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Abstract

This thesis deals with a quantum mechanical description of a 2-level-system (qubit) in-
teracting with an electromagnetic field to produce a NOT-operation on the qubit.

The central point of interest will not be the underlying model. The goal will be to treat
the system in different ways and to compare these results. We will see that a physically
reasonable behaviour can only be obtained when not treating the qubit as being isolated
from the environment. A common way to handle such system-bath-interactions is the
Markovian approach, where one assumes that the system of interest has no "memory". A
very detailed description of methods used to describe such open quantum system can be
found in the book by Breuer & Petruccione ([1]). For the following, the most important
result from such Markovian treatment is the existence of a master equation for the density
operator, which is the Lindblad equation.

The cental point of this work is a numerical solution of the Lindblad equation for a Hamil-
tonian describing a NOT-operation. Two different decoherence effects were considered;
firstly an amplitude damping and secondly a phase damping (see sec. 7). Furthermore
we have investigated the effects of decoherence and dissipation on two quantities: the
population of the excited state and the changing of the relative phase between the two
states. Both are of major interest since they are being used in quantum computing.

In the context of quantum information technology, effects of decoherence are modeled by
noise channels. We will see that we can regain those quantum noise channels as defined
in the book by Nielsen & Chuang [2] by a Markovian treatment.

1 Motivation

A qubit is the smallest undividable unit used in Quantum Information Theory. There
it acts as the analogon to a bit in classical computing. To understand the major prob-
lems that occur in quantum computing, one has to have a basic understanding of how
decoherence - and as a result of that, loss of information - occurs.

The simplest operation that can be done to a qubit is a NOT-operation. Accordingly,
investigating such a fairly simple manipulation can be seen as a good introduction to
being able to deal with more complex systems, either consisting of more qubits, or more
complex logic operations being done to them.

In general, a qubit is an abstract mathematical object. However, there are many different
practical realisations of systems with a variety of experimental approaches. Any quantum
object with two distinct states could act as a qubit (atom with two energy levels, polarized
photon, enery levels in molecules, ...). In the following, the two spin-states (spin-up /
spin-down in the z-basis) will stand for the two different states. An introduction to the
physical realization of such systems can be found in [2].
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2 Mathematical Description of qubits

This section only addresses topics necessary for a basic understanding of a spin-1/2-
system, a more detailed introduction to qubits and interpretations of certain concepts
can be found in [1].

A qubit is a vector in a 2-dimensional Hilbert-space H2 describing the quantum mechan-
ical state of a two level system:

|ψ〉 = a(t) |↑〉+ b(t) |↓〉 (2.1)

where {|↑〉 , |↓〉} denotes a basis spanning H2. Therefore the notation
(
1,0
)T for the state

|↑〉 and
(
0,1
)T for |↓〉 can be used. Using this convention, eq. 2.1 could be denoted as(

a(t), b(t)
)T . Note that the basis is time-independent, the coefficients hold the dynamics

of the system.

3 Simple Model for NOT-Gate

A possible Hamiltonian for describing a spin-1/2-system could be

Ĥ0 = ω0 |↑〉 〈↑|

where the system has energy ω0 if the state is |↑〉 and 0 otherwise. Plugging this into
the Schrödinger equation, one gets1

d

dt
a(t) = −iω0a(t)

d

dt
b(t) = 0

with the solution a(t) = e−iω0t and b(t) = 0 for the initial state |φ〉 = |↑〉. This means
that the expectation values of the state remain, only the phase between |↑〉 and |↓〉
oscillates in a sinusoidal way.

To actually change the state of the qubit from |↑〉 to |↓〉 or vice versa, energy has to be
transfered from/to the system. This could be done by using electromagnetic waves. In
a two-level-approximation, the Hamiltionian describing such an interaction is a modified
version of the Jaynes-Cummings-Model[1]. It read as

ĤI(t) = f(t) |↑〉 〈↓|+ f∗(t) |↓〉 〈↑|

with f(t) = Qe−iεt. Now the full Hamiltonian Ĥ(t) = Ĥ0 + ĤI(t) becomes time-
dependent and reads as

1 Throughout this whole thesis, h̄ = 1 will be used.
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H(t) =

(
ω0 Q · e−iεt

Q · eiεt 0

)

in the {|↑〉 , |↓〉}-basis. One obtains from from the Schrödinger-equation that

i
d

dt
a(t) = ω0 + f(t) · b(t)

i
d

dt
b(t) = f∗(t) · a(t)

with a(t), b(t) being the coefficients from eq. 2.1. Assuming the initial state of the
system is a spin polarized in the z-direction, |φ(t = 0)〉 = |↑〉, one gets the solution[2]

a(t) = e−
i
2
(ε+ω0)t ·

(
cos(βt) + i

α

β
sin(βt)

)
b(t) = −Q · i

β
e−i

∆
2
t sin(βt)

with ∆ = ε − ω0 and α = ∆/2, β =
√

∆2/4 +Q2. ∆ is the detuning, it describes the
deviation of the incoming waves frequency from the energy gap of the qubit. However,
if the incoming wave is resonant with the system (ε = ω0), then ∆ = α = 0 and β = Q.
Therefore the equations above become

a(t) = e−iω0t cos(Qt)

b(t) = −i sin(Qt)

If an experimenter chooses the duration of interaction as τ = π/2Q, the coefficients take
the values a(τ) = 0, b(τ) = −i, which corresponds to P (|↓〉) = 1 and P (|↑〉) = 0. This is
exactly the behaviour of a NOT-Gate.

However, the descriptions so far assume that the state of the qubit is a pure state which
is well defined. Then the state can always be written in the form of eq. 2.1. If this is
not true, which means that one can only give a certain probability to find the system in
state |ψ〉, a formalism using density matrices has to be used.

4 Concept of Density Matrices

A density matrix in an n-dimensional Hilbert-space Hn is defined as[2],[1],[3]

ρ̂ :=

n∑
i=1

pi |φi〉 〈φi|
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with Hn = span(|φi〉). It has the form of an operator and contains the whole information
about a physical system in H. From that viewpoint it is similar to a state |φ〉. However,
the main difference is that one can include uncertainties about the preparation of a
system: pi in the definition above is the probability to find the system in state |φi〉. For
a qubit in a pure state (see eq. 2.1), the density operator reads as

ρ =

(
aa∗ ab∗

a∗b bb∗

)
(4.1)

For the treatment of spin-1/2-systems, the density operator can always be written in the
so called Bloch-sphere representation[2],[1]. It reads as

ρ̂ =
1

2

(
1 + ~P · ~̂σ

)
with ~̂σ being the vector auf Pauli-matrices. In matrix notation this becomes

ρ =
1

2

(
1 + Pz Px − iPy
Px + iPy 1− Pz

)
(4.2)

where ~P = (Px, Py, Pz) is a vector pointing at the surface of a sphere, the Bloch-sphere.
This density matrix can be seen as representing a spin-1/2-system where the expectation
value of the spin points in the direction ~P .

If the system is in a pure state, then ρ̂2 = ρ̂. A pure state can always be written in the
form of eq. 2.1. It is straightforward to show that if and only if |~P | = 1, eq. 4.2 describes

a pure state. If |~P | = 0, then ρ̂ =
1

2
1, which describes the totally mixed state.

Given a Hamiltonian Ĥ, which can be time-dependent, the dynamics of the state ρ̂ is
well defined. One can derive an equation for the density operator which is equivalent to
the Schrödinger equation, the so called von-Neumann-equation[1]

d

dt
ρ̂(t) = −i[Ĥ(t),ρ̂(t)]

If Ĥ is not time dependent, then

ρ̂(t) = Û(t, t0)ρ̂(t0)Û †(t, t0) = e−iĤ(t−t0)ρ̂(t0)e
iĤ(t−t0) (4.3)

4.1 Decoherence and Mixed States

In the last few decades, it became clear, that decoherence is a fundamental concept in
the interpretation of quantum mechanics. Still, the definition is rather unclear. One of
the most common is that a state is decoherent if " interference is suppressed" [3]. This
would mean that the relative phase in a linear superposition is no longer well defined.
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Let us calculate the expectation value of an operator Â when the state is in the coherent
superposition |ψ〉 = a |↑〉+ b |↓〉:

〈Â〉 := 〈ψ| Â |ψ〉 = (a∗ 〈↑|+ b∗ 〈↓|)Â(a |↑〉+ b |↓〉)
= aa∗A11 + bb∗A22 + b∗aA21 + ba∗A12︸ ︷︷ ︸

interference term

The last term acts as an interference term. In a decoherent state, it vanishes. It is
obvious that it is not possible to write such a decorent state in the form of eq. 2.1

In terms of density matrices, the expression above can be written as[1]

〈Â〉 = Tr(Âρ̂)

This means that a state with no interference term is described by a density matrix where
the off-diagonal elements a∗b, b∗a (see eq. 4.1) are being damped. Such a state is always
a mixed state, because

(
ρ11 0
0 ρ22

)
6=
(
ρ11

2 0
0 ρ22

2

)
unless ρ11 = 1, ρ22 = 0 or ρ11 = 0, ρ22 = 1. But that won’t describe a superposition of
the states |↑〉 , |↓〉.

In quantum computing, every process changing the systems state from a pure state to
a mixed state is referred to as noise channel. Therefore, every noise channel creates
decoherence[2]. However, decoherence can also arise from entanglement.

The problem so far: Let us rewrite the dynamics generated by Ĥ0:

ρ(t) =
1

2

(
e−iω0t 0

0 1

)(
1 + z0 x0 − iy0
x0 + iy0 1− z0

)(
eiω0t 0

0 1

)
=

=

(
1 + z0 (x0 − iy0)e−iω0t

(x0 + iy0)e
iω0t 1− z0

)
(4.4)

with the spin being polarized in the direction ~P = (x0, y0, z0) at t = t0. In terms of the
separate components, this means that

Px(t) = −y0 sin(ω0t) + x0 cos(ω0t)

Py(t) = y0 cos(ω0t) + x0 sin(ω0t) (4.5)
Pz(t) = z0

This solution has the property that ρ2(t) = ρ(t), therefore the system remains in a
pure/mixed state if it has been pure/mixed at t0. Note that this can also be seen from
|~P | = const. ∀ t.
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From a statistical point of view, a behaviour described by the calculations so far is a fairly
unrealistic one. There have been considerations, that due to random interactions of the
system with the environment, every system should relax into a thermal equlibrium[4].
This would create a certain link between quantum mechanics and classical behaviour.
The density matrix at thermal equlibrium however describes a mixed state.

A criteria for a system being in a mixed state, which is equivalent to ρ̂2(t) = ρ̂(t) is that
Tr(ρ̂2) = 1. Let us consider a unitary time evolution:

Tr
(
ρ̂2(t)

)
= Tr

(
Û(t)ρ̂0 Û

†(t)Û(t)︸ ︷︷ ︸
=1

ρ̂0Û
†(t)
)

= Tr(ρ̂20) (4.6)

since the trace of an operator is invariant under unitary transformations. Therefore, if the
system has been in a pure state, it remains pure for all times. In other words: unitary time
evolutions can never create decoherence2. The unitarity of time evolutions postulated in
axiomatic quantum mechanics is only a correct assumption for closed systems. The whole
universe for example could be seen as evolving that way. Every other system always has
to be treated differently.

5 Treatment as Open System

In the last 40 years, there have been numerous investigations on the problems stated
in the preceding section. It became clear, that a quantum mechanical description must
never be done describing a system isolated from the environment (universe).

Therefore the density matrix used so far has to be extended. If two distinct systems
(system of interest A and another system B, e.g. an "environment", the universe) are
uncorrelated3, it is possible to write the density matrix of the whole system as a product

ρ̂ = ρ̂(A) ⊗ ρ̂(B)

If the systems are not uncorrelated, they are entangled and it is no longer possible to
factorize the density matrices. However, it is always possible to make that assumption
at some t = 0[1].

One normally is not interested in the dynamics of the whole system but in those of some
reduced system (A). Therefore the dynamical map V(t) is defined: It is an operation
mapping the reduced density matrix of system (A) at t = 0 to that at t = t under
consideration of ρ̂ = ρ̂(A) ⊗ ρ̂(B) at the initial time t=0:

V (t) : ρ̂(A)(0)→ ρ̂(A)(t)

When also making the assumption that environmental correlation times are short, mem-
ory effects can be neglected (Markov process) and it is possible to formulate the dynamics
as a quantum mechanical semigroup.

2 A more detailed discussion on the issue can be found in [3].
3 Uncorrelated means that expectation values factorize: 〈A〉 = 〈A(A)〉 · 〈A(B)〉
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Lindblad has shown[5] in 1976, that the most general form of a quantum master equation
can be written as[1]

d

dt
ρ̂(t) = L[ρ̂(t)] = −i[Ĥ(t),ρ̂(t)] +

∑
µ>0

(
L̂µρ̂(t)L̂†µ −

1

2

{
L̂†µL̂µ, ρ̂(t)

})
= −i[Ĥ(t),ρ̂(t)] +D[ρ̂(t)] (5.1)

This equation is referred to as the Lindblad-equation. L is the so called Lindblad-
superoperator, D is the dissipator. It is the part that differs from the unitary evolution
described by the von Neumann-equation and is responsible for creating decoherence and
mixed states by describing interactions of the system with the environment.

Note that in the sum different Lindblad operators L̂µ, each depending on a parameter
µ, may appear. Each one of these operators may induce a quantum jump caused by
interaction with the environment.

Although the subsystems are uncorrelated at t = 0, the generalized time evolution can
create an entanglement between (A) and (B). This leads to an entropy S > 0 (see sec.
8.2).

6 Quantum channels

Quantum channels can be seen as a way of transferring quantum information, e.g. chang-
ing the state of qubit is a quantum channel transporting information from the system of
interest to an "environment". From that point of view, dissipation described using eq.
5.1 can be seen as a sort of quantum channel transporting "noise".

The choice of the Lindblad operators L̂µ are somewhat arbitrary. However, a few variants
can be seen to describe certain quantum channels.

In the theory of quantum information, three quantum channels are of interest since they
have different physical origins:

• Depolarization-Channel: The phase of the bloch sphere shrinks with a certain prob-
ability.

• Amplitude damping channel: The system relaxes from the excited state into the
ground state - energy is transferred from the system to the environment.

• Phase damping channel: The phase information about the superposition gets "de-
stroyed".

6.1 Amplitude damping channel

An amplitude damping channel is one where quantum noise is produced due to loss of
energy (e.g. inelastic scattering processes, see [2]).

9
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In comparison to a closed quantum system, the Bloch sphere changes like

(
Px(t), Py(t), Pz(t)

)
→
(
Px(t)

√
1− γ, Py(t)

√
1− γ, (γ − 1)Pz(t)− 1

)
where γ = 1− e−t/T1 with a characteristic damping time T1.

In the following we will see that such behaviour can be created using only a single
Lindblad-operator, namely L̂µ =

√
γσ̂− (see, e.g. [2]). Then the dissipator reads as

D[ρ̂(t)] = γ
(
σ̂−ρ̂(t)σ̂+ − 1

2

{
σ̂+σ̂−, ρ̂(t)

})
(6.1)

where γ can be seen as a parameter describing the strength of the damping.

Plugging a density matrix of the form 4.2 into eq. 6.1 one obtains

D[ρ(t)] = γ

(
−(1 + Pz) −1

2(Px − iPy)
−1

2(Px + iPy) 1 + Pz

)
(6.2)

From the Lindblad master equation one gets

d

dt
Pz = −γ(1 + Pz)

d

dt
Px = −ω0Py −

γ

2
Px

d

dt
Py = ω0Px −

γ

2
Py

which has the solution for Pz(t) = (z0 + 1)e−γt − 1 for Pz(t = 0) = z0 (Spin up).
Indeed an exponential amplitude damping occurs: Pz(t→∞) = −1, independent of z0.
Furthermore, one gets

Px(t) = e−
γ
2
t
(
− y0 sin(ω0t) + x0 cos(ω0t)

)
Py(t) = e−

γ
2
t
(
y0 cos(ω0t) + x0 sin(ω0t)

)
(6.3)

which is the same behaviour as described by the time evolution in eq. 4.5 damped by a
factor e−

γ
2
t.
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Figure 6.1: Time evolution of a spin-1/2-qubit described by a Lindblad master equation
using the dissipator in eq. 6.1. The parameters are γ = 0.05 and ω0 = 1.
For demonstrational purposes the polarisation at t = 0 has been chosen to
be 1/

√
3 · (1, 1, 1)T . It can be seen that every component of the polarisation

is being damped, the norm of ~P decreases. Therefore the system evolves into
a mixed state, the qubit becomes incoherent (see eq. 4.2).

6.2 Phase damping channel

A phase damping channel leads to a loss of quantum information without the loss of
energy. This might occur due to elastic scattering processes. As a result, only off-
diagonal elements in the density operator get damped[2]

ρ→
(

aa∗ ab∗ · e−λt
a∗b · e−λt bb∗

)
(6.4)

The Bloch sphere might change like

(
Px(t), Py(t), Pz(t)

)
→
(
Px(t)

√
1− λ, Py(t)

√
1− λ, Pz(t)

)
with

√
1− λ = e

− t
2T2 .

Similar to the amplitude damping situation, we only have one Lindblad-term with L̂µ =√
λσ̂z. The dissipator becomes

D[ρ(t)] = λ

(
0 −2(Px − iPy)

−2(Px + iPy) 0

)
(6.5)

where λ is once again describing the strength of the damping.
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In terms of the components of ~P , one gets

d

dt
Pz = 0

d

dt
Px = −ω0Py − 2λPx

d

dt
Py = ω0Px − 2λPy

with the solution

Px(t) = e−2λt
(
− x0 sin(ω0t) + x0 cos(ω0t)

)
Py(t) = e−2λt

(
y0 cos(ω0t) + x0 sin(ω0t)

)
(6.6)

Pz(t) = z0

This is actually a phase damping channel like stated above. We regain the fact that no
energy is transferred by the quantum channel, since

〈E〉 = Tr(Ĥρ̂) = ω0z0 = const.

-1

-0.5

0

0.5

1

0 2 4 6 8 10 12 14

x(
t)

/y
(t

)/
z(

t)

t

Px(t)
Py(t)
Pz(t)
|~P(t)|

Figure 6.2: Time evolution of a qubit described by the Hamiltonian Ĥ0 = ω0 |↑〉 〈↑| under
consideration of a phase damping due to interaction of the system with the
environment (see 6.6). The damping constant was set to λ = 0.02 and ω0 = 1.
To see the effect of the phase damping, the system has been prepared in the
~P = 1/

√
3·(1, 1, 1)T -state at t = 0. Note that the once prepared spin-up-state

remains and therefore no energy is dissipating.
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7 NOT-Gate in the presence of dissipation

After this preparatory work, it is now possible to get a more realistic behaviour of a
NOT-Gate under full consideration of system-environment-interactions.

We will now again use the Hamiltionian

Ĥ(t) = Ĥ0 + ĤI(t) = ω0 |↑〉 〈↑|+ f(t) |↑〉 〈↓|+ f∗(t) |↓〉 〈↑| (7.1)

which causes the unitary part of the Lindblad equation to be

−i[H, ρ] =
1

2

(
(Px + iPy)f(t)− (Px − iPy)f∗(t) −2Pzf(t) + ω0(Px − iPy)

2Pzf
∗(t)− ω0(Px + iPy) (Px − iPy)f∗(t)− (Px + iPy)f

(t)

)
(7.2)

7.1 Effects of an amplitude damping channel

Adding the dissipator eq. 6.2 to the unitary part, one gets

d

dt
Px = 2QPz sin(εt)− ω0Py −

γ

2
Px

d

dt
Py = −2QPz cos(εt) + ω0Px −

γ

2
Py (7.3)

d

dt
Pz = 2Q

(
Py cos(εt) + Px cos(εt)

)
− γ(1 + Pz)

This system of differential equations can still be solved analytically by using the inter-
action picture.4 We will however obtain a numerical approach.

The r.h.s of the differential equations are rather smooth, no singularities occur. Therefore
a standard ODE-solver can be used. Here the Matlab-algorithm ode45, an implemen-
tation of a Runge-Kutta-method, has been used. The numerical solution is shown in fig.
7.1.

4 The interaction picture is defined by transforming the density matrix ρ̂(t) to ρ̂I(t) := ÛI(t)ρ̂0Û
†
I (t).

ÛI(t) is the time evolution operator created by the interaction part of the Hamiltionian ĤI(t). A
technique for handling such problems could be to solve the system for ρ̂I(t) and apply the retrans-
formation. For more details see [1].
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[1.546,-0.945]

Figure 7.1: Numerical solution of the time evolution of a NOT-Gate under consideration
of dissipation through an amplitude damping channel (see eq. 7.3). The
parameters were set to ω0 = ε = 1 (resonance), Q = 1, γ = 0.05. Discussion
see text.

One can see that two errors occur in the quantity of interest (the value of Pz after
τ = π/2Q). An idealized NOT-Gate would work like Pz(τ) = −1.
The first deviation from this desired behaviour comes from a simple damping due to
energy loss. The minimum of Pz(t) has a value of −0.945.
The second error comes from a shift of the minimum in time. It does not coincide with
τ from the closed system approach (blue line in fig. 7.1). This has major consequences
on experimental settings because the interaction time of the EM-pulse to perform the
spin-flip has to be detuned by an amount that is not precisely known. For example, if
one measures the value of Pz after τ , one gets Pz(τ) = −0.943.

When not switching off the interacting wave after τ , the system relaxes into the totally
mixed state ~P = ~0, ρ = 1

21 (see fig. 7.2). This differs from the relaxation scenario in the
case without interaction (sec. 6.1).
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Figure 7.2: Long time evolution of the solution to eq. 7.3 with the same settings as in
fig. 7.1 (ω0 = ε = 1, Q = 1, γ = 0.05). The equilibrium is the totally mixed
state with |~P (t → ∞)| = 0 An interesting feature is that at certain points,
the size of the bloch-sphere increases. See sec. 8.2 for a discussion on that.

7.2 Effects of a phase damping

Considering the dissipator eq. 6.5, one gets

d

dt
Px = 2QPz sin(εt)− ω0y − 2λx

d

dt
Py = −2QPz cos(εt) + ω0x− 2λy (7.4)

d

dt
Pz = 2Q

(
Py cos(εt) + x cos(εt)

)
Again, a numerical approach was taken. The results are shown in fig. 7.3 - 7.4.
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Figure 7.3: Simulation of the time evolution of a qubit under the Hamiltonian defined
in eq. 7.1 and considering a noisy phase damping channel. The parameters
were set to ω0 = ε = 1 (resonance), Q = 1, λ = 0.05.

Similar to the effects of the amplitude damping channel, the value of Pz at time τ is being
damped, compared to the closed system. However, the time shift is not as present as is
the preceeding situation. This might be caused by the fact that Pz itself is not damped,
only Px and Py (see eq. 7.4). A more detailed investigation would be necessary.
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Figure 7.4: Visualization of the relaxation of the qubit shown by considering a phase
damping (see eq. 7.4). Parameters are as in fig. 7.3 (ω0 = ε = 1, Q = 1,
λ = 0.05). In contrast to the amplitude damping case (fig. 7.2), the radius
of the bloch-sphere (red dashed line) always decreases.
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8 Results and Interpretation

When thinking of expectation values of a qubit-state, the first measureable quantity to
come up with might be the population of the states |↑〉 , |↓〉. Mathematically spoken,
those values can be written as

〈↑〉 = Tr
(
ρ̂ |↑〉 〈↑|

)
= ρ11 =

1

2
(1 + Pz)

〈↓〉 = Tr
(
ρ̂ |↓〉 〈↓|

)
= ρ22 =

1

2
(1− Pz)

However, another quantity of major interest is the phase.

8.1 Phase measurement using Hadamard-Gate

A Hadamard-Gate GH5 can be seen as first performing a rotation of the qubit around
the x-axis for θ = 90◦ and then mirroring the bloch-sphere at the y-x-plane.

It can be denoted as

GH =
1√
2

(
1 1
1 −1

)

Let us briefly interpret the effect of this operation: Assuming the states |α〉1 = 1√
2
(|↑〉+

|↓〉) and |α〉2 = 1√
2
(|↑〉 − |↓〉), after the Hadamard-operation one gets

GH |α〉1 = |↑〉
GH |α〉2 = |↓〉

Therefore the Hadamard-Gate can be used to measure the relative phase between the
two qubit-states.

When acting on a density matrix written in eq. 4.2 , the Hadamard-Gate reads as

ρH = GH · ρ ·GH

To measure the phase, one has to measure the population of the "excited state" of the
tranformed matrix. In explicit form, one gets from the equation above

ρH11 =
1

2

2∑
i,j=1

ρij =
1

2
(1 + Px)

5 Normally the Hadamard-Gate is abbreviated as H. However, to avoid a confusion with the Hamilto-
nian, the letter GH shall be used.
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which is 0 if the relative phase is "-" and 1 if the relative phase is "+". This is in
agreement with the representation of the |x〉-state in the z-basis.

The time evolutions of the population of the excited state 〈↑〉 and the relative phase
between |↑〉 and |↓〉 obtained in the preceding calculations are shown in fig. 8.1 for the
amplitude damping case and fig. 8.2 for the phase damping.
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Figure 8.1: Time evolution of the expectation value of the excited state and the expecta-
tion value of the relative phase between |↑〉 and |↓〉 for the amplitude damp-
ing channel. Again, at t=0, the system was prepared in the spin-up-state
(Pz = 1). Parameters are as in fig. 7.1
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Figure 8.2: Time evolution of Pz and relative phase between |↑〉 and |↓〉 for the phase
damping channel. Again, Pz(t = 0) = 1, ω0 = ε = 1, Q = 1, λ = 0.05.
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8.2 Entropy change

From a statistical point of view, an entropy can be assigned to every probability distri-
bution, the so called Shannon-entropy

S = −
∑
i

pi · ln(pi)

which is a quantity to measure the information that is associated with the distribution.
Von Neumann generalized the Shannon-entropy to describe information in quantum me-
chanical states. This leads to the von Neumann-entropy

S = −Tr
(
ρ̂ · ln(ρ̂)

)
In the following we will only use this definition of entropy. S = 0 if and only if ρ̂ describes
a pure state[2],[1].

Thinking of the 2nd law of thermodynamics, one might state that the entropy of a quan-
tum mechanical system can only increase due to system-environment-interaction. This
is true for a phase damping channel (see eq. 6.6). For t → ∞ the off-diagonal elements
vanish, the Bloch-sphere shrinks to |~P | = |z0|. Therefore the entropy at equilibrium is
well defined and finite.

However, if the entropy change induced by the amplitude damping channel is investigated,
one gets a different behaviour.
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Figure 8.3: Change in the von Neumann-entropy of a qubit without an electromagnetic
field, but coupled with an amplitude damping channel as discussed in sec.
6.1 (time evolution see eq. 6.3). The parameters for the plot where set to
Q = 1, γ = 0.05. Explanation see text.

In fact, the entropy decreases after a certain point (see fig. 8.3). The reason is that due
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to energy dissipation, the system always relaxes into the ground state, which is a pure
state. That has an entropy of S = 0. This can also be seen from the fact that the stable
state (t→∞) is ~P = (0, 0,−1)T which is pure (see eq. 6.3).

Next, we consider results for the von Neumann-entropy in the case with an electromag-
netic field (see sec. 7.1 and 7.2).

Fig. 8.4 shows that for the amplitude damped case, at certain points the entropy de-
creases. This oscillation comes from the fact that two concurring effects are present:
firstly, the amplitude damping, which pushes the system towards the ground state, and
secondly the electromagnetic field, which constantly flips the spin from the ground state
to the excited state and vice versa. This behaviour can also be seen from the oscillation
of the radius of the Bloch-sphere (see fig. 7.2).
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Figure 8.4: Entropy of the system vs. time for the case with electromagnetic field and am-
plitude channel coupling. Note that at certain points the entropy decreases.
The case shown here corresponds to fig. 7.2.

However, such behaviour does not occur in the phase damping channel, the entropy
always increases in the case of electromagnetic interaction.
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Figure 8.5: Entropy vs. time for the phase channel including an electromagnetic field.
Parameters are as declared in 7.4.

One can see that for every quantum channel (phase damping and amplitude damping)
the entropy has the same finite value for t→∞ due to the interaction with the electro-
magnetic field.

The reason is that both channels create the equilibrium state ρ̂ = 1
21. This maximally

entangled state6 has the entropy ln(2). This is the same entropy associated with a
classical bernoulli experiment with p = q = 1/2. Note that this equilibrium entropy does
not depend on system parameters (ω0, Q, γ) or the initial state of the system.

9 Conclusions

It was shown that it is never possible to describe a realistic behaviour of a spin-1/2-
system when neglecting random environment-system-interactions, which acts as noise. If
one chooses a description as an open quantum system, due to noisy quantum channels,
information gets lost (phase damping and amplitude damping) and entropy increases.

When the system of interest is interacting with an electromagnetic wave, the system al-
ways relaxes to the maximally entangled state with an equlibrium entropy and a vanishing
polarization. Therefore, for t→∞, all information in the system is destroyed, no matter
what kind of dissipation effect (phase damping or amplitude damping) is present.

6 Entropy can also be interpreted as a value to measure the entanglement of the system with the
environment. A discussion on that can be found in [2].
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