
Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Decoherence Effects in Qubits
Projektpraktikum

Peter Wriesnik

Institute of Theoretical and Computation Physics
Graz University of Technology

November 28, 2012



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Outline

1 A Simple Model for NOT-Gate

Introduction to Qubits
Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation
The Density Matrix
Effect of decoherence

3 Treatment as an Open Quantum System
The Lindblad equation
Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation
Quantum Channels
Entropy change



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Outline

1 A Simple Model for NOT-Gate
Introduction to Qubits

Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation
The Density Matrix
Effect of decoherence

3 Treatment as an Open Quantum System
The Lindblad equation
Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation
Quantum Channels
Entropy change



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Outline

1 A Simple Model for NOT-Gate
Introduction to Qubits
Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation
The Density Matrix
Effect of decoherence

3 Treatment as an Open Quantum System
The Lindblad equation
Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation
Quantum Channels
Entropy change



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Outline

1 A Simple Model for NOT-Gate
Introduction to Qubits
Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation

The Density Matrix
Effect of decoherence

3 Treatment as an Open Quantum System
The Lindblad equation
Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation
Quantum Channels
Entropy change



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Outline

1 A Simple Model for NOT-Gate
Introduction to Qubits
Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation
The Density Matrix

Effect of decoherence

3 Treatment as an Open Quantum System
The Lindblad equation
Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation
Quantum Channels
Entropy change



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Outline

1 A Simple Model for NOT-Gate
Introduction to Qubits
Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation
The Density Matrix
Effect of decoherence

3 Treatment as an Open Quantum System
The Lindblad equation
Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation
Quantum Channels
Entropy change



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Outline

1 A Simple Model for NOT-Gate
Introduction to Qubits
Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation
The Density Matrix
Effect of decoherence

3 Treatment as an Open Quantum System

The Lindblad equation
Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation
Quantum Channels
Entropy change



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Outline

1 A Simple Model for NOT-Gate
Introduction to Qubits
Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation
The Density Matrix
Effect of decoherence

3 Treatment as an Open Quantum System
The Lindblad equation

Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation
Quantum Channels
Entropy change



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Outline

1 A Simple Model for NOT-Gate
Introduction to Qubits
Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation
The Density Matrix
Effect of decoherence

3 Treatment as an Open Quantum System
The Lindblad equation
Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation
Quantum Channels
Entropy change



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Outline

1 A Simple Model for NOT-Gate
Introduction to Qubits
Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation
The Density Matrix
Effect of decoherence

3 Treatment as an Open Quantum System
The Lindblad equation
Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation

Quantum Channels
Entropy change



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Outline

1 A Simple Model for NOT-Gate
Introduction to Qubits
Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation
The Density Matrix
Effect of decoherence

3 Treatment as an Open Quantum System
The Lindblad equation
Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation
Quantum Channels

Entropy change



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Outline

1 A Simple Model for NOT-Gate
Introduction to Qubits
Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation
The Density Matrix
Effect of decoherence

3 Treatment as an Open Quantum System
The Lindblad equation
Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation
Quantum Channels
Entropy change



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

1 A Simple Model for NOT-Gate
Introduction to Qubits
Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation
The Density Matrix
Effect of decoherence

3 Treatment as an Open Quantum System
The Lindblad equation
Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation
Quantum Channels
Entropy change



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

Qubits in Quantum Computing

Qubits: analogon to bits in classical computing

→ has to have 2 distinct states

Any 2-level-system could be used. Examples:

Photon polarization

Energy levels in molecules / atoms

Spin of an electron

Logical operations (NOT, OR, ...) have to be performed on the
qubit
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Mathematical Description of Qubits

Qubits are elements of a 2-dimensional Hilbert-space H2:

|ψ〉 = a(t) |↑〉+ b(t) |↓〉

→ coefficients a(t), b(t) hold dynamics

→ could be denoted as
(
a(t), b(t)

)T
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2-Level-System

Hamiltonian for Qubits

Ĥ0 = ω0 |↑〉 〈↑|

assigns energy ω0 to spin-up-state and 0 to spin-down

solution:
a(t) = e−iω0t

b(t) = 0

}
Larmor precession
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Description of EM-Field

Hamiltonian with electromagnetic field

Ĥ = Ĥ0 + ĤI (t)

ĤI (t) = f (t) |↑〉 〈↓|+ f ∗(t) |↓〉 〈↑|

with f (t) = Qe−iεt

Matrix representation in the {|↑〉 , |↓〉}-basis:

H(t) =

(
ω0 Q · e−iεt

Q · e iεt 0

)
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Solution to time dependent Hamiltonian

Plug into Schrödinger equation for state
(
a(t), b(t)

)T
:

i
d

dt
a(t) = ω0 + f (t) · b(t)

i
d

dt
b(t) = f ∗(t) · a(t)

Solution considering EM-field with |φ(t = 0)〉 = |↑〉

a(t) = e−
i
2

(ε+ω0)t ·
(

cos(βt) + i
α

β
sin(βt)

)
b(t) = −Q · i

β
e−i

∆
2
t sin(βt)
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NOT-Gate

Resonant case: ε = ω0 → ∆ = α = 0 and β = Q.

a(t) = e−iω0t cos(Qt)

b(t) = −i sin(Qt)

Choose interaction time τ = π
2Q → a(τ) = 0, b(τ) = −i

|a| : 1→ 0
|b| : 0→ 1

}
=⇒ |↑〉 → |↓〉

(NOT-Operation)
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The Density Matrix

Definition

ρ̂ :=
n∑

i=1

pi |φi 〉 〈φi | with
n∑

i=1

pi = 1

Distinguish between mixed / pure state.

ρ̂ describes pure state ⇐⇒ ρ̂2 = ρ̂⇐⇒ Tr(ρ̂2) = 1

von Neumann-equation:
d

dt
ρ̂(t) = −i [Ĥ(t),ρ̂(t)]

unitary time evolution: ρ̂(t) = Û(t, t0)ρ̂(t0)Û†(t, t0)
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The Density Matrix for spin-1/2-systems

Bloch-sphere representation

ρ̂ =
1

2

(
1 + ~P · ~̂σ

)

~P = (Px ,Py ,Pz): expectation value of the spin ~̂S = (Ŝx , Ŝy , Ŝz)
−→ Polarization

Note: ρ̂ describes a pure state if and only if |~P| = 1

ρ =

(
aa∗ ab∗

a∗b bb∗

)
=

1

2

(
1 + Pz Px − iPy

Px + iPy 1− Pz

)
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Decoherence

A state is called decoherent, if ”its interference is supressed”a.

aMichael A Nielsen and Isaac L Chuang. Quantum Computation and
Quantum Information. 10th Anniversary Edition. Cambridge University Press,
2010. isbn: 978-1-107-00217-3.

〈Â〉 := 〈ψ| Â |ψ〉 = (a∗ 〈↑|+ b∗ 〈↓|)Â(a |↑〉+ b |↓〉)
= aa∗A11 + bb∗A22 + b∗aA21 + ba∗A12︸ ︷︷ ︸

interference term

For the density operator: off-diagonal elements vanish
For the Bloch-sphere: |~P| decreases
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The problems so far

Von Neumann-equation describes isolated system.
Does not produce certain effects:

Dissipation of energy (Larmor precession)

Change in entropy (|~P| = const.)

Statistical physics: there are no isolated systems → assume
(random) interactions of the system with the environment

Tr
(
ρ̂2(t)

)
= Tr

(
Û(t)ρ̂0 Û

†(t)Û(t)︸ ︷︷ ︸
=1

ρ̂0Û
†(t)

)
= Tr(ρ̂2

0)

→ pure state remains pure for all times
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†(t)Û(t)︸ ︷︷ ︸
=1

ρ̂0Û
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†(t)

)
= Tr(ρ̂2

0)

→ pure state remains pure for all times



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

The problems so far

Von Neumann-equation describes isolated system.
Does not produce certain effects:

Dissipation of energy (Larmor precession)

Change in entropy (|~P| = const.)

Statistical physics: there are no isolated systems → assume
(random) interactions of the system with the environment

Tr
(
ρ̂2(t)

)
= Tr

(
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Û(t)ρ̂0 Û
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Open system

Assume:
t = 0: ˆ̃ρ = ρ̂⊗ ρ̂(E)

Reduced density matrix:
ρ̂(t) = TrENV ˆ̃ρ

Define the Dynamical map: V (t) : ρ̂(0)→ ρ̂(t)

Lindblad has showna that under certain assumptions, such time
evolution can be written as a quantum mechanical master equation
preserving the properties of ρ̂ (positiveness, convexity).

aGoran Lindblad. “On the generators of quantum dynamical semigroups”.
In: Communications in Mathematical Physics 48 (1976), pp. 119–130.
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The Lindblad equation

d

dt
ρ̂(t) = −i [Ĥ(t),ρ̂(t)] +

∑
µ>0

(
L̂µρ̂(t)L̂†µ −

1

2

{
L̂†µL̂µ, ρ̂(t)

})
= −i [Ĥ(t),ρ̂(t)] +D[ρ̂(t)] =: L[ρ̂(t)]

Form: Lindblad-operator = unitary evolution + dissipation
L̂µ ... Lindblad operators
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Lindblad operators

What is the meaning of the Lindblad operators L̂µ?

L̂µ ∼ σ̂− produce amplitude damping

L̂µ ∼ σ̂z produce phase damping

Note: one can consider more than one Lindblad operator
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Amplitude damped Qubit

Choose L̂µ =
√
γσ̂−

Ṗz = −γ(1 + Pz)

Ṗx = −ω0Py−
γ

2
Px

Ṗy = ω0Px−
γ

2
Py

Px(t) =
(
− y0 sin(ω0t) + x0 cos(ω0t)

)
e−

γ
2
t

Py (t) =
(
y0 cos(ω0t) + x0 sin(ω0t)

)
e−

γ
2
t

Pz(t) = −1 + (z0 + 1)e−γt

−→ amplitude damping occurs (Pz(t →∞) = −1)
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Amplitude damped Qubit
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Figure : Plot of the time evolution obtained before. γ = 0.05, ω0 = 1. At
t = 0, the system was prepared with a polarization 1/

√
3 · (1, 1, 1)T



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

1 A Simple Model for NOT-Gate
Introduction to Qubits
Interaction with Electromagnetic Field (NOT-Gate)

2 Decoherence & Dissipation
The Density Matrix
Effect of decoherence

3 Treatment as an Open Quantum System
The Lindblad equation
Qubit in presence of dissipation

4 NOT-Gate in Presence of Dissipation
Quantum Channels
Entropy change



Simple NOT-Gate Decoherence & Dissipation Open Quantum System Decoherent NOT-Gate

NOT-Gate with Amplitude Damping Channel

Again, use L̂µ =
√
γσ̂−.

Full Hamiltonian Ĥ = Ĥ0 + ĤI (t), plug into Lindblad equation

d

dt
Px = 2QPz sin(εt)− ω0Py −

γ

2
Px

d

dt
Py = −2QPz cos(εt) + ω0Px −

γ

2
Py

d

dt
Pz = 2Q

(
Py cos(εt) + Px cos(εt)

)
−γ(1 + Pz)

→ numerical solution
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NOT-Gate with Amplitude Damping Channel
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Figure : Time evolution of a NOT-Gate with L̂µ =
√
γσ̂− (amplitude

damping). ω0 = ε = 1 (resonance), Q = 1, γ = 0.05.
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NOT-Gate with Phase Damping Channel

Use different Lindblad operator: L̂µ =
√
λσ̂z

d

dt
Px = 2QPz sin(εt)− ω0y −2λx

d

dt
Py = −2QPz cos(εt) + ω0x −2λy

d

dt
Pz = 2Q

(
Py cos(εt) + x cos(εt)

)
Difference to amplitude damping: no (direct) damping of Pz

occurs −→ Phase Damping Channel
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Figure : Time evolution of a qubit considering a noisy phase damping
channel. ω0 = ε = 1 (resonance), Q = 1, λ = 0.05.
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Entropy in Quantum Systems

From probability theory: S = −
∑

i pi · ln(pi )
−→ measure information

von Neumann-entropy

S = −Tr
(
ρ̂ · ln(ρ̂)

)
Note: S = 0 if and only if ρ̂ describes a pure state

maximally entangled state: ρ̂ = 1
21 −→ S = ln(2)
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Long time evolution, phase damped
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Figure : NOT-Gate under consideration of a phase damping
(L̂µ =

√
λσ̂z). Again, ω0 = ε = 1 (resonance), Q = 1, λ = 0.05
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Long time evolution, amplitude damped
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Figure : NOT-Gate under consideration of an amplitude damping. Again,
ω0 = ε = 1 (resonance), Q = 1, λ = 0.05
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Entropy change
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Figure : Long time evolution of a NOT-operation under consideration of
an amplitude damping. Again, ω0 = ε = 1 (resonance), Q = 1, λ = 0.05.
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Entropy of amplitude damped qubit
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Figure : Change in the von Neumann-entropy of a simple qubit (no EM
interaction) considering amplitude damping as discussed before.
Parameters are Q = 1, γ = 0.05.
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Thank you for your attention.
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