gate

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Density Matrix for spin-1/2-systems

Bloch-sphere representation

$$\hat{
ho} = rac{1}{2} ig(\mathbbm{1} + ec{P} \cdot ec{\sigma} ig)$$

 $\vec{P} = (P_x, P_y, P_z)$: expectation value of the spin $\hat{\vec{S}} = (\hat{S}_x, \hat{S}_y, \hat{S}_z)$ \longrightarrow Polarization

Decoherence & Dissipation $0 \bullet 0 \circ$

Open Quantum System

Decoherent NOT-Gate

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Density Matrix for spin-1/2-systems

Bloch-sphere representation

$$\hat{
ho} = rac{1}{2} ig(\mathbbm{1} + ec{P} \cdot ec{\sigma} ig)$$

 $\vec{P} = (P_x, P_y, P_z)$: expectation value of the spin $\hat{\vec{S}} = (\hat{S}_x, \hat{S}_y, \hat{S}_z)$ \longrightarrow Polarization

Note: $\hat{
ho}$ describes a pure state if and only if $|\vec{P}| = 1$

Decoherence & Dissipation $0 \bullet 0 \circ$

Open Quantum System

Decoherent NOT-Gate

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Density Matrix for spin-1/2-systems

Bloch-sphere representation

$$\hat{
ho} = rac{1}{2} ig(\mathbbm{1} + ec{P} \cdot ec{\sigma} ig)$$

 $\vec{P} = (P_x, P_y, P_z)$: expectation value of the spin $\hat{\vec{S}} = (\hat{S}_x, \hat{S}_y, \hat{S}_z)$ \longrightarrow Polarization

Note: $\hat{
ho}$ describes a pure state if and only if $|\vec{P}| = 1$

$$\rho = \begin{pmatrix} \mathsf{a}\mathsf{a}^* & \mathsf{a}\mathsf{b}^* \\ \mathsf{a}^*\mathsf{b} & \mathsf{b}\mathsf{b}^* \end{pmatrix}$$

Decoherence & Dissipation $0 \bullet 0 \circ$

Open Quantum System

Decoherent NOT-Gate

The Density Matrix for spin-1/2-systems

Bloch-sphere representation

$$\hat{
ho} = rac{1}{2} ig(\mathbbm{1} + ec{P} \cdot ec{\sigma} ig)$$

 $\vec{P} = (P_x, P_y, P_z)$: expectation value of the spin $\hat{\vec{S}} = (\hat{S}_x, \hat{S}_y, \hat{S}_z)$ \longrightarrow Polarization

Note: $\hat{
ho}$ describes a pure state if and only if $|\vec{P}| = 1$

$$\rho = \begin{pmatrix} aa^* & ab^* \\ a^*b & bb^* \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 + P_z & P_x - iP_y \\ P_x + iP_y & 1 - P_z \end{pmatrix}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
	0000		

1 A Simple Model for NOT-Gate

- Introduction to Qubits
- Interaction with Electromagnetic Field (NOT-Gate)
- 2 Decoherence & Dissipation
 The Density Matrix
 Effect of decoherence

3 Treatment as an Open Quantum System

- The Lindblad equation
- Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation

- Quantum Channels
- Entropy change

Simple NOT-Gate	Decoherence & Dissipation ○○●○	Open Quantum System	Decoherent NOT-Gate
Decoherence			

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Simple NOT-Gate	Decoherence & Dissipation ○○●○	Open Quantum System 00000	Decoherent NOT-Gate
Decoherence			

A state is called decoherent, if "its interference is supressed" ^a.

^aMichael A Nielsen and Isaac L Chuang. *Quantum Computation and Quantum Information*. 10th Anniversary Edition. Cambridge University Press, 2010. ISBN: 978-1-107-00217-3.

Simple NOT-Gate	Decoherence & Dissipation ○○●○	Open Quantum System 00000	Decoherent NOT-Gate
Decoherence			

A state is called decoherent, if "its interference is supressed"^a.

^aMichael A Nielsen and Isaac L Chuang. *Quantum Computation and Quantum Information*. 10th Anniversary Edition. Cambridge University Press, 2010. ISBN: 978-1-107-00217-3.

$$\langle \hat{A} \rangle := \langle \psi | \hat{A} | \psi \rangle = (a^* \langle \uparrow | + b^* \langle \downarrow |) \hat{A} (a | \uparrow \rangle + b | \downarrow \rangle)$$

= $aa^* A_{11} + bb^* A_{22} + \underbrace{b^* a A_{21} + ba^* A_{12}}_{\downarrow \downarrow \downarrow \downarrow}$

interference term

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
000000	○○●○	00000	
Decoherence			

A state is called decoherent, if "its interference is supressed"^a.

^aMichael A Nielsen and Isaac L Chuang. *Quantum Computation and Quantum Information*. 10th Anniversary Edition. Cambridge University Press, 2010. ISBN: 978-1-107-00217-3.

$$\begin{split} \langle \hat{A} \rangle &:= \langle \psi | \, \hat{A} \, | \psi \rangle = (a^* \, \langle \uparrow | + b^* \, \langle \downarrow |) \hat{A} (a \, | \uparrow \rangle + b \, | \downarrow \rangle) \\ &= aa^* A_{11} + bb^* A_{22} + \underbrace{b^* a A_{21} + ba^* A_{12}}_{\text{interference term}} \end{split}$$

For the density operator: off-diagonal elements vanish

Simple NOT-Gate 000000	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
Decoherence			

A state is called decoherent, if "its interference is supressed"^a.

^aMichael A Nielsen and Isaac L Chuang. *Quantum Computation and Quantum Information*. 10th Anniversary Edition. Cambridge University Press, 2010. ISBN: 978-1-107-00217-3.

$$\begin{split} \langle \hat{A} \rangle &:= \langle \psi | \, \hat{A} \, | \psi \rangle = (a^* \, \langle \uparrow | + b^* \, \langle \downarrow |) \hat{A} (a \, | \uparrow \rangle + b \, | \downarrow \rangle) \\ &= aa^* A_{11} + bb^* A_{22} + \underbrace{b^* a A_{21} + ba^* A_{12}}_{\text{interference term}} \end{split}$$

For the density operator: off-diagonal elements vanish For the Bloch-sphere: $|\vec{P}|$ decreases

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate
The problem	s so far		

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Simple NOT-Gate	Decoherence & Dissipation ○○○●	Open Quantum System 00000	Decoherent NOT-Gate
The problems	s so far		

Von Neumann-equation describes isolated system.

Simple NOT-Gate	Decoherence & Dissipation ○○○●	Open Quantum System	Decoherent NOT-Gate
The problems	s so far		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Von Neumann-equation describes isolated system. Does not produce certain effects:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Von Neumann-equation describes isolated system. Does not produce certain effects:

Dissipation of energy (Larmor precession)

Simple NOT-Gate	Decoherence & Dissipation ○○○●	Open Quantum System 00000	Decoherent NOT-Gate
The problems	s so far		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Von Neumann-equation describes isolated system. Does not produce certain effects:

- Dissipation of energy (Larmor precession)
- Change in entropy $(|\vec{P}| = \text{const.})$

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
000000	○○○●		0000000000
The problems	s so far		

Von Neumann-equation describes isolated system. Does not produce certain effects:

- Dissipation of energy (Larmor precession)
- Change in entropy $(|\vec{P}| = \text{const.})$
- Statistical physics: there are no isolated systems \rightarrow assume (random) interactions of the system with the environment

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System 00000	Decoherent NOT-Gate 0000000000
The problems	s so far		

Von Neumann-equation describes isolated system. Does not produce certain effects:

- Dissipation of energy (Larmor precession)
- Change in entropy $(|\vec{P}| = \text{const.})$
- Statistical physics: there are no isolated systems \rightarrow assume (random) interactions of the system with the environment

 ${\rm Tr}\big(\hat{\rho}^2(t)\big)$

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
000000	○○○●		0000000000
The problems	s so far		

Von Neumann-equation describes isolated system. Does not produce certain effects:

- Dissipation of energy (Larmor precession)
- Change in entropy $(|\vec{P}| = \text{const.})$
- Statistical physics: there are no isolated systems \rightarrow assume (random) interactions of the system with the environment

$$\mathsf{Tr}(\hat{\rho}^{2}(t)) = \mathsf{Tr}(\hat{U}(t)\hat{\rho}_{0}\underbrace{\hat{U}^{\dagger}(t)\hat{U}(t)}_{=1}\hat{\rho}_{0}\hat{U}^{\dagger}(t))$$

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
000000	○○○●		0000000000
The problems	s so far		

Von Neumann-equation describes isolated system. Does not produce certain effects:

- Dissipation of energy (Larmor precession)
- Change in entropy $(|\vec{P}| = \text{const.})$
- Statistical physics: there are no isolated systems \rightarrow assume (random) interactions of the system with the environment

$$\mathsf{Tr}(\hat{\rho}^{2}(t)) = \mathsf{Tr}(\hat{U}(t)\hat{\rho_{0}}\underbrace{\hat{U}^{\dagger}(t)\hat{U}(t)}_{=\mathbb{I}}\hat{\rho_{0}}\hat{U}^{\dagger}(t)) = \mathsf{Tr}(\hat{\rho}_{0}^{2})$$

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
000000	○○○●		0000000000
The problems	s so far		

Von Neumann-equation describes isolated system. Does not produce certain effects:

- Dissipation of energy (Larmor precession)
- Change in entropy $(|\vec{P}| = \text{const.})$
- Statistical physics: there are no isolated systems \rightarrow assume (random) interactions of the system with the environment

$$\mathsf{Tr}(\hat{\rho}^{2}(t)) = \mathsf{Tr}(\hat{U}(t)\hat{\rho_{0}}\underbrace{\hat{U}^{\dagger}(t)\hat{U}(t)}_{=\mathbb{I}}\hat{\rho_{0}}\hat{U}^{\dagger}(t)) = \mathsf{Tr}(\hat{\rho}_{0}^{2})$$

 \rightarrow pure state remains pure for all times

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
		00000	

- 1 A Simple Model for NOT-Gate
 - Introduction to Qubits
 - Interaction with Electromagnetic Field (NOT-Gate)
- 2 Decoherence & Dissipation
 - The Density Matrix
 - Effect of decoherence
- 3 Treatment as an Open Quantum System
 - The Lindblad equation
 - Qubit in presence of dissipation
- 4 NOT-Gate in Presence of Dissipation
 - Quantum Channels
 - Entropy change

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System ●0000	Decoherent NOT-Gate
Open system			

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System ●0000	Decoherent NOT-Gate
Open system			

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System ●0000	Decoherent NOT-Gate
Open system			

Assume: $t = 0: \hat{\rho} = \hat{\rho} \otimes \hat{\rho}^{(E)}$

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System ●0000	Decoherent NOT-Gate
Open system			

- Assume: $t = 0: \hat{\rho} = \hat{\rho} \otimes \hat{\rho}^{(E)}$
- Reduced density matrix: $\hat{\rho}(t) = \operatorname{Tr}_{ENV} \hat{\hat{\rho}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System ●0000	Decoherent NOT-Gate
Open system			

Define the Dynamical map:

Assume: $t = 0: \hat{\rho} = \hat{\rho} \otimes \hat{\rho}^{(E)}$

Reduced density matrix: $\hat{\rho}(t) = \operatorname{Tr}_{ENV} \hat{\hat{\rho}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$V(t): \hat{
ho}(0)
ightarrow \hat{
ho}(t)$$

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System ●0000	Decoherent NOT-Gate
Open system			

- Assume: $t = 0: \hat{\rho} = \hat{\rho} \otimes \hat{\rho}^{(E)}$
- Reduced density matrix: $\hat{\rho}(t) = \operatorname{Tr}_{ENV} \hat{\hat{\rho}}$

Define the Dynamical map: $V(t): \hat{
ho}(0)
ightarrow \hat{
ho}(t)$

Lindblad has shown^a that under certain assumptions, such time evolution can be written as a quantum mechanical master equation preserving the properties of $\hat{\rho}$ (positiveness, convexity).

^aGoran Lindblad. "On the generators of quantum dynamical semigroups". In: *Communications in Mathematical Physics* 48 (1976), pp. 119–130.
Simple	NO	T-0	Gate
00000			

Decoherence & Dissipation 0000

Open Quantum System $0 \bullet 0 0 0$

Decoherent NOT-Gate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Lindblad equation

$$egin{aligned} &rac{\mathrm{d}}{\mathrm{d}t}\hat{
ho}(t) = -i[\hat{H}(t),\hat{
ho}(t)] + \sum_{\mu>0} \left(\hat{L}_{\mu}\hat{
ho}(t)\hat{L}_{\mu}^{\dagger} - rac{1}{2}\{\hat{L}_{\mu}^{\dagger}\hat{L}_{\mu},\hat{
ho}(t)\}
ight) \ &= -i[\hat{H}(t),\hat{
ho}(t)] + \mathcal{D}[\hat{
ho}(t)] =: \mathcal{L}[\hat{
ho}(t)] \end{aligned}$$

Simple	NO	T-Ga	ite	

Decoherence & Dissipation

Open Quantum System $0 \bullet 0 0 0$

Decoherent NOT-Gate

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Lindblad equation

$$egin{aligned} &rac{\mathrm{d}}{\mathrm{d}t}\hat{
ho}(t) = -i[\hat{H}(t),\hat{
ho}(t)] + \sum_{\mu>0} \left(\hat{L}_{\mu}\hat{
ho}(t)\hat{L}_{\mu}^{\dagger} - rac{1}{2}\{\hat{L}_{\mu}^{\dagger}\hat{L}_{\mu},\hat{
ho}(t)\}
ight) \ &= -i[\hat{H}(t),\hat{
ho}(t)] + \mathcal{D}[\hat{
ho}(t)] =: \mathcal{L}[\hat{
ho}(t)] \end{aligned}$$

Form: Lindblad-operator = unitary evolution + dissipation

Simple	NO	T-(Ga	te	

Decoherence & Dissipation

Open Quantum System $0 \bullet 0 0 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Lindblad equation

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\hat{\rho}(t) &= -i[\hat{H}(t),\hat{\rho}(t)] + \sum_{\mu>0} \left(\hat{L}_{\mu}\hat{\rho}(t)\hat{L}_{\mu}^{\dagger} - \frac{1}{2}\{\hat{L}_{\mu}^{\dagger}\hat{L}_{\mu},\hat{\rho}(t)\}\right) \\ &= -i[\hat{H}(t),\hat{\rho}(t)] + \mathcal{D}[\hat{\rho}(t)] =: \mathcal{L}[\hat{\rho}(t)] \end{split}$$

Form: Lindblad-operator = unitary evolution + dissipation \hat{L}_{μ} ... Lindblad operators

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System 00●00	Decoherent NOT-Gate
Lindblad oper	rators		

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
Lindblad oper	rators		

000000	0000	0000	0000000000
Lindblad oper			

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System 00●00	Decoherent NOT-Gate
Lindblad oper	rators		

•
$$\hat{L}_{\mu} \sim \hat{\sigma}^{-}$$
 produce *amplitude* damping

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
Lindblad oper	rators		

$$\hat{L}_{\mu} \sim \hat{\sigma}^{-}$$
 produce *amplitude* damping
$$\hat{L}_{\mu} \sim \hat{\sigma}_{z}$$

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System 00●00	Decoherent NOT-Gate
Lindblad or	perators		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What is the meaning of the Lindblad operators \hat{L}_{μ} ?

 $\hat{L}_{\mu} \sim \hat{\sigma}^{-}$ produce *amplitude* damping $\hat{L}_{\mu} \sim \hat{\sigma}_{z}$ produce *phase* damping

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System 00●00	Decoherent NOT-Gate
Lindblad or	erators		

What is the meaning of the Lindblad operators \hat{L}_{μ} ?

- $\hat{L}_{\mu} \sim \hat{\sigma}^{-}$ produce *amplitude* damping $\hat{L}_{\mu} \sim \hat{\sigma}_{z}$ produce *phase* damping

Note: one can consider more than one Lindblad operator

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
		00000	

- 1 A Simple Model for NOT-Gate
 - Introduction to Qubits
 - Interaction with Electromagnetic Field (NOT-Gate)
- 2 Decoherence & Dissipation
 - The Density Matrix
 - Effect of decoherence
- 3 Treatment as an Open Quantum System
 - The Lindblad equation
 - Qubit in presence of dissipation
- 4 NOT-Gate in Presence of Dissipation
 - Quantum Channels
 - Entropy change

Decoherence & Dissipation 0000

Open Quantum System

Decoherent NOT-Gate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amplitude damped Qubit

Decoherence & Dissipation 0000

Open Quantum System

Decoherent NOT-Gate

Amplitude damped Qubit

Choose
$$\hat{L}_{\mu} = \sqrt{\gamma} \hat{\sigma}^{-}$$

Decoherence & Dissipation

Open Quantum System

Decoherent NOT-Gate

Amplitude damped Qubit

Choose
$$\hat{L}_{\mu} = \sqrt{\gamma} \hat{\sigma}^{-1}$$

$$\dot{P}_{z} = -\gamma(1 + P_{z})$$
$$\dot{P}_{x} = -\omega_{0}P_{y} - \frac{\gamma}{2}P_{x}$$
$$\dot{P}_{y} = \omega_{0}P_{x} - \frac{\gamma}{2}P_{y}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Decoherence & Dissipation

Open Quantum System

Decoherent NOT-Gate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Amplitude damped Qubit

Choose
$$\hat{L}_{\mu} = \sqrt{\gamma} \hat{\sigma}^{-1}$$

$$\dot{P}_{z} = -\gamma(1 + P_{z})$$
$$\dot{P}_{x} = -\omega_{0}P_{y} - \frac{\gamma}{2}P_{x}$$
$$\dot{P}_{y} = \omega_{0}P_{x} - \frac{\gamma}{2}P_{y}$$

$$P_{x}(t) = (-y_{0}\sin(\omega_{0}t) + x_{0}\cos(\omega_{0}t))e^{-\frac{\gamma}{2}t}$$
$$P_{y}(t) = (y_{0}\cos(\omega_{0}t) + x_{0}\sin(\omega_{0}t))e^{-\frac{\gamma}{2}t}$$
$$P_{z}(t) = -1 + (z_{0}+1)e^{-\gamma t}$$

 \longrightarrow amplitude damping occurs $(P_z(t \rightarrow \infty) = -1)$

Decoherence & Dissipation 0000

Open Quantum System ○○○○● Decoherent NOT-Gate

Amplitude damped Qubit

Figure : Plot of the time evolution obtained before. $\gamma = 0.05$, $\omega_0 = 1$. At t = 0, the system was prepared with a polarization $1/\sqrt{3} \cdot (1, 1, 1)^T$

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
			000000000

- **1** A Simple Model for NOT-Gate
 - Introduction to Qubits
 - Interaction with Electromagnetic Field (NOT-Gate)
- 2 Decoherence & Dissipation
 - The Density Matrix
 - Effect of decoherence
- **3** Treatment as an Open Quantum System
 - The Lindblad equation
 - Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation

- Quantum Channels
- Entropy change

Decoherence & Dissipation 0000

Open Quantum System

Decoherent NOT-Gate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

NOT-Gate with Amplitude Damping Channel

 Simple NOT-Gate
 Decoherence & Dissipation
 Open Quantum System
 Decoherent NOT-Gate

 NOT-Gate with Amplitude Damping Channel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Again, use
$$\hat{L}_{\mu}=\sqrt{\gamma}\hat{\sigma}^{-}.$$

Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate NOT-Gate with Amplitude Damping Channel

Again, use $\hat{L}_{\mu} = \sqrt{\gamma} \hat{\sigma}^{-}$. Full Hamiltonian $\hat{H} = \hat{H}_{0} + \hat{H}_{I}(t)$, plug into Lindblad equation

Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate NOT-Gate with Amplitude Damping Channel

Again, use $\hat{L}_{\mu} = \sqrt{\gamma} \hat{\sigma}^{-}$. Full Hamiltonian $\hat{H} = \hat{H}_0 + \hat{H}_I(t)$, plug into Lindblad equation

$$\frac{\mathrm{d}}{\mathrm{d}t}P_{x} = 2QP_{z}\sin(\epsilon t) - \omega_{0}P_{y} - \frac{\gamma}{2}P_{x}$$
$$\frac{\mathrm{d}}{\mathrm{d}t}P_{y} = -2QP_{z}\cos(\epsilon t) + \omega_{0}P_{x} - \frac{\gamma}{2}P_{y}$$
$$\frac{\mathrm{d}}{\mathrm{d}t}P_{z} = 2Q(P_{y}\cos(\epsilon t) + P_{x}\cos(\epsilon t)) - \gamma(1 + P_{z})$$

Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate NOT-Gate with Amplitude Damping Channel

Again, use $\hat{L}_{\mu} = \sqrt{\gamma} \hat{\sigma}^{-}$. Full Hamiltonian $\hat{H} = \hat{H}_{0} + \hat{H}_{I}(t)$, plug into Lindblad equation

$$\frac{\mathrm{d}}{\mathrm{d}t}P_{x} = 2QP_{z}\sin(\epsilon t) - \omega_{0}P_{y} - \frac{\gamma}{2}P_{x}$$
$$\frac{\mathrm{d}}{\mathrm{d}t}P_{y} = -2QP_{z}\cos(\epsilon t) + \omega_{0}P_{x} - \frac{\gamma}{2}P_{y}$$
$$\frac{\mathrm{d}}{\mathrm{d}t}P_{z} = 2Q(P_{y}\cos(\epsilon t) + P_{x}\cos(\epsilon t)) - \gamma(1 + P_{z})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 \rightarrow numerical solution

 Simple NOT-Gate
 Decoherence & Dissipation
 Open Quantum System
 Decoherent NOT-Gate

 NOT-Gate with Amplitude Damping Channel

Figure : Time evolution of a NOT-Gate with $\hat{L}_{\mu} = \sqrt{\gamma}\hat{\sigma}^-$ (amplitude damping). $\omega_0 = \epsilon = 1$ (resonance), Q = 1, $\gamma = 0.05$.

Decoherence & Dissipation 0000

Open Quantum System

Decoherent NOT-Gate

NOT-Gate with Phase Damping Channel

Decoherence & Dissipation 0000

Open Quantum System

Decoherent NOT-Gate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

NOT-Gate with Phase Damping Channel

Use different Lindblad operator: $\hat{L}_{\mu} = \sqrt{\lambda} \hat{\sigma}_z$

Decoherence & Dissipation 0000

Open Quantum System

Decoherent NOT-Gate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

NOT-Gate with Phase Damping Channel

Use different Lindblad operator: $\hat{L}_{\mu} = \sqrt{\lambda} \hat{\sigma}_z$

$$\frac{\mathrm{d}}{\mathrm{d}t}P_{x} = 2QP_{z}\sin(\epsilon t) - \omega_{0}y - 2\lambda x$$
$$\frac{\mathrm{d}}{\mathrm{d}t}P_{y} = -2QP_{z}\cos(\epsilon t) + \omega_{0}x - 2\lambda y$$
$$\frac{\mathrm{d}}{\mathrm{d}t}P_{z} = 2Q(P_{y}\cos(\epsilon t) + x\cos(\epsilon t))$$

Simple NOT-Gate Decoherence & Dissipation

Open Quantum System

Decoherent NOT-Gate

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

NOT-Gate with Phase Damping Channel

Use different Lindblad operator: $\hat{L}_{\mu} = \sqrt{\lambda} \hat{\sigma}_z$

$$\frac{\mathrm{d}}{\mathrm{d}t}P_{x} = 2QP_{z}\sin(\epsilon t) - \omega_{0}y - 2\lambda x$$
$$\frac{\mathrm{d}}{\mathrm{d}t}P_{y} = -2QP_{z}\cos(\epsilon t) + \omega_{0}x - 2\lambda y$$
$$\frac{\mathrm{d}}{\mathrm{d}t}P_{z} = 2Q(P_{y}\cos(\epsilon t) + x\cos(\epsilon t))$$

Difference to amplitude damping: no (direct) damping of P_z occurs

Simple NOT-Gate Decoher 000000 0000

Decoherence & Dissipation

Open Quantum System

Decoherent NOT-Gate

NOT-Gate with Phase Damping Channel

Use different Lindblad operator: $\hat{L}_{\mu} = \sqrt{\lambda} \hat{\sigma}_z$

$$\frac{\mathrm{d}}{\mathrm{d}t}P_{x} = 2QP_{z}\sin(\epsilon t) - \omega_{0}y - 2\lambda x$$
$$\frac{\mathrm{d}}{\mathrm{d}t}P_{y} = -2QP_{z}\cos(\epsilon t) + \omega_{0}x - 2\lambda y$$
$$\frac{\mathrm{d}}{\mathrm{d}t}P_{z} = 2Q(P_{y}\cos(\epsilon t) + x\cos(\epsilon t))$$

Difference to amplitude damping: no (direct) damping of P_z occurs \longrightarrow Phase Damping Channel

Decoherence & Dissipation

Open Quantum System

Decoherent NOT-Gate

NOT-Gate with Phase Damping Channel

Figure : Time evolution of a qubit considering a noisy phase damping channel. $\omega_0 = \epsilon = 1$ (resonance), Q = 1, $\lambda = 0.05$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Simple NOT-Gate	Decoherence & Dissipation	Open Quantum System	Decoherent NOT-Gate
			000000000

- 1 A Simple Model for NOT-Gate
 - Introduction to Qubits
 - Interaction with Electromagnetic Field (NOT-Gate)
- 2 Decoherence & Dissipation
 - The Density Matrix
 - Effect of decoherence
- **3** Treatment as an Open Quantum System
 - The Lindblad equation
 - Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation

- Quantum Channels
- Entropy change

Decoherence & Dissipation 0000

Open Quantum System

Decoherent NOT-Gate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Entropy in Quantum Systems

Decoherence & Dissipation 0000

Open Quantum System

Decoherent NOT-Gate

Entropy in Quantum Systems

From probability theory: $S = -\sum_i p_i \cdot \ln(p_i)$

Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Entropy in Quantum Systems

From probability theory: $S = -\sum_{i} p_i \cdot \ln(p_i)$ \longrightarrow measure information

Decoherence & Dissipation

Open Quantum System

Decoherent NOT-Gate

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Entropy in Quantum Systems

From probability theory: $S = -\sum_{i} p_i \cdot \ln(p_i)$ \longrightarrow measure information

von Neumann-entropy

$$S = -\mathsf{Tr}(\hat{
ho} \cdot \mathsf{In}(\hat{
ho}))$$

Decoherence & Dissipation 0000

Open Quantum System

Decoherent NOT-Gate

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Entropy in Quantum Systems

From probability theory: $S = -\sum_{i} p_i \cdot \ln(p_i)$ \longrightarrow measure information

von Neumann-entropy

$$S = -\mathsf{Tr}(\hat{
ho} \cdot \mathsf{In}(\hat{
ho}))$$

Note: S = 0 if and only if $\hat{\rho}$ describes a pure state

Decoherence & Dissipation 0000

Open Quantum System

Decoherent NOT-Gate

Entropy in Quantum Systems

From probability theory: $S = -\sum_{i} p_i \cdot \ln(p_i)$ \longrightarrow measure information

von Neumann-entropy

$$S = -\mathsf{Tr}(\hat{
ho} \cdot \mathsf{In}(\hat{
ho}))$$

Note: S = 0 if and only if $\hat{\rho}$ describes a pure state maximally entangled state: $\hat{\rho} = \frac{1}{2}\mathbb{1} \longrightarrow S = \ln(2)$
Simple NOT-Gate

Decoherence & Dissipation

Open Quantum System

Decoherent NOT-Gate

Long time evolution, phase damped

Figure : NOT-Gate under consideration of a phase damping $(\hat{L}_{\mu} = \sqrt{\lambda}\hat{\sigma}_z)$. Again, $\omega_0 = \epsilon = 1$ (resonance), Q = 1, $\lambda = 0.05$

Simple NOT-Gate

Decoherence & Dissipation

Open Quantum System

イロト イポト イヨト イヨト

э

Decoherent NOT-Gate

Long time evolution, amplitude damped

Figure : NOT-Gate under consideration of an amplitude damping. Again, $\omega_0 = \epsilon = 1$ (resonance), Q = 1, $\lambda = 0.05$

Simple	NOT-Gate
00000	

Decoherence & Dissipation

Open Quantum System

Decoherent NOT-Gate

Entropy change

Figure : Long time evolution of a NOT-operation under consideration of an amplitude damping. Again, $\omega_0 = \epsilon = 1$ (resonance), Q = 1, $\lambda = 0.05$.

▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ 目 ▼ の < ⊙

Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Entropy of amplitude damped qubit

Figure : Change in the von Neumann-entropy of a simple qubit (no EM interaction) considering amplitude damping as discussed before. Parameters are Q = 1, $\gamma = 0.05$.

Simple	NOT-Gate
00000	

Thank you for your attention.

