
Numerical Methods in Physics (515.421)
Numerische Methoden in der Physik (515.421)

Prof. Heinrich Sormann
Institut für Theoretische Physik - Computational Physics

TU Graz

English translation by: Dr. Lilia Boeri, ITP-CP, TU Graz

Script WS 2013/2014

Computers are useless.
They can only give you answers.

Attributed to Pablo Picasso...

1

Note:

The script for the lecture ”Numerical Methods in Physics”, WS 2013/2014,
has been translated into english from the original script of Prof. Heinrich
Sormann by Dr. Lilia Boeri. The present english version contains only
chapters covered in the course of the main lecture in WS 2013/14.

The list below shows the correspondence between the chapters of the
German (D) and English (E) script.

D(1): Einführung.
E(1): Introduction.

D(2): Numerische Methoden zur Lösung linearer, inhomogener Gle-
ichungssysteme.
E(2): Numerical Methods for Linear, Inhomogeneous Systems of Equations.

D(4): Least-Squares Approximation.
E(3): Least Squares Approximation.

D(5): Numerische Lösung von trascendenten Gleichungen.
E(4): Numerical Solution of Transcendental Equations.

D(7): Eigenwerte und Eigenvektoren reeller Matrizen.
E(5): Eigenvalues and Eigenvectors of Real Matrices.

D(8): Numerische Methoden zur Lösung von gewöhnlichen Differen-
tialgleichungen: Anfangswertprobleme.
E(6): Numerical Methods for Ordinary Differential Equations: Initial value
problems.

2

Chapter 1

Introduction

1.1 Basics.

The subject of this lecture on “Numerical Methods in Physics” is the solution
of real physical problems with methods of numerical mathematics. These
methods permit to treat problems which are so complex that they can only
be solved with the aid of a computer.

A good definition of numerical mathematics can be found, for example,
in [1], page 8:

Numerical mathematics concerns the solution of mathematical problems
using numerical calculations. This term indicates a finite sequence of basic
mathematical operations, such as addition, subtraction, multiplication and
divisions, using finite-digits numbers.

[1] contains also a nice schematical illustration of the basic methodology
of numerical mathematics and of all the possible unavoidable errors that can
affect the results.

|--------------------| |------------------------------|

| Input Information | ===> | Input error |

| (Input) | | (Measurement or roundoff |

| | | error) |

|--------------------| |------------------------------|

| |

| |

|--------------------| |--|

| Algorithm | ===> | Algorithmic error |

| | | (Methodological error; roundoff error) |

|--------------------| |--|

| |

| |

|--------------------| |------------------------------|

| Output Information | ===> | Output error |

| (Output) | | (Roundoff error) |

|--------------------| |------------------------------|

A schematic diagram illustrating the methodology of numerical
mathematics, from [1].

3

A central concept in numerical mathematics is that of algorithm. This term,
according to [2], page 9, indicates:

A finite number of precise instructions, which require specific input data and,
executed in a given sequence, determine the final solution.

1.2 Errors: general considerations

As shown from the previous diagram, all stages of a numerical calculations
(data input; actual calculation process; data output) can lead to errors in the
results. Typical causes are the eventual roundoff and methodological errors,
which we will explain in detail in this chapter.

The results of computer calculations are (with a very few exceptions) subject
to errors, i.e. they do not coincide exactly with the ”true” solution of the
problem.

Therefore, it is of outmost importance, when working with a
computer, to keep under control all possible errors and to be able
to estimate the precision of the results that are obtained.

On the subject ”errors in numerical methods”, we refer the reader to the
relevant chapters from [7] and [8].

1.2.1 Absolute and relative errors. Machine precision.

Before discussing in more detail the various types of errors, we think that it
is useful to introduce the concept of absolute and relative error:

If x is the (unknown) real value of a quantity and x̄ is the relative approximate
value obtained with a numerical calculation, we define:

ǫa = x− x̄ (1.1)

absolute error and

ǫr =
ǫa
x̄

=
x− x̄

x̄
(1.2)

relative error of x̄.

In practical cases, it is usually preferrable to employ the relative error, given
by formula (1.2). The reason is clearly illustrated by the following simple
example:

x x̄ ǫa ǫr
(a) 0.1 0.09 0.01 ≈ 0.1
(b) 1000.0 999.99 0.01 ≈ 0.00001

4

Structure chart 1 — Determination of the parameter τ

tau:=1.0
wold:=1.0

tau:=tau/2.0
wnew:=wold + tau

wnew=wold

print: 2*tau

It is immediately clear that the approximation in (b) is much more satisfac-
tory than in (a), although the absolute error is the same in both cases.

Another fundamental concept is that of machine precision: this is the
smallest (positive) number τ , for which:

1 + τ > 1

For a (non-existing) supercomputer that can save real numbers with arbitrary
accuracy, the above inequality would be satisfied for all values of τ . In real
computers, however, τ has a finite value, which it is very important to know.
It can be estimated in practice using the algorithm shown in the structure
chart 1.
The following results were obtained on a PC IBM (the same is true for all
tests contained in this script, unless otherwise specified):

Bytes τ Number sign. digits
C-float 4 1.19 · 10−7 7
C-double 8 2.22 · 10−16 16
F90-real 4 1.19 · 10−7 7
F90-double prec. 8 2.22 · 10−16 16
Pascal-single 4 1.19 · 10−7 7
Pascal-real 6 1.82 · 10−12 12
Pascal-double 8 2.22 · 10−16 16
Pascal-extended 10 1.08 · 10−19 19

5

Realization of the structure chart 1 in C and F90:

// C-PROGRAM FOR THE CALCULATION OF MACHINE PRECISION

#include <iostream.h>

void main()

{

float tau,wold,wnew;

tau=1.0;

walt=1.0;

do {

tau/=2.0;

wnew=wold+tau;

} while (wnew != wold);

cout <<"TAU = "<<2*tau<<"\n";

}

PROGRAM machine

! F90-Program for the calculation of machine precision

IMPLICIT NONE

REAL tau,wold,wnew

tau=1.0

wold=1.0

DO

tau=tau/2.0

wnew=wold+tau

IF(wnew .EQ. wold)EXIT

END DO

PRINT ’(" tau = ",E12.6)’,2.0*tau

END PROGRAM machine

6

1.2.2 Input errors. Ill-conditioned problems.

Input errors (i.e. inherent errors) are uncertainities in the input data with
which the computer performs the calculation. These uncertainities can have
several origins, i.e. experimental measuring errors, or roundoff errors.

If the results of a calculation are strongly influenced by this input errors
we speak of an ”ill-conditioned problem”.

As an example of an ill-conditioned linear set of equations, we consider the
example in [7], page 97:

x+ 5.0y = 17.0

1.5x+ 7.501y = a

We assume that a is determined by an experiment, and thus affected by
uncertainity:

a = 25.503± 0.001

It is easy to verify that the exact solutions for this system for a = 25.503
are: x = 2.0 and y = 3.0.
The table below shows how the values of x and y change, if we assume that
the last digit of a changes by one unit:

a x y
25.503 2. 3.
25.502 7. 2.
25.504 -3. 4.

Obviously, this set of equations constitutes an extremely ill-conditioned prob-
lem! The results, given the experimental uncertainity on a, are completely
meaningless!

1.2.3 Algorithmic errors.

are errors, which occur during the evaluation of the calculation specification.
The causes are either roundoff errors or methodological errors.

1.2.4 Methodological errors.

Methodological errors occur when the original mathematical problem is re-
placed by a simplified problem.
An example is the numerical integration:

Let us consider the definite integral

I =
∫ 2

x=1

dx

x2

7

Figure 1.1: Principle of numerical integration

which admits an exact solution I = 0.5. Let us assume that we evaluate the
same integral numerically, approximating the ”true” integral surface with the
trapezoidal surface ABCD (Fig. 1.1):
The ’numerical’ result is in this case 0.625, i.e. we have introduced an (ab-
solute) methodological error:

ǫp = 0.5− 0.625 = −0.125.

Other typical methodological errors arise for example from the truncation of
an infinite series (truncation error), and so on.

1.2.5 Roundoff errors.

Roundoff errors are unavoidable1, and derive from the fact that in a computer
only a limited number of bits is available to represent a real number (or,
better, its Mantissa).2

A simple example:

Calculation "by Hand": Computer (7 sign. digits):

123456.789 0.1234568E+06

+ 9.876543 + 0.9876543E+01

---------------- ----------------

123466.665543 0.1234667E+06

1’unavoidable’ means that, as we will demonstrate in the following, there is no possi-
bility to reduce roundoff errors!

2This excludes the very rare case in which one deals with an INTEGER arithmetic.

8

Structure chart 2 — Demonstration of the effect of roundoff errors

value:=0.1
sum:=0.0

i=1(1)50

sum:=sum + value

print: sum

Another example: If we perform the calculation sketched in the structure
chart 2 on a PC, we encounter a phenomenon which is hard to understand
at first sight:
The result is we get is 4.999998, i.e. we see the effect of a roundoff error,
athough each of the 50 constant factors 0.1 which are summed up is saved
correctly in memory.

The reason is that the number 0.1, which is representable without prob-
lems in a decimal system, in the binary system used by computers is a peri-
odic number:

0.110 = 0.000110011001100 . . .2

1.3 Methodological and roundoff errors.

In the following, we will see typical examples of different types of errors which
occur in computer programs. We will also discuss possible ways to recognize
and minimize the effects of methodological and roundoff errors.

1.3.1 Connection between roundoff errors and algo-
rithm.

The first example shows that the roundoff error on the evaluation of a math-
ematical expression can be reduced through an appropriate reformulation of
the algorithm.

Let us imagine we wish to evaluate numerically the following expression:

F (x) =

√
1 + x−

√
1− x

x

for x << 1. Since F (x) has a well-defined analytical expression, in this case
there is no methodological error. Furthermore, we can assume that in this
case there are no input or output errors.

9

If we code this formula without further reshaping, i.e.

F := (SQRT (1.+X)− SQRT (1.−X))/X ,

we obtain the following result for decreasing values of x:

Tab.1.1: Numerical evaluation of F(x) and F1(x).

x F F1
100 0.1414214E + 01 0.1414214E + 01
10−1 0.1001256E + 01 0.1001256E + 01
10−2 0.1000013E + 01 0.1000013E + 01
10−3 0.1000041E + 01 0.1000000E + 01
10−4 0.1000153E + 01 0.1000000E + 01
10−5 0.1001357E + 01 0.1000000E + 01
10−6 0.1013279E + 01 0.1000000E + 01
10−7 0.1192093E + 01 0.1000000E + 01
10−8 0.0000000E + 01 0.1000000E + 01

Two features immediately catch our attention in the values of F shown in
the above table:

• The value of the function does not tend to 1 for x → 0, as it should,
but begins to increase at x = 10−2.

• For values of x smaller than x = 10−8, F is exactly zero.

This behaviour can be easily explained:

• For small x the two square roots
√
1 + x and

√
1− x represent two

almost equal numbers. Subracting these numbers from each other, and
dividing by x, the two roundoff errors, that are by themselves small,
give a large effect, due to the law of error propagation (’subtractive
cancellation’).

• For x < τ , we have that both 1 + x = 1 and 1 − x = 1; therefore, the
value of F (x) is exactly zero.

So far, we have only identified the error. The cure in this case is very simple:
If we rewrite F (x) as:

F1(x) ≡ F (x) =
(
√
1 + x−

√
1− x)

x
·(
√
1 + x+

√
1− x)

(
√
1 + x+

√
1− x)

=
2√

1 + x+
√
1− x

we recover the correct results (see Table 1.1).

Another example ([9], page 178) shows that we can end up in trouble also in
case of seemingly very simple problems, if we program the formulas without
thinking.

Let us consider the numerical solution of a second-order equation:

10

ax2 + bx+ c = 0

with real coefficients a, b, and c.

The well-known solutions are

(a) x1 =
−b +

√
b2 − 4ac

2a
(b) x2 =

−b−
√
b2 − 4ac

2a

We immediately see that for very small values of the coefficients a and/or c
there is the danger of a ’subtractive cancellation’ on the values of x1 and x2
(for b > 0 and b < 0 respectively).

But it is also easy to recast the above expression in the equivalent form:

(c) x1 =
2c

−b−
√
b2 − 4ac

(d) x2 =
2c

−b+
√
b2 − 4ac

.

From the above considerations, it is clear that expressions (c), (b) and (a),
(d) are stable against roundoff errors for b > 0 and b < 0 respectively.

The following algorithm sums up the above expressions:

x1 =
q

a
x2 =

c

q

with

q ≡ −1

2

[

b+ sgn(b)
√
b2 − 4ac

]

.

1.3.2 Roundoff and methodological errors in numerical

differentiation.

The basic principle of a numerical differentiation (derivation) is that of re-
placing the required differential with a suitable finite difference expression,
i.e.

d

dx
f(x) |x=xo

≈ f(xo + h)− f(xo)

h
. (1.3)

The differential ratio (1.3) converges to the first derivative of the function
f(x) in xo when the increment h → 0. A finite increment (or stepsize) h
introduces a methodological error ǫV , which gets smaller and smaller with
decreasing h.
Theoretical considerations show that ǫV must have the form

ǫV = CV (h) · h , (1.4)

where the quantity CV (h) in many cases depends only weakly on h, and can
be replaced in practice by a constant:

CV (h) ≈ CV .

11

−6 −5 −4 −3 −2 −1 0
−6

−5

−4

−3

−2

−1

0

1

LOG−10(H)

LO
G

−
10

(E
R

R
O

R
)

a

b

Figure 1.2: Error diagram for numerical differentiation (a), formula (1.3),
(b) Formula (1.7)

If we plot ǫV vs h in a log-log scale, the error curve satisfies the linear relation

log ǫV = logCV + log h (1.5)

with slope +1.
The curve (a) in Fig. 1.2 shows these relations for the concrete example

f(x) = ln x · sin(5x)

d

dx
f(x) |xo=3=

sin(15)

3
+ 5 ln 3 cos(15) .

Clearly the relation (1.4) is well fulfilled in the interval 10−3 < h < 10−1 . For
increments that are larger or smaller than these values, the ’real’ behaviour
of the error deviates largely from this behaviour.
The causes for this behaviour are the following:

• The deviation in the interval h > 10−1 is due to the fact that, if the
increment is too large, CV is not constant.

• It is more interesting to analyze the behaviour of the error in the in-
terval h < 10−3, where the error does not follow the expected linear

12

behaviour with h – Eq. (1.4). On the other contrary, it acquires a
strong functional dependence, and this is due to a strong ”subtractive
cancellation” of the roundoff errors in (1.3).

The dependence of the roundoff error on h does not follow a smooth curve,
but tends to the expression:

ǫR =
CR

h
. (1.6)

From what we said so far, we can conclude:

• Using an optimal increment step hopt we can reduce the error down to a
minimal value which cannot be further reduced – in concrete examples
this error is around 5 · 10−3.

• Using an increment step h < hopt does not improve the numerical result,
but - on the contrary - makes it worse!

There are two possible strategies to further reduce this minimal error:

• The roundoff error can be reduced increasing the precision with which
real numbers are stored in memory (single → double; float → double
etc.).

• The methodological error can be reduced using an improved algorithm,
for example using the more efficient formula

d

dx
f(x) |x=xo

≈ f(xo + h)− f(xo − h)

2h
(1.7)

for the differential ratio. Since in this formula ǫV decreases much faster
with decreasing h as compared to expression (1.3), i.e.

ǫV = C̄V (h) · h2 , (1.8)

but the roundoff error has the same dependence on h as before, the
minimal error can be reduced by roughly one order of magntidude –
see curve (b) in Fig. 1.2.

In summary, we can say:

The error diagnostics in this example (and in many areas of numerical
mathematics) is largely simplified by the fact that under certain assumptions
(in this case, in a particular range of h) the methodological error is much
larger than the roundoff error.

13

1.3.3 Error diagnostics in the numerical evaluation of
the error function.

In many applications one has to evaluate numerically the function

erfc(x) = 1− erf(x),

where erf(x) represents the Gaussian error function.
The integral representation, i.e. the representation in form of a Taylor

series is:

erfc(x) = 1− 2√
π

∫ x

z=0
dze−z2 = 1− 2√

π

∞∑

n=0

(−1)nx2n+1

n!(2n+ 1)
.

The numerical evaluation of erfc(x) can be done using this Taylor series,
whose convergence in principle is assured for all real arguments x:

erfc(x) ≈ 1− 2√
π

nmax∑

n=0

an with an =
(−1)nx2n+1

n!(2n+ 1)
.

INSET: Numerical evaluation of a Taylor series

• From the point of view of computational efficiency it is extremely in-
convenient to evaluate each term an of the series independently. It is
much better to calculate each an from the previous an−1. In fact, to
calculate the ratio an/an−1, we can exploit the recursive relation

an =

[

−x
2(2n− 1)

n(2n + 1)

]

an−1 for n = 1, 2, . . .

with
a0 = x .

• Truncating the series at n = nmax introduces a methodological er-
ror. However, since the series is composed of monotonically descending
terms3 with alternating sign, we can safely assume that the norm of ǫV
is not larger than the first neglected term anmax+1. Using this simple
method to estimate the methodological error it is possible to compute
the series up to machine precision, i.e. until the final result is not
changed including further terms in the sum. In conclusion: within
machine precision we can eliminate the methodological error!

3at least starting from a given an!

14

Structure Chart — Evaluation of a Taylor series

x:=

n:=0
sumnew:=x
a:=x

n:=n+1
taylor:=sumnew
a:= -x*x*(2*n-1)/n/(2*n+1) * a
sumnew:=sumnew+a

sumnew=taylor

print: x, taylor

We have thus shown that all deviations of the numerical results from
the exact one can be attributed to the accumulation of roundoff errors. We
can immediately verify this, repeating the same calculation with single and
double precision. The results of these tests for different values of x are given
in the second row of Table 1.2.

The comparison of the results of the Taylor series expansion with other
methods shows that the Taylor series approximates the value of erfc(x)quite
well for small arguments x, but breaks down for large x.
In this range of parameters a different algorithm must be employed.

In this case, we can use a so-called continued fraction [11], which has the
form

erfc(x) =
e−x2

√
π

·
(

1

x+

1/2

x+

1

x+

3/2

x+
· · ·
)

.

However, the numerical calculation of a continued fraction has the disad-
vantage that we have to decide how many terms of the fraction we want to
retain before the beginning of the calculation. This means that if we want
to increase the number of terms of the series to reduce the methodological
error, we have to restart the calculation from scractch, and cannot simply
add further terms to an ’old’ calculation as in the case of Taylor series 4.

In the present example we have calculated the continued fraction for 31
and 61 terms, both with simple and double machine precision. Analysing
the results (Table 1.2, third and fourth row), we can draw the following
conclusions:

• Differences in the results with 31 and 61 terms → methodological error.

4Such a possibility in form of a better calculation of a continued fraction can be found
for example in [9], P.135ff).

15

• Differences in the results with single vs double precision → roundoff
errors.

Tab.1.2: Evaluation of the function erfc(x) through a Taylor series and a
continued fraction. All results are given in half-exponential form with 7
digits for the mantissa. The exponent E indicates a calculation in simple
precision, the exponent D a calculation in double precision.

x Taylor series Cont. Fract. Cont. Fract.
ǫV = 0 31 Terms 61 Terms

0.01 0.9887166E+00 0.1261318E+02 0.9042203E+01
0.9887166D+00 0.1261318D+02 0.9042202D+01

0.1 0.8875371E+00 0.1401417E+01 0.1131721E+01
0.8875371D+00 0.1401417D+01 0.1131721D+01

0.5 0.4795001E+00 0.4802107E+00 0.4795305E+00
0.4795001D+00 0.4802107D+00 0.4795305D+00

1. 0.1572992E+00 0.1572995E+00 0.1572992E+00
0.1572992D+00 0.1572995D+00 0.1572992D+00

2. 0.4677685E-02 0.4677735E-02 0.4677735E-02
0.4677735D-02 0.4677735D-02 0.4677735D-02

3. 0.2991446E-04 0.2209050E-04 0.2209050E-04
0.2209050D-04 0.2209050D-04 0.2209050D-04

4. 0.2364931E-02 0.1541726E-07 0.1541726E-07
0.1544033D-07 0.1541726D-07 0.1541726D-07

5. 0.4645361E+02 0.1537460E-11 0.1537460E-11
0.5458862D-07 0.1537460D-11 0.1537460D-11

We can summarize the above results as follows:

• Taylor series: Methodological errors are zero in the whole range of x,
roundoff errors grow rapidly with increasing x.

The calculation with Taylor series gives results with at least 7 exact
digits up to ∼ x = 1.

• Continued Fraction: Methodological errors decrease with increasing x,
the roundoff error is very small in the whole range of x considered.

1.3.4 Example of stable and unstable algorithms

Many numerical methods are based on recursion formulas of the type:

yn = a · yn−1 + b · yn−2 n = 2, 3,

When employing such formulas, it is important to consider carefully the
stability of the algorithm:

An algorithm is defined stable (or unstable), when the error with respect to
the exact result at the n-th step of the calculation decreases (or increases) in
the following steps (from [2], P.9).

16

A very instructive example in this context is the numerical calculation of
spherical Bessel functions through a ”forward recursion”:

jo(x) =
sin x

x
j1(x) =

sin x

x2
− cos x

x

jl(x) =
2l − 1

x
· jl−1(x)− jl−2(x) l = 2, 3, . . . , lmax

The numerical evaluation of this formula obviously involves no methodolog-
ical error; the only possible source of error are roundoff errors! To evaluate
the magnitude of the roundoff error, we can compare the results calculated
in single and double precision (see table 1.3).

17

Tab.1.3: Numerical calculation of the spherical Bessel functions of order
0-9 through forward recursion.

single prec. double prec.

x = 0.3000

L= 0 0.9850674E+00 0 0.9850674D+00

1 0.9910274E-01 1 0.9910289D-01

2 0.5960023E-02 2 0.5961525D-02

3 0.2309625E-03 3 0.2558598D-03

4 -.5708978E-03 4 0.8536426D-05

5 -.1735790E-01 5 0.2329701D-06

6 -.6358853E+00 6 0.5811086D-08

7 -.2753767E+02 7 0.1884359D-07

8 -.1376248E+04 8 0.9363682D-06

9 -.7795982E+05 9 0.5304202D-04

x = 1.0000

L= 0 0.8414710E+00 0 0.8414710D+00

1 0.3011687E+00 1 0.3011687D+00

2 0.6203508E-01 2 0.6203505D-01

3 0.9006739E-02 3 0.9006581D-02

4 0.1012087E-02 4 0.1011016D-02

5 0.1020432E-03 5 0.9256116D-04

6 0.1103878E-03 6 0.7156936D-05

7 0.1332998E-02 7 0.4790142D-06

8 0.1988459E-01 8 0.2827691D-07

9 0.3367050E+00 9 0.1693277D-08

x = 10.0000

L= 0 -.5440211E-01 0 -.5440211D-01

1 0.7846694E-01 1 0.7846694D-01

2 0.7794219E-01 2 0.7794219D-01

3 -.3949584E-01 3 -.3949584D-01

4 -.1055893E+00 4 -.1055893D+00

5 -.5553451E-01 5 -.5553451D-01

6 0.4450132E-01 6 0.4450132D-01

7 0.1133862E+00 7 0.1133862D+00

8 0.1255780E+00 8 0.1255780D+00

9 0.1000964E+00 9 0.1000964D+00

x = 20.0000

L= 0 0.4564726E-01 0 0.4564726D-01

1 -.1812174E-01 1 -.1812174D-01

2 -.4836553E-01 2 -.4836552D-01

3 0.6030358E-02 3 0.6030359D-02

4 0.5047615E-01 4 0.5047615D-01

5 0.1668391E-01 5 0.1668391D-01

6 -.4130000E-01 6 -.4130000D-01

7 -.4352891E-01 7 -.4352891D-01

8 0.8653319E-02 8 0.8653319D-02

9 0.5088423E-01 9 0.5088423D-01

18

The results in Table 1.3 clearly show that this method is strongly unstable,
in particular for small arguments x. This instability leads to a complete
breakdown of the method for increasing order of the Bessel function.
On the other hand, the stability of the method sensibly improves for larger
values of x!

In order to obtain meaningful results also for small values of the argument,
we have to switch from the ”forward recursion” algorithm we used so far to
a ”backward” recursion:

jL+1(x) = 0 jL(x) = δ

jl(x) =
2l + 3

x
·jl+1(x)−jl+2(x) l = L−1, L−2, . . . , lmax, lmax−1, . . . , 0

In these expression, δ is an arbitrary (small) number, which is the starting
value for the backward recursion. L is a natural number > lmax.

Even though the starting value of the recursion is arbitrary, the values
converge rapidly to a number series α · jl for decreasing l. The initially
unknown constant α can be estimated normalizing the value for l = 0 to the
quantity sin x/x.

Due to the arbitrariness of δ, the results obtained in this way are affected by
a methodological error, which is smaller, the bigger the starting index L.

To estimate ǫV , we have repeated the calculation twice, i.e. for L = 18
and L = 27; in both cases we have performed calculations both in single and
double precision.

The results of these tests are summarised in Table 1.4.
It appears that the backward recursion represents a very stable algorithm for
the whole range of x considered: the results with single and double precision
differ by at most two units in the seventh digit of the mantissa. Furthermore,
we see that the methodological error increases with increasing values of the
argument x.

Summary of Tables 1.3 and 1.4:

• For not too large arguments x (for lmax = 9 up to ∼ x = 10.) it is
definitely better to employ the backward recursion, due to its higher
stability.

• For the large-x range (for lmax = 9 and from x = 10.) it is preferrable
to employ the forward recursion which is not affected by methodological
error.

19

Tab.1.4: Numerical calculation of spherical Bessel function of order 0-9
with backwards recursion.

single precision double precision

backwards(18) backwards(27) backwards(18) backwards(27)

x = 0.3000

L= 0 0.9850674E+00 0.9850674E+00 0.9850674D+00 0.9850674D+00

1 0.9910290E-01 0.9910290E-01 0.9910289D-01 0.9910289D-01

2 0.5961526E-02 0.5961525E-02 0.5961525D-02 0.5961525D-02

3 0.2558598E-03 0.2558598E-03 0.2558598D-03 0.2558598D-03

4 0.8536426E-05 0.8536425E-05 0.8536426D-05 0.8536426D-05

5 0.2329583E-06 0.2329583E-06 0.2329583D-06 0.2329583D-06

6 0.5378445E-08 0.5378444E-08 0.5378444D-08 0.5378444D-08

7 0.1076069E-09 0.1076069E-09 0.1076069D-09 0.1076069D-09

8 0.1899475E-11 0.1899474E-11 0.1899474D-11 0.1899474D-11

9 0.2999847E-13 0.2999847E-13 0.2999847D-13 0.2999847D-13

x = 1.0000

L= 0 0.8414710E+00 0.8414710E+00 0.8414710D+00 0.8414710D+00

1 0.3011687E+00 0.3011687E+00 0.3011687D+00 0.3011687D+00

2 0.6203505E-01 0.6203505E-01 0.6203505D-01 0.6203505D-01

3 0.9006580E-02 0.9006579E-02 0.9006581D-02 0.9006581D-02

4 0.1011016E-02 0.1011016E-02 0.1011016D-02 0.1011016D-02

5 0.9256115E-04 0.9256114E-04 0.9256116D-04 0.9256116D-04

6 0.7156936E-05 0.7156935E-05 0.7156936D-05 0.7156936D-05

7 0.4790134E-06 0.4790133E-06 0.4790134D-06 0.4790134D-06

8 0.2826499E-07 0.2826498E-07 0.2826499D-07 0.2826499D-07

9 0.1491376E-08 0.1491376E-08 0.1491377D-08 0.1491377D-08

x = 10.0000

L= 0 -.5440211E-01 -.5440211E-01 -.5440211D-01 -.5440211D-01

1 0.7846695E-01 0.7846695E-01 0.7846695D-01 0.7846694D-01

2 0.7794219E-01 0.7794220E-01 0.7794220D-01 0.7794219D-01

3 -.3949586E-01 -.3949586E-01 -.3949585D-01 -.3949584D-01

4 -.1055893E+00 -.1055893E+00 -.1055893D+00 -.1055893D+00

5 -.5553451E-01 -.5553451E-01 -.5553451D-01 -.5553451D-01

6 0.4450133E-01 0.4450133E-01 0.4450133D-01 0.4450132D-01

7 0.1133862E+00 0.1133862E+00 0.1133862D+00 0.1133862D+00

8 0.1255780E+00 0.1255780E+00 0.1255780D+00 0.1255780D+00

9 0.1000964E+00 0.1000964E+00 0.1000964D+00 0.1000964D+00

x = 20.0000

L= 0 0.4564727E-01 0.4564726E-01 0.4564726D-01 0.4564726D-01

1 -.8801447E-01 -.1812270E-01 -.8801444D-01 -.1812269D-01

2 -.5884944E-01 -.4836567E-01 -.5884943D-01 -.4836567D-01

3 0.7330211E-01 0.6031280E-02 0.7330208D-01 0.6031273D-02

4 0.8450518E-01 0.5047661E-01 0.8450516D-01 0.5047661D-01

5 -.3527479E-01 0.1668320E-01 -.3527476D-01 0.1668320D-01

6 -.1039063E+00 -.4130086E-01 -.1039063D+00 -.4130085D-01

7 -.3226432E-01 -.4352875E-01 -.3226432D-01 -.4352875D-01

8 0.7970807E-01 0.8654292E-02 0.7970804D-01 0.8654284D-02

9 0.1000162E+00 0.5088490E-01 0.1000161D+00 0.5088490D-01

20

Chapter 2

Numerical methods for linear
inhomogeneous sets of
equations.

2.1 The basic problem

Let us consider the n equations

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

.

.

.
an1x1 + an2x2 + · · ·+ annxn = bn

(2.1)

where the aij and the bi are real quantities. We further require that:

| b1 | + | b2 | + · · ·+ | bn |6= 0

With these assumptions (2.1) constitutes a real, linear, inhomogeneous
set of equations (or linear system) of n-th order. The quantities x1, . . . , xn,
which satisfy simultaneously all the above equations, are called the solutions
of the system.

(2.1) is usually expressed in matrix form:

A · x = b (2.2)

The solution of this kind of systems is a central problem in numerical
mathematics, since a wide range of numerical methods, such as methods
for the numerical interpolation, least-square methods, differential methods
a.s.o. can be reduced to the problem of solving a set of inhomogeneous linear
equations.

From a theoretical point of view, the solution of (2.1) does not present
any difficulty, as long as the determinat of the matrix of coefficients A does
not vanish, i.e. as long as the problem is non-singular:

21

det(A) 6= 0

In this case the problem can be solved with Cramer’s rule. In practice,
however, using this rule for n ≥ 4 is very complicated; for several other
reasons this procedure is not appropriate for use on a computer.

As in other fields of numerical mathematics, also for the present case
there are two classes of methods:

• Direct methods:
These do not include any methodological error and therefore always re-
turn the exact solution - except for rounding errors. Indeed, rounding
errors can have severe effects in direct methods, which employ algo-
rithms that are computationally expensive.

As an example in the following we will illustrate the it elimination
method of Gauss, in the formulation of Doolittle and Crout (LU de-
composition).

• Iterative methods
are often characterized by a particularly simple algorithm, stable with
respect to rounding errors, and economical in terms of memory. How-
ever, there are also cases where iterative methods do not converge.
Furthermore, also when they converge, they do not give the exact solu-
tion to the problem, but only an approximate one, which is also affected
by a truncation error.

As an example of iterative method for a linear set of equations, in this
chapter we will discuss the Gauss-Seidel method.

2.2 Aim of the direct methods: transforma-

tion of the matrix of coefficients into a

triangular matrix.

The aim of all direct methods is to reduce the original system:

A · x = b

to an equivalent one with the same eigenvector.

U · x = y (2.3)

U is a so-called triangular matrix with the property:

U = [uij] with uij = 0 for i > j

The reason for this substitution is easy: systems of the type (2.3) are easy
to solve through back-substitution. – see eq. (2.12) and (2.13).

22

2.3 Gauss’ elimination principle in the for-

mulation of Doolittle und Crout (LU de-

composition).

The method of Gaussian elimination consists of two steps, i.e. the reduction
of Ax = b to the equivalent system
Ux = y and the solution of this system through a back-substitution. This

method exploits a proposition of linear algebra:
A linear set of equations remains unchanged, if one adds to one of its equa-
tions a linear combination of the other rows.

Doolittle and Crout have shown that the gaussian algorithm can be re-
formulated as follows: a real matrix A can be represented as the product of
two real matrices L and U , i.e.

A = L · U (2.4)

where U is an upper triangular matrix:

U =

u11 u12 u1n
0 u22 u1n
. .
. .
. .
0 0 unn

and L is a lower triangular matrix of the form

L =

1 0 0 0
m21 1 0
m31 m32 1 0
. .
. .
. .

mn1 mn2 mn3 1

The decomposition (2.4) of a matrix A is usually called the LU decomposition
of A.

Without derivation: some simple algebra on the LU decomposition.

The transformation is done column by column, i.e. j = 1, 2, . . . , n :

uij = aij −
i−1∑

k=1

mikukj i = 1, . . . , j − 1 (2.5)

γij = aij −
j−1
∑

k=1

mikukj i = j, . . . , n (2.6)

ujj = γjj (2.7)

23

mij =
γij
γjj

i = j + 1, . . . , n (2.8)

Since the elements on the main diagonal of L are all equal to one we do not
need to store the mjj in memory; we can thus fit all the relevant coefficients
in n x n matrix (the ’LU Matrix’):

LU-Matrix :

u11 u12 u13 u1n
m21 u22 u23 u2n
m31 m32 u33 u3n
. .
. .
. .

mn1 mn2 mn3 unn

(2.9)

At this point, we can exploit the decomposition of A into the into the matrices
L and U to calculate the solution. We have:

A · x ≡ L · U · x = L · (U · x) = b

Setting U · x ≡ y, we obtain the system L · y = b. This system, due to the
particular form of the matrix L (lower triangular matrix), is easy to solve
through forward substituion.

y1 = b1 (2.10)

yi = bi −
i−1∑

j=1

mijyj i = 2, 3, . . . , n (2.11)

On the other hand, since U is an upper triangular matrix, it is easy also to
obtain the auxiliary vector y of the system U · x = y, this time employing a
backward substitution:

xn =
yn
unn

(2.12)

xi =
1

uii

yi −
n∑

j=i+1

uijxj

 i = n− 1, n− 2, . . . , 1 (2.13)

If we want to employ the method of Doolittle and Crout is used in practice, we
have to use two different programs. The first performs a LU-decomposition
of the matrix of coefficients, the second calculates the solution using the
formulas (2.10-2.13).

2.3.1 Demonstration of a memory-efficient LU-
decomposition

using a generical 3x3-Matrix.

Let us consider:

24

a11 a12 a13
a21 a22 a23
a31 a32 a33

j = 1: first column

(2.6) i=1 γ11 = a11
i=2 γ21 = a21
i=3 γ31 = a31

.

.
(2.7) u11 = γ11
.
.

(2.8) i=2 m21 = γ21/γ11
i=3 m31 = γ31/γ11

Now, instead of the initial coefficients of the matrix A, which will not be
used any more, we store only the coefficients u11, m21 und m31. The matrix
becomes:

u11 a12 a13
m21 a22 a23
m31 a32 a33

j=2: second column

(2.5) i=1 u12 = a12
.
.

(2.6) i=2 γ22 = a22 −m21u12
i=3 γ32 = a32 −m31u12

.

.
(2.7) u22 = γ22
.
.

(2.8) i=3 m32 = γ32/γ22

u11 u12 a13
m21 u22 a23
m31 m32 a33

j=3: third column

25

(2.5) i=1 u13 = a13
i=2 u23 = a23 −m21u13

.

.
(2.6)i=3 γ33 = a33 −m31u13 −m32u23

.

.
(2.7) u33 = γ33

u11 u12 u13
m21 u22 u23
m31 m32 u33

 = LU-matrix [s. Eq.(2.9)]

It is clear that if we subsequently replace, column-by-column, the matrix
of coefficients A with the LU-matrix we do not lose any information! This
example also shows that the new uij and mij coefficients are always placed
in new positions. In the program, if we want to save space (memory), we
can thus avoid defining new variables for the elements aij , uij, γij and mij ,
but we can save all these values in a single array A(,). This is shown in the
structure chart 3 (LUDCMP). This replacement allows to save much memory,
but admittedly spoils the readability of the program.

2.3.2 Optimization of the rounding error through par-

tial pivoting.

Let us suppose that we have at our disposal a program which solves an inho-
mogeneous set of equations through the LU-decomposition. The numerical
results obtained through this program are not affected by methodological er-
ror (this is a direct method!). All deviations from the ’true’ results, therefore,
must come from rounding errors.

We give now a concrete example. Let us consider the following set of
three equations:

x1 + 5923181x2 + 1608x3 = 5924790

5923181x1 + 337116x2 − 7x3 = 6260290 (2.14)

6114x1 + 2x2 + 9101372x3 = 9107488

The exact solution of this system is: x1 = x2 = x3 = 1.

The numerical solution (FORTRAN, simple precision, 4 Byte per real num-
ber) gives the following LU-Matrix and the following eigenvector:

0.1000000E+01 0.5923181E+07 0.1608000E+04
LU-Matrix: 0.5923181E+07 -.3508407E+14 -.9524475E+10

0.6114000E+04 0.1032216E-02 0.9101371E+07

0.9398398E+00
x: 0.1000000E+01

0.9995983E+00

26

As we can see, the effect of the rounding error is considerable! (in particular
on x1).

If we now change the order of the equations in (2.14), which in principle
should have no influence on the eigenvector, the same program returns:

0.5923181E+07 0.3371160E+06 -.7000000E+01
LU-Matrix: 0.1032216E-02 -.3459764E+03 0.9101372E+07

0.1688282E-06 -.1712019E+05 0.1558172E+12

0.9999961E+00
x: 0.1000068E+01

0.1000000E+01
this time the rounding errors are much smaller. If we re-order the lines

with the sequence 2/1/3 we obtain the correct eigenvector up to machine
precision:

0.5923181E+07 0.3371160E+06 -.7000000E+01
LU-Matrix: 0.1688282E-06 0.5923181E+07 0.1608000E+04

0.1032216E-02 -.5841058E-04 0.9101372E+07

0.1000000E+01
x: 0.1000000E+01

0.1000000E+01

This means that the order in which the equations appear affect the size of
the rounding error and on the quality of the numerical solution in a decisive
way!

What is the ’right’ order? If we compare the mij ’s in the LU-matrices,
we immediately recognize, that the rounding error is the smallest when the
absolute values of the mij’s are as small as possible.
In order to keep the mij as small as possible, the absolute values of γjj

which appear in equation (2.8) must be as large as possible. We can
achieve this easily, if we determine the γjj with the largest absolute value
through eq.(2.6) and exchange the row in which this element occurs with the
j − th row. Only after this do we evaluate equations (2.7) and (2.8).
This strategy is called a LU-decomposition with partial pivoting. In general,
expecially for higher-order systems, there is no chance to get a correct result
without using some kind of pivoting. There are however also sets of equations
(see for example [2], page 56) for which the LU-decomposition is stable also
without pivoting. This happens if the matrix of coefficients is symmetrical,
tridiagonal, cyclically tridiagonal, diagonal-dominant or generally positive
definite.

It is clear that with the strategy of partial pivoting we can also avoid
the problems caused by the presence of a zero element on the diagonal γjj in
Eq.(2.8). The only exception occurs if during the calculation all the γij , i =
j, . . . , n are simultaneously zero. In that case the matrix of coefficients is
singular and the system of equations cannot be solved with this method!

27

Figure 2.1: Good and ill-conditioned 2x2-System (from: [22], page 228).

2.3.3 Conditioning of a system of equations.

The solution of a linear set of equations calculated with a direct method most
of the times does not coincide exactly with the true solution, because:

• During the calculation rounding errors can occur, and they can accu-
mulate leading to wrong results.

• Uncertainities in the input values can cause also uncertainity in the
solution.

If small variations in the output data cause large variations in the solution,
one usually speaks of a ill conditioned system (see Fig.2.1).
The so-called condition numbers are practical ways to measure the quality of
the solution of a given linear system.

In the mathematical literature a variety of condition numbers have been
discussed. The program LUDCMP performs the calculation of the so called
condition number of Hadamard for the matrix A, which is defined as: [2]

KH(A) =
|det(A)|
α1α2 · · ·αn

mit αi =
√

a2i1 + a2i2 + . . .+ a2in.

For this number, the following empirical rules hold:

• KH(A) < 0.01 ill-conditioned,

• KH(A) > 0.1 well-conditioned,

• 0.01 ≤ KH(A) ≤ 0.1 undefined.

28

2.3.4 The program LUDCMP.

Source: [9], p. 38ff; [10], p. 46ff (with small changes).
The program LUDCMP (LU DeCoMPosition) performs a LU-

decomposition of a real square matrix.

INPUT Parameters:

A(,): Matrix of coefficients of the linear system.

N: Order of the system = number of rows and columns of A.

OUTPUT Parameters:

A(,): ’LU Matrix’ of the original matrix A (see remark 1 after the structure
chart).

INDX(): Indexing vector, which stores the line replacements for the partial
pivoting.

D: Determinant of the matrix of coefficients (see Section 2.3.6).

KHAD: Hadamard’s condition number (See section 2.3.2).

29

Structure chart 3 — LUDCMP(A,N,INDX,D,KHAD)

KHAD:=1.0

I=1(1)N

SUM:=0.0

J=1(1)N

SUM:=SUM + A(I,J)**2

KHAD:=KHAD*SQRT(SUM)

D:=1.0

J=1(1)N

I=1(1)J-1

SUM:=A(I,J)

K=1(1)I-1

SUM:=SUM-A(I,K)*A(K,J)

A(I,J):=SUM

AAMAX:=0.0

I=J(1)N

SUM:=A(I,J)

K=1(1)J-1

SUM:=SUM-A(I,K)*A(K,J)

A(I,J):=SUM DUM:=| SUM|

❩
❩
❩Y

DUM ≥ AAMAX
✚
✚
✚

N
IMAX:=I AAMAX:=DUM

......

❩
❩
❩Y

J 6= IMAX
✚
✚
✚

N

K=1(1)N

DUM:=A(IMAX,K)
A(IMAX,K):=A(J,K)
A(J,K):=DUM

D:=–D

......

INDX(J):=IMAX

❩
❩
❩Y

A(J,J) = 0.0
✚
✚
✚

N

A(J,J):=TINY
......

30

. — .

.

DUM:=1.0/A(J,J)

I=J+1(1)N

A(I,J):=A(I,J)*DUM

D:=D*A(J,J)

KHAD:=| D |/KHAD

(return)

Remarks on the program LUDCMP:

1. In order to save memory, the coefficients of the LU matrix are stored
successively on the corresponding memory location of the original ma-
trix A. This has however the disadvantage that the original matrix is
lost. In case one wants to reuse the matrix A for other calculations,
this has to be saved in another array before
executing LUDCMP.

2. The output parameter D is used for the calculation of the determinant
of A.

3. In [9], the constant TINY is set to 10−20. As it is clear from the
structure chart 3, this constant prevents the program from crashing in
case one of the divisors of (2.8) becomes exactly zero. This is explained
in section 2.5.

4. In [9] the matrix coefficients are scaled row-wise for the pivot search.
The optimal scaling of a linear system represents a surprisingly com-
plicated problem (see for example [7], page 140 ff and [12], page 41ff).
These references also discuss the scaling of the program we have pre-
sented here.

31

2.3.5 The sub-program LUBKSB

Source: [9], page 39; [10], page 47 (with changes).
The program LUBKSB (LU BacKSuBstitution) calculates the solution x

of the system LUx = b using equations (2.10 - 2.13).

INPUT parameters:

A(,): LU-Matrix of the matrix of coefficients, calculated for example from
program LUDCMP.

N: Order of the system = rows and columns of A.

INDX(): Indexing vector, which contains information about the rows ex-
change performed in LUDCMP.

B(): inhomogeneous vector of the system.

OUTPUT parameters:

X(): Solution vector.

Internal vector:

Y(): .

32

Structure chart 4 — LUBKSB(A,N,INDX,B,X)

I=1(1)N

BB(I):=B(I)

I=1(1)N

LL:=INDX(I)
SUM:=BB(LL)
BB(LL):=BB(I)

J=1(1)I-1

SUM:=SUM-A(I,J)*Y(J)

Y(I):=SUM

I=N(-1)1

SUM:=Y(I)

J=I+1(1)N

SUM:=SUM-A(I,J)*X(J)

X(I):=SUM/A(I,I)

(return)

33

2.3.6 Possible uses of the programs LUDCMP and
LUBKSB.

Solution of an inhomogeneous system Ax = b:

||---------------------------||

|| LUDCMP(A,N,INDX,D,KHAD) ||

||---------------------------||

|| LUBKSB(A,N,INDX,B,X) ||

||---------------------------||

An advantage of the method we have just illustrated is that in case the
inhomogeneous vectors b1, b2, ... are different, but the matrix of coefficients
A is the same, it is sufficient to perform the LU decomposition only once:

||-------------------------||

|| LUDCMP(A,N,INDX,D,KHAD) ||

||-------------------------||

|

||-------------------------||

|| LUBKSB(A,N,INDX,B1,X1) ||

|| LUBKSB(A,N,INDX,B2,X2) ||

|| . ||

|| . ||

||-------------------------||

Inversion of a matrix:

Using the two programs LUDCMP and LUBKSB a given matrix A can be
inverted column by column:

A ·X = I I = Identity matrix X ≡ A−1

This matrix equation can be rewritten as a series of inhomogeneous linear
sets of equations of the type

A

x11
.
.
.
xn1

=

1
0
.
.
0

· · · A

x1n
.
.
.
xnn

=

0
0
.
.
1

i.e. one has to solve n systems which have the same matrix of coefficients
A and different inhomogeneous vectors (=columns of the identity matrix)

34

Structure chart — Inversion of a matrix

LUDCMP (A,N,INDX,D,KHAD)

J=1(1)N

I=1(1)N

VEKTOR(I):=0.0

VEKTOR(J):=1.0

LUBKSB (A,N,INDX,VEKTOR,X)

I=1(1)N

AINV(I,J):=X(I)

Calculation of the determinant of a matrix:

For the determinant of the matrix A we have

det(A) = det(L · U) = det(L) det(U) .

Since both L and U are triangular matrices, their determinants are equal to
the products of the elements on the diagonal. However, since all the diagonal
elements of the L-Matrix have value 1, we also have

det(L) = 1 ,

from which it follows that

det(A) = det(U) =
n∑

i=1

uii .

In the program LUDCMP the calculation of det(U) is performed during the
LU-decomposition; we have to recall, however, that upon every exchange of
rows the sign of the determinant will change.

2.3.7 Examples for the programs LUDCMP and

LUBKSB.

Let us consider the square 4× 4 matrix with (four rows and four columns):

A =

1.1161 0.1254 0.1397 0.1490
0.1582 1.1675 0.1768 0.1871
0.1968 0.2071 1.2168 0.2271
0.2368 0.2471 0.2568 1.2671

35

The condition number is KH = 0.752, i.e. the system is well conditioned!

• What is the solution x of the linear inhomogeneous system

A · x = (−1.8367, 1.1944, 3.2368,−0.7232)T ?

The numerical result is exact up to machine precision:

x = (−.2000000E+01, 0.1000000E+01, 0.3000000E+01,−.1000000E+01)T

• What is the matrix inverse of A?

The numerical result is exact almost up to machine precision (up to
max two units in the seventh digit after the comma) and reads:

Inverted Matrix:

.9379443E+00 -.6843720E-01 -.7960770E-01 -.8592076E-01

-.8852433E-01 .9059826E+00 -.9919081E-01 -.1055899E+00

-.1113511E+00 -.1169667E+00 .8784252E+00 -.1270733E+00

-.1354557E+00 -.1401826E+00 -.1438075E+00 .8516058E+00

Test Matrix:

.9999999E+00 .1126516E-07 .2518815E-08 -.1120211E-08

-.4888310E-08 .1000000E+01 -.6621389E-08 -.3829147E-08

-.2647183E-08 .5092004E-08 .9999999E+00 .1665558E-07

.7356128E-08 -.1727934E-07 -.1442864E-07 .1000000E+01

The test matrix contains the result of the multiplication: original ma-
trix times inverted matrix. Ideally, this should be the identity matrix.

• What is the determinat of A?

The numerical result (exact up to machine precision) is

Determinant = 0.1758306E + 01

36

2.4 Iterative improvement of the solution.

It is clear that the accuracy of the numerical solution of a linear set of equa-
tions is limited by the machine precision. In many cases unfortunately we
cannot attain this level of precision due to the accumulation of rounding
errors.

In these cases we still have the possibility of improving iteratively the
numerical solution. We will now briefly explain the (very simple) theory
underlying this idea.

Let us suppose that the numerical solution of the system:

A · x = b

is the vector x̄ = x + δx, which is affected by a rounding error. If we now
re-insert x̄ in the system of equations, we obtain a different inhomogeneous
vector b+ δb, due to the rounding error;

A · x̄ = A(x+ δx) = b+ δb

and
(Ax− b)
︸ ︷︷ ︸

=0

+A · δx = δb .

We have thus an error vector δx, which is the solution of the system

A · δx = δb ,

where A is the original matrix of coefficients and δb is the so-called residual
vector Ax̄− b.

The structure chart 5 illustrates how to solve a linear system with iterative
improvement of the solution:

x = x̄− δx .

A few more remarks:

1. Since the first time that LUDCMP is called the matrix A is destroyed, it
is important to store the corresponding information somewhere before.

2. Due to the big risk of a subtractive cancellation the calculation of the
residual vector should be performed in double precision, if possible.

3. Some software libraries (for example NAG) contain programs for the
solution of inhomogeneous linear equations which already include a
method for iterative improvement.

37

Structure chart 5 — Iterative improvement of the solution.

I=1(1)N

J=1(1)N

ASP(I,J):=A(I,J)

LUDCMP (A,N,INDX,D,KHAD)

LUBKSB (A,N,INDX,B,X)

I=1(1)N

SUMDP:=-B(I)

J=1(1)N

SUMDP:=SUMDP + DBLE(ASP(I,J))*DBLE(X(J))

RES(I):=SUMDP

LUBKSB (A,N,INDX,RES,DELX)

I=1(1)N

X(I):=X(I)-DELX(I)

(Condition, under which the iterative method should stop)

(Result and return)

2.5 Rounding errors in ill-conditioned and

singular systems.

The method of partial pivoting permits a substantial reduction of the round-
ing errors which occur in the gaussian method. However, in ill-conditioned
systems the numerical solution can still be seriously affected by errors, as we
show in the following example:

38

0.10000E+01 0.50000E+00 0.33333E+00 0.25000E+00 0.20000E+00 0.228333E+01

0.50000E+00 0.33333E+00 0.25000E+00 0.20000E+00 0.16667E+00 0.145000E+01

0.33333E+00 0.25000E+00 0.20000E+00 0.16667E+00 0.14286E+00 0.109286E+01

0.25000E+00 0.20000E+00 0.16667E+00 0.14286E+00 0.12500E+00 0.884530E+00

0.20000E+00 0.16667E+00 0.14286E+00 0.12500E+00 0.11111E+00 0.745640E+00

The matrix of coefficients is a Hilbert matrix of fifth order, with components
rounded at the fifth significant digit:

aij =
1

i+ j − 1

and the inhomogeneous vector is chosen so that the exact solution is

x1 = x2 = x3 = x4 = x5 = 1.

The condition number isKH = 0.55·10−10; i.e. this is a very ill-conditioned
system, and we can expect to encounter many difficulties!

In the following table, we compare the exact and the numerical result x̄
(FORTRAN, single precision). We also show the vector A · x̄:

x (exact) x̄ (numerical) A · x̄
1. 0.9999459E+00 0.2283330E+01
1. 0.1000955E+01 0.1450000E+01
1. 0.9960009E+00 0.1092860E+01
1. 0.1005933E+01 0.8845300E+00
1. 0.9971328E+00 0.7456400E+00

The problem is clear: although some components of the numerical vector
deviate considerably from the exact solution, the linear system of equations
is still satisfied! Re-iteration doesn’t improve the solution.

This example illustrates one of the most important problems in the use
of numerical methods in linear systems. Despite several theoretical attempts
(see for example [12] page 109 ff) there is no easy, general way to avoid that
the components of the solution are affected by rounding errors.

Another unpleasant consequence of the rounding error is that in a numer-
ical calculation it is practically impossible to discriminate between singular
or almost singular problems. In the program a matrix is considered singular
if all the elements of a pivot column are exactly zero. However, since these
elements themselves are produced by an arithmetical operation, we could
have elements that are not exactly zero due to rounding errors, even if the
matrix of coefficients is singular. According to [12], page 63:

The situation is particularly unfortunate, because the strong mathematical
difference between singular and non-singular matrices exists only in the ideal

39

world of mathematicians. As soon as we work with matrices in rounded
arithmetics, the difference becomes necessarily much less clear-cut. Some
non-singular matrices could become singular as a result of small perturbations
introduced by rounding errors. It is even more likely that a genuine singular
matrix is transformed into a similar, non-singular one.

For this reason many programs avoid giving a definition of singularity
and leave the choice to the user.
The program LUDCMP actually checks whether some diagonal elements γjj
are exactly(!) zero, but only to avoid a division by zero in this (very unlikely)
event!

2.6 Methods for direct solution of systems

with special matrix of coefficients.

Since direct methods for linear systems are relatively expensive in terms of
computational time and storage, many practical applications employ algo-
rithms that are especially designed to exploit specific properties of the matrix
of coefficients, if present.

2.6.1 Solution of systems of equations with tridiagonal

matrices of coefficients.

Many important numerical methods (for example the spline interpolation)
lead to linear sets of equations of the form

b1 c1 0 0 · · · 0
a2 b2 c2 0 · · · 0
0 a3 b3 c3 · · · 0
. .
. .
. cn−1

0 0 0 0 · · · bn

x1
x2
x3
.
.
.
xn

=

r1
r2
r3
.
.
.
rn

(2.15)

where the tridiagonal matrix of coefficients can clearly be rewritten in terms
of the three vectors b (main diagonal), a and c (lower and upper secondary
diagonal). In this case, if we use the LU-decomposition (without pivoting),
we obtain the following structure:

1 0 0 · · · 0
m2 1 0 · · · 0
0 m3 1 · · · 0
. .
. .
. .
0 0 0 · · · 1

u1 c1 0 · · · 0
0 u2 c2 · · · 0
. .
. .
. cn−1

0 0 0 · · · un

x1
x2
.
.
.
xn

︸ ︷︷ ︸

≡y

=

r1
r2
.
.
.
rn

which leads to the following simple expressions, through Eqs. (2.5-2.13):

40

u1 = b1

y1 = r1

mj = aj/uj−1

uj = bj −mj · cj−1 j = 2, . . . , n (2.16)

yj = rj −mj · yj−1

The components of the solution can then be obtained through a back sub-
stitution:

xn = yn/un

xj = (yj − cj · xj+1)/uj j = n− 1, . . . , 1 (2.17)

The following program exploits these expressions.

2.6.2 The program TRID.

Source: [9], p. 43 (with changes)

The program TRID calculates the solution of a linear, inhomogeneous set
of equations with a tridiagonal matrix of coefficients.

INPUT parameters:

A(),B(),C(): Vectors of the tridiagonal matrix.

R(): Inhomogeneous vector.

N: Order of the system.

OUTPUT parameters:

X(): Solution vector.

Internal vectors:

U(), Y(): .

41

Structure chart 6 — TRID(A,B,C,R,N,X)

Y(1):=R(1)
U(1):=B(1)

❩
❩
❩
❩❩Y

U(1) = 0.0
✚
✚
✚
✚✚

N

(Exit with error message!)
......

J=2(1)N

M:=A(J)/U(J-1)
U(J):=B(J)-M*C(J-1)

❩
❩
❩
❩❩Y

U(J) = 0.0
✚
✚
✚
✚✚

N

(Exit with error message!)
......

Y(J):=R(J)-M*Y(J-1)

X(N):=Y(N)/U(N)

J=N-1(-1)1

X(J):=(Y(J)-C(J)*X(J+1))/U(J)

(return)

42

Remarks on the TRID program:

1. The main advantage of TRID is obviously a clear reduction of storage
space, since as input information we have to provide only the four one-
dimensional vectors A, B, C and R. The program also uses the four
one-dimensional internal vectors U, Y, and the solution vector X. In a
problem of n-th order this means that the storage space is of order 7n.
For comparison, the cost of a normal LU method is of order n2 + n.

2. A further advantage compared to the normal LU method is the largely
reduced computational cost.

3. On the other hand, not using pivoting means that the method may be
aborted also in case of non-singular problems! In principle it would
be possible to introduce pivoting also in the program TRID, but in
this way the size of the matrix would increase (and in particularly
unfavourable case even double). It can be shown, however, that this
problem does not occur in the so-called diagonal-dominant tridiagonal
matrices. These matrices have the property that | bj |>| aj | + | cj |
for all j = 1, . . . , n. This property is important, because many of
the tridiagonal matrices that are encountered in practice are diagonal-
dominant!

4. Many software libraries contain programs for the solution of linear sets
of equations with tridiagonal matrices of coefficients: see for example
[2], p. 304 and [9], p.42.

2.6.3 Other special forms of the matrix of coefficients.

In the literature we can find a large number of algorithms and programs
designed to treat specific linear systems, whose matrix of coefficients have
special structures. In particular, we refer the reader to [2] and [9], where
he/she can find information on the following themes: symmetrical matrices
(Cholesky-decomposition), cyclic-tridiagonal matrices, general band matri-
ces, block matrices, ...

43

2.7 The Gauss-Seidel method.

2.7.1 General discussion.

The Gauss-Seidel method, together with its variants, known in the literature
with the names step-by-step method, Jacobi method, relaxation method, SOR-
method, etc is an iterative method for the solution of linear inhomogeneous
equations.

As already mentioned at the beginning of this chapter, iterative meth-
ods offer some advantages with respect to direct methods, (simplicity of the
algorithm etc), but also some disadvantages (possible convergence problems).

The main advantage of the iterative methods is however that the elements
of the original matrix are not changed during the iterative process. As shown
in the following, this is very convenient, if we have to solve linear systems of
equations of higher order, which have sparse matrix of coefficients.

A matrix is called sparse if only a few of its elements are different from
zero.

Since some very important problems of numerical mathematics (for example
the solution of boundary values through a differential method) can be recast
in terms of linear systems with sparse matrices, in the following we will
mainly concentrate on these.

2.7.2 The basic principle of the Gauss-Seidel method.

We start once more with the linear system (2.1):

a11x1 + a12x2 + · · ·+ a1nxn = f1
a21x1 + a22x2 + · · ·+ a2nxn = f2

.

.

.
an1x1 + an2x2 + · · ·+ annxn = fn

If we assume that all the elements on the diagonal of the matrix are non-zero,
we can solve each of the equations with respect to the relative component of
x on the diagonal:

x1 = − 1

a11
[a12x2 + a13x3 + · · ·+ a1nxn − f1]

x2 = − 1

a22
[a21x1 + a23x3 + · · ·+ a2nxn − f2]

i.e. in general

xi = − 1

aii

n∑

j=1(j 6=i)

aijxj − fi

 . (2.18)

This reformulation can also be expressed in matrix form:

x = C · x+ b

44

where

C = {cij} with cij =

{

−aij/aii i 6= j
0 i = j

and bi =
fi
aii
. (2.19)

Rewriting (2.18) as:

xi = xi −

xi +
1

aii

n∑

j=1(j 6=i)

aijxj − fi

we immediately derive the iteration rule for the Gauss-Seidel method. If
we insert into the right hand side of the equation above some approximate
starting values for the xi, we obtain improved approximate values for the
components of the solution:

x
(t+1)
i = x

(t)
i −∆x

(t)
i (i = 1, . . . , n) (2.20)

with

∆xti = x
(t)
i +

1

aii

n∑

j=1(j 6=i)

aijx
(t)
j − fi

 . (2.21)

Obviously, we are assuming that the method converges. Through eq.(2.20)
we obtain a sequence of vectors:

x(0) ; x(1) ; x(2) ; . . . ; x(t)

that approximate the exact vector x. We obviously never obtain the exact
solution, but we can approach it as closely as possible (apart from rounding
errors):

lim
t→∞

x(t) → x

The vector x(0) is called the starting vector of the iteration.

Typically, for all iteration methods we have to specify the so-called exit
conditions which determine when an iteration has to be stopped.

All iterative programs should contain at least the two following exit con-
ditions:

• The iteration must stop when the results have reached the desired pre-
cision.

• The iteration should stop in any case, after a given maximum number
of iteration steps (’emergency exit’ in case of a divergence or very slow
convergence).

2.7.3 The Gauss-Seidel method for band matrices.

A band matrix is a matrix that has non-zero elements only along some of its
diagonals (see Fig.2.2, upper panel).

We immediately see that in terms of storage space it is a nonsense to store
such a matrix as a (n x n)-matrix. The same amount of information can be

45

Figure 2.2: How to store a band matrix.

much more economically stored if we save each of the non-zero diagonals as
vectors, and additionally keep track of their positions in the original matrix.
This is illustrated schematically in the lower panel of Fig. 2.2:
Let us define z as the number of non-zero diagonals of the matrix. The
position of each diagonal is represented by an integer number, which measures
the position of this particular diagonal relative to the main diagonal. The
whole information is thus stored in a two-dimensional array dik, where the
index i indicates the matrix row. The second index (k) indicates which of
the diagonals is considered. Furthermore, we also define an INTEGER vector
s(k) containing the relative positions:

s(k) =

0 Main diagonal
+(−)1 first upper(lower) diagonal
+(−)t tt–th upper(lower) diagonal

Since in the Gauss-Seidel method the elements on the main diagonal play an
expecially important role, the index k = k0 of the main diagonal is particu-
larly important. Therefore we set:

s(k = ko) = 0

The matrix elements aij (i-th row, j-th column) are thus ordered into the
elements of the two-dimensional array dik as:

aij = dik with j = s(k) + i , (2.22)

46

where i = 1, . . . , n and k = 1, . . . , z.

Usign these relations, Eq.(2.21) for the iteration method can be rewritten
using (2.22):

x
(t+1)
i = x

(t)
i −∆x

(t)
i (2.23)

with

∆x
(t)
i = x

(t)
i +

1

di,ko

z∑

k=1(k 6=ko)

dikx
(t)
s(k)+i − fi

 (2.24)

Note: The sum in (2.24) now contains only a few elements, for which:

0 < s(k) + i ≤ n

2.7.4 Convergence criteria and error behaviour.

We are left now with the important question if it is possible to estabilish a
priori whether a given linear system will be difficult to converge.

There is indeed in literature a long list of convergence criteria, i.e. of
conditions which ensure convergence for the Gauss-Seidel iteration. All these
criteria are sufficient, but not necessary. This means that the Gauss-Seidel
method could converge, even in cases in which these criteria are not satisfied.
For this reason here I will not list any mathematically-rigorous convergence
criteria, but will limit myself to give a practical rule-of-thumb:

All linear systems in which the elements on the main diagonal dominate the
other matrix elements have a good chance of convergence with the Gauss-
Seidel method.

Obviously, convergence of the iteration means that the methodological
error ǫV becomes smaller and smaller during the iteration, i.e.:

lim
t→∞

ǫ
(t)
V → 0

In practice, this means that we iterate the method until the correction vector
∆x [Eq. (2.24)] becomes small enough. In this case, as exit criterion we can
choose to monitor the absolute error:

max | ∆xi |< TOL

or the relative error

max | ∆xi
xi

|< TOL

where TOL is an error threshold chosen by the user of the program.

We have to be careful not to set a too low value for TOL. Indeed, if the
problem is ill-conditioned, it can happen that we never reach the desired
precision due to rounding errors!

Still, it is possible to say that iterative methods exhibit smaller rounding
errors than direct methods. In fact, iteration methods have the desirable
property that only the rounding error of the last iteration affects the results:
there is no accumulation of ǫR through successive iterations! For this reason,
in some cases the Gauss-Seidel method is preferrable to direct methods, if
one wants to attain a higher precision.

47

2.7.5 The sub-program GAUSEI.

The program GAUSEI (GAUss-SEIdel) calculates the solution of an inho-
mogeneous linear set of equations with a general band matrix as coefficient
matrix.

INPUT parameters:

N: Order of the system.

NDIAG: Number of non-zero diagonals in the band matrix.

S(): INTEGER array containing the relative positions of the diagonals.

DIAG(,): Array with the matrix elements: the first index specifies the
matrix row, the second the diagonal.

F(): Inhomogeneous vector of the system.

TMAX: Maximum number of iteration steps.

W: Relaxation parameter (see section 2.7.6).

IREL: IREL 6= 1: absolute error tolerance
IREL = 1: relative error tolerance

TOL: Absolute or relative error which has to be reached during the iteration.

OUTPUT parameters:

SOL(): Solution vector.

T: Number of iteration steps performed by GAUSEI.

ERROR: Logical variable for error diagnostic: After the execution of GAU-
SEI ERROR is ’false’ if the required precision has been reached, and
’true’ if

• not all the elements on the main diagonal are different from zero.

• the required precision has not been reached within TMAX itera-
tion steps.

Important internal variables:

K0: Index of the main diagonal.

DX: Iteration-correction value according to Eq.(2.24).

ISCH: Control variable for the precision.

Structure of the program GAUSEI:

1. Check which of the given diagonals is the main diagonal. The corre-
sponding index k is saved as K0. If none of the given diagonals is the
main diagonal, the execution of the program is interrupted.

48

2. Check if the main diagonal contains zeroes. If yes, the program is
interrupted. At this stage, the starting vector of the iteration (=zero
vector) is defined.

3. The Gauss-Seidel iteration is performed with error monitoring.

49

Structure chart 8 — GAUSEI(N,NDIAG,S,DIAG,F,TMAX,W,IREL,TOL,
SOL,T,ERROR)

ERROR:= .false.
K0:=0

K=1(1)NDIAG

❩
❩
❩Y

S(K) = 0
✚
✚
✚

N
K0:=K

......

❩
❩
❩Y K0 = 0

✚
✚
✚

N
ERROR:= .true.
(return ’no main diagonal’)

......

I=1(1)N

SOL(I):=0.0

❩
❩
❩Y

DIAG(I,K0) = 0.0
✚
✚
✚

N
ERROR:= .true.
(return ’main diagonal contains zeroes’)

......

T:=0

ISCH:=0

I=1(1)N

S1:=0.0

K=1(1)NDIAG

J:=S(K)+I

❩
❩
❩Y

K 6= K0 .and. J > 0 .and. J ≤ N
✚
✚
✚

N

S1:=S1+DIAG(I,K)*SOL(J)
......

DX:=W*((S1-F(I))/DIAG(I,K0)+LOES(I)

SOL(I):=SOL(I)-DX

❩
❩
❩Y IREL = 1

✚
✚
✚

N

ERR:=| DX/SOL(I) | ERR:= | DX |

❩
❩
❩Y ERR > TOL

✚
✚
✚

N
ISCH:=1

......

T:=T+1

T > TMAX .or. ISCH=0

❩
❩
❩Y ISCH=0

✚
✚
✚

N
print: ’No convergence’
ERROR:= .true.

......

(return)

50

2.7.6 A variant of the Gauss-Seidel method.

The iteration rule (2.23)

x(t+1) = x(t) −∆x(t)

can be modified introducing a relaxation parameter ω:

x(t+1) = x(t) − ω ·∆x(t). (2.25)

If ω = 1 we recover the normal Gauss-Seidel method, if ω > 1 one speaks of
a overrelaxation method, if ω < 1 of an underrelaxationmethod.

Through a careful choice of the relaxation parameter ω in some cases the
convergence speed can be sensibly enhanced. A good example of this effect
can be found in [7], p. 192ff. If one iterates the simple linear system

x+ 2y = 3
x− 4y = −3

until the absolute error TOL=10−8 (C, double precision), one obtains the
following relation between the number of convergence steps t and ω:

ω t
0.65 20
0.70 18
0.75 15
0.8 14
0.85 12
0.9 12
0.95 21
1.0 31
1.05 48

This example shows that we could gain an enormous increase in efficience
for the Gauss-Seidel method, if we could determine a priori the ideal value
of the relaxation parameter ωideal. On this subject, we have to keep in mind
the following remarks:

• The relaxation method converges only for 0 ≤ ω ≤ 2.

• ’Under specific mathematical restrictions’, which apply to matrices that
are used in differential methods for the solution of (mostly elliptical)
boundary condition problems, ωideal is always between 1 and 2, i.e.
there is always a overrelaxation.

• In these cases we have:

ωideal =
2

1 +
√

1− λ21
, (2.26)

where λ1 is the largest eigenvalue of the matrix C [Eq.(2.19)].

51

• Since the exact calculation of λ1 is often very demanding, I prefer to use
an approximate method, described in Ref. [14], P. 63. This method
behaves well in practice and is easy to incorporate in the program
GAUSEI:

It can be shown that the expression

|∆x(t)|
|∆x(t−1)| (2.27)

tends to λ21 for t → ∞. If, for example in the program GAUSEI, we
start the iteration with ω = 1 and perform the first t0 iterations 1, we
can in many cases obtain a quite good approximation for λ21 – Eq.(2.27),
and thus for for ωideal, throguh Eq.(2.26). With this value of ω one can
then continue the iteration.

In the exercises of this lecture we will demonstrate how well this strategy
works.

2.7.7 Efficiency of the Gauss-Seidel method.

In the previous section we have mentioned that one of the advantages of the
Gauss-Seidel method is that the matrix of coefficients is not changed during
the iterations. This is particularly convenient in the case of sparse band
matrices, where one has to store only the full diagonals.

We will now study a concrete example, namely the numerical solution of
a very important partial differential equation, the Laplace equation. Using
the differential method this differential equation and its constraints can be
transformed in a set of linear equations. The order of this system is given
by the number of points in the main domain of the Laplace equation.
The following figure 2.3 (a) shows what percentage of the matrix elements
of the linear system are different from zero as a function of the number of
points in the main domain of the Laplace equation. We sees that, from 200
sampling points on, the percentage of matrix elements is well below 10 %.
Fig. 2.3 (b) shows how this is translated in terms of memory.

Überhuber ([22], P. 392) gives an example of industrial application for linear
methods (calculation of chassis rigidness in car industry): a matrix BC-
SSTK32 has order 44.609, i.e. 2 · 109 elements; from these, however, ’only’
1.029.655 are non-zero, i.e. the occupation is 0.05 %.

1in practice a good value for t0 is between 20 and 100

52

Figure 2.3: (a) Occupied matrix elements of the linear system (in %) as a
function of number points in the main domain of the Laplace equation. (b)
Storage space as a function of number of points, for Gauss-Seidel (squares)
and LU (circles) methods.

53

Chapter 3

Least squares approximation

3.1 The basic problem.

Although the method of interpolation is very powerful in many cases, there
are many other problems for which it is not possible to represent the data
points with a smooth function. This happens in particular when the data
points are affected by statistical errors, for example because they represent
experimental data.

Let us imagine we measure the resistivity R of a metallic conductor using
the experimental setup depicted in Fig.3.1. We obtain a current-voltage
diagram, shown in Fig.3.2.

The relation between voltage and current is linear, and follows the Ohm’s
law:

U = R ∗ I;
R is the electrical resistivity. Statistical deviations and possible measurement
errors do not change the linear relation between U and I!

In this case, threfore, the approximating function must be a straight line
(a polynomial of first order). Clearly, it doesn’t make sense to approximate
these data with an intepolation function that passes exactly through all mea-
sured points. In fact, what we rather wish to achieve is a smoothening of
the data, without overweighing measurement errors.

Figure 3.1: Experimental setup for the measurement of the electrical resis-
tivity.

54

Figure 3.2: A current-voltage diagram.

3.2 Mathematical formulation of the prob-

lem.

Given a set of n points, (xi | yi), we wish to find a curve f(x) which approx-
imates as closely as possible the points. At the same time, we want to take
into account possible uncertainities due to measurement errors. We also wish
to assign different weights to the points, through suitable weighting factors.

These requirements can be reformulated mathematically as follows – basic
equation of the least squares (LSQ) approximation:

χ2 =
n∑

k=1

gk [yk − f(xk; a)]
2 → minimum (3.1)

χ2 is the weighted error sum, gk > 0 is the weighting factor of the k-th point,
and f(x; a) is the model function with the q model or fitting parameters,
a = a1, a2, . . . , aq.

The sum of the weighted square errors between the ”real” function and
its approximate value should be minimal. The meaning of the weighting
factor is clear, if we think in terms of statistical analysis of the data. We will
explain this in more detail in the rest of the chapter.

3.3 Statistical analysis of the least squares

problem.

3.3.1 Basic concepts: expectation value and standard

deviation of a measure.

The LSQ method is based on the comparison between the experimental quan-
tities yk and the corresponding approximate values of the model function
f(xk; a). It is obvious that the quality of the results (fir parameters) will
depend strongly on the statistical quality of the yk values.

Let us assume we repeatn times a measure, under exactly the same con-
ditions. The values of x = xk will correspond to (in general) different values

55

Figure 3.3: Expectation value of measured quantities.

y
(1)
k , y

(2)
k , . . . , y

(n)
k . If we plot all these values on a diagram, as in Fig.3.3,

we obtain a set of points distributed around the expectation value (or mean
value) Ek:

Ek =
1

n

n∑

j=1

y
(j)
k (3.2)

A measure of the spread of the yk values around their expaction value is the
standard deviation:

σk =

∑n
j=1(y

(j)
k − Ek)

2

n− 1

1/2

(3.3)

In many practical cases the probability P with which a specific distance be-
tween the measured value and the expectation value occurs is given by the
following distribution:

P (y −E) =
1√
2πσ

· exp−(y−E)2/(2σ2) . (3.4)

This is the very common normal gaussian distribution (Fig.3.4). It is im-
portant to stress in this case that P (y − E) has inflection points exactly in
y − E = ±σ.
The shaded area in Fig.3.5 represents the probability that a measured value
lies in the interval [E − σ, E + σ]. This probability is

∫ +σ

−σ
d(y − E)

1√
2πσ

exp(y−E)2/(2σ2) = 0.685 .

In a normal distribution, therefore, around 69 per cent (≈ 2/3) of all values
lie in an interval [E − σ, E + σ].

Normal distributions are typical of measurements, in which the measured
quantity can assume all possible values within a given interval; these are
called analoguemeasurements. In the next section we will discuss the Poisson
distribution, which is instead typical of digital measurements.

56

Figure 3.4: The normal gaussian distribution.

Figure 3.5: Geometrical meaning of the standard deviation σ.

57

3.3.2 Accounting for statistics in the LSQ method

Since this is not a course on statistic, we will limit ourselves to a few useful
considerations, without proofs.

• In the LSQ method, he statistical uncertainity on the yk’s is taken into
account assuming that the weighting factors in (3.1) are the squares of
the reciprocal of the corresponding standard deviations:

gk ≡
1

σ2
k

. (3.5)

• The LSQ method gives the statistical expectation value of the fitting
parameters. The corresponding standard deviations can be obtained
as follows:

We first calculate the so-called normal matrix N , with coefficients:

[N]ij =
1

2

∂2χ2

∂ai∂aj
. (3.6)

Inverting the normal matrix we obtain the covariance matrix C:

C = N−1 (3.7)

The covariance matrix contains two important pieces of information:

1. the diagonal elements are the standard deviations of the fitting
parameters, i.e.

σai =
√
cii , (3.8)

2. the correlation coefficients of the fitting parameters (rij) can be
extracted from C:

rij =
cij√
ciicjj

. (3.9)

The rij ’s, which always lie in the interval [−1,+1], indicate how
strongly the i-th and j-th fitting parameters infuence each other.

• Calculation of the variance V , or of the standard deviation:

V =
χ2

n− q
und σV =

√

2

n− q
. (3.10)

In case of an ideal model and for n >> 1, V has approssimatively a
normal distribution with mean value 1 and standard deviation σV . The
quantity n− q (number of data points minus number of fitting param-
eters) is called the number of degrees of freedom. The variance can be
used as an indicator for the quality of the model function employed in
the fit: if V lies significantly outside the interval [1 − σV , 1 + σV], the
model is not good for the given set of points.

58

3.3.3 Determination of the standard deviations of the
values.

The statistical evaluation of a LSQ problem requires us to know in the stan-
dard deviations σk of the measured values. How is it possible to calculate
these σk’s?

In practical cases there are two main possibilities:

• The measured values have a normal distribution around their expecta-
tion value: this is a very common case in experiments. In this case it
is a fairly good approximation to assume that the σ’s of all measured
values are the same, i.e. that

σ1 ≈ σ2 ≈ · · · ≈ σn.

We can test this hypothesis, repeating several times the same mea-
surement for a given x and calculating the corresponding σ’s through
(3.3).

• As already mentioned, there is another important statistical distribu-
tion, typical of counting experiments (digital measurements), i.e. the
Poisson distribution.

59

Counting experiments play a major role, for example, in experimental
physics. The experimental setup looks like this

where A is a radioactive substance, D a radiation detector, Z a digital
counter and T a clock.

Without entering into the details of the Poisson statistics, we wish to
illustrate here only its most important properties:

In a Poisson distribution the relation between the expectation value E
of a measured quantity and the corresponding standard deviation is: σ

σ =
√
E.

In practice, the (unkwown) expectation value is approximated with the
measured value, giving

σ ≈ √
y .

In this case the weighting factors in the LSQ methods have the form:

gk ≈
1

yk
. (3.11)

3.4 Model Functions with Linear Parame-

ters.

The term model function with linear parameters usually indicates a function
of the form:

f(x; a) =
m∑

j=1

aj · ϕj(x) (3.12)

with arbitrary (linearly independent) basis functions ϕj(x). The defini-
tion linear model functions, often used in practice, is misleading: f(x; a)
need not at all be linear in x, but only in the fitting parameters. In linear
regression the model function is a straight line:

f(x; a1, a2) = a1 + a2 x.

This is thus a very easy special case of model with linear parameters.

If we insert a function of the form (3.12) in the LSQ basic equation (3.1),
we obtain:

χ2 =
n∑

k=1

gk

yk −
m∑

j=1

ajϕj(xk)

2

→ minimum!

60

The minimisation of the square error is obtained setting the partial deriva-
tives of χ2 with respect to the model parameters a to zero:

∂χ2

∂ai
=

n∑

k=1

gkϕi(xk)

yk −
m∑

j=1

ajϕj(xk)

 = 0 i = 1, . . . , m .

This leads to a linear, inhomogeneous set of m-th order equations for the
ai’s:

m∑

j=1

aj
n∑

k=1

gkϕi(xk)ϕj(xk) =
n∑

k=1

gkykϕi(xk)

for all i = 1, . . . , m, that is to the linear problem

A · a = β

with the symmetric, positive definite matrix of coefficient

A ≡ [αij] with αij =
n∑

k=1

gkϕi(xk)ϕj(xk) (3.13)

and the inhomogeneous vector

βi =
n∑

k=1

gkykϕi(xk) . (3.14)

For linear model functions (3.12) the construction of the normal matrix ac-
cording to (3.6) is very easy; we obtain in fact:

1

2

∂2χ2

∂ai∂aj
=

n∑

k=1

gkϕi(xk)ϕj(xk) = αij . (3.15)

3.4.1 Standard deviation of the fitting parameters

In section 3.3.2 we have shown (without proof) that the standard deviation
of the fitting parameters can be derived from the diagonal elements of the
covariance matrix [Eq. (3.8)]
We will now show that this is true using a very simple example, namely a
linear regression with the model function:

f(x; a, b) = a+ b x

Least-Squares Formula:

χ2 =
n∑

k=1

gk [yk − a− b xk]
2 → Minimum for a = aopt, b = bopt .

The normal matrix of the problem reads, according to (3.6):

N =

(

α11 α12

α12 α22

)

61

with

α11 =
n∑

k=1

gk α12 =
n∑

k=1

gkxk α22 =
n∑

k=1

gkx
2
k

The optimised parameters can be obtained as solution of the inhomogeneous,
linear system of equations:

N

(

a
b

)

=

(

β1
β2

)

with

β1 =
n∑

k=1

gkyk β2 =
n∑

k=1

gkxkyk .

The solution of this system of equations is

a = aopt =
β1α22 − β2α12

D
b = bopt =

β2α11 − β1α12

D
(3.16)

where D is the determinant of the normal matrix

D = α11α22 − α2
12 .

The covariance C is the inverse of the normal matrix, i.e.

C = N−1 =
1

D

(

α22 −α12

−α12 α11

)

From this one immediately obtains the standard deviation of the fitting pa-
rameters as

σ2
a =

α22

D
σ2
b =

α11

D
. (3.17)

The calculation of this standard deviations can be obtained also in another
way, using the error propagation rule (EPR).

It is clear that the optimised parameters a and b are functions of all the x
and y components of the given points, i.e.

a = a(x1, . . . , xn; y1, . . . , yn) b = b(x1, . . . , xn; y1, . . . , yn)

According to the EPR we have for the standard deviations of a and b

σ2
a =

n∑

l=1

(

∂a

∂xl

)2

σ(xl)
2 +

(

∂a

∂yl

)2

σ(yl)
2

and

σ2
b =

n∑

l=1

(

∂b

∂xl

)2

σ(xl)
2 +

(

∂b

∂yl

)2

σ(yl)
2

62

The σ(xl) and σ(yl) are thus the standard deviations (errors) of the corre-
sponding x and y values. If we assume that the x values are exact, σ(xl) = 0
and for the errors on the y’s we find, according to (3.5)

gl =
1

σ(yl)2

We thus obtain

σ2
a =

n∑

l=1

1

gl

(

∂a

∂yl

)2

and σ2
b =

n∑

l=1

1

gl

(

∂b

∂yl

)2

The partial derivatives in these equations can be calculated from (3.16),
yielding:

σ2
a =

n∑

l=1

1

gl

[
1

D
(α22gl − α12glxl)

]2

and

σ2
b =

n∑

l=1

1

gl

[
1

D
(−α12gl + α11glxl)

]2

It is then trivial to show that:

σ2
a =

1

D2

n∑

l=1

gl [α22 − α12xl]
2

=
1

D2

n∑

l=1

n∑

k=1

n∑

k′=1

glgkgk′
[

x2kx
2
k′ − 2xlx

2
kxk′ + x2l xkxk′

]

Renaming the indexes in the sum l; k; k′ we have thus

σ2
a =

1

D2

∑

l,k,k′
glgkgk′ x

2
k

[

x2k′ − xk′xl
]

=
1

D2

n∑

k=1

gkx
2
k

n∑

l=1

gl
n∑

k′=1

gk′x
2
k′ −

(
n∑

l=1

glxl

)2

The expression in the square bracket in the last line is clearly the determinant
D of the normal matrix, and we obtain in the end

σ2
a =

1

D2
D

n∑

k=1

gkx
2
k =

α22

D
,

which is the same expression we obtained using the covariance matrix (3.17),
quod erat expectandum.

A very similar calculation can be done also for σb.

3.4.2 The program LFIT.

Source: [9], P.513ff, [10], P. 674ff with modifications.

INPUT parameters:

X(), Y(): Coordinates of the data points.

SIG(): Standard deviations of the y’s.

63

NDATA: Number of data points.

MA: Number of terms in the linear model function.

OUTPUT parameters:

A(): Array with the optimised fitting parameters.

YF(): Array with the values of the function of the best-fit curve on the
given x points.

COVAR(,): Covariance matrix.

CHISQ: Weighted error sum χ2.

Routines used by LFIT:

FUNCS: In this routine one defines the basis functions used in the model
function (see Eq.(3.12)):

void funcs(double x, double afunc[], int ma)

{ Definition of the local variables...

afunc[1]= phi_{1}(x);

.

.

afunc[ma] = phi_{m}(x);

}

LUDCMP and LUBKSB: Routines for the solution of the linear system
of equations [Eqs. (3.13),(3.14)] and for the inversion of the normal
matrix, see chapter 2.

Structure of the program:

1. Calculation of the matrix elements αij and of the components βi of
the inhomogeneous vector according to (3.13) and (3.14). Storage of
these quantities in NORMAL(,) and BETA(). NORMAL contains
the normal matrix of the problem, according to to eq.(3.15).

2. Calculation of the optimised fitting parameters and of the covariance
matrix through the routines LUDCMP and LUBKSB.

3. Calculation of the function value of the best-fit curve for the given x
coordinates and calculation of the minimal square error sum.

64

Structure chart 11 — LFIT(X,Y,SIG,NDATA,MA,A,YF,COVAR,CHISQ)

I=1(1)MA

J=1(1)MA

NORMAL(I,J):=0.0

BETA(I):=0.0

K=1(1)NDATA

FUNCS(X(K),AFUNC,MA)

G:=1.0/SIG(K)/SIG(K)

I=1(1)MA

J=1(1)I

NORMAL(I,J):=NORMAL(I,J) + G*AFUNC(I)*AFUNC(J)

BETA(I):=BETA(I) + G*Y(K)*AFUNC(I)

I=2(1)MA

J=1(1)I-1

NORMAL(J,I):=NORMAL(I,J)

LUDCMP(NORMAL,MA,INDX,D,KHAD)
LUBKSB(NORMAL,MA,INDX,BETA,SOL)

J=1(1)MA

A(J):=SOL(J)

CHISQ:=0.0

K=1(1)NDATA

FUNCS(X(K),AFUNC,MA)

G:=1.0/SIG(K)/SIG(K)
SUM:=0.0

J=1(1)MA

SUM:=SUM + A(J)*AFUNC(J)

YF(K):=SUM
CHISQ:=CHISQ + G*(Y(K)-SUM)*(Y(K)-SUM)

J=1(1)MA

I=1(1)MA

BETA(I):=0.0

BETA(J):=1.0

LUBKSB(NORMAL,MA,INDX,BETA,SOL)

I=1(1)MA

COVAR(I,J):=SOL(I)

(return)

65

Remarks on LFIT:

1. The program requires to enter the standard deviations σk for the y
values (array SIG). For this, as explained in Sect. 3.3.3. of this chapter,
there are several possibilities:

• Statistics of the data point unknown → all σk = 1.

In this case it is obviously not possible to have any information
about the variance of the fit or on the statistics of the optimised
model parameters.

• The data points have a normal distribution, with a standard de-
viation σ which is the same for all points (σk ≈ σ).

• The data points follow a Poisson distribution → σk ≈ √
y
k
.

2. The program returns the optimal values of the fitting parameters, the
value of the weighted error sum χ2 and the covariance matrix. From
this it is also possible to calculate the variance and standard deviation
of the fit and the correlation coefficients of the fitted parameters, if
needed.

3. We should also stress here that many of the LSQ programs available
in literature (for example those contained in Numerical Recipes[9] and
[10]) contain a a very useful option. When the LSQ program is called,
the user can decide which of the MA parameters of the model function
are to be optimised (fitting parameters), and which ones should instead
remain unchanged during the whole LSQ process (fixed parameters).

66

3.4.3 Uses of LFIT.

The routine LFIT can be used for example within the following main pro-
gram:

Program chart — :

Input: 1) The NDATA data points X() and Y() and SD SIG().
2) Number MA of the Model terms

LFIT(X,Y,SIG,NDATA,MA,A,YF,COVAR,CHISQ)

VAR:=CHISQ/(NDATA-MA)

I=1(1)MA

SDPAR(I):=SQRT(COVAR(I,I))

I=1(1)MA-1

J=I+1(1)MA

NORM:=SQRT(COVAR(I,I)*COVAR(J,J))

❩
❩
❩Y NORM ne 0.0

✚
✚
✚

N

COVAR(I,J):=COVAR(I,J)/NORM
COVAR(J,I):=COVAR(I,J)

......

I=1(1)MA

❩
❩
❩Y

COVAR(I,I) ne 0.0
✚
✚
✚

N

COVAR(I,I):=1.0
......

Output: 1) the variance VAR.
2) The optimised parameters A().
3) The standard deviations of the parameters SDPAR().
4) The normalised covariance matrix COVAR(,).
5) optional: Table X() Y() YF()

(return)

An example.

In this example we will consider 101 data points normally distributed around
their expectation value; we will assume that σ is the same for all points.

The expectation values of all points lie exactly on the third degree poly-
nomial curve:

y(x) = 0.5− x− 0.2x2 + 0.1x3 .

The ideal model function for this problem is thus a third-degree polynomial
with parameters: a1, . . . , a4:

f(x; a) =
4∑

j=1

ajx
j−1

67

This means that the function FUNCS called by LFIT reads as follows (for
example in C):

void funcs(double x, double afunc[], int ma)

{ int i;

afunc[1]=1.0;

for(i=2;i<=ma;i++) afunc[i]=afunc[i-1]*x;

}

As a first data set we consider a normal distribution with σ = 0.1.

Interpretation of Table 4.1 (a):

Depending on the number of terms in the model function, the number of
degrees of freedom is between 96 and 100. For a good model, according to
(3.10), we should expect a variance between 0.86 and 1.14 ca.

Due to the relatively large spread of the data points [see Fig.3.6 (a)] we
cannot decide whether the best model is a second or third degree polynomial.
In fact, for MA=4 the σ’s of some of the fitting parameters are larger than
their absolute values. These fitting parameters match very poorly the original
expression, even though the 3rd degree polynomial would be the correct fitting
function.

as1 = 0.5 aF it
1 = 0.5097

as2 = −1.0 aF it
2 = −1.1152

as3 = −0.2 aF it
3 = −0.0517

as4 = 0.1 aF it
4 = 0.0543

The situation definitely improves if the data points have a better statistics.
This can be seen it we consider a second data set with σ = 0.025.

Interpretation of Table 4.1 (b):

In this case it is much easier to decide which is the optimal model. The
variance of the polynomials of zero, first and second order is too large, and
the model functions can be considered good starting from MA≤4. Since
however for MA>4 the absolute values of some of the fitting parameters ’fall
below their σ’s’, the third degree polynomial is the best model function. [see
Fig.3.7 (b)].

68

Table 4.1 (a):
MA Variance optimised parameters Remarks

1 37.034 a1 = −0.5652± 0.0100 bad model
2 1.138 a1 = 0.4574± 0.0198 border value

a2 = −1.0226± 0.0171
3 1.032 a1 = 0.5307± 0.0293

a2 = −1.2449± 0.0676 good model
a3 = 0.1111± 0.0327

4 1.035 a1 = 0.5097± 0.0384
a2 = −1.1152± 0.1670 good model,
a3 = −0.0517± 0.1945 bad statistics
a4 = 0.0543± 0.0639 s. Fig.3.6

5 1.046 a1 = 0.5134± 0.0469
a2 = −1.1543± 0.3284 good model
a3 = 0.0372± 0.6726 bad statistics
a4 = −0.0151± 0.5065
a5 = 0.0174± 0.1256

Table 4.1 (b):
MA Variance optimized parameters Remarks

1 598.559 a1 = −0.5639± 0.0025 bad model
2 2.883 a1 = 0.4773± 0.0049 bad model

a2 = −1.0413± 0.0043
3 1.204 a1 = 0.5472± 0.0073

a2 = −1.2530± 0.0169 bad model
a3 = 0.1059± 0.0082

4 0.899 a1 = 0.5128± 0.0096 good model
a2 = −1.0413± 0.0417 the fitting parameters have
a3 = −0.1600± 0.0486 convenient σ’s.
a4 = 0.0886± 0.0160 see Fig.3.6

5 0.908 a1 = 0.5141± 0.0117 good model
a2 = −1.0548± 0.0821 but some fitting parameters
a3 = −0.1294± 0.1681 have a very bad statistics.
a4 = 0.0647± 0.1266 ’mixing of parameters’
a5 = 0.0060± 0.0314

69

Figure 3.6: Linear LSQ calculation of simulated data values: (a) σ = 0.1,
(b) σ = 0.025.

70

3.5 Model functions with non linear param-

eters.

3.5.1 What are non linear parameters?

If we insert the model function

f(x; a, b) = a · e−bx

in the LSQ equation (3.1), we obtain

χ2 =
n∑

k=1

gk
[

yk − a · e−bxk

]2 → Minimum!

If we now proceed as usual, and differentiate with respect to the parameter
a, we obtain the linear equation

a ·
n∑

k=1

gke
−2bxk =

n∑

k=1

gkyke
−bxk .

A derivation with respect to b leads to the non-linear equation

a ·
n∑

k=1

gkxke
−2bxk =

n∑

k=1

gkxkyke
−bxk .

Therefore a and b are called the linear and non linear parameters of the
model function f(x), respectively. From this simple example it is easy to

understand that we cannot apply the method described in section 3.4 to non
linear model functions. A possibility to treat non-linear models within the
LSQ approximation is represented by the formalism of Gauss and Newton
treated in section 3.5.3.

Before explaining this, we will however show how to easily linearise
specific non-linear model functions.

3.5.2 Linearization of non-linear problems.

A type of distribution often encountered in practice is the one shown in
Fig.3.7. The (xk | yk) values clearly obey an exponential law. Their distribu-
tion on a semi-logarithimc
(x | ln y) coordinate system is therefore approximately linear.

To fit points with this distribution it is common to use the model function:

f(x; a, λ) = a · e−λx,

which on a semi-logarithmic scale has the linear form

ln y = ln a− λx.

The linear system of equations for the two fitting parameters reads, according
to Eq. (3.13) and (3.14):

(

n
∑

k xk
∑

k xk
∑

k x
2
k

)

·
(

ln a
−λ

)

=

(∑

k ln yk
∑

k xk ln yk

)

,

71

Figure 3.7: Non-linear model function (exponential function) in normal and
semi-logarithmic coordinate systems.

notice that the weighting factors gk are set equal to one!
This system is easy to solve and we obtain:

a = exp
[(∑

ln yk ·
∑

x2k −
∑

xk ·
∑

xk ln yk
)

/D
]

λ = −
(

n ·
∑

xk ln yk −
∑

xk ·
∑

ln yk
)

/D (3.18)

D = n ·
∑

x2k −
(∑

xk
)2

Example: The 7 points shown in Fig.3.7 have coordinates:

x: 1. 2. 4. 5.5 6. 8. 11.
y: 83.2 41.7 25.1 10.5 22.9 3.8 1.4

For these points, using (3.18) one obtains

a = 118.90 und λ = 0.398 .

The best-fit curve is therefore

f(x) = 118.90 e−0.398x

(this is the dashed curve in Fig.3.7), and as a sum of the square errors one
obtains

χ2
min = 307.3 .

72

Remarks:

1. This ’minimal error sum’ is obviously the minimum of the sum of the
square deviations between the ln yk and the ln f(xk)!

2. A big disadvantage of this linearization method is that it is not possible
to determine a statistical weighting factor.

3. The exponential model function is a good example of a physically rele-
vant model parameter: a · exp(−λx) could for example be a radioactive
decay curve, with a as starting amplitude, and λ as decay constant.

In [7], P. 330 ff, one can find a lot of other examples to linearize simple
non-linear model functions.

A final consideration: try to avoid ’hidden correlations’ between the fitting
parameters in your model functions. For example the model

f(x; a, b, c) = a e−bx+c

is not a good one, since the parameters a and c cannot be separated numer-
ically:

f(x; a, b, c) = a ec
︸︷︷︸

= only 1 parameter

· e−bx .

73

3.5.3 The Gauss-Newton (GN) method.

In all those cases, in which a linearization of the model function according
to section 3.5.2 is not possible or not desired, we can proceed as follows:

The starting point is the completely general model function

f(x; a1, a2, . . . , aq) (3.19)

with the parameters a ≡ a1, a2, . . . , aq.
The minimization of the weighted error sum

χ2 =
n∑

k=1

gk [yk − f(xk; a)]
2

follows this iterative procedure:

1. Choose a set of (guessed values) for the parameters:

a = a0 .

2. Expand the model function in a Taylor series of a around a0, and trun-
cate the expansion after the linear term:

f(x; a) ≈ f(x; a0) +
q
∑

l=1

(

∂f(x; a)

∂al

)

a=a0

· (al − a0l) .

3. Insert this (approximate) linearised model function in the LSQ equa-
tions:

χ2 =
n∑

k=1

gk

[

yk − f(xk; a
0)−

q
∑

l=1

(

∂f(xk; a)

∂al

)

a=a0

· (al − a0l)

]2

,

We now introduce the notations:

dfk,l ≡
(

∂f(xk; a)

∂al

)

a=a0

and fk ≡ f(xk; a
0).

4. Take the derivative of χ2 with respect to the model parameters, and
set them to zero:

∂χ2

∂aj
= −2

n∑

k=1

gk

[

yk − fk −
q
∑

l=1

dfk,l(al − a0l)

]

· dfk,j = 0

for j = 1, . . . , q. As a result we obtain a linear, inhomogeneous set of
equations for the q expressions (al − a0l):

A · (a− a0) = β

with

A = [αij] αij =
n∑

k=1

gkdfk,idfk,j and βi =
n∑

k=1

gk(yk − fk)dfk,i .

(3.20)

74

5. The solutions of this system, (al − a0l), can now be regarded as differ-
ences between the guessed values and the improved values of the desired
model parameters:

al − a0l ≡ ∆al → a1l = a0l +∆al (l = 1, . . . , q) .

6. Repeat steps (2 → 3 → 4 → 5) with this improved set of parameters.
In this way (assuming that the procedure is converging) it is possible
to iteratively improve the model parameters:

atl = at−1
l +∆atl (t = 1, 2, . . .) (3.21)

7. As in all iterative methods, also in this case we need to specify an exit
criterion. Several criteria are discussed in literature. One (not always
the best!) is the following:

The iteration is interrupted, if all parameters satisfy a given condition
on the relative precision:

| atl − at−1
l |<| atl | ·ǫ (3.22)

(ǫ = precision) or if the number of iterations reaches a fixed maximum
value.

8. Once we have attained the desired precision, we can calculate the nor-
mal matrix of the problem. The i, j-th coefficients read, according to
(3.6):

1

2

∂2χ2

∂ai∂aj
.

With a non-linear model function we obtain:

1

2

∂2χ2

∂ai∂aj
=

n∑

k=1

gk

[

∂f(xk; a)

∂ai

∂f(xk; a)

∂aj
− (yk − f(xk; a))

∂2f(xk; a)

∂ai∂aj

]

.

In most programs which employ the non-linear LSQ approximation the
second term in parenthesis in the equation above is neglected. This is
justified, because if the iteration is succesful the quantity [yk − f(xk; a)]
gets smaller and smaller. Using the abbreviations one obtains thus:

1

2

∂2χ2

∂ai∂aj
≈

n∑

k=1

gkdfk,idfk,j . (3.23)

In this approximation, like in the linear model, the normal matrix co-
incides with the matrix of coefficients of the LSQ system!

9. Inversion of the normal matrix = covariance matrix. This matrix con-
tains the statistical information about the fit and the fitting parameters.

75

3.5.4 Convergence problems in the GN method. Mar-
quardt’s variant.

A primary requirement for applying a numerical method in practice is its
stability. This is particularly important for iterative methods. It is crucial to
ensure that the method converges, also in cases in which the starting values
for the iteration have not been chosen optimally.

The following example shows that the GN method does not satisfy this
requirement at all.

The starting point for this test is the function

f(x) = 10e−3x + 5e−x/2 .

This corresponds to the parametrised function

f(x; a1, a2, a3, a4) = a1e
−a3x + a2e

−a4x (3.24)

with the (exact) parameters

a1 = 10. a2 = 5. a3 = 3. a4 = 0.5 .

We can now employ this function to generate a test data set for the GN
algorithm:

10 Data values:

X Y=F(X)

1 .1000000E+01 .3530524E+01

2 .2000000E+01 .1864185E+01

3 .3000000E+01 .1116885E+01

4 .4000000E+01 .6767378E+00

5 .5000000E+01 .4104280E+00

6 .6000000E+01 .2489355E+00

7 .7000000E+01 .1509869E+00

8 .8000000E+01 .9157819E-01

9 .9000000E+01 .5554498E-01

10 .1000000E+02 .3368973E-01

If we regard these data as coordinates of points for a LSQ problem with
(3.24) as model function, the GN process should return as a result of the
iteration the following values:

a1 → 10. a2 → 5. a3 → 3. a4 → 0.5

In the following we will study the convergence behaviour of a program
based on the algorithm introduced in section 3.5.3. For this, we will generate
different guessed values for the a3 and a4, keeping a1 and a2 always fixed to
their starting values 9. und 4.
The results of this test are collected in Fig.3.8.

76

Figure 3.8: Convergence of the Gauss-Newton algorithm.

The results of this test are clearly very unsatisfactory! It is in fact extremely
difficult to estimate the convergence domain for the method. We could of
course change the initial guessed values until the iteration converges, but this
is of course not a viable method!

A way out of this dilemma was found in 1963 from D.W. Marquardt 1.
In the following we will present the results of his studies, without entering

into the mathematical details of the derivations.

The starting point of the Marquardt’s variant of the GN method is the linear
system (3.20):

α11 α12 · · · α1q

α12 α22 · · · α2q

. . .

. . .

. . .
α1q α2q · · · αqq

·

∆a1
∆a2
.
.
.

∆aq

=

β1
β2
.
.
.
βq

In matrix form this reads:
A ·∆a = β

Systems of equations of this type are to be solved with the GN algorithm.
In the Marquardt’s variant, instead of the original set of equations we solve
the following system

(A+ λD) ·∆a = β , (3.25)

where D is a diagonal matrix of the form

dii = αii (i = 1, . . . , q). (3.26)

1D.W. Marquardt, J. Soc. Ind. Appl. Math. 11,431 (1963)

77

The quantity λ is still undefined at the moment.

Let us assume that the t-th iteration step of the GN process has given
the square error sum χ2

t . The next iteration step returns the value χ2
t+1.

It can happen that:
χ2
t+1 > χ2

t .

Under certain circumstances (see the previous test, starting point C) this
can lead to a divergence of the iteration process.

The general statement for which Marquardt was able to give a rigorous math-
ematical proof is the following:
It is always possible to choose the quantity λ in (3.25) in such a way that:

χ2
t+1 ≤ χ2

t

This ensures the convergence of the method.

In order to demonstrate the effect of increasing the (positive) quantity
λ, we start from a system of equations (3.25), assuming that the model we
employ has only 2 parameters:

(

α11(1 + λ) α12

α12 α22(1 + λ)

)

·
(

∆a1
∆a2

)

=

(

β1
β2

)

The analytical solutions of these systems are:

∆a1(λ) =
β1α22(1 + λ)− β2α12

α11α22(1 + λ)2 − α2
12

and ∆a2(λ) =
β2α11(1 + λ)− β1α12

α11α22(1 + λ)2 − α2
12

.

This means:

• For λ→ 0 we recover the GN method.

• For λ→ ∞ ∆a1 and ∆a2 go to zero!

Additionally, one realises immediately that the ratio of the correction
coefficients ∆a1/∆a2 is also a function of λ. This means that not only do
the corrections get smaller with the variation of λ, but also the direction of
the correction changes: we are exploring the vicinity of the origin.

We can thus draw the following conclusions:

• An increase of the Marquardt’s parameter λ leads to a reduction of
the correction for the model parameters, and therefore decreases the
convergence speed.

• On the other hand a (sufficient) increase of λ leads to the monotone
decrease of the error sums:

χ2
1 ≥ χ2

2 ≥ χ2
3 · · · ≥ χ2

t ≥ χ2
t+1 · · ·

A possible method to keep λ as small as possible (in order to have a fast
convergence) and at the same time large enough to ensure convergence, is
the so-called Marquardt’s strategy:

78

1. Start the iteration with a small (positive) value for λ (in the following
program, for example, λ = 0.0003).

2. Before each new iteration step, λ is reduced by a fixed – arbitrary –
factor to ensure a fast convergence (in the following program, this factor
is set to five).

3. In case χ2
t+1 > χ2

t , λ is increased by a fixed factor (in the following
program 5) and the calculation of the set of equations (3.25) is repeated
until χ2

t+1 ≤ χ2
t . At this point

4. next iteration

If we test the GN algorithm with the Marquardt variant 2 using the data of
the test above, we obtain the results in Fig.3.9. As we can see, the method
converges independently of the starting points C and D, withouth observable
divergences (see with Fig.3.8). The following lines show the results of the
calculation for the D starting point; the stars * indicate the points where the
Marquardt’s parameter λ is increased:

Starting point D NO MARQUARDT VARIANT:

===

t chisq a1 a2 a3 a4

0 .368339E+01 .900000E+01 .400000E+01 .350000E+01 .750000E+00

Stop of the execution due to exponent overflow!

Starting point D WITH MARQUARDT VARIANT:

==

t chisq a1 a2 a3 a4

0 .368339E+01 .900000E+01 .400000E+01 .350000E+01 .750000E+00

*

*

*

1 .327945E+01 .116540E+02 .478102E+01 .326392E+01 .298864E+00

2 .221123E+00 .139565E+02 .407836E+01 .262388E+01 .386921E+00

3 .660544E-02 .776914E+01 .456550E+01 .253007E+01 .468859E+00

4 .383322E-04 .750890E+01 .492223E+01 .264024E+01 .496633E+00

*

5 .708586E-05 .823696E+01 .497283E+01 .278430E+01 .498760E+00

*

6 .320911E-05 .885081E+01 .498274E+01 .286453E+01 .499211E+00

7 .315072E-05 .961475E+01 .499580E+01 .296028E+01 .499807E+00

8 .101244E-06 .996144E+01 .499965E+01 .299644E+01 .499984E+00

9 .147690E-10 .999937E+01 .499999E+01 .299994E+01 .500000E+00

10 .903999E-13 .100000E+02 .500000E+01 .300000E+01 .500000E+00

11 .340838E-13 .999999E+01 .500000E+01 .300000E+01 .500000E+00

2This algorithm is referred to as ’Levenberg-Marquardt Method’ in literature

79

Figure 3.9: Convergence of the Gauss-Newton-Marquardt algorithm.

3.5.5 The program MRQMIN.

Source: [9], P.526f; [10], P. 683ff with modifications.

The program MRQMIN (MarQuardt MINimization) performs an itera-
tion step in the Gauss-Newton-Marquardt method.

INPUT parameters:

X(),Y(): Coordinates of the data points.

SIG(): Standard deviations of the y’s.

NDATA: Number of data points.

MA: Number of parameters of the model function.

A(): Array containing the (guessed values) for the model parameters.

ALAMDA: Control parameter, Marquardt’s parameter λ.

80

OUTPUT parameters:

A(): Array containing the optimized fitting parameters.

ALPHA(,): Matrix of coefficients for the linear system (3.20).

COVAR(,): Covariance matrix.

BETA(): Inhomog. vector of the linear system (3.20).

CHISQ: Weighted square error sum χ2.

OCHISQ: Weighted error sum of the previous iteration step.

ALAMDA: Current value of the Marquardt’s parameter.

VMAR: Logical value that shows if the iteration step lead to a decrease in
χ2(VMAR=false) or not (VMAR=true).

Internal Arrays:

NORMAL(,): Marquardt’s matrix of coefficients (3.25).

DA(): Correction vector for the parameter.

VECTOR(), SOL() .

Required functions:

MRQCOF: Calculates the matrix ALPHA and of the vector BETA accord-
ing to (3.19), as well as of the weighted error sum CHISQ.

LUDCMP und LUBKSB: Solves the linear set of equations (3.25), i.e.
inverts the normal matrix.

Structure of the program:

1. Begin the iteration with a given ALAMDA. ALAMDA is set to the
value 0.0003,3 and then MRQCOF is called for the first time. The
coefficients of the system of equations (3.25) are calculated from the
two arrays ALPHA(,) and BETA(). This system is solved with
LU-Decomposition.

2. If ALAMDA is zero (last call of MRQMIN!) the covariance matrix
COVAR(,) is calculated inverting the normal matrix NORMAL(,).
End of the calculation.

3. If ALAMDA > zero, the improved fitting parameters (ATRY) are cal-
culated. New call of MRQCOF.

4. The new error sum CHISQ given by MRQCOF is calculated and com-
pared with the old error sum OCHISQ:

3This starting value for λ, as well as the other factor given below (=5) , is arbitrary;
the value we give here generally leads to good results.

81

• CHISQ ≤ OCHISQ: The iteration step was succesful. The logical
variable MVAR is set to ’false’, and ATRY() is saved in A().
ALAMBA is divided by the factor 5.

• CHISQ > OCHISQ: The iteration step was not succesful. The
logical variable is set to ’true’, and ALAMDA is multiplied by the
factor 5.

Structure chart 12 — MRQMIN(X,Y,SIG,NDATA,MA,A,ALPHA,COVAR,
BETA,CHISQ,OCHISQ,ALAMDA,VMAR)

❩
❩
❩Y ALAMDA < 0.0

✚
✚
✚

N
ALAMDA:=0.0003

MRQCOF(X,Y,SIG,NDATA,MA,A,ALPHA,BETA,CHISQ)

OCHISQ:=CHISQ

......

I=1(1)MA

J=1(1)MA

NORMAL(I,J):=ALPHA(I,J)

NORMAL(I,I):=ALPHA(I,I)*(1.0+ALAMDA)

LUDCMP(NORMAL,MA,INDX,D,KHAD)

❩
❩
❩Y ALAMDA = 0.0

✚
✚
✚

N

J=1(1)MA

I=1(1)MA

VECTOR(I):=0.0

VECTOR(J):=1.0

LUBKSB(NORMAL,MA,INDX,
VECTOR,SOL)

I=1(1)MA

COVAR(I,J):=SOL(I)

LUBKSB(NORMAL,MA,INDX,BETA,DA)

J=1(1)MA

ATRY(J):=A(J)+DA(J)

MRQCOF(X,Y,SIG,NDATA,MA,ATRY,NORMAL,VECTOR,CHISQ)

❩
❩
❩Y

CHISQ ≤ OCHISQ
✚
✚
✚

N

ALAMDA:=ALAMDA/5.0
OCHISQ:=CHISQ
VMAR:=FALSE

I=1(1)MA

J=1(1)MA

ALPHA(I,J):=NORMAL(I,J)

BETA(I):=VECTOR(I)
A(I):=ATRY(I)

ALAMDA:=ALAMDA*5.0
VMAR:=TRUE

(return)

82

3.5.6 The program MRQCOF.

Source: [9], P.527f; [10], P. 687.

The program MRQCOF (MaRQuardt COeFficients) calculates the ma-
trix ALPHA and the vector BETA through (3.20) as well as the weighted
square error sum χ2.

INPUT parameters:

X(),Y(),SIG(),NDATA,MA,A(): see description of MRQMIN, sect.
3.5.5.

OUTPUT parameters:

ALPHA(,),BETA(): Matrix ALPHA and Vector BETA according to
(3.20).

CHISQ: weighted square error sum χ2.

Required functions:

FUNCS: Function that, for given arguments X and model parameters A(),
returns the functional value Y for the model function and all ist partial
derivatives with respect to the model parameters. These MA deriva-
tives are saved in the array DYDA().

83

Structure chart 13 — MRQCOF(X,Y,SIG,NDATA,MA,A,ALPHA,BETA,CHISQ)

I=1(1)MA

J=1(1)I

ALPHA(I,J):=0.0

BETA(I):=0.0

CHISQ:=0.0

K=1(1)NDATA

FUNCS(X(K),A,YMOD,DYDA,MA)

G:=1.0/SIG(K)/SIG(K)
DY:=Y(K)-YMOD

I=1(1)MA

J=1(1)I

ALPHA(I,J):=ALPHA(I,J) + G*DYDA(I)*DYDA(J)

BETA(I):=BETA(I) + G*DY*DYDA(I)

CHISQ:=CHISQ + G*DY*DY

I=2(1)MA

J=1(1)I-1

ALPHA(J,I):=ALPHA(I,J)

(return)

84

3.5.7 Use of MRQMIN and MRQCOF

. — .

Input: 1) the NDATA data points X(), Y() as well as the standard deviations SIG().
3) Vector A() with the guessed values for the fitting parameters.
4) Number TMAX of maximum iteration steps.
5) Relative precision EPS of the parameters to fit.

T:=1
ALAMDA:=–1.0

J=1(1)MA

AALT(J):=A(J)

MRQMIN(X,Y,SIG,NDATA,MA,A,ALPHA,COVAR,BETA,CHISQ,OCHISQ,ALAMDA,VMAR)

❩
❩
❩Y VMAR

✚
✚
✚

N

print ’***’ for
Marquardt’s correction

print: T,CHISQ,A(...)

DELMAX:=0.0

J=1(1)MA

DEL:=|(A(J)-AALT(J))/A(J)|

❩
❩
❩Y DEL > DELMAX

✚
✚
✚

N
DELMAX:=DEL

......

❩
❩
❩Y DELMAX < EPS

✚
✚
✚

N
ALAMDA:=0.0

MRQMIN(Parameter s.o.)

1) Calculation of the Variance.
2) Calc. of the SD of the
parameters.
3) Normalizatin of the
covariance matrix.
4) Output: ...
(End of the calculation)

J=1(1)MA

AALT(J):=A(J)

T:=T+1

T > TMAX

Error: ’Precision not reached’

(End of the calculation)

An example.

Let us imagine we have a radioactive substance, which is a mixture of J
different radioactive isotopes. All types of nuclei decay with a half-time Tj ,
starting from an initial activity Aj following the law of radioactive decay:

Aj = Aje
− ln 2·t/Tj .

85

The total activity of the source is therefore

A(t) =
J∑

j=1

Aje
− ln 2·t/Tj .

The measurement proceeds as follows: we count the number of decays
from the source in fixed time interval ∆ and save the result. We repeat the
counting for a second time interval ∆, and so on. In this way we obtain a
sequence of numbers Zk:

Zk =
∫ k∆

t=(k−1)∆
dtA(t) (k = 1, 2, . . .) .

An experiment of this kind is a typical counting experiment and therefore the
measured values are distributed with a Poisson’s law around their expectation
values (see Sect. 4.3.3).

Evaluating the integral above we obtain a model function with

Z(k;A1, . . . , AJ , T1, . . . , TJ) =
J∑

j=1

Aj

ln 2
Tj
(

e+∆ ln2/Tj − 1
)

e−∆ ln2·k/Tj .

We can then calculate without problems the derivatives ∂Z/∂Aj and
∂Z/∂Tj . The corresponding function FUNCS reads:

#define DELTA 15.0 // Constant of the experiment

void funcs(double x, double a[], double *z, double dzda[], int ma)

// C-VERSION

{

int mterm,j,ind;

double con,fac1,fac2,fac3,fac4;

con=DELTA*log(2.0);

mterm=ma/2;

*z=0.0;

for(j=1;j<=mterm;j++) {

ind=mterm+j;

fac1=con/a[ind];

fac2=exp(fac1);

fac3=fac2-1.0;

fac4=exp(-fac1*x);

dzda[j]=a[ind]*fac3*fac4/log(2.0);

*z=*z + a[j]*dzda[j];

dzda[ind]=a[j]/log(2.0)*fac4*(fac3*(1.0+fac1*x)-fac1*fac2);

}

}

As we can see, the routine funcs is called separately for each value of x. This
is not an optimal implementation for MATLAB, since it does not exploit the
possibility of this language to operate with vectors in a very efficient way. It
is more convenient, as shown in the following example, to declare x from the
beginning as a vector, that contains all the values xi with i = 1, . . . , NDATA:

86

function [z,dzda] = funcs(x,a,ma,ndata);

% MATLAB VERSION x is a vector with ndata components

dzda=zeros(ma,ndata);

delta=15.0; % measuring time

con=delta*log(2);

mterm=fix(ma/2);

z=zeros(1,ndata);

for j=1:mterm

fac1=con/a(mterm+j);

fac2=exp(fac1);

fac3=fac2-1;

fac4=exp(-fac1*x);

dzda(j,:)=a(mterm+j)*fac3.*fac4/log(2);

z=z+a(j)*dzda(j,:);

dzda(mterm+j,:)=a(j)/log(2).*fac4.*(fac3*(1+fac1*x)-fac1*fac2);

end

A concrete example:

We measure the decay rates of a substance which consists of two compo-
nents, therefore J = 2. We perform 40 measurements, over several intervals
of time ∆, of 15 seconds each.

40 Data values:

1 15376.0 21 981.0

2 10903.0 22 939.0

3 7950.0 23 857.0

4 5865.0 24 790.0

5 4653.0 25 814.0

6 3721.0 26 766.0

7 3089.0 27 691.0

8 2683.0 28 681.0

9 2396.0 29 614.0

10 1992.0 30 576.0

11 1910.0 31 529.0

12 1820.0 32 488.0

13 1726.0 33 472.0

14 1600.0 34 464.0

15 1495.0 35 434.0

16 1410.0 36 380.0

17 1271.0 37 382.0

18 1197.0 38 365.0

19 1106.0 39 387.0

20 1004.0 40 296.0

87

These are the iterations of the Gauss Newton Marquardt’s method:

t chisq A1 A2 T1 T2

0 196876.304 2000.000 500.000 30.000 200.000

1 1233.069 976.760 237.577 26.378 184.784

2 45.645 998.414 229.228 22.949 172.341

3 43.535 1005.360 226.315 23.159 173.250

4 43.535 1005.458 226.349 23.153 173.245

5 43.535 1005.457 226.348 23.153 173.246

Convergence is attained!

Variance= 1.209 (should be between 0.764 and 1.236)

Model parameter SD

A1 1005.457 10.182

A2 226.348 4.129

T1(s) 23.153 0.353

T2(s) 173.246 2.320

The correlation matrix:

A1 A2 T1 T2

A1 1.0000 -0.0494 -0.4642 0.0811

A2 -0.0494 1.0000 -0.7345 -0.9370

T1 -0.4642 -0.7345 1.0000 0.6405

T2 0.0811 -0.9370 0.6405 1.0000

We conclude with one figure that shows the given data points and the relative
fitted model function:

88

89

3.6 Add-ons:

Constraints:

In the following we will briefly describe the method for a least square fit,
in case the parameters of the model function have to satisfy given linear
constraints. This is a very common requirement.

Let us imagine we have a model function with q parameters; there can be
at most q − 1 constraints. If these constraints are linear in the parameters,
they can be written as follows:

q
∑

l=1

γt,l al
!
= δt (t = 1, 2, . . . , L < q) . (3.27)

There are thus L constraints, where the γt,l and δt are fixed quantities.

In this case the basic equation for the LSQ method takes the following form

χ2 =
n∑

k=1

gk [yk − f(xk; a1, . . . , aq)]
2 +

L∑

t=1

µt

[q
∑

l=1

γt,l al − δt

]

−→ Min. ,

(3.28)
we have thus introduced L additional fitting parameters µt (called Lagrange
parameters), which in many cases have no physical meaning.

Least-squares when both variables have uncertainties:

An important problem in the analysis of the experimental data through the
LSQ method is that in many cases not only the y, but also the x data,
are affected by experimental errors. A typical example is the measurement
of some physical quantity as a function of time: in this case not only the
quantity which is measured, but also the time (in abscissas) will be affected
by statistical errors.

In this kind of situations the use of standard LSQ methods, like those
illustrated in the previous sections of this chapter, is not possible. We have
to use, in this case, the so-called effective variance method. On this subject,
we refer the reader to the following reference:

J. Orear, Am. J. Phys. 50, 912 (1982)

90

Chapter 4

Numerical solution of
transcendental equations.

4.1 The basic problem.

Let us consider a real-valued function F (x). We seek the real values of x for
which:

F (x) = 0. (4.1)

The values of x that obey this relation are called solutions, zeroes, roots of
(4.1).

There are many methods in literature to treat this problem. In this
lecture we will discuss the following:

• Iterative methods (Newton-Raphson method; Regula Falsi).

• The bissection method.

• The numerical treatment of non-linear systems of equations.

Note: The fact that in the title of this chapter we put the emphasis on
transcendental equations obviously does NOT mean that we wish to exclude
algebraic equations of the type:

F (x) ≡ Pm(x) =
m∑

j=1

αjx
j−1 = 0

Algebraic equations are considered a special cases of transcendental equa-
tions.

In literature, one can find many specialized methods to determine nu-
merically the zeroes of algebraic equations (polynomials) – for example, the
method of Lobatschewski and Graeffe [20], p.60ff etc.). We will not treat
them in this lecture.

91

4.2 Iterative methods.

4.2.1 General concepts.

The equation F (x) = 0 can always (or almost always) be reduced into the
form:

x = f(x). (4.2)

In this way one obtains a typical iteration ansatz for finding the zeroes:

x0 Starting value

x1 = f(x0)

x2 = f(x1)

.

.

xt+1 = f(xt) (t = 0, 1, 2, . . .) (4.3)

If the method is converging this iteration can lead arbitrarily close to the
exact solution of the problem (within roundoff error). We have in fact:

lim
t→∞

xt → xexact

There is no warranty that this method will converge. On the other hand,
the convergence depends strongly from the way in which (4.1) is reformulated
into (4.2), as we will show in the examples that follow.

Let us imagine that we are looking for the zeroes of the function F (x) =
x3−x−5 in the vicinity of x=2. We will now show that if the reformulation of
F (x) = 0 into (4.2) is performed in different ways, the convergence behaviour
is very different:

a) x = x3 − 5 b) x =
5

x2 − 1
c) x = 3

√
x+ 5

x0 = 2.0

t (a) (b) (c)

0 2 2 2

1 3 1.6667 1.9129

2 22 2.8125 1.9050

3 10643 0.7236 1.9042

4 . -10.4944 1.9042

. . . .

. . . .

DIV DIV CONV

92

Figure 4.1: Estimating errors in iterations.

4.2.2 Convergence criteria and estimate of the error.

In order to obtain the relation that ensures the convergence of the iteration
we start from Eq. (4.2) for the exact solution

xexact = f(xexact). (4.4)

At the (t+ 1)-th iteration step we obtain:

xt+1 = f(xt)− δt , (4.5)

where δt represents the roundoff error in the numerical evaluation of the
function f for x = xt. Subtracting (4.5) from (4.6 gives

xexact − xt+1 = f(xexact)− f(xt) + δt .

Using the mean-value theorem (see Fig.4.1) we can write:

f(xexact)− f(xt)

xexact − xt
= f ′(ξt) with ξt ∈ [xt, xexact] .

From this it follows

xexact − xt+1 = f ′(ξt) · (xexact − xt) + δt (4.6)

This equation can step by step reduced to

xexact − xt+1 = f ′(ξt)f
′(ξt−1) · · · f ′(ξ0) · (xexact − x0) +

+δt + f ′(ξt)δt−1 + f ′(ξt)f
′(ξt−1)δt−2 +

+ · · ·+ f ′(ξt)f
′(ξt−1) · · · f ′(ξ1) · δ0

In order to estimate the error we will now assume that:

1. the maximum value of the first derivative of the function in the interval
I is m, from which it follows that for x0, x1, . . . , xt+1, . . . , xexact ∈ I:

m = maxI | f ′(x) | (4.7)

93

Figure 4.2: Convergence behaviour of the iteration (5.3).

2. δ does not depend on the index of the iteration, and therefore for all
t = 0, 1, . . . we have:

δt ≈ δ .

From this we have:

| xexact − xt+1 |≤ mt+1 | xexact − x0 | + | δ | (1 +m+m2 + · · ·mt)

This expression tends to:

lim
t→∞

| xexact − xt+1 |≤ | xexact − x0 | · lim
t→∞

mt+1

︸ ︷︷ ︸

Methodological error

+
| δ |
1−m
︸ ︷︷ ︸

Roundoff error

.

Both terms diverge for m ≥ 1, i.e. the convergence criterion for the iteration
is:

0 ≤ m < 1 . (4.8)

If this relation is satisfied, we have

lim
t→∞

| xexact − xt+1 |≤
| δ |
1−m

. (4.9)

This result is clearly very important! It demonstrates that the iteration
method is numerically stable: the size of the roundoff errors converges to a
limiting value. These relations are illustrated in Figs. 4.2 and 4.3.

In order to estimate the error, we can start again from equation (4.6):

xexact − xt+1 = f ′(ξt) · (xexact − xt) + δt

= f ′(ξt) · (xexact − xt + xt+1 − xt+1) + δt

(xexact − xt+1) · (1− f ′(ξt)) = f ′(ξt) · (xt+1 − xt) + δt

(xexact − xt+1) =
f ′(ξt)

1− f ′(ξt)
(xt+1 − xt) +

δt
1− f ′(ξt)

.

94

Figure 4.3: Error evolution of the iteration (5.3).

If the iteration converges we obtain:

| xexact − xt+1 |≤
m

1−m
| xt+1 − xt | +

| δ |
1−m

. (4.10)

If we are able to calculate the maximum value of the first derivative of the
function f(x) in the interval I and to estimate the value of δ accordingly,
Equation (4.10) can serve as a basis for an error control of the iterative
method: we can iterate until the expression on the right hand side of (4.10)
becomes smaller than a desired precision ǫ. We only have to remember not
to set ǫ to a value smaller than the limiting precision given by | δ | /(1−m)!

In practice the determination of m and δ is most of the times not possible
or too complicated. In this case we can employ the much easier criterion:

| xexact − xt+1 |≤| xt+1 − xt | , (4.11)

from which we derive the following

Exit criteria — .

❩
❩
❩
❩❩Y

|x(t+1)-x(t)| < EPS
✚
✚
✚
✚✚

N

End of the iteration Next iteration

for the iteration.
We must however keep in mind that (4.11) holds only for m ≤ 1/2, and can
be grossly wrong for 1/2 < m < 1! Otherwise, (4.11) is useful only as long
as the methodological error is larger than the roundoff error!

The following example should illustrate some of the relations derived before:

We want to determine numerically the zeroes of the following function:

F (x) = a + (1− a)x2 − x .

As can be easily verified, this quadratic function has two zeroes:

x1 = 1 and x2 =
a

1− a
.

95

We now want to find an approximation for the zero x1 through the iteration

xt+1 = a + (1− a)x2t .

The first derivative of f(x) is 2(1 − a) in x = 1. This is also the maximum
value of the derivative in the iteration interval, i.e. we have

m = |2(1− a)| .

On the basis of (4.8) and (4.10) we expect that

• the iteration diverges for m ≥ 1, i.e. for a ≤ 0.5 or a ≥ 1.5;

• the simplified error estimate (4.11) breaks down for 1/2 < m < 1, i.e.
for a < 0.75.

Results of this test calculation:

Parameter a = 2.500 > 1.5 i.e. Divergence expected:

t x_{t} x_{ex}-x_{t+1} x_{t+1}-x_{t}

0 .1200000E+01

1 .3400000E+00 .6600000E+00 -.8600000E+00

2 .2326600E+01 -.1326600E+01 .1986600E+01

3 -.5619601E+01 .6619601E+01 -.7946201E+01

4 -.4486988E+02 .4586988E+02 -.3925028E+02

5 -.3017459E+04 .3018459E+04 -.2972589E+04

6 -.1365759E+08 .1365759E+08 -.1365457E+08

7 -.2797945E+15 .2797945E+15 -.2797945E+15

8 -.1174274E+30 .1174274E+30 -.1174274E+30

9 -.2068380E+59 .2068380E+59 -.2068380E+59

10 -.6417295+117 .6417295+117 -.6417295+117

96

Parameter a = 0.600 ===> m=0.8 i.e.: convergence, but

breakdown of (5.11):

t x_{t} x_{ex}-x_{t+1} x_{t+1}-x_{t}

0 .6000000E+00

1 .7440000E+00 .2560000E+00 .1440000E+00

2 .8214144E+00 .1785856E+00 .7741440E-01

3 .8698886E+00 .1301114E+00 .4847425E-01

4 .9026825E+00 .9731750E-01 .3279386E-01

5 .9259343E+00 .7406572E-01 .2325178E-01

6 .9429417E+00 .5705828E-01 .1700744E-01

7 .9556556E+00 .4434437E-01 .1271392E-01

8 .9653111E+00 .3468892E-01 .9655443E-02

9 .9727302E+00 .2726981E-01 .7419114E-02

10 .9784816E+00 .2151839E-01 .5751419E-02

Parameter a = 1.200 ===> m=0.4 d.h.: convergence and

validity of (5.11):

0 .6000000E+00

1 .1128000E+01 -.1280000E+00 .5280000E+00

2 .9455232E+00 .5447680E-01 -.1824768E+00

3 .1021197E+01 -.2119718E-01 .7567398E-01

4 .9914313E+00 .8568734E-02 -.2976591E-01

5 .1003413E+01 -.3412809E-02 .1198154E-01

6 .9986325E+00 .1367453E-02 -.4780262E-02

7 .1000547E+01 -.5466072E-03 .1914060E-02

8 .9997813E+00 .2187027E-03 -.7653099E-03

9 .1000087E+01 -.8747150E-04 .3061742E-03

10 .9999650E+00 .3499013E-04 -.1224616E-03

4.3 The Newton Raphson method.

In section 4.2.1 we have mentioned that there are several methods to recast
the equation F (x) = 0 into the equivalent form f(x) = x. A very important
way to reformulate the problem is

f(x) = x− F (x)

F ′(x)
, (4.12)

Using (4.4) with the prescription:

xt+1 = xt −
F (xt)

F ′(xt)
. (4.13)

we obtain the Newton Raphson iteration. The graphical interpretation of
this formula (’tangent method’) is sufficiently well-known. (see Fig.4.4).

97

Figure 4.4: Graphical interpretation of the Newton-Raphson iteration.

For the error estimate we can again use (4.10). Here, due to (4.9) and
4.12), m is:

m = maxI
d

dx

(

x− F (x)

F ′(x)

)

= max[x0,xexact]

(

F (x)F ′′(x)

[F ′(x)]2

)

.

According to the convergence criterion (4.8) that m must be smaller than
one we can also state:
It is difficult to apply the Newton-Raphson iteration if in the vicinity of the
zero the slope of F (x) is small. This can happen, for example, if two zeroes
lie close to each other.

However, when the Newton-Raphson method works, its convergence is very
fast, as shown by the following example.

If we expand the function F (x) around xt in a Taylor series up to second
order, we have:

F (x) = F (xt) + F ′(xt)(x− xt) +
1

2
F ′′(xt)(x− xt)

2 .

If x is the exact solution we obtain, dividing by F ′(xt):

0 = − F (xt)

F ′(xt)
− (xexact − xt)−

1

2

F ′′(xt)

F ′(xt)
(xexact − xt)

2 .

The first term on the right hand side represents the correction term in the
Newton-Raphson formula, i.e. we have:

0 = xt+1 − xt − xexact + xt −
1

2

F ′′(xt)

F ′(xt)
(xexact − xt)

2

and

(xexact − xt+1) = −1

2

F ′′(xt)

F ′(xt)
(xexact − xt)

2 . (4.14)

From this result it follows that the absolute error in the solution at the (t+1)-
th iteration is proportional to the square of the absolute error in the t−th

98

Figure 4.5: Macon’s method.

iteration step.
We can thus say: the Newton-Raphson method converges quadratically.

A possibility, when pairs of zeroes sit very close to each other, is to employ
the

4.3.1 Macon’s method.

In general localizing the minimum or maximum of the function between the
two zeroes a1 and a2 is no problem. If we assume that the value of the
abscissas of the extremal value b is known with enough precision, we can
expand F (x) in Taylor series around b:

F (x) = F (b) + (x− b)F ′(b) +
1

2
(x− b)2F ′′(b) + · · · . (4.15)

We can further assume that, to a first approximation, the two zeroes a1 and
a2 are located symmetrically around b and have therefore a distance d from
the extremum. This means:

F (b+ d) ≈ 0 und F (b− d) ≈ 0 .

Inserted into (4.15) this gives

0 ≈ F (b) +
1

2
(+d)2F ′′(b) 0 ≈ F (b) +

1

2
(−d)2F ′′(b) .

These two equations are equivalent and permit to estimate d as:

d = ±
√
√
√
√−2F (b)

F ′′(b)
. (4.16)

If we now start the Newton-Raphson iteration using b−d or b+d as starting
values, we can most of the times avoid convergence problems.

4.3.2 The program RTNEWT.

Source: [9],P. 257 f. with changes.
The subroutine RTNEWT (RooT NEWTon) finds a real zero within a

given interval through a Newton-Raphson iteration.

99

INPUT parameters:

X1,X2: Beginning and end of the interval where the zero lies.

JMAX: Maximum number of iterations.

XACC: Relative precision limit according to Eq.(4.11).

OUTPUT parameters:

RTNEWT: Approximate value of the solution.

ERROR: Error diagnostics:
ERROR = 0: Newton iteration OK.
ERROR = 1: No sign change in [X1,X2]
ERROR = 2: No convergence within JMAX

iterations.
ERROR = 3: ’Jumped out of brackets’ during

Newton.

Internal Variables:

FUNC,DF: F (x) and F ′(x). The function that calculates these quantities
must be called FUNC.

DX: Iteration correction.

Remarks:

• At the beginning, the program tries to understand whether (at least)
one of the two zeroes lies in the interval specified [X1,X2]. This is done
checking whether the function F (x) changes sign at least once.

• The formula for the relative error used in the program leads to conver-
gence problems if the zero of the function is found exactly in x = 0.0.

• The first ’emergency exit’ of the program RTNEWT (’jumped out of
brackets’) occurs if during the iterations the program jumps out of the
interval specified by the external program that calls the routine (see
Fig.4.6, left).

• The second ’emergency exit’ (’exceeding maximum iterations’) occurs
in case of a divergence or also of a too slow convergence, but also in
those special cases, in which the iteration gets caught in a loop (see
Fig.4.6, right).

100

Figure 4.6: Problems in the Newton-Raphson-Iteration.

Structure chart 14 — FUNCTION RTNEWT(X1,X2,JMAX,
XACC,ERROR)

X:=0.5*(X1+X2)

❩
❩
❩Y

(FUNC(X1,DF)*FUNC(X2,DF)) > 0.0
✚
✚
✚

N
ERROR:=1
RTNEWT:=X
print:ERR(1) ’no zero in interval’
(return)

......

ERROR:=2
J:=0

DX:=FUNC(X,DF)/DF
X:=X-DX

❩
❩
❩Y

(X1-X)*(X-X2) < 0.0
✚
✚
✚

N
ERROR:=3 ❩

❩
❩Y

|DX/X| < XACC
✚
✚
✚

N
ERROR:=0

......

J:=J+1

J>JMAX .or. ERROR 6=2

❩
❩
❩Y ERROR=2

✚
✚
✚

N

print: ’ERR(2): no convergence’
......

❩
❩
❩Y ERROR=3

✚
✚
✚

N

print: ’ERR(3): jumped out of brackets’
......

RTNEWT:=X

(return)

101

Figure 4.7: Gross search for zeroes.

4.3.3 A test program for RTNEWT.

In general, a function F (x) has more than one real zero. If we want to
find them,it is meaningful to combine the Newton-Raphson iteration with a
so-called ’gross search’.
The principle of this simple strategy is shown in Fig. 4.7: we perform a scan
of the x axis, using intervals of a fixed width h; in this scan, we look for a
sign change in F (x). If we find an interval with the property F (a0) · F (b0),
this means that the interval [a0, b0] contains at least one zero. The Newton
iteration can begin.
This ’gross search’ is also a part of the bissection method described in section
4.5.

We now show an example (in C):

#include <stdio.h>

#include <math.h>

double func(double x,double *df)

// This function calculates the function values as well as

// the values of the first derivative for the test example 5.3.3.

{

*df=4*pow(x,3)-27*pow(x,2)-4*x+120;

return pow(x,4)-9*pow(x,3)-2*pow(x,2)+120*x-130;

}

double rtnewt(double x1, double x2, int jmax, double xacc, int *error)

// This function calculates the real zeroes of the function ’fund’

// in the interval [x1,x2] with the relative precision ’xacc’.

// At the end of the calculation the variable ’error’ can take

// one of the following values:

// error=0 The Newton-Raphson iteration is ok.

// error=1 No sign change of the function ’funct’ in the

// intervall [x1,x2].

// error=2 No convergence within ’jmax’ iterations.

// error=3 During the iteration the value x jumps out

// of the interval [x1,x2].

102

{

int j,pause;

double x,df,dx;

x=0.5*(x1+x2);

if((func(x1,&df)*func(x2,&df)) > 0.0) {

*error=1;

printf("ERROR(1): no sign change in [x1,x2]\n");

return x;

}

*error=2;

j=0;

do {

dx=func(x,&df)/df;

x=x-dx;

if(((x1-x)*(x-x2))<0.0) *error=3;

else {

if(fabs(dx/x) < xacc) *error=0;

}

j++;

} while ((j<=jmax) && (*error==2));

if(*error==2)printf("ERROR(2): no convergence\n")

if(*error==3)printf("ERROR(3): x jumped out of [x1,x2]\n");

return x;

}

// ****** main program ******

void main()

{

int jmax,error,pause;

double a,b,hgrob,eps,xl,xr,yl,yr,df,zero;

// Parameters for the gross search:

a=-10.0; b=10.0; hgrob=0.5;

// Parameters for the Newton-Raphson iteration:

jmax=20;

eps=0.0000001;

103

printf("TEST: NEWTON-RAPHSON-ITERATION WITH GROSS SEARCH\n");

printf("\n Gross search interval: %7.3f to %7.3f\n",a,b);

printf(" Interval width for the gross search: %7.3f\n",hgrob);

printf(" Par. for Newton: rel. precision = %12.10f\n", eps);

printf(" max. Iter.step = %4i\n\n", jmax);

// Gross search:

xl=a;

yl=func(xl,&df);

xr=a+hgrob;

yr=func(xr,&df);

do {

if(yl*yr < 0.0) {

// Gross search found a sign change; Newton iteration starts:

zero=rtnewt(xl,xr,jmax,eps,&error);

if(error==0)

printf(" Zero = %9.6f\n",zero);

else printf(" error(%1i) in RTNEWT\n",error);

}

xl=xr;

yl=yr;

xr=xl+hgrob;

yr=func(xr,&df);

} while(xl <= b);

printf("\n End of the calculation\n");

}

TEST: NEWTON-RAPHSON ITERATION WITH GROSS SEARCH

Gross search interval: -10.000 to 10.000

Width of the interval for the gross search: 0.500

Par. for Newton: rel. precision = 0.0000001000

max. Iter.steps = 20

Zero = -3.600135

Zero = 1.228589

Zero = 3.972068

Zero = 7.399477

End of the calculation.

104

Figure 4.8: Graphical interpretation of the Regula Falsi.

4.4 The Regula Falsi.

This method, which is closely related to the Newton-Raphson method, is
often used when the calculation of the derivative of the function F (x) is
for some reason complicated. In this case the differential ratio in (4.13) is
replaced by the difference ratio:

xt+1 = xt − F (xt) ·
xt − xt−1

F (xt)− F (xt−1)
(4.17)

Graphically this means that the Newton’s tangent method is replaced by a
secant method (see Fig.4.8).

4.5 The bissection method.

In order to identify the real zeroes of the function F (x) in a given interval
[a, b], one carries out a gross localisation of the zeroes with a given interval
width h, starting from a.

Let us assume that the first zero lies in the interval [a0, b0] (see Fig.4.7).
This means that inside this interval the function F (x) changes sing, i.e. we
have:

F (a0) · F (b0) < 0 .

Once an interval with this property is identified, the actual intervalbissection
takes place. First of all, the interval [a0, b0] is divided into half:

x0 =
a0 + b0

2
.

There are now three possibilities:

1. F (x0) = 0: x0 is (exactly) the desired zero.
(This case will occur rarely due to the roundoff error in the evaluation
of the function).

2. F (a0) · F (x0) < 0 In this case the desired zero lies in the left half
interval [a0, x0].

105

3. F (a0) · F (x0) > 0 In this case the desired zero lies in the right half
interval [x0, b0].

In case (1) the zero is found; in the cases (2) and (3) the left or the right
half interval are further divided into half. This process is further iterated,
until the zero is determined with the required accuracy, i.e. until the current
interval width after t divisions ([at, bt]) is smaller than the precision with
which we wish to determine the zeroes.

We will now illustrate this simple algorithm with an example. We search the
zero of the function

F (x) = e−x − 1

2
,

which lies exactly in xexact = ln 2 = 0.6931472 . . . The interval identified
through a previous gross search is [a0, b0] = [0.5,1.0]. The interval bissection
proceeds as follows:

It is also important to stress that the method of bissection belongs to a class
of numerical methods, for which it is possible to estimate a priori the error
– at least the absolute one:

|xt − xexact| ≤
1

2
(bt − at) =

b0 − a0
2t+1

, (4.18)

where t is the number of times the interval is divided into half. This formula
signifies a disadvantage of this method, namely its slow convergence: in fact,
in order to increase absolute precision of the result by 10 %, we need to
perform 3.3 calculation steps (see section 4.5.2).

4.5.1 Problems with the bissection method.

In principle this method is very safe. If a zero is located in the interval [a0, b0],
it can be calculated with the desired accuracy (apart from roundoff errors).
There are however some small problems connected with the convergence of
this method.

106

Figure 4.9: Problems connected with the bissection method.

The only source of uncertainity lies in the choice of the interval width for
the gross search. The criterion: sign change = zero is not always void of
problems (see Fig. 4.9):

• In the example shown in the left panel of Fig.4.9, there is no sign
change between the two extrema of the interval, although there are
zeroes in-between. The same happens every time that the interval
[x1, x2] contains an even number of zeroes.

• In the example shown in Fig.4.9, right the sign change results from an
odd number of zeroes.

In both cases we have chosen a too large interval width h! This example
shows that h acts as a resolution limit for this method:

In general we can determine only those zeroes, which are separated by a
distance which is larger than the initial width h.

4.5.2 The program INTSCH.

Source: [2],P.281f with changes and simplifications.

INPUT parameters:

INIT,AEND: Beginning and end of the interval for the gross search.

H: Stepsize for the gross search.

PREC: Limit on the error (usually relative error; see remark).

NMAX: Maximum number of zeroes saved in the output array ZERO.

OUTPUT parameters:

ZERO(): Array that contains the calculated real zeroes.

N: Number of zeroes calculated by INTSCH.

107

Error diagnostics:
N=0: no zeroes found.
N=NMAX+1: more than NMAX zeroes found, but only the first NMAX
zeroes are saved in the array ZERO.

General remark:
The program presented in the following is simplified with respect to the
original one. In particular, the present implementation does not consider the
special case in which a zero lies exactly on one of the two extrema of the
interval.

Remark on the error estimate:
The program INTSCH usually performs a relative error estimate. Only if the
zero is very small (absolute value smaller than 10−8) the program switches
to an absolute error estimate.

Structure chart15 — INTSCH(INIT,AEND,H,PREC,NMAX,ZERO,N)

EPS:=1.e-8
N:=0
XL:=INIT
YL:=FCT(XL)

XR:=XL+H
YR:=FCT(XR)

❩
❩
❩Y YL*YR > 0.0

✚
✚
✚

N
XL:=XR
YL:=YR

N:=N+1

❩
❩
❩Y N > NMAX

✚
✚
✚

N
print:’too many
zeroes’
(return)

SPEICH:=XR
X:=(XL+XR)/2.0
Y:=FCT(X)

❩
❩
❩Y YL*Y < 0.0

✚
✚
✚

N
XR:=X
YR:=Y

XL:=X
YL:=Y

❩
❩
❩Y

| X| < EPS
✚
✚
✚

N
ERROR:=XR-XL ERROR:=(XR-XL)/| X|

ERROR < PREC

ZERO(N):=(XR+XL)/2.0
XL:=SPEICH
YL:=FCT(XL)

XL+H ≥ AEND

(return)

108

An example for INTSCH.

We wish to determine the real zeroes of the algebraic equation

F (x) = x4 − 9x3 − 2x2 + 120x− 130 = 0

in the interval –10.0 to +10.0 with a relative precision of PREC=10−7; the
interval width of the gross search is 0.5.

INTSCH returns the four following zeroes:

1 -3.600135

2 1.228589

3 3.972068

4 7.399477

This result we obtain obviously is exactly the same as the Newton iteration
(see section 4.3.3). However, it is interesting to compare the computational
cost of the two methods.
If we count the number of calls to the subroutine ’func’ in the Newton-
Raphson program, we obtain 66; the same analysis applied to the bissection
program returns 131 calls of ’fct’. However, since in the Newton method each
call of ’func’ actually means evaluating two functions, i.e. the function and
its first derivative, we can conclude that the computational cost of the two
programs is comparable.

This analysis however gives a wrong impression of the performance of the
Newton-Raphson method. A large part of the function calls to ’func’ occur
during the gross search, where the calculation of the first derivative is not
needed! It would therefore be more economical to define two independent
functions (i.e. ’func’ and ’dfunc’), that calculate respectively only the func-
tion and its first derivative.
If we proceed in this way, in the test problem we find 66 calls of ’func’ and
only 15 calls of ’dfunc’, i.e. a total of 81 function calls.

In conclusion: The more economical the initial gross search, the stronger
is the computational advantage of the Newton iteration compared to the
bissection method. Consider for example the first zero: it lies in the ’gross
search interval’ [-4.0, -3.5]. In the following you see the subsequent steps
needed to approximate the zero, with the Newton-Raphson method (left)
and with the bissection (right):

109

Newton-Raphson bissection:

-3.750000 -3.750000

-3.609011 -3.625000

-3.600169 -3.562500

-3.600135 -3.593750

-3.600135 -3.609375

-3.601562

-3.597656

-3.599609

-3.600586

-3.600098

-3.600342

-3.600220

-3.600159

-3.600128

-3.600143

-3.600136

-3.600132

-3.600134

-3.600135

-3.600135

-3.600135

-3.600135

An obvious advantage of the bissection method compared to the Newton-
Raphson method is that it does not require any calculation of the first deriva-
tive of F (x)! This advantage is also found in the Regula Falsi method which
has been briefly described in section 4.4.

4.5.3 An example from quantum mechanics.

In the following example we will calculate the energy eigenvalues of a one-
dimensional potential well:

We want to determine which values E are allowed for the energy of a
particle of mass m subject to a in a square potential well (see Fig..4.10):

V (x) =
0 für −∞ < x ≤ 0 Interval I
−V0 für 0 < x ≤ a Interval II
0 für a < x <∞ Interval III

We consider only values of E which correspond to bound states:

−V0 < E < 0

We thus have to solve a one-dimensional Schrödinger equation

− h̄2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x) .

110

Figure 4.10: The one-dimensional potential well.

In atomic units, i.e. lengths in Bohr and energies in Rydberg, h̄2/2m ≡ 1,
our differential equation reads:

ψ′′(x) + [E − V (x)]ψ(x) = 0

with the boundary conditions

ψ(+∞) → 0 und ψ(−∞) → 0 .

Ansatz for the solution:

• For the intervals I and III:

ψ′′(x) + E · ψ(x) = 0 → ψI(x) = AIe
√
−Ex +BIe

−
√
−Ex

ψIII(x) = AIIIe
√
−Ex +BIIIe

−
√
−Ex

The boundary conditions are satisfied only for BI = AIII = 0, and we
thus obtain:

ψI(x) = AIe
√
−Ex und ψIII(x) = BIIIe

−
√
−Ex (4.19)

• Interval II:

ψ′′(x) + [E + V0]ψ(x) = 0 →

ψII(x) = AII sin
(

x
√

E + V0

)

+BII cos
(

x
√

E + V0

)

(4.20)

Furthermore the solution has to satisfy the 4 matching conditions:

ψI(0) = ψII(0)

ψ′
I(0) = ψ′

II(0) (4.21)

ψII(a) = ψIII(a)

ψ′
II(a) = ψ′

III(a).

111

If we insert (4.19) and (4.20) into (4.21), we obtain a set of four linear,
homogeneous equations for the unknown coefficients AI , AII , BII and BIII ,
(with the substituion

√
E + V0 ≡ κ).

AI −BII = 0

AI

√
−E − AIIκ = 0

AII sin κa +BII cosκa− BIIIe
−
√
−Ea = 0

AIIκ cosκa− BIIκ sin κa+BIII

√
−Ee−

√
−Ea = 0

In matrix language this system has the form

1 0 −1 0√
−E −κ 0 0

0 sin κa cosκa −e−
√
−Ea

0 κ cosκa −κ sin κa
√
−Ee−

√
−Ea

︸ ︷︷ ︸

M(E)

AI

AII

BII

BIII

=

0
0
0
0

(4.22)

The solution of the system (4.22) is different from the zero vector, if the
determinant of the coefficient matrix M(E) vanishes, i.e. the particle energy
can have only those values, for which:

det(M(E)) = 0

Calculating the determinant analytically is trivial, and we obtain the expres-
sion:

det(M(E)) = −e−a
√
−E
[

(V0 + 2E) sin
(

a
√

E + V0

)

− 2
√

−E(E + V0) cos
(

a
√

E + V0

)]

Given that exp(−a
√
−E) is always positive, the energy eigenvalues of the

problem are the real solutions of the equation

F (E) = (V0 + 2E) sin
(

a
√

E + V0

)

− 2
√

−E(E + V0) cos
(

a
√

E + V0

)

We will now try to determine the zeroes of this expression for arbitrary values
of a and V0 using the bissection method. This method is well suited in the
present case, since in this way we can avoid calculating the derivative of
F (E).

Results for a potential well with a = 2 Bohr and V0 = 225 Rydbergs:

112

We obtain 10 energy values with the relative precision of 0.000001:

1 Energy [Ry] = -222.83185

2 Energy [Ry] = -216.33258

3 Energy [Ry] = -205.51910

4 Energy [Ry] = -190.42145

5 Energy [Ry] = -171.08820

6 Energy [Ry] = -147.59515

7 Energy [Ry] = -120.06418

8 Energy [Ry] = -88.70779

9 Energy [Ry] = -53.96208

10 Energy [Ry] = -17.15278

4.6 Non linear systems.

Problems of this form are discussed here only schematically, since, as we will
now show, they can be solved numerically using the thoroughly discussed
Gauss-Newton-Marquardt method.

If instead of a single equation F (x) = 0 we have a system of n non linear
equations with n unknowns x1,x2,. . ., xn, i.e.

F1(x1, x2, . . . , xn) = 0

.

.

Fk(x1, x2, . . . , xn) = 0 (4.23)

.

.

Fn(x1, x2, . . . , xn) = 0 ,

these equations can be simultaneously satisfied, only if:

S =
n∑

k=1

[Fk(x1, x2, . . . , xn)]
2 = 0

In this case therefore the zero we look for is the minimum of the sum S,
and we look for one or more vectors x that satisfy

S =
n∑

k=1

[Fk(x)]
2 → Minimum (4.24)

The problem (4.23) is thus recast into a special non-linear least-squares
problem, which can be solved with the Gauss-Newton-Marquardt method
explained in the previous chapter:

• We first linearize the model through a Taylor series expansion of the
functions Fk(x) around x = xo (”initial vector”):

Fk(x) = Fk(x
o) +

n∑

j=1

(

∂Fk(x)

∂xj

)

xo

· (xj − xoj) + · · · . (4.25)

113

We define:

dFk,j ≡
(

∂Fk(x)

∂xj

)

xo

und Fk ≡ Fk(x
o).

• We then insert the Taylor series expansions into (4.24) and calculate
the partial derivative of the sum with respect to the unknowns x1 to
xn:

S ≈
n∑

k=1

Fk +
n∑

j=1

dFk,j · (xj − xoj)

2

∂S

∂xl
= 2

n∑

k=1

Fk +
n∑

j=1

dFk,j · (xj − xoj)

 · Fk,l = 0

for all l = 1, . . . , n.

• From this we obtain the following linear system of equations for a iter-
ative improvement of the solutions:

A · (x− xo) = β with

A = [αij] αij =
n∑

k=1

dFk,i · dFk,j und βi = −
n∑

k=1

Fk · dFk,i

(4.26)

If we now compare the system (4.26) with the system (3.20), the close
relation between the two is evident. Furthermore, for the solution of
(4.26) it is advisable to use the ’Marquardt variant’, which ensures a
better convergence of the iteration.

114

4.6.1 An example.

We want to solve the system 1

x3 − 3xy2 − 1 = 0 y3 − 3x2y = 0

with the method described in section 4.6.

Exact Solutions:
(x = 1, y = 0) (x = −1/2, y =

√
3/2) (x = −1/2, y = −

√
3/2)

Numerical solution with the Gauss-Newton-Marquardt method:

.

absolute precision of the fitted value =.100000E-06

tmax = 50

guessed values: x(1) = -.2000000E+00

x(2) = -.5000000E+00

0 .740389E+00 -.200000E+00 -.500000E+00

*

*

*

*

*

1 .100543E+00 -.595187E+00 -.823118E+00

2 .374490E-02 -.513359E+00 -.850427E+00

3 .478015E-05 -.500104E+00 -.865304E+00

4 .227994E-09 -.500000E+00 -.866020E+00

5 .543610E-15 -.500000E+00 -.866025E+00

6 .543610E-15 -.500000E+00 -.866025E+00

Results through MRQMIN and MRQCOF:

=====================================

x(1) = -.50000E+00 (exact: -0.5000000)

x(2) = -.86603E+00 (exact: -0.8660254)

Remark: As it is customary in iterative methods in the application of non
linear problems, which of the three solutions is obtained depends on the
starting value of the GNM process. With the starting values chosen above
one obtains the third solution.

In order to obtain the first solution we could use, for example, x(1)=–
1.0 and x(2)=0.0 as starting values; for the second solution, x(1)=–1.0 und
x(2)=1.0.

1from: F. Stummel, K. Hainer, Praktische Mathematik, Teubner Studienbücher,
Stuttgart 1971.

115

Chapter 5

Eigenvalues and Eigenvectors of
real matrices

5.1 Introduction: general and regular eigen-

value problems.

In chapter 2 we have considered inhomogeneous problems of the form:

A · x = f A: real matrix

In the following, we will treat homogeneous problems, i.e. problems for which
f is the zero vector:

A · x = 0 (5.1)

According to theory, we have to distinguish two cases:

• The determinant of the matrix of coefficients A is different from zero:
in this case the solution x is the zero vector.

• The determinant of A is zero: in this case, apart from the trivial so-
lution x = 0, there is also a non-trivial one x 6= 0. For example, the
homogeneous system:

1 2 3
−1 13 2
0 3 1

x1
x2
x3

 = 0

admits the non-trivial solution x = (−7,−1,+3). It is clear that this
solution is defined only up to a multiplicative constant c: in fact, every
vector c · x is still a solution of the system.

In the following, however, we do not want to consider systems of type
(5.1). In fact, the most important systems for practical applications are
homogeneous systems of the type

A(λ) · x = 0 with A(λ) = [aij(λ)] , (5.2)

in which the elements of the matrix A depend on a variable λ.
The solutions of (5.2) are:

116

• the trivial solution x = 0.

• non-trivial solutions x1,x2, . . ., when λ assumes one of the values
λ1, λ2, . . ., for which the matrix A is singular.

The condition for non-trivial solutions is thus:

det[A(λ)] = 0 (5.3)

The (complex) solutions of equation (5.3), λ1, λ2, . . . , and the corresponding
vectors x1,x2, . . . are the eigenvalues and eigenvectors of the system (5.2).
The determination of the eigenvalues and eigenvectors of (5.2) is called the
solution of the generalized eigenvalue problem. Usually, there is essentially
only one possibility to solve this kind of problems, i.e. determine the roots
of eq. (5.3) numerically. This requires calculating many determinants and,
therefore, this method is numerically very expensive.

A very important sub-case of the generalized eigenvalue problem (5.2) is
that of regular eigenvalue problems, with

A(λ) = A0 − λ · I I ... Identity matrix , (5.4)

Note that the matrix A0 does not depend on λ! These problems admit more
efficient methods of solution.

For regular eigenvalue problems

(A0 − λI)x = 0 i.e. A0 x = λx (5.5)

the condition for non-trivial solution reads:

det(A0 − λI) = 0 . (5.6)

In the following, we will consider only regular eigenvalue problems, and, for
brevity, omit the subscript 0 in A0.

The evaluation of (5.6) leads to a n-th degree polynomial in λ, where n
is the order of the linear system (5.5). This polynomial is called the charac-
teristic polynomial of the matrix A:

det(A− λI) ≡ Pn(λ) = λn +
n∑

i=1

piλ
n−i (5.7)

The p1, . . . , pn are the (real) coefficients of the characteristic polynomial. This
polynomial has exactly n (not necessarily different) zeroes, which are either
real or complex-conjugate. Due to (5.6), the n zeroes are the eigenvalues
of the matrix A. From this it immediately follows that the characteristic
polynomial has multiple zeroes, i.e. that it holds:

Pn(λ) = 0 for λ : λ1, λ2, . . . , λk = λk+1, . . . = λk+q−1, λk+q, . . . , λn .

The eigenvalue λk is q times degenerate.

According to (5.5), we can associate an eigenvector xi to each eigenvalue λi.

117

5.1.1 Eigenvalues and eigenvectors of matrix with spe-
cial forms

Just like in the case of inhomogeneous linear systems, also for eigenvalue
problems the concrete form of A plays an important role. In particular:

• A real matrix A is called symmetrical, if

A = AT ,

where AT is the transpose of matrix A, with components

(ai,j)
T = aj,i.

• A complex matrix A is called hermitian if:

A = A† ,

where A† is the hermitian conjugate matrix of A with components

(ai,j)
† = a∗j,i.

All the eigenvalues of a symmetricalor hermitian matrix are real.

• A real matrix A is called orthogonal, if:

AAT = I i. e. AT = A−1 ,

where I is the identity matrix.

• A complex matrix A is called unitary if

AA† = I i. e. A† = A−1 .

• A real or complex matrix is called normal, if it commutes with its
transpose or hermitian conjugate:

AAT = AT A or AA† = A†A .

It is obvious that both symmetrical and hermitian matrices are normal
matrices.

A very important question is also to know whether a given matrix is diago-
nalizable.
Diagonalizable means that there exists a non-singular matrix U which can
transform A into a diagonal matrix D:

U−1AU = D . (5.8)

This type of transformation is a similarity operation, which does not change
the spectrum of the matrix; this means that:

Eigenvalues of D = Eigenvalues of A .

118

• Since the eigenvalue problem of D is easy to solve (the eigenvalues di-
agonal elements of D), the diagonalisation operation (5.8) is equivalent
to the determination of the eigenvalues of A:

λi = dii . (5.9)

• We can easily show that the column vectors of U coincide with the
eigenvectors of A:

We multiply the transformation (5.8) from left by U , and obtain:

U · U−1AU = U ·D and

A · U = U ·D . (5.10)

The matrix U can also be represented as a system of n column vectors:

U =

u11 u12 · · · u1n
u21 u22 · · · u2n
. . .
. . .
un1 un2 · · · unn

≡ (u1,u2, . . . ,un) .

The component-by-component evaluation of the right side of (5.10)
gives:

(UD)ij =
n∑

l=1

uildlj = uijdjj = λjuij .

The matrix UD can also be written in terms of vectors using (5.9):

UD ≡ (λ1u1, λ2u2, . . . , λnun) .

We can thus rewrite (5.10) as:

A · (u1,u2, . . . ,un) = (λ1u1, λ2u2, . . . , λnun) .

i.e. each column vector uj satisfies the eigenvalue condition, and we
can write: The j-th column of the transformation matrix U represents
the j-th eigenvector of the original matrix A.

In summary: If we are able to find the transformation matrix U we are able
to solve the eigenvalue problem for the matrix A!

Which matrices are diagonalizable?

• All those matrices whose eigenvectors form linearly independent system.

• In particular it is possible to show that the eigenvectors of normal
matrices have this property. Furthermore, the eigenvalues of these
matrices are also orthonormal, i.e. they obey the relation

xi · x∗
j = δi,j .

119

Since the eigenvectors of A are the column vectors of the transformation
matrix U , it follows:

U UT = I and U U † = I ,

i.e. the matrices U are orthogonal and unitary.

Normal matrices have the following important property:
Normal matrices can be reduced into diagonal form through an orthogonal
and unitary transformation:

UT AU = D and U †AU = D . (5.11)

5.2 Numerical solution of regular eigenvalue

problems

5.2.1 General Considerations

The numerical solution of regular eigenvalue problem is a sub-field of nu-
merical mathematics of extraordinary importance. Over the years, several
very specialised methods have been developed. In order to choose the most
suitable method for a given problem, the user must therefore know exactly
in advance what his requirements are.

In the following I will illustrate the basic ideas of the most important ap-
proaches using example of simple, yet effective, methods. A long and ex-
haustive review of all possible methods is outside the scope of this lecture.

In the following we will restrict our analysis to real matrices and describe:

• the method of von Mises (method of vector iteration);

• the method of Jacobi;

• the application of the Hyman method to Hessenberg matrices.

5.3 The method of von Mises

This iterative method returns the eigenvalue which has the largest (or, as we
will see in the following, the smallest) absolute value for a given real matrix
A. 1

In order to apply this method we require that the matrix A is diagonalizable
(i.e. its eigenvectors must form a linearly independent system) and possesses
one dominant eigenvalue:

| λ1 |>| λ2 |≥| λ3 |≥ . . . ≥| λn−1 |>| λn | . (5.12)

1In the following, for brevity we will always talk about smallest and largest eigenvalue,
meaning the eigenvalue with the smallest of largest absolute value.

120

If the eigenvectors of A are linearly independent, each other vector v(0), with
the exception of the zero vector, can be expressed as a linear combination of
the eigenvectors:

v(0) =
n∑

i=1

αixi with | α1 | + | α2 | + . . .+ | αn |6= 0 .

We then choose v(0) as the starting vector for the following iteration:2

- v(0) is multiplied from left with the matrix A:

A · v(0) ≡ v(1) =
n∑

i=1

αiAxi =
n∑

i=1

αiλixi ,

where the last identity follows from the eigenvalue equation (5.5).
- Now the vector v(1) is multiplied itself from left with matrix A (continued
vector multiplication)

A · v(1) ≡ v(2) =
n∑

i=1

αiλiAxi =
n∑

i=1

αiλ
2
ixi .

Repeating these steps we obtain a sequence of vectors v(0), v(1), . . ., v(t),

v(t+1), . . . with

v(t) =
n∑

i=1

αiλ
t
ixi (t = 0, 1, . . .) . (5.13)

Now if (5.12) holds, with further iterations the first terms of the sum in (5.13)
will become more and more dominant as the powers of λ increases. For not
small values of t it is thus a good approximation to write:

v(t) ≈ α1λ
t
1x1 and v(t+1) ≈ α1λ

t+1
1 x1 . (5.14)

The above equations are vector equations, i.e. they have to be satisfied for
each of the lth components. We have thus:

v
(t+1)
l

v
(t)
l

≈ λ1 for all l = 1, 2, . . . , n . (5.15)

This means that, if the iteration converges, the ratio between the same com-
ponent of two subsequent vectors tends to the largest eigenvalue:

lim
t→∞

v
(t+1)
l

v
(t)
l

→ λ1 . (5.16)

Therefore it follows from (5.14) that:

lim
t→∞

v(t) → prop. x1 . (5.17)

In principle we could choose an arbitrary l to evaluate equation (5.15). How-

ever, we cannot a priori exclude that during the iteration one of the v
(t)
l

2see however sect. 6.3.5.

121

becomes extremely small, or even zero. In order to avoid this, instead of
(5.15) we evaluate the expression

1

n′
∑

µ

v(t+1)
µ

v
(t)
µ

≈ λ1 , (5.18)

where we sum over all indices µ, for which:

|v(t)µ | > ǫ . (5.19)

n′ is the number of terms in the sum which satisfy this condition.

5.3.1 The calculation of the smallest eigenvector

of a real matrix is for many practical application more interesting than that
of the largest eigenvalue. The method of von Mises can be applied also to
this problem.

Starting from the eigenvalue equation (5.5)

A · xi = λi · xi

we multiply by the matrix inverse of A, A−1 and obtain:

xi = λi · A−1xi .

The eigenvalue equation for the inverse matrix reads therefore

A−1 · xi =
1

λi
· xi . (5.20)

This means:

• The eigenvalues of a matrix A−1 are simply the inverse of the eigenval-
ues of A.

• The matrices A−1 and A have the same eigenvectors.

Since the inverse of the smallest eigenvectors of A are obviously the largest
eigenvalues of A−1, in order to determine the smallest possible eigenvalue of
A we have to apply the von Mises method to the its inverse.

There is also an alternative way to obtain the smallest eigenvalue with the
von Mises iteration. For this we again construct the same iteration procedure,
but use the inverse of A:

v(t+1) = A−1 v(t) .

We then multiply this equation from left by A, and obtain

Av(t+1) = v(t) . (5.21)

This can be interpreted as a linear system of equations with matrix of co-
efficients A, inhomogeneous vector v(t) and the solution v(t+1). If we apply

122

the LU decomposition, explained in chapter 2, to determine the solution of
this system, we only need to compute the LU decomposition of A only once,
(before the beginning of the Mises iteration), and after this use only the pro-
gram LUBKSB for the following steps of the iteration.
In this way we obtain a series of vectors with the property

lim
t→∞

v
(t)
l

v
(t+1)
l

= λn , (5.22)

where λn is the smallest eigenvector of A.

5.3.2 Improvement of the convergence through spec-

tral shift

Also without mathematical proof it is immediately evident that the conver-
gence of the iteration (5.22) will be better the larger the ratio

1

λn
/

1

λn−1

=
λn−1

λn
.

This can be exploited as follows:

Let us assume we know that λ0 is a good approximation for the smallest
eigenvalue λn. If instead of A we consider the matrix

A′ = A− λ0 I ,

all eigenvalues will be shifted by λ0. The same holds for the eigenvalues λn−1

and λn, and
λn−1 − λ0
λn − λ0

>
λn−1

λn
.

Therefore we expect that the limiting value

lim
t→∞

v
(t)
l

v
(t+1)
l

+ λ0 = λn (5.23)

will rapidly converge to the value (5.22).

The considerations in sections 6.3.1 and 6.3.2 are realised in the program
MISES.

5.3.3 The program MISES

Source: [2], P.94f, program P. 331 f with modifications.

The program MISES calculates the smallest eigenvalue and the corre-
sponding eigenvector of a real matrix (including the spectral shift).

INPUT parameters:

A(,): Real matrix whose smallest eigenvalue we want to determine.

123

N: Order of the matrix.

TMAX: Maximum number of iterations.

PREC: Relative precision of the eigenvalue.

V(): Initial vector 6= zero vector.

EIGW0: Estimate of the smallest eigenvalue.

OUTPUT parameters:

EIGW: Approximation for the smallest eigenvalue.

V(): Normalised eigenvector corresponding to the eigenvalue λ1.

ERROR: Logical error variable: TRUE if convergence is not reached in
TMAX iteration, FALSE otherwise.

INTERNAL parameters:

W: Auxiliary vector.

EPS: Constant, see Eq. (5.19).

Routines employed:

The program MISES requires the routines NORM, LUDCMP and LUBKSB
(see chapter 2).

124

Structure chart 21 — MISES(A,N,TMAX,PREC,V,EIGW0,EIGW,ERROR)

EPS:=1.0E-6
ERROR:=TRUE
EIGALT:=0.0

I=1(1)N

A(I,I):=A(I,I) - EIGW0

LUDCMP(A,N,INDX,D,KHAD)

T:=0

NORM(V,N)

LUBKSB(A,N,INDX,V,W)

SUM:=0.0
N1:=0

I=1(1)N

❩
❩
❩Y

| W(I)| > EPS
✚
✚
✚

N

SUM:=SUM + V(I)/W(I)
N1:=N1 + 1

......

EIGW:=SUM/N1

EIGW:=EIGW + EIGW0

❩
❩
❩Y

|(EIGW-EIGALT)/EIGW| < PREC
✚
✚
✚

N
ERROR:=FALSE I=1(1)N

V(I):=W(I)

EIGALT:=EIGW

T:=T+1

T ≥ TMAX .or. notERROR

❩
❩
❩Y ERROR

✚
✚
✚

N
print ’MISES1 no convergence’ NORM(V,N)

(return)

125

Structure chart 21a — NORM(V,N)

SUM:=0.0

I=1(1)N

SUM:=SUM + V(I)*V(I)

SUM:=SQRT(SUM)

❩
❩
❩Y

SUM 6= 0.0
✚
✚
✚

N

I=1(1)N

V(I):=V(I)/SUM

print ’NORM zero vector’

(return)

5.3.4 Von Mises method: Tests and problems.

With the following examples we wish to illustrate how stable the program
MISES is.

The tests start with the 4x4 matrix

3.8000 1.8000 -2.0000 -0.6000

5.4000 6.2000 -7.2000 -1.0000

2.0000 2.4000 -2.0000 0.0000

1.8000 1.0000 0.0000 1.0000

We wish to evaluate the smallest eigenvalue and the corresponding eigenvec-
tor. The exact result reads

λ4 = 0.6 and x4 =
1√
23

1
−3
−2
3

=

0.2085144
−0.6255432
−0.4170288
0.6255432

.

We now want to show how the spectral shift (see section 6.3.3) works. The
first test worked without this technique, i.e. the starting (guess) value for λ4
is set to zero:

.

MISES-test: n = 4 rel. prec. = 1.0000000000E-06

Estimate value for EW = 0.000000

Matrix and initial vector:

126

3.8000 1.8000 -2.0000 -0.6000 1.0000

5.4000 6.2000 -7.2000 -1.0000 1.0000

2.0000 2.4000 -2.0000 0.0000 1.0000

1.8000 1.0000 0.0000 1.0000 1.0000

Smallest eigenvalue after 20 iterations = 0.600000

Eigenvector:

1 -0.208514

2 0.625543

3 0.417029

4 -0.625543

If we now take as guess value λ0 = 0.5, the program MISES1 returns:

MISES test: n = 4 rel. prec. = 1.0000000000E-06

Estimate for EW = 0.500000

Matrix and initial vector:

3.8000 1.8000 -2.0000 -0.6000 1.0000

5.4000 6.2000 -7.2000 -1.0000 1.0000

2.0000 2.4000 -2.0000 0.0000 1.0000

1.8000 1.0000 0.0000 1.0000 1.0000

Smallest eigenvalue after 8 iterations = 0.600000

Eigenvector:

1 -0.208514

2 0.625543

3 0.417029

4 -0.625543

Note:
As you can see, MISES1 does not return the eigenvector predicted by theory,
but the same eigenvector times (–1). Is there an error in the program?

Finally, one more test for MISES on the 3x3 matrix

1.0000 0.0000 -1.0000

1.0000 2.0000 1.0000

-2.0000 -2.0000 2.0000

127

with the two eigenvalues λ1 and λ2. The third (and smallest) eigenvalue and
its eigenvector read:

λ3 = 1.0 and x3 =
1√
2

1
−1
0

 =

0.7071068
−0.7071068
0.0000000

 .

.

MISES test: n = 3 rel. prec. = 1.0000000000E-06

Estimate for EW = 0.000000

Matrix und initial vector:

1.0000 0.0000 -1.0000 1.0000

1.0000 2.0000 1.0000 0.0000

-2.0000 -2.0000 2.0000 0.0000

smallest eigenvalue after 24 iterations = 1.000000

Eigenvector:

1 0.707107

2 -0.707107

3 0.000000

128

5.4 The method of Jacobi

This method permits to solve the full eigenvalue problem for symmetrical
matrices.
Let us consider a real matrix

A = [aij] with aij = aji .

It is a general property of real symmetrical matrices to have only real eigen-
values.

The Jacobi method is based on an orthogonal transformation of the matrix
A into a diagonal matrix D (see Chap. 6.1.1):

UT · A · U = D (5.24)

As already extensively discussed, once the matrix U is known, the eigenvalue
problem for A is completely solved:

• The diagonal elements of D are the eingenvalues of A:

λi = dii (i = 1, . . . , n) .

• The columns of the transformation matrix U are the eigenvectors of A
(up to a renormalization factor).

5.4.1 An iterative approximation for the tranforma-

tion matrix U

We now have the problem of finding the transformation matrix U . In the Ja-
cobi method the transformation (5.24) is approximated by a sequence of simi-
larity operations. Obviously the transformation matrices Ut (t = 0, 1, 2, . . .)
have to be orthogonal.

Instead of (5.24) we have:
UT
0 AU0 ≡ A(1)

UT
1 A

(1)U1 ≡ A(2) = UT
1 U

T
0 AU0U1

.

.

UT
t A

(t)Ut ≡ A(t+1) = UT
t U

T
t−1 · · ·UT

0 AU0 · · ·Ut−1Ut ,

where the single transformations have to be chosen so that the the sequence
of matrices converges to:

lim
t→∞

A(t) → D

lim
t→∞

U0U1 · · ·Ut−1Ut → U

The matrices Ut used in the Jacobi method have the general form of a or-
thogonal rotation matrices.

. (5.25)

129

As we immediately see, Ut is specified by three conditions:
i and j indicate the rows and columns of the matrix for which the rotation
matrix differs from the identity matrix. ϕ is the rotation angle. It is easy to
show that U(i, j, ϕ) is always orthogonal, independently of the arguments,
i.e.

UT
t (i, j, ϕ) · Ut(i, j, ϕ) = I

Before discussing the optimal choice of the parameters i, j, ϕ for each itera-
tion, we analyse in detail the transformation:

UT (it−1, jt−1, ϕt−1) · A(t−1) · U(it−1, jt−1, ϕt−1) → A(t) (5.26)

If we rewrite it component by component we obtain the following expression:

a
(t)
kl =

n∑

m=1

n∑

m′=1

umkum′la
(t−1)
mm′ . (5.27)

As easily seen in the above equation, the matrix A(t−1) retains its symmetry
during the transformation; therefore we have

a
(t)
kl = a

(t)
lk .

We now evaluate (5.27), for k and l which are are neither i or j. Under
these conditions the components of the rotation matrix (5.25) are ’Kronecker
deltas’, and we obtain

a
(t)
kl =

n∑

m=1

n∑

m′=1

δmkδm′la
(t−1)
mm′ = a

(t−1)
kl .

In summary: The transformation leaves all the components of A which do
not contain the index i or j unchanged.

The missing components of the i-th and j-th row and column can be deter-
mined from (5.27):

l = i k = 1, . . . , n with k 6= i, j :

a
(t)
ki = a

(t)
ik = a

(t−1)
ki cosϕ+ a

(t−1)
kj sinϕ (5.28)

l = j k = 1, . . . , n with k 6= i, j :

a
(t)
kj = a

(t)
jk = a

(t−1)
kj cosϕ− a

(t−1)
ki sinϕ (5.29)

130

Finally for the components:

a
(t)
ii a

(t)
jj a

(t)
ij = a

(t)
ji .

the transformations read:

a
(t)
ii = a

(t−1)
ii cos2 ϕ+ 2a

(t−1)
ij cosϕ sinϕ+ a

(t−1)
jj sin2 ϕ (5.30)

a
(t)
jj = a

(t−1)
jj cos2 ϕ− 2a

(t−1)
ij cosϕ sinϕ+ a

(t−1)
ii sin2 ϕ (5.31)

a
(t)
ij = a

(t−1)
ij (cos2 ϕ− sin2 ϕ) + (a

(t−1)
jj − a

(t−1)
ii) cosϕ sinϕ (5.32)

5.4.2 Choice of the parameters i, j and ϕ.

The aim of each of the orthogonal transformations applied to the matrix A
is that of bringing the the corresponding matrices

A(1), A(2), . . . , A(t−1), A(t), A(t+1), . . .

closer and closer to a diagonal form, through iterations.

A good measure for the convergence clearly the the sum S of the squares
of the non-diagonal elements of the matrix

S(t) = 2
n−1∑

m=1

n∑

m′=m+1

(

a
(t)
mm′

)2
.

This means that if during a Jacobi iteration we perform the transformation

UT
t−1 · A(t−1) · Ut−1 → A(t)

we can consider it succesful if we have

S(t−1) > S(t) ,

where S(t−1) and S(t) are the sums of the squares of the non-diagonal elements
of the matrices A(t−1) and A(t).

Without proof: It is possible to show that the difference between S(t−1) and

S(t) is given by

S(t−1) − S(t) = 2
[(

a
(t−1)
ij

)2
−
(

a
(t)
ij

)2
]

(5.33)

i.e. it is given only by the matrix elements aij before and after the transfor-
mation.

131

The equation (5.33) suggests what the best strategy for the choice of the free
parameters i, j und ϕ at a given iteration:
The decrease of S is stronger,

• if the absolute value of a
(t−1)
ij is as large as possible

• if the transformation reduces a
(t)
ij to zero.

Choosing i and j as the indexes of the largest off-diagonal elements of A
before each iteration 3, the second condition can be satisfied through an
appropriate choice of the rotation angle ϕ. Setting (5.32) to zero we obtain:
4

tan 2ϕ =
2a

(t−1)
ij

a
(t−1)
ii − a

(t−1)
jj

. (5.34)

For a
(t−1)
ii = a

(t−1)
jj the rotation angle is:

ϕ =
π

4
.

If now before each iteration we choose the parameters of the rotation matrix
(5.25) as discussed above, we obtain a monotonous decrease of S

S(0) > S(1) > S(2) > · · · > S(t) > · · ·

and this guarantees a faster approach to the required diagonal form.

Furthermore we still have to calculate the matrices which result from the
product of the single transformation matrices:

B(t−1) = U0U1U2 · · ·Ut−2Ut−1 , (5.35)

since this matrix contains approximately the eigenvectors of the matrix A,
which we wish to determine. Once more it is possible to show that the mul-
tiplication of B with a rotation matrix Ut(i, j, ϕ) changes only the elements
on the i-th and j-th column of B:

(

B(t−1)Ut(i, j, ϕ)
)

k,i
= bki cosϕ+ bkj sinϕ (5.36)

(

B(t−1)Ut(i, j, ϕ)
)

k,j
= bkj cosϕ− bki sinϕ (5.37)

for k = 1, . . . , n.

3Indeed, finding the largest off-diagonal element before each matrix transformation is
very time consuming. For this reason, most programs employ a simplified method, see
sect. 6.4.3

4A variant of this method for C programs is discussed in Sect. 6.4.4

132

5.4.3 The program JACOBI.

The program JACOBI solves the full eigenvalue problem of a real, symmetric
matrix.

INPUT parameters:

A(,): the components of a real, symmetrical matrix. Since the program
JACOBI is formulated in such a way that it requires always only the
matrix elements on and above the main diagonal, the program which
calls JACOBI needs to provide only these elements.

N: Rows and columns of the matrix.

TMAX: maximum number of calculation steps.

OUTPUT parameters:

A(,): Approximation for a diagonal matrix with the same eigenvalue spec-
trum as the original matrix A. The diagonal elements of this matrix
are approximate values for the eigenvalues.

EIGVEC(,): This matrix contains the eigenvectors of A, i.e. the j-th
column of EIGVEC is the j-th eigenvector of A.

Structure chart 22 — JACOBI(A,N,TMAX,EIGVEC)

PI=3.14159265
EPS:=1.e-8

I=1(1)N

J=1(1)N

❩
❩
❩Y I = J

✚
✚
✚

N

EIGVEC(I,I):=1.0 EIGVEC(I,J):=0.0

133

Structure chart 23 — (Continuation)

T:=0

T:=T+1

SUM:=0.0

I=1(1)N-1

J=I+1(1)N

SUM:=SUM+2.0*A(I,J)*A(I,J)

IF(SUM=0.0) ===> (return)

LIMIT:=SQRT(SUM)/N/N

I=1(1)N-1

J=I+1(1)N

❩
❩
❩Y

| A(I,J) | > LIMIT
✚
✚
✚

N

DEN:=A(I,I)–A(J,J)

❩
❩
❩Y

| DEN/A(I,J) | < EPS
✚
✚
✚

N

PHI:=PI/4.0 PHI:=0.5*ATAN(2.0*A(I,J)
/DEN)

SINUS:=SIN(PHI)
COSIN:=COS(PHI)

K=I+1(1)J-1

SAV:=A(I,K)
A(I,K):=COSIN*A(I,K)+SINUS*A(K,J)
A(K,J):=COSIN*A(K,J)–SINUS*SAV

K=J+1(1)N

SAV:=A(I,K)
A(I,K):=COSIN*A(I,K)+SINUS*A(J,K)
A(J,K):=COSIN*A(J,K)–SINUS*SAV

K=1(1)I-1

SAV:=A(K,I)
A(K,I):=COSIN*A(K,I)+SINUS*A(K,J)
A(K,J):=COSIN*A(K,J)–SINUS*SAV

SAV:=A(I,I)
A(I,I):=COSIN**2*A(I,I)+2.0*COSIN*SINUS*A(I,J)+SINUS**2*A(J,J)
A(J,J):=COSIN**2*A(J,J)–
2.0*COSIN*SINUS*A(I,J)+SINUS**2*SAV
A(I,J):=0.0

K=1(1)N

SAV:=EIGVEC(K,J)
EIGVEC(K,J):=COSIN*EIGVEC(K,J)–SINUS*EIGVEC(K,I)
EIGVEC(K,I):=COSIN*EIGVEC(K,I)+SINUS*SAV

......

T > TMAX

print ’JACOBI convergence not reached’
(return)

134

Structure of the program:

1. After the definition of the constant PI and of the pseudozero EPS=10−8

an identity matrix is stored into the array EIGVEC.

2. UNTIL loop for the (maximum) number of steps TMAX:

• Determination of the sum of the squares of the non-diagonal ma-
trix elements and of the threshold LIMIT.

• Check whether the sum is zero.

The convergence of the Jacobi method is most of the times so
good that one can push the calculation up to the ’underflow’ of
SUM. The above query for the exact zero works only, if the system
interterprets an underflow as zero!

If SUM=0.0, return to the main program.

If SUM>0.0, the matrix transformation according to (5.28 - 5.32)
are performed with respect to all off-diagonal elements with abso-
lute values larger than LIMIT.

• Ater each transformation the matrix EIGVEC is multiplied by the
orthogonal matrix Ut used in this iteration. (5.36 and 5.37).

3. If after TMAX calculation steps SUM is still larger than zero, JACOBI
returns an ERROR message and returns to the main program.

5.4.4 Variant of the JACOBI algorithm in C.

In programs written in FORTRAN,PASCAL etc the calculation of the ideal
rotation angle can be performed using Eq. (5.34).
In program languages which do not have an Arctangent function built in,
such as for example C, the calculation of cosϕ and sinϕ can be carried out
in the following way (for a mathematical derivation see [10], P. 464f):

.

g=100*fabs(a[i][j]);

if(fabs(a[i][j]) > limit) {

h=a[i][i]-a[j][j];

// This if statement prevents an overflow of theta*theta in the following

// statement.

if(fabs(h)+g == fabs(h)) tfac=a[i][j]/h;

else {

theta=h/2.0/a[i][j];

tfac=1.0/(fabs(theta)+sqrt(1.0+theta*theta));

if(theta<0.0)tfac=-tfac;

}

cosin=1.0/sqrt(tfac*tfac+1.0);

sinus=tfac*cosin;

135

5.4.5 Two tests for JACOBI.

First Example:

.

Matrix: 5.000 4.000 1.000 1.000

4.000 5.000 1.000 1.000

1.000 1.000 4.000 2.000

1.000 1.000 2.000 4.000

exact solution:

Eigenvalue: Eigenvector:

10 (2,2,1,1)/sqrt(10) = (0.6324555, 0.6324555, 0.3162278, 0.3162278)

1 (-1,1,0,0)/sqrt(2) = (-0.7071068, 0.7071068, 0.0, 0.0)

5 (-1,-1,2,2)/sqrt(10) = (-0.3162278, -0.3162278, 0.6324555, 0.6324555)

2 (0,0,-1,1)/sqrt(2) = (0.0, 0.0, -0.7071068, 0.7071068)

Jacobi-Solution:

Eigenvalue: Eigenvector:

10.000000 0.632456 0.632456 0.316228 0.316228

1.000000 -0.707107 0.707107 -0.000000 -0.000000

5.000000 -0.316228 -0.316228 0.632456 0.632456

2.000000 -0.000000 -0.000000 -0.707107 0.707107

Second Example:

.

Matrix: 6.000 4.000 4.000 1.000

4.000 6.000 1.000 4.000

4.000 1.000 6.000 4.000

1.000 4.000 4.000 6.000

exact solution:

Eigenvalue: Eigenvector:

15 0.5 0.5 0.5 0.5

-1 0.5 -0.5 -0.5 0.5

5 -0.5 0.5 -0.5 0.5

5 -0.5 -0.5 0.5 0.5

Jacobi Solution:

Eigenvalue: Eigenvector:

15.000000 0.500000 0.500000 0.500000 0.500000

-1.000000 -0.500000 0.500000 0.500000 -0.500000

5.000000 0.226248 -0.669934 0.669934 -0.226248

5.000000 -0.669934 -0.226248 0.226248 0.669934

136

Two further remarks on these results:

1. The normalized eigenvectors, obviously, are defined only up to a (multi-
plicative) constant (–1). Therefore, the fact that the program JACOBI
returns the eigenvector corresponding to the eigenvalue -1 with the
opposite sign is not an ERROR!

2. The effect of the non-uniqueness of the eigenvectors is even stronger in
case of degenerate eigenvalues. In the case of the two times degenerate
eigenvalue 5, shown above, this means that each linear combination of
the two eigenvectors returned by JACOBI is still an eigenvector with
eigenvalue 5. You can easily convince yourself that it is possible to
find a linear combination of the two vectors (−0.5, 0.5,−0.5, 0.5) and
(−0.5,−0.5, 0.5, 0.5) which corresponds to the eigenvectors found by
JACOBI.

5.4.6 An application for the program JACOBI.

Let us consider a system of n point masses mi, i = 1, . . . , n coupled by
springs:

We will make the following assumptions:

• The restoring forces are so large, i.e. the masses so small, that the the
gravitational force can be neglected.

• The oscillation amplitudes are small compared to the distance between
the particles at rest.

In the following, a is the distance between two point masses at rest; si is the
instantaneous displacement of the masses from their equilibrium position. We
assume that the forces between the masses are proportional to their distance –
harmonic approximation. The factor of proportionality between the distance
and the force, the force constant D, is given in cgs-units (dyn/cm).

If such a system is put into oscillation and left alone, for each mass we can
write an equation of the form

mis̈i +D(a− si−1 + si)−D(a− si + si+1) = 0

137

Here, mi is the mass of the i-th particle and si(t), si−1(t), si+1(t) are the
instanteneous elongations of the i-th point and of its left and right neighbours.
In the end, we obtain a system of n coupled ordinary differential equations
of second order:

m1s̈1 + 2Ds1 −Ds2 = 0

mis̈i −Dsi−1 + 2Dsi −Dsi+1 = 0 i = 2, 3, . . . , n− 1 (5.38)

mns̈n −Dsn−1 + 2Dsn = 0

If we restrict ourselves to small elongations, the system (5.38) can be reduced
to a homogeneous, linear system. With the ansatz:

si(t) =
bi√
mi

· eiωt

we have:
(
2D

m1
− ω2

)

b1 −
D√
m1m2

b2 = 0

− D
√
mimi−1

bi−1 +
(
2D

mi

− ω2
)

bi −
D

√
mimi+1

bi+1 = 0 (i = 2, 3, . . . , n)

− D
√
mnmn−1

bn−1 +
(
2D

mn
− ω2

)

bn = 0

which can be written as a regular eigenvalue problem:

. (5.39)

with ω2 = λ. The (real) eigenvalues of the above symmetrical, tridiagonal
matrix are thus the squares of the eigenfrequencies of the oscillating system
(smallest frequency= zero harmonics plus n− 1 over-tunes).

138

Test example "spring pendulum" for Jacobi:

=======================================

Spring constant [dyn/cm] = 25.000

5 masses:

m1 = 3 g m2 = 6 g m3 = 9 g m4 = 2 g m5 = 6 g

JACOBI returns the following result:

nr lambda(1/s/s) Frequency(1/s)

1 19.858498 4.456287

2 1.135214 1.065464 (ground oscillation)

3 5.525477 2.350633

4 29.036367 5.388540

5 8.333333 2.886751

5.4.7 Extended symmetrical eigenvalue problems

Many interesting problems in the field of technical physics cannot be repre-
sented as an eigenvalue problem of the type (5.5), but rather as a homoge-
neous linear system of equation of the type:

(A− λS)x = 0 (5.40)

where A is a symmetrical matrix and S is also a symmetrical matrix, which
is also positive definite (in some physical applications S is called a structure
matrix).

How can we now reduce the extended eigenvalue problem (5.40) to the form

(A′ − λI)x = 0?

It is apparently very easy to answer this question. If we multiply eq. (5.40)
from left by the inverse of S, we obtain

(

S−1A− λI
)

x = 0

with the new matrix of coefficients A′ = S−1A.

Unfortunately, this simple way to treat the problem is not very useful in prac-
tice, because the new matrix of coefficients has lost the important property
of being symmetric, i.e.:

A′
i,j =

n∑

k=1

s−1
i,k ak,j

is in general not identical to:

A′
j,i =

n∑

k=1

s−1
j,k ak,i .

139

A better, albeit more complicated, method to reformulate the problem is the
following:

The starting point is the so-called Cholesky decomposition of the symmetrical,
definite positive matrix S:

S = LLT (5.41)

Please note that this decomposition is very similar the LU decomposition
described in chapter 2 (2.4). The difference is that in the present case a
symmetrical, definite positive matrix is represented as a product between a
lower triangular matrix L and the upper triangular matrix LT , which is its
transpose about the main diagonal.

If we carry out the Cholesky decomposition, the rest of the procedure is
relatively straightforward: inserting Eq. (5.41) in the extended eigenvalue
equation (5.40) gives

(

A− λLLT
)

x = 0 .

If we now take the matrix LT out of the parenthesis (from right), we have:

(

A(LT)−1 − λL
) (

LT x
)

= 0

and

L−1A(LT)−1

︸ ︷︷ ︸

C

−λI

(

LTx
)

= 0

i.e.5

(C − λE)y = 0 with C = L−1A
(

L−1
)T

and y = LTx . (5.42)

The eigenvalues of the matrix C are identical to the eigenvalues of A in Eq.
(5.40), and it is also easy to show that this matrix is symmetrical.

From the eigenvectors y of the system (5.42) it is possible to determine the
eigenvectors x of Eq. (5.40) through

x =
(

L−1
)T

y (5.43)

The formulas which permit to carry out the Cholesky decomposition numeri-
cally can be easily derived. We start from the representation of Eq.(5.41) by
components:

si,j =
n∑

k=1

ℓikℓjk =
j
∑

k=1

ℓikℓjk .

The calculation of sij is carried out column by column (index j), with the
condition i ≤ j, due to the triangular form of L.

5Here we employed the identity
(
L
T
)
−1

=
(
L
−1
)T

.

140

For the first column (j = 1) we immediately obtain

s11 = ℓ211 → ℓ11 =
√
s11

and
si1 = ℓi1ℓ11 → ℓi1 =

si1
ℓ11

for i = 2, . . . , n .

Similarly we obtain for the second column (j = 2)

s22 = ℓ221 + ℓ222 → ℓ22 =
√

s22 − ℓ221

and

si2 = ℓi1ℓ21 + ℓi2ℓ22 → ℓi2 =
si2 − ℓi1ℓ21

ℓ22
for i = 3, . . . , n .

From these equations we can arrive, without further work, to the general
Cholesky formulas:

ℓjj =

√
√
√
√sjj −

j−1
∑

t=1

ℓ2jt ,

ℓi,j =
sij −

∑j−1
t=1 ℓitℓjt
ℓjj

for (i = j + 1, . . . , n) (5.44)

Two more remarks on these equations:

• Clearly, problems will occur if the argument of the square root becomes
zero or negative during the Cholesky calculation. This can however be
excluded a priori if the matrix S is definite positive. In the program,
before each calculation of the square root, we have to check whether

sjj −
j−1
∑

t=1

ℓ2jt

 > 0 .

If this is not the case, the matrix S is not definite positive and the
calculation must be interrupted!

• An analysis of the equations (5.44) shows that the sij values needed
to calculate the ℓij are used only once in the course of the calculation:
this gives the possibility to store the values of the L matrix (column by
column) on the memory locations occupied by the S matrix. A similar
procedure to save space is used in the program LUDCMP.
Disadvantage: the original S matrix is lost in this way.

141

5.4.8 The program CHOLESKY.

The numerical implementation of the equation (5.44) is described in the
following structure chart nr. 23 CHOLESKY. To be precise, in the first
(smaller) part of this program. The second part of CHOLESKY performs
the numerical calculation of the new matrix C according to Eq. (5.42). The
corresponding part of the algorithm in the structure chart 23 is taken from
the Algol program reduc1 of Martin und Wilkinson6 I have to confess that
so far I had no time to derive this algorithm from Eq.(5.42).

INPUT parameters:

N: Rows and columns of the matrices A and S.

A(,): Components of a real, symmetrical matrix.

S(,): Components of a real, symmtrical,
definite positive matrix.

OUTPUT parameters:

S(,): Components of the tridiagonal matrix L.

A(,): Components of the symmetrical matrix C.

ERROR: ERRORdiagnostics: ERROR=0 no ERROR occurred
ERROR=1 Attention:
Input Matrix S is not definite positive.

6Martin and Wilkinson, Num. Math. 11, 99 (1968); Handbook for Autom. Computing,
vol. II, p. 303 (1971).

142

Structure chart 23 — CHOLESKY(N,A,S,ERROR)

ERROR:=0

I=1(1)N

J=I(1)N

X:=S(I,J)

K=1(1)I-1

X:=X-S(I,K)*S(J,K)

❩
❩
❩Y

J 6= I
✚
✚
✚

N

S(J,I):=X/Y
❩
❩
❩Y

X ≤ 0.0
✚
✚
✚

N
ERROR:=1
print ’Matrix S not def.pos.’
(return)

......

Y:=SQRT(X)
S(I,I):=Y

Note: End of the Cholesky Decomposition.

Note: Now the calculation of the matrix C starts (Attention: overwritten on A):

I=1(1)N

Y:=B(I,I)

J=I(1)N

X:=A(I,J)

K=1(1)I-1

X:=X-S(I,K)*A(J,K)

A(J,I):=X/Y

J=1(1)N

I=J(1)N

X:=A(I,J)

K=J(1)I-1

X:=X-A(K,J)*S(I,K)

K=1(1)J-1

X:=X-A(J,K)*S(I,K)

A(I,J):=X/S(I,I)

I=1(1)N-1

J=I+1(1)N

A(I,J):=A(J,I)
S(I,J):=0.0

143

TEST EXAMPLE:

=============

Numerical Solution of the extended eigenvalue problem:

[A - lambda . B] x = 0

Matrix A (symmetrical)

5.0000 4.0000 1.0000 1.0000

4.0000 5.0000 1.0000 1.0000

1.0000 1.0000 4.0000 2.0000

1.0000 1.0000 2.0000 4.0000

Matrix B (symmetrical and definite positive):

5.0000 7.0000 6.0000 5.0000

7.0000 10.0000 8.0000 7.0000

6.0000 8.0000 10.0000 9.0000

5.0000 7.0000 9.0000 10.0000

The program CHOLESKY extracts from the original matrices

A and B through the Cholesky-decomposition of B:

B = L . L^T

the matrix

C = L^(-1) . A . (L^(-1))^T

The lower triangular matrix L is:

2.2361 0.0000 0.0000 0.0000

3.1305 0.4472 0.0000 0.0000

2.6833 -0.8944 1.4142 0.0000

2.2361 -0.0000 2.1213 0.7071

This marix C is symmetrical and has the same

eigenvalues as the original extended eigenvalue problem:

1.0000 -3.0000 -3.4785 7.9057

-3.0000 18.0000 16.4438 -41.1096

-3.4785 16.4438 18.0000 -43.0000

7.9057 -41.1096 -43.0000 110.0000

At this point, using the Jacobi prorgram it is possible to determine

the 4 eigenvalues of the matrix C.

These are: 0.2623 2.3078 1.1530 143.2769

144

5.4.9 ’More advanced programs’

The Jacobi method works in principle extremely well for all real symmetrical
matrices. Furthermore most professional libraries offer even more performant
programs which are clearly faster for matrices of higher order (> 20)7.
The basic idea of these programs is a two-step method:

1. The symmetrical matrix A is reduced to an easier form, using a final
(i.e. non-iterative) method. This is typically a tridiagonal symmetrical
form. The Householder algorithm is often used for this.

2. The eigenvectors and eigenvalues of A are calculated from this tridiag-
onal matrix using the so-called QR- or QL- algorithms.

The Householder, QR and QL methods cannot be discussed in detail in this
lecture. A very good and compact description of the theory and of the
corresponding programs RED2 (Householder) und TQLI (QL-Algorithmus)
can be found in in [9] and [10].

5.5 Eigenvalues of generic real matrices

This problem is treated in numerical analysis in the same way as that of
symmetrical matrices, i.e. with a two-step method. First the matrix A is
recast in an easier form through a non-iterative algorithm (see below), and
then the eigenvalues of this matrix are calculated.

The basic idea is based on the following statement from matrix theory:
Every matrix can be reduced into a upper Hessnberg form (UHF) using a
non-iterative similarity transformation.

and

In an upper-Hessenberg matrix all the components of the matrix below the
first lower diagonal are zero.

5.5.1 Transformation of a matrix into an upper-
Hessenberg form.

The transformation of a general real matrix into an UHF employs an algo-
rithm which is similar to the gaussian elimination (see chapter 2, LU decom-
position), but with the important difference that in this case each transfor-
mation of the matrix must be a similarity operation. In the following we will
briefly explain the algorithm:

Let us assume that we want to reduce a 7x7 matrix into the UHF, and that
the algorithm has already performed part of the necessary work, reducing

7An interesting detail: for a long time, the renowned library LAPACK did not include
any Jacobi routine, until the following paragraph appeared in the User’s Guide of 1995, P.
18: In the future LAPACK will include routines based on the Jacobi algorithm ..., which
are slower than the above routines (QR etc) but can be significantly more accurate.

145

Figure 5.1: Reduction of a general matrix into theupper Hessenberg form.

the first three columns of the matrix into an upper-Hessenberg form. The
matrix now looks like this:

x x x x x x x

x x x x x x x

0 x x x x x x

0 0 x x x x x

0 0 0 a x x x

0 0 0 b x x x

0 0 0 c x x x

In the following we want to reduce the fourth column into UHF, i.e. the
last two values of this column must me equal to zero. We can obtain this
multiplyinng the third to last row of the matrix by the factors (b/a) and
(c/a) and summing this to the last and second before last row.
As you may remember from the LU decomposition, described in chapter 2,
in these cases the multiplication factor must be as small as possible: this can
be achieved using pivoting, i.e. exchanging the relevant rows (in the present
case, those which contain a, b and c), so that the largest element between
a,b and c occupies the position of ’a’.
There is an important difference between the method we are discussing here
and the LU-decomposition. In order to ensure that the transformation of
the matrix A into UHF is a similarity operation, each time an operation is
performed on the rows of A, an analogous operation must be performed also
on its columns. This applies, in particular, to the exchange of two rows in
the pivoting and to the addition of rows to get the Hessenberg zeroes.

5.5.2 The program ELMHES.

The program ELMHES reduces a generic real matrix into a the corresponding
’Upper-Hessenberg-Matrix’.

146

Source: [9], P. 752; [10], P. 485f.

INPUT parameters:

A(,): Components of a real matrix.

N: Number of rows and columns of the matrix.

OUTPUT parameters:

A(,): ’Upper-Hessenberg-Matrix’ with the same eigenvalues as the original
matrix.

ERROR: TRUE if the order of the matrix is smaller than 3, FALSE oth-
erwise.

147

Struktogramm 24 — ELMHES(A,N,ERROR)

❩
❩
❩Y N < 3

✚
✚
✚

N
ERROR:=TRUE
print ’ELMHES order of
the matrix < 3’

ERROR:=FALSE

M=2(1)N-1

X:=0.0
I:=M

J=M(1)N

❩
❩
❩Y

| A(J,M-1)| > | X |
✚
✚
✚

N

X:=A(J,M-1)
I:=J

......

❩
❩
❩Y

I 6= M
✚
✚
✚

N

J=M-1(1)N

Y:=A(I,J)
A(I,J):=A(M,J)
A(M,J):=Y

J=1(1)N

Y:=A(J,I)
A(J,I):=A(J,M)
A(J,M):=Y

......

❩
❩
❩Y

X 6= 0.0
✚
✚
✚

N

I=M+1(1)N

Y:=A(I,M-1)

❩
❩
❩Y

Y 6= 0.0
✚
✚
✚

N

Y:=Y/X
A(I,M-1):=Y

J=M(1)N

A(I,J):=A(I,J) - Y*A(M,J)

J=1(1)N

A(J,M):=A(J,M) - Y*A(J,I)

......

......

(return)

5.5.3 Determination of the eigenvalues of a matrix in
UHF.

In order to calculate the real and complex-conjugate eigenvalues of a real
Upper-Hessenberg Matrix we can employ the QR algorithm of Sect. 6.4.9.
An example of such a program can be found in Numerical Recipes (Theory

148

and FORTRAN program in [9], P. 374ff; PASCAL programm i [9], theory
and C Program in [10], P. 486ff.

If one just wants to obtain the real eigenvalues and eigenvectors of a matrix
in UHF there is also a method which is much easier than the QR.

As shown in Sect. 6.1 the eigenvalues of a matrix coincide with the zeroes of
its characteristic polynomial

Pn(λ) = λn +
n∑

i=1

pi λ
n−i .

There are several algorithms which permit to calculate the coefficients pi of
such a polynomial. Once the pi are known, the zeroes of the polynomial can
be found using a program for the search of zeroes. This method is however
very cumbersome and also prone to roundoff ERRORs and therefore it’s little
used in practice.
In case of an upper Hessenberg matrix one can however estimate the char-
acteristic polynomial without knowing explicitely its coefficients; this will be
explained in the next section.

5.5.4 The method of Hyman.

Hyman was able to prove that for Hessenberg matrices the polynomial Pn(λ)
has the form:

Pn(λ) = (−1)n+1 · a21a32 · · ·an,n−1 ·H(λ).

Obviously the zeroes of the polynomial coincide with the zeroes of the func-
tion H(λ). The values of the function H(λ) are given by the following simple
linear system of equations, which is also well conditioned numerically:

(A− λ · I)

x1
x2
.
.
.

xn−1

1

= H(λ)

1
0
.
.
.
.
0

. (5.45)

Here A is the given Hessenberg matrix and (x1, x2, . . . , xn−1, 1) is an auxiliary
vector.

Simple algebra shows that the n−1 unknown coefficients of the vector x can
be estimated from the following relations:

xn = 1

xi =
1

ai+1,i

[

λ xi+1 −
n−i−1∑

l=0

ai+1,n−lxn−l

]

i = n−1, n−2, . . . , 2, 1. (5.46)

149

From the first equation of (5.45) it follows:

H(λ) =
n∑

i=1

a1,ixi − λx1 . (5.47)

In this way the calculation of the functional values of H(λ) can be very
efficiently combined with an efficient program for the search of zeroes (for
example INTSCH, see Chapter 5).

The function HYMAN

INPUT PARAMETERS

UHM: Real upper Hessenberg matrix

N: Rows and columns of the matrix

LAM: Argument of the function (λ)

Structure chart 25 — FUNCTION HYMAN(UHM,N,LAM)

X(N):=1.0

I=N-1(-1)1

SUM:= LAM*X(I+1)

L=0(1)N-I-1

SUM:=SUM - UHM(I+1,N-L)*X(N-L)

X(I):= SUM/UHM(I+1,I)

SUM:=-LAM*X(1)

I=1(1)N

SUM:=SUM + UHM(1,I)*X(I)

HYMAN:=SUM

(return)

A test example

Reducing the original matrix in UHF through ELMHES, and using this ma-
trix as an input for HYMAN, we obtain the values of of the function H(λ).
The zeroes of this curve are the (real) eigenvalues of the matrix. In order to
find these zeroes numerically we have to combine the programs ELMHES,
HYMAN and INTSCH appropriately.

150

Figure 5.2: The Hyman function H(λ) for the 4x4-Matrix in page 207.

Fig. 5.2 shows the function H(λ) for the 4x4 matrix of page 207. The four
eigenvalues are: 0.6, 1.2, 2.4 and 4.8.

5.5.5 Eigenvalues of tridiagonal matrices.

The Hyman’s method can be particularly easily applied to tridiagonal ma-
trices of the form

i.e. to matrices which can be specified through three diagonal vectors a, b
and c. We obtain through (5.46) and (5.47) the following relations

xn = 1

xn−1 = − 1

an
(bn − λ)

xn−2 = − 1

an−1
(cn−1 − λxn−1 + bn−1xn−1)

xi−1 = − 1

ai
((bi − λ)xi + cixi+1) i = n− 2, n− 1, . . . , 3, 2

H(λ) = (b1 − λ)x1 + c1x2 . (5.48)

We now show an example (in C) for the numerical calculation of the real
eigenvalues of a general, real tridiagonal matrix:

Program Structure in C

151

.

#include <stdio.h>

#include <math.h>

#include "nrutil.c"

int n;

double *a,*b,*c;

double hymtri(double lam)

// This routine permits to calculate the ’Hyman function’

// for tridiagonal matrices through eq. (6.43).

// The size of the matrix (n) and the vectors a, b and c

// are defined globally

{

int i;

double x1,x2,x;

if(n <= 2) {

printf("Order too small\n");

return 0.0;

}

else {

x2=-(b[n]-lam)/a[n];

x1=-((b[n-1]-lam)*x2 + c[n-1])/a[n-1];

for(i=n-2;i>1;i--){

x= -((b[i]-lam)*x1 + c[i]*x2)/a[i];

x2=x1;

x1=x;

}

return (b[1]-lam)*x1 + c[1]*x2;

}

}

#include "intsch.c"

/*********************** main program *******************/

void main()

{

int nmax=100;

double *zeroes;

152

.

.

n=....; //Size of the matrix

a=dvector(1,n);

b=dvector(1,n);

c=dvector(1,n);

zeroes=dvector(1,n);

// The vectors a b c of the tridiagonal matrix are read in:

.

.

// Eingabe der INTSCH-Parameter:

ainit=....; // Begin of the gross search interval

aend=....; // End of the gross search interval

h=....; // Stepsize in the gross search interval

gen=....; // rel. precision of the eigenvalues

intsch(&hymtri,ainit,aend,h,gen,nmax,zeroes,&n);

// Output of the zeroes = Eigenvalues of the tridiagonal matrix

.

.

free_dvector(a,1,n);

free_dvector(b,1,n);

free_dvector(c,1,n);

free_dvector(zeroes,1,n);

}

Remark: The program for the search of zero INTSCH is explained in detail
in section 4.5.2. The call to INTSCH in the above program contains one
extra parameter, i.e. the actual name of the function whose zeroes have to
be found by INTSCH. In this specific case this is the ’Hyman function’ for
tridiagonal matrices, called ’hymtri’.
The possibility of passing the names of the routines as parameters is offered
by many programming languages (C, F90, Matlab...).

For example, if you use C, you should write the headline of INTSCH as
follows:

void intsch(double (*fct)(double),double ainit, double aend, double h,

double gen, int nmax, double zeroes[], int *n)

Furthermore, every time you call the function in INTSCH you have to do it
as follows:

153

instead of ... fct(x) (*fct)(x) ...

154

Chapter 6

Numerical methods for
ordinary differential equations:
initial value problems.

6.1 General considerations.

Finding the roots of differential equations is one of the most important prob-
lems of numerical mathematics. There are two main reasons:

• Although there is a large variety of analytical methods for the solu-
tion of differential equations, it is often so difficult to find the solution
that this route is not convenient. With this, we wish by no means to
downplay the importance of analytical methods. In fact, in this lec-
ture we follow the motto of the numerics book of Dorn/McCracken [7]
’Numerical methods are no excuse for poor analysis’.

• Many differential equations do not admit a solution that can be rep-
resented in a closed analytical form. This is for example true for the
seemingly ’innocent’ differential equation:

y′(x) = x2 + y(x)2!

However, in these cases a numerical solution is still possible.

In this chapter we will consider explicit differential equations, i.e. those that
can be solved for the highest possible derivative. We will therefore not treat
differential equations of the type:

y′(x) + log y′(x) = 1

Furthermore, the methods presented in the following are limited to first order
differential equations (or systems thereof). However, this limitation is not
severe, since higher-order explicit differential equations can always be recast
into a system of first order differential equations.
In fact, the differential equation of nth order

y(n) = F (x; y, y′, y′′, . . . , y(n−1))

155

is equivalent to the system:

y′1 = y2 ≡ f1(x)
y′2 = y3 ≡ f2(x)
.
.
.
y′n−1 = yn ≡ fn−1(x)
y′n = F (x; y1, y2, . . . , yn) ≡ fn(x)

If we rewrite y′i, yi und fi as components of a vector this system can be
rewritten in the form

y′(x) = f(x;y). (6.1)

Numerical methods for approximate solution of differential equations ob-
viously do not return a function with all the integration constants, but calcu-
late point by point the solutions specified by appropriate boundary conditions.
In this chapter we will treat only initial value problems, i.e. those for which
the boundary conditions are specified by the behaviour of the solution y(x)
in a point x = xo. A fully specified initial value problem has therefore the
form

y′(x) = f(x;y), with y(xo) = yo . (6.2)

6.2 Expansion of the solution in Taylor series.

The starting point for all further considerations is the expansion of the i-th
solution of the system (6.2) in a power series:

yi(x) =
p
∑

ν=0

(x− xo)
ν

ν!

[

dν

dxν
yi(x)

]

xo,yo

+Ri (6.3)

with the Lagrange remainder

Ri =
(x− xo)

p+1

(p+ 1)!

[

dp+1

dxp+1
yi(x)

]

x=ξ

xo ≤ ξ ≤ x . (6.4)

The aim of all the following methods is to find an approximate value for the
yi’s in xo + h, starting from a starting point x0. p is called the order of the
method:

ŷi(xo + h) =
p
∑

ν=0

hν

ν!

[

dν

dxν
yi(x)

]

xo,yo

. (6.5)

Remark: Here and in the following ŷ indicates the approximate value of y.

6.3 Euler’s method.

The oldest approximate method to numerically solve differential equations
goes under the name of Leonhard Euler. In this first order method (p=1)
the expansion (6.5) is truncated right after the second term, yielding:

ŷi(xo + h) = yi(xo) + h · y′(x) |x=xo
= yi(xo) + h · fi(xo,yo) (6.6)

156

Figure 6.1: Geometrical interpretation of Euler’s method.

The geometrical interpretation of this formula is quite simple: the exact
solution yi(x) is approximated by its tangent in xo (see Fig. 6.1).
It is clear that Euler’s method can give meaningful results only for very small
values of the step size (h).

6.4 Runge-Kutta Methods.

Runge-Kutta methods are among the most popular numerical methods for
initial value problems. In fact, they are well suited for computers and in many
cases can give results with high precision at an acceptable computational cost.
The biggest disadvantage - as we will show - of the Runge-Kutta methods is
that it is quite difficult to make a reliable error estimate (see section 6.4.5).

Runge-Kutta methods are characterised by the three following properties:

• They derive from a Taylor series expansion of the solution, truncated
after the hp term. p is called the order of the Runge-Kutta method.

• They belong to the class of one-step methods, i.e. in order to calculate
the function in the point x+ h it is enough to know the information in
the previous point x.

• In order to calculate the approximate value of yi(x) one needs to know
only the value of the functions fi(x,y), but not their derivatives! This
is a big practical advantage over Taylor series expansions.

From these three characteristics of the Runge-Kutta methods it follows:

Euler’s method is a Runge-Kutta method of first order.

6.4.1 Second-order Runge-Kutta methods.

We will now show how to derive second order Runge-Kutta formulas. For
the sake of simplicity, we will consider a ’differential system’ which consists
of the single equation

y′(x) = f(x, y)

157

with the initial condition
y(xo) = yo.

The starting point for a Runge-Kutta formula of second order is the ansatz

ŷ(xo + h) = yo + h · (c1g1 + c2g2) . (6.7)

In (6.7) g1 and g2 represent values of the function f(x, y), and in particular

g1 = f(xo, yo)
g2 = f(xo + a2h, yo + b2,1hg1)

(6.8)

c1, c2, a2 and b2,1 are the Runge-Kutta coefficients. These coefficients have
to be chosen so that the ansatz above coincides (approximately) with the
Taylor series expansion for p = 2.

ŷ(xo + h) = yo + h · f(xo, yo) +
h2

2
[fx + f · fy]xo,yo

(6.9)

In order to satisfy this relation, we expand g2 (6.8) in h = 0 in powers of h
and truncate the expansion after the linear term:

g2(h) = g2(h = 0) + h ·
[

d

dh
g2(h)

]

h=0

(6.10)

= f(xo, yo) + h · [fx(xo, yo) · a2 + f(xo, yo) · fy(xo, yo) · b2,1]

If we now insert (6.10) with g1 = f(xo, yo) in the Runge-Kutta ansatz (6.7),
we obtain:

ŷ(xo + h) = yo + h · c1 · f(xo, yo) + h · c2 · f(xo, yo) + (6.11)

+h2 · c2 · a2 · fx(xo, yo) + h2 · c2 · b2,1 · f(xo, yo) · fy(xo, y0) .

Setting (6.9) equal to (6.11) and equating the coefficients, we obtain the fol-
lowing non-linear set of equations for the Runge-Kutta coefficients of second
order:

c1 + c2 = 1

c2 · a2 =
1

2
(6.12)

c2 · b2,1 =
1

2

Notice that this system is underdetermined: we have only three equations for
four coefficients! One of the four coefficients is not fixed, and can be chosen
arbitrarily. As a consequence, there is no unique definition of a second-order
Runge-Kutta method. Indeed, there are infinitely many possible choices for
the coefficients, and it is left only to the ability of the user to choose one of
them, so that the remaining three values are as simple as possible.

Two examples:

158

• With the choice c1 = 0 one obtains for

c2 = 1 a2 =
1

2
und b2,1 =

1

2
.

The Runge-Kutta formula which results from (6.7)

ŷ(xo + h) = yo + h · f(xo +
h

2
, yo +

h

2
f(xo, yo)) (6.13)

is called the modified Euler method.

• With the choice c1 = 1/2 one obtains

c2 =
1

2
a2 = 1 b2,1 = 1 .

The corresponding solution

ŷ(xo + h) = yo + h
{
1

2
f(xo, yo) +

1

2
f [xo + h, yo + hf(xo, yo)]

}

(6.14)

is called the improved Euler’s method.

A graphical interpretation of these two approximate formulas is sketched in
Fig.6.2.

• Modified Euler’s formula: The solution is approximated by a straight
line through (xo, yo) with the slope of y(x) in the middle point of the
interval [xo, xo + h].

• Improved Euler’s formula. The solution is approximated by a straight
line through (xo, yo), whose slope is the arithmetical average between
y′(xo) und ŷ

′(xo + h).

In Figure 6.3 the Runge-Kutta formulas described so far – (6.6), (6.13) and
(6.14) – are applied to the simple example

y′(x) = ex y(0) = 0.

The exact solution is
y(x) = ex − 1 ,

and we wish to find ŷ(1).
From Fig. 6.3 it is clear that the two second order Runge-Kutta methods
are much better than the first order Euler’s method.
However, it would be wrong to conclude that the ’modified Euler’s formula’
is a better approximation than the ’improved Euler’s formula’, based on this
particular example. There are in fact other examples in which the situation
is exactly the opposite!

All Runge-Kutta formulas of the same order are in principle equally good!

159

Figure 6.2: Graphical interpretation of the ’modified Euler’s formula’ (left)
and of the ’improved Euler’s formula’ (right).

Figure 6.3: A test for first and second order Runge-Kutta methods.

160

6.4.2 Higher-order Runge-Kutta methods.

For differential systems of n equations the general Runge-Kutta ansatz of
p-th order holds:

ŷi(xo + h) = yi,o + h ·
p
∑

j=1

cjgi,j (6.15)

with
gi,1 = fi(xo; y1,o, y2,o, . . . , yn,o) (6.16)

and

gi,j = fi(xo + ajh; y1,o + h
j−1
∑

ℓ=1

bj,ℓg1,ℓ, . . . ,

yn,o + h
j−1
∑

ℓ=1

bj,ℓgn,ℓ) (6.17)

with i = 1, . . . , n and j = 1, . . . , p.
[(6.17) ist clearly a recursion formula: For the calculation of gi,j we need to
know all previous g-values gk,ℓ, ℓ = 1, . . . , j − 1 and k = 1, . . . , n.]

161

The Runge-Kutta ansatz (6.15) requires exactly (p2 + 3p− 2)/2 coefficients,
i.e.

• the p coefficients c1, . . . , cp ,

• the p− 1 coefficients a2, . . . , ap and

• the p(p− 1)/2 coefficients b2,1, . . . , bp,p−1 .

For improved clarity these numbers are usually represented in a diagram of
this form:

The calculation of all coefficients works in principle exacly as illustrated for
the case p = 2. If p is large, however, this can be quite demanding (see
for example [19]). Also for p > 2, one finds an underdetermined set of
equations for the coefficients, which leads to an infinite manifold of Runge-
Kutta formulas.

Obviously, for practical uses one does not need to derive all coefficients
from scratch, but can resort to the many ready-to-use formulas available in
literature. A collection of Runge-Kutta formulas of order 1-8 can be found,
for example, in [2], P. 215-217.

Nowadays, the two formulas which are most used in practice are fourth-order
Runge-Kutta methods, namely

the 3/8 formula: the ’classical’

Runge-Kutta-formula:

162

The program presented in section 6.5 employs the classical Runge-Kutta for-
mula. The explicit expression of the solution reads in this case:

ŷi(xo + h) = yi,o + h
[
1

6
gi,1 +

1

3
gi,2 +

1

3
gi,3 +

1

6
gi,4

]

(6.18)

with

gi,1 = fi(xo; y1,o, . . . , yn,o)

gi,2 = fi(xo +
h

2
; y1,o +

h

2
g1,1, . . . , yn,o +

h

2
gn,1) (6.19)

gi,3 = fi(xo +
h

2
; y1,o +

h

2
g1,2, . . . , yn,o +

h

2
gn,2)

gi,4 = fi(xo + h; y1,o + hg1,3, . . . , yn,o + hgn,3)

and i = 1, . . . , n. As one can see, since the coefficients b3,1, b4,1 and b4,2 are
zero, the sums in (6.17) reduce to a single term.

Remark: The classical Runge-Kutta method, applied to the example at page
127, would give an error of 0.034%.

6.4.3 Use of Runge-Kutta formulas:

The formulas (6.18) and (6.19) permit to compute the approximate value of
a function in x = xo + h, starting from known initial values yi,o in x = xo.

Let us imagine, however, that we wish to calculate the approximate value
of the function not only for a single point x1 = xo + h, but also for other
values of the abscissas · · ·x4 > x3 > x2 > x1! This means that we have to
apply the Runge-Kutta method not only once, but several times one after
each other. We thus want to move away from a starting point xo ”step by
step”:

ŷi(xo + h) ≡ ŷi,1 = yi,o + h
p
∑

j=1

cjgi,j(xo; y1,o, . . . , yn,o)

ŷi(xo + 2h) ≡ ŷi,2 = ŷi,1 + h
p
∑

j=1

cjgi,j(xo + h; ŷ1,1, . . . , ŷn,1)

There is an obvious difference between the first and all further Runge-Kutta
moves. In fact, all x/y values on the right hand side of the first equation
are initial values for the problem, and thus are known exactly. In all other
equations, the x/y are instead approximate values!

6.4.4 An example: quality problem.

We now assume to have at our disposal a program RUNGETEST that can
solve the initial value problem (6.2) using the formulas (6.18) and (6.19).
The stepsize h, decided by the user, is constant in the whole Runge-Kutta
process.

163

Figure 6.4: Trajectory of an earth satellite.

We wish to assess the performance of RUNGETEST on a non-trivial problem:
the calculation of the trajectory of an satellite orbiting around the earth (see
Fig.6.4).

Definition of the Problem:

A satellite is set into motion starting from the surface of the earth, with
a tangential velocity vmax. We wish to calculate its trajectory under the
following ideal assumptions:

• vmax < escape velocity.

• The earth is an ideal, homogeneous sphere with radius rmin.

• The influence of the atmosphere is negligible.

• The influence of other celestial bodies is also negligible.

Under these assumptions the equation of motion of the satellite reads

r̈ = −γM
r3

r (6.20)

with γ = 6.67 · 10−11 m3/kgs2 (gravitational constant) and
M = 5.977 · 1024 kg (mass of the earth). r is the radius vector connecting
the center of the earth with the instantaneous position of the satellite.
Equation (6.20) can be rewritten as a set of two second-order differential
equations for (1) the distance r and (2) the angle of rotation ϕ:

r̈ = rϕ̇2 − γM

r2

ϕ̈ = −2ṙϕ̇

r
(6.21)

If we now set
r → y1 ϕ→ y2 ṙ → y3 ϕ̇→ y4 ,

164

we obtain the following system of 4 first-order differential equations:

ẏ1 = y3 y1(t = 0) = rmin

ẏ2 = y4 y2(t = 0) = 0

ẏ3 = y1y
2
4 −

γM

y21
y3(t = 0) = 0 (6.22)

ẏ4 = −2y3y4
y1

y4 =
vmax

rmin
= 58.29527

For the actual test runs we used rmin = 6.37 · 106 m and vmax = 10.4 · 103
m/s.

If we express all lengths in units of rmin, all velocities in units of vmax, and
all times in units of the exact revolution period, which can be calculated
exactly, we obtain for the prefactor in eq. (6.21)

α ≡ γM = 1966.39 .

A criterion to assess the reliability of the numerical method is obviously the
stability of the trajectory, i.e. the elliptical orbit should remain exactly the
same revolution after revolution. Deviations from this stability indicates a
methodological and/or rounding error in the Runge-Kutta program!1

It is clear that the methodological error in the program will be smaller the
smaller the stepsize in the Runge-Kutta process. This can be clearly seen in
Fig. 6.5, where 5 full revolutions are shown each time, for different step sizes
– (a) 1/50, (b) 1/60, (c) 1/70 and (d) 1/80 of the revolution period of the
satellite, respectively.
The test clearly shows what the biggest effect of the stepsize on the perfor-
mance of the Runge-Kutta process is: with a stepsize of 1/50 of the revolution
period the process is completely unstable (a). Reducing the stepsize merely
by a factor 1.6 (d) the trajectory becomes perfectly stable.

We can thus conclude:

• The program RUNGETEST is not usable in practice!

• In order to be practically usable, a Runge-Kutta program must be able
to perform an error diagnostics i.e. an automatical stepsize adjustment!
(adaptive stepsize algorithm).

1As shown by a careful analysis of the results of the test, in this example rounding
errors play only a minor role.

165

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

4

X

Y

(a)

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

X

Y

(b)

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

X

Y

(c)

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

X

Y

(d)

Figure 6.5: Stability test for RUNGETEST. The constant stepsizes have been
chosen as follows: (a) h = 1/50, (b) h = 1/60, (c) h = 1/70, (d) h = 1/80
of the revolution period. The star indicates the centre of the earth, and the
dotted line the exact analytical trajectory of the satellite.

6.4.5 Error estimate and stepsize adaptation in

Runge-Kutta methods.

As already discussed, a numerical result can be judged useful or useless,
based on its (absolute or relative) error. This is one of the few clues to assess
the quality of the approximation.

Since the Runge-Kutta methods are strongly related to the Taylor series
expansion (6.3), a natural choice is to use the corresponding Lagrange re-
mainder (6.4) to estimate the methodological error. For the classical Runge-
Kutta method (order p = 4) this gives:

EV =
h5

120

[

y
(5)
i (x)

]

x=ξ
xo ≤ ξ ≤ xo + h

and
EV = C(h) · h5 . (6.23)

Since EV represents the error between the exact value of the solution yi(x)
in the point xo + h and the corresponding approximate solution ŷi(xo + h),
we have:

yi(xo + h) = ŷi(xo + h) + C(h) · h5 . (6.24)

166

It would be equivalent to arrive from xo to xo + h with two successive
Runge-Kutta moves of width h/2. This would give:

yi(xo + h) = ŷi(xo + 2 · h
2
) + C(h/2) · 2 ·

(

h

2

)5

. (6.25)

In the following, we omit the index i in the yis, and use the abbreviations:

ŷ(xo + h) ≡ ŷ(h) und ŷ(xo + 2
h

2
) ≡ ŷ(h/2).

We now assume that C does not depend ”too strongly” on h, i.e. that to a
good approximation:

C(h) ≈ C(h/2) = C.

The constant C and the corresponding methodological error EV (h) = Ch5

can be calculated setting (6.24) equal to (6.25):

EV (h) =
16

15
[ŷ(h/2)− ŷ(h)] ≈ ŷ(h/2)− ŷ(h) . (6.26)

i.e. we can estimate the (absolute) methodological error from the difference
between the two Runge-Kutta solutions ŷ(h/2) (= approximate solution after
two half moves) and ŷ(h) (= approximate solution after one full move).

Furthermore, combining equations (6.25) and (6.26) we find the relation that
permits to improve the approximate value ŷ in a simple way:

ŷimproved = ŷ(h/2) +
ŷ(h/2)− ŷ(h)

15
. (6.27)

Hovever, there is a problem connected with this method. Clearly, we obtain
a better approximation for the solution, but we have little information on
the quality of this corrected y! For this reason, this formula is not used in
many programs.

We now come to the the final point: we can ask how large the ideal stepsize h
should be, in order to ensure that EV does not exceed a given error threshold
ǫ.
Since the methodological error is proportional to the fifth power of h, this
question is easy to answer. We have in fact:

ǫ

EV (h)
=

(

hideal
h

)5

From which we immediately obtain a definition for hideal:

hideal = h ·
(

ŷ(h/2)− ŷ(h)

ǫ

)− 1

5

(6.28)

This equation is the basis for an stepsize adaptation used for example in
program RKQC (sect. 6.5.2). In that program, the actual methodological
error is calculated according to (6.26) and compared to the error threshold
ǫ. The rest of the program proceeds as follows:

167

• ǫ ≥ ŷ(h/2)− ŷ(h): The error of the last Runge-Kutta move is smaller
than ǫ. For the next Runge-Kutta move the stepsize can be increased
according to (6.28).

• ǫ < ŷ(h/2) − ŷ(h): The error of the last Runge-Kutta move is larger
than ǫ. The last Runge-Kutta move is repeated with a stepsize is reduced
according to (6.28).

This strategy has two advantages: first, it ensures that the stepsize is always
small enough to keep the methodological error below a given threshold ǫ;
second, the amplitude of the interval is always as large as possible, which is
convenient in terms of computational time.

Finally we would like to recall once more that the method for adaptive
stepsize shown here is based on a lot of assumptions (for example, that C
is independent on h) which are not always satisfied! Furthemore, so far we
have always considered only the local error, but we have to keep in mind that
in many cases the local errors which occur in different steps can sum up to
a much larger global error.

The stepsize adaptative algorithm illustrated in the following suites of pro-
grams tries to solve some of these problems.

168

6.5 The programs ODEINT, RKQC and

RK4.

Source: [9], P. 550-560, simplified.

The programs ODEINT, RKQC and RK4 permit to numerically solve an
initial value problem (6.1).

6.5.1 The program ODEINT.

ODEINT (Ordinary Differential Equations INTegrator) is the ’driver pro-
gram’ of the suite of programs:

INPUT parameters:

YSTART(): Vector yo with the initial values of the system of differential
equations.

N: Number n of equations in the system.

X1, X2: Start and end point of the integration interval.

EPS: Required relative precision (see the following remarks).

HSTART: Guessed value for the stepsize of the Runge-Kutta process.

HMIN: Minimum value for the stepsize.

NPTMAX: Maximum number of points that can be saved in the arrays
XX and YY.

OUTPUT parameters:

NVALUES: Number of stored points.

XX(): Abscissas of the points.

YY(,): Ordinates of the solution:
first index = index of the function,
second index = label of the abscissas.

Remarks on ODEINT: This program controls the step-by-step functioning of
the Runge-Kunta process in the interval X1≤X≤X2. The quality-controlled
results produced by the routine RKQC on the sampling points are saved in
the arrays XX and YY. One has no influence on the number and distribution
of points in the interval [X1,X2].
The approximate ŷi at the end of the integration interval (X2) are returned
to the calling program in the array YSTART. This is practical in case these
ŷi-values are needed as initial values for another integration, in an interval
immediately after the first.
Another important function of ODEINT is the calculation of the scaling
values for the error diagnostics. Since EPS indicates a relative error threshold,
it would meaningful to rescale the moduli of some ŷi-values, i.e. to write

169

YSCAL(I):= |Y(I)| .

Such a rescaling would however result in a program interruption in case a
zero yi occurs (Division by zero in RKQC); for this reason the rescaling in
ODEINT is performed as follows:

YSCAL(I):= |Y(I)| + |H*F(I)| + ’TINY’ ,

which avoids this complication.

6.5.2 The program RKQC.

RKQC (Runge-Kutta Quality Control): This program performs the quality
control of a single Runge-Kutta move and the corresponding stepsize adap-
tation.

INPUT parameters:

Y(): ŷi’s of the last Runge-Kutta move =
initial values for the next step.

F(): Array of the corresponding fi-values.

N: Number of the equations of the system.

X: Abscissas of the current initial value.

HTRY: Amplitude of the interval for the next step.

EPS: Required relative precision.

YSCAL(): Scaling factors for the next precision evaluation.

OUTPUT parameters:

Y(): New ŷi’s.

F(): Array of the corresponding fi-values.

X: New abscissas.

HNEXT: Proposed stepsize for the next iteration.

Remarks on RKQC: This program performs the three Runge-Kutta moves
needed for the error diagnostics, two with amplitude h/2 and one with am-
plitude h. After this, it gives an approximate estimate of the methodological
error for each ŷi, according to (6.26). The maximum value of the rescaled
methodological error is calculated and saved in ERRMAX. ERRMAX is given
by the expression:

Max [| ŷ(h/2)− ŷ(h) |rel]
according to (6.26).

170

After this a program branching occurs: if

ERRMAX ≤ EPS

the Runge-Kutta move was successful. Now, apart from a final correction of
ŷ according to (6.27), the ideal stepsize for the next step is calculated. The
corresponding instruction

HNEXT := SAFETY*H*(ERRMAX/EPS)**(−1.0/5.0)

satisfies eq. (6.28) exactly, up to the ”safety constant” SAFETY:=0.9 In
case of a very small value of
ERRMAX, the program performs a further safety control2 In order to avoid
that HNEXT grows too fast, in the case

ERRMAX/EPS < ERRCON

the new stepsize is recalculated as follows:

HNEXT := 4. ∗ H

At this point the program jumps back to ODEINT.

In case that
ERRMAX > EPS

the Runge-Kutta move was not successful and therefore must be recalculated
with a smaller stepsize. The corresponding instruction

H:=SAFETY*H*(ERRMAX/EPS)**(−1.0/4.0)

differs from (6.28) not only for the presence of the ”safety constant”, but also
for the different exponent: this should account for the already mentioned fact
that the global error accumulates much more dramatically than the local one.
The exponent reduced with respect to (6.28) takes care in this sense of still
smaller interval amplitudes and therefore of an even more convenient error
behaviour in the Runge-Kutta process.

2ERRCON, the ’error control’ constant, has the value 6 · 10−4.

171

6.5.3 The programs RK4 and DERIVS.

RK4 (Runge-Kutta 4) performs a single Runge-Kutta move according to
equations (6.18) and (6.19):

INPUT parameters:

Y(): Initial value for the current Runge-Kutta move.

G1(): Array of the fi values at the current initial point.

N: Number n of equations in the differential system of equations.

X: Abscissa of the initial point.

H: Stepsize for the current Runge-Kutta move.

OUTPUT parameters:

YOUT(): Runge-Kutta approximate value ŷi in the point X+H.

DERIVS:

This program, which is called from all three programs in the system, is
provided by the user and contains the definition of the functions fi. In C it
would read for example:

void derivs(double x, double y[], double f[])

{

f[1]=; // means f_{1}(x,y1,y2,...)

f[2]=; // means f_{2}(x,y1,y2,...)

.

.

f[n]=; // means f_{n}(x,y1,y2,...)

}

172

Structure chart 26 — ODEINT(YSTART,N,X1,X2,EPS,HINIT,HMIN,NSTMAX,
NVALUES,XX,YY)

TINY:=1.0E-30
X:=X1
XX(1):=X
H:=HINIT

I=1(1)N

Y(I):=YSTART(I)
YY(I,1):=Y(I)

NSTP=1(1)NSTMAX-1

DERIVS(X,Y,F)

I=1(1)N

YSCAL(I):=|Y(I)| + |F(I)*H| + TINY

❩
❩
❩Y

X+H > X2
✚
✚
✚

N
H:=X2-X

......

RKQC(Y,F,N,X,H,EPS,YSCAL,HNEXT)

XX(NSTP+1):=X

I=1(1)N

YY(I,NSTP+1):=Y(I)

❩
❩
❩Y

X ≥ X2
✚
✚
✚

N

I=1(1)N

YSTART(I):=Y(I)

NVALUES:=NSTP+1
(return)

......

❩
❩
❩Y

|HNEXT| < HMIN
✚
✚
✚

N
print: ’stepsize smaller than HMIN’
(pause)

H:=HNEXT

print:’ODEINT: more than NSTMAX points’
NVALUES:=NSTMAX
(return)

173

Structure chart 27 — RKQC(Y,F,N,X,HTRY,EPS,YSCAL,HNEXT)

SAFETY:=0.9
ERRCON:=0.0006
XSAV:=X

I=1(1)N

YSAV(I):=Y(I)
FSAV(I):=F(I)

H:=HTRY
STEPOK:=FALSE

HH:=H/2.0

RK4(YSAV,FSAV,N,XSAV,HH,YTEMP)

X:=XSAV+HH

DERIVS(X,YTEMP,F)

RK4(YTEMP,F,N,X,HH,Y)

X:=XSAV+H

❩
❩
❩Y X = XSAV

✚
✚
✚

N
print: ’RKQC: stepsize too small.’
(pause)

......

RK4(YSAV,FSAV,N,XSAV,YTEMP)

ERRMAX:=0.0

I=1(1)N

ERRV(I):=Y(I)-YTEMP(I)
TEMP:=| ERRV(I)/YSCAL(I)|

❩
❩
❩Y ERRMAX < TEMP

✚
✚
✚

N
ERRMAX:=TEMP

......

❩
❩
❩Y ERRMAX > EPS

✚
✚
✚

N

H:=SAFETY*H*
EXP(-0.25*LOG(ERRMAX/EPS))

STEPOK:=TRUE

❩
❩
❩Y

ERRMAX/EPS < ERRCON
✚
✚
✚

N

HNEXT:=4*H HNEXT:=SAFETY*H*
EXP(-0.2*LOG(ERRMAX/EPS))

I=1(1)N

Y(I):=Y(I)+ERRV(I)/15.0 (see comment P. 247)

STEPOK

(return)

174

Structure chart 28 — RK4(Y,G1,N,X,H,YOUT)

I=1(1)N

YT(I):=Y(I)+H/2.0*G1(I)

XTEMP:=X+H/2.0

DERIVS(XTEMP,YT,G2)

I=1(1)N

YT(I):=Y(I)+H/2.0*G2(I)

DERIVS(XTEMP,YT,G3)

I=1(1)N

YT(I):=Y(I)+H*G3(I)

XTEMP:=X+H

DERIVS(XTEMP,YT,G4)

I=1(1)N

YOUT(I):=Y(I)+H/6.0*(G1(I)+2*(G2(I)+G3(I))+G4(I))

6.5.4 Application of ODEINT+RKQC+RK4 to the

’satellite problem’.

The suite of programs described so far will now be applied to the ’satellite
test’. The routine DERIVS corresponding to the differential system (6.22)
has the form

void derivs(float x, float y[], float f[])

{

f[1]=y[3];

f[2]=y[4];

f[3]=y[1]*y[4]*y[4] -alpha/y[1]/y[1]; // alpha GLOBAL = gamma*M

// = 1966.390

f[4]=-2.0*y[3]*y[4]/y[1];

}

The results of this test are summarised in Fig.6.6. In this figure the exact
elliptical orbit calculated analytically is compared with the Runge-Kutta
results which are calculated with a program without (RUKUTEST) and with
stepsize adaptation (ODEINT+RKQC+RK4).

Results:

• Program without stepsize adaptation (Fig.6.6, upper panel):

175

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

X

Y

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

X

Y

Figure 6.6: Efficiency of the stepsize adaptation in the ’satellite problem’.
Comparison of the exact elliptical trajectory (full line) with the numerical
values (stars). Above: Runge-Kutta without stepsize adaptation; Below:
Runge-Kutta with stepsize adaptation.

176

In this test we assumed a constant stepsize h = 1/50 of the revolution
period. The fact that h is constant with time has the following conse-
quence: since a satellite moves more and more slowly the further it is
from the earth (second Kepler’s law), the points in space have a higher
density, where the velocity is smaller. However, where the velocity is
higher (and changes faster), i.e. when the satellite is closer to earth,
the density of points is the smallest. But in this way the error is larger
right where we would like it to be smaller!

The consequence of this bad point distribution is clearly seen in the
diagram on the left: we see very large differences between the exact
and the numerical trajectories.

• Program with interval amplitude optimisation, EPS=0.0001 (Fig.6.6,
lower panel):

In this case the density of points is maximal exactly where it is nu-
merically sensible (i.e. in the region where the distance between the
satellite and earth is the smallest). The effect is obvious: in case of a
roughly equal number of points there is (at least graphically) no differ-
ence between the analytical and the numerical trajectory!

6.6 The Runge-Kutta-Fehlberg method.

The error estimate and adaptive stepsize algorithms of the Runge-Kutta suite
of programs described in section (6.4.5) is very effective, but uses up a lot of
computer power, because it requires two independent Runge-Kutta processes
to run in parallel with each other.

Equally effective, but much less costly in terms of computer time is the follow-
ing variant of the stepsize adaptive algorithm, which goes back to Fehlberg.
We report here the formulas for the simple case of a differential system of
order one 3:

A move from x0 to x0 + h through a Runge-Kutta method of order p gives:

ŷ(p)(x0 + h) = yexact + Chp+1 . (6.29)

The same calculation, with a Runge-Kutta formula of next order (p + 1),
gives:

ŷ(p+1)(x0 + h) = yexakt + C̃hp+2 . (6.30)

The difference between (6.29) and (6.30) is:

ŷ(p)(x0 + h)− ŷ(p+1)(x0 + h) = Chp+1 − C̃hp+2 ≈ Chp+1 for small h

This can be solved for C:

C =
ŷ(p)(x0 + h)− ŷ(p+1)(x0 + h)

hp+1
. (6.31)

3Literature on the subject, see for example [10], P. 714ff, [23], P. 229ff

177

With this approximation for C we can estimate the error for a Runge-Kutta
move of order p (6.29). In this way for each p we can determine an (ideal)
interval amplitude hideal, corresponding to an error that does not exceed a
given error threshold ǫ:

ǫ = Chp+1
ideal =

(

hideal
h

)p+1

|ŷ(p) − ŷ(p+1)|

or

hideal = h

(

|ŷ(p)(x0 + h)− ŷ(p+1)(x0 + h)|
ǫ

)−1/(p+1)

. (6.32)

Compare this result with Eq.(6.28).

To summarise the procedure in the Runge-Kutta-Fehlberg method: one cal-
culates for the move x0 → x0 + h the approximate value ŷ(p)(x0 + h) and
ŷ(p+1)(x0+h). From this one estimates the ’optimal’ stepsize through (6.32).
There are now two possibilities:

1. if hideal < h → the move from x0 to x0 + h is repeated with hideal ,

2. if hideal ≥ h → the next move is performed with hideal.

What is the advantage in this method compared to the one described in sec-
tion 6.4.5? As we know from the Runge-Kutta theory, there are in principle
infinitely many valid Runge-Kutta formulas of a given order p > 1. Fehlberg
was able to derive the following system of formulas:

f0 = f(x0, y0) ,

f1 = f(x0 +
h

4
, y0 +

h

4
f0) ,

f2 = f(x0 +
3h

8
, y0 +

3h

32
f0 +

9h

32
f1) ,

f3 = f(x0 +
12h

13
, y0 +

1932h

2197
f0 −

7200h

2197
f1 +

7296h

2197
f2) ,

f4 = f(x0 + h, y0 +
439h

216
f0 − 8hf1 +

3680h

513
f2 −

845h

4104
f3) ,

f5 = f(x0 +
h

2
, y0 −

8h

27
f0 + 2hf1 −

3544h

2565
f2 +

1859h

4104
f3 −

11h

40
f4) .

With these definitions one can build a Runge-Kutta formula of fourth order,
i.e.

ŷ(4) = y0 + h
(
25

216
f0 +

1408

2565
f2 +

2197

4104
f3 −

1

5
f4

)

but also a Runge-Kutta formula of fifth order, i.e.

ŷ(5) = y0 + h
(
16

135
f0 +

6656

12825
f2 +

28561

56430
f3 −

9

50
f4 +

2

55
f5

)

.

We thus obtain the following expression for the error:

ŷ(4)(x0+h)−ŷ(5)(x0+h) = −h
(

1

360
f0 −

128

4275
f2 −

2197

75240
f3 +

1

50
f4 +

2

55
f5

)

,

178

and the calculation of the new ideal interval amplitude for p=4 through (6.32
gives

hideal = h

(

|ŷ(4)(x0 + h)− ŷ(5)(x0 + h)|
ǫ

)−1/5

. (6.33)

6.7 Other numerical methods for initial value

problems.

To introduce the last part of this chapter, we cite a very colourful paragraph,
taken from ’Numerical Recipes’[9]:

For many scientific users, fourth-order Runge-Kutta is not just the first word
on ODE integrators, but the last word as well. In fact, you can get pretty far
on this old workhorse, especially if you combine it with an adaptive stepsize
algorithm ... Keep in mind, however, that the old workhorse’s last trip may
well be to take you to the stable: Bulirsch-Stoer or predictor-corrector methods
can be much more efficient for problems requiring a very high accuracy. Those
methods are the high-strung racehorses. Runge-Kutta is for ploughing the
fields.

Indeed the methods that we have presented in detail (Runge-Kutta and
Runge-Kutta-Fehlberg) are not the ultimate truth for the numerical solu-
tion of initial value problems. Nevertheless the author of this script decided
it would be better to present a classical method (even though it is an old farm
horse) in a very robust and usable suite of programs, rather than discuss the
sometimes (not always) superior ’running horses’ (Burlisch-Stoer methods
and predictor-corrector methods). There is no space left in this context for
a full treatment of these methods. Those who are interested should consult
the following references:

• Approximate solution of selected differential equations: [19], P.127-228
(theory).

• Ordinary Differential Equations: [7], P.360-414 (as usual, strongly re-
comended: theory, numerical problems, comparison of methos, a.s.o.).

• Predictor-corrector methods (Adams-Bashford-Moulton): [2], P.220ff
(Theory), P.428ff (Program).

• Extrapolation method of Bulirsch-Stoer: [2], P.233ff (Theory), S.434ff
(Program).

• Richardson Extrapolation and the Bulirsch-Stoer Method: [9], P.563ff
(short description and programs).

• Predictor-Corrector Methods: [9], P.569ff (short description).

• Predictor-Corrector method of Adams: [13], P.288f (Theory), P.290f
(Algol-Program).

• Obviously all professional numerical-mathematical libraries contain
many different programs.

179

6.7.1 Stiff sets of differential equations:

A few more remarks on the so-called stiff system of differential equations,
which occur very often in practice. These are systems whose solutions com-
prise terms with very different dependencies on the independent variables.
It is easier to illustrate them through an example (from [10], P. 734):

Let us assume that we want to solve the system

y′1(x) = 998 y1 + 1998 y2

y′2(x) = −999 y1 + 1999 y2

with the initial conditions y1(0) = 1 und y2(0) = 0.

The exact solution of this problem is

y1(x) = 2 e−x − e−1000x and y2(x) = −e−x + e−1000x . (6.34)

It is clear that the numerical calculation of such a problem with conventional
methods (for example Runge-Kutta) leads to an instability of the algorithm,
if one does not work with extremely small interval amplitudes [in practice,
with h < 1/1000!]. This is particularly unfortunate, since the second terms
in (6.34) decay to zero already for very small x, and from that point on, the
solutions are therefore simply of the form exp(−x).
For this class of problems there are special methods of solution, such as the
method of Kaps and Rentrop 4. The corresponding programs with theoretical
explanations can be found in [10], P. 734ff.

4P. Kaps und P. Rentrop, Numerische Mathematik 33, P. 55ff.

180

Bibliography

[1] H. Ernst, Numerische Methoden für Kleincomputer, Luther-Verlag 1984.

[2] G. Engeln-Müllges und F. Reutter, Formelsammlung zur Numerischen
Mathematik mit Standard-FORTRAN-Programmen, BI Mannheim 1984.

[3] G. Engeln-Müllges und F. Reutter, Formelsammlung zur Numerischen
Mathematik mit C-Programmen, BI Mannheim 1990.

[4] G. Engeln-Müllges und F. Reutter, Formelsammlung zur Numerischen
Mathematik mit PASCAL-Programmen, BI Mannheim 1985.

[5] G. Engeln-Müllges und F. Reutter, Numerik-Algorithmen mit Program-
men in FORTRAN, C und Turbo Pascal, VDI-Verlag, 1996.

[6] G. Engeln-Müllges and F. Uhlig, Numerical Algorithms with C or FOR-
TRAN, Springer-Verlag, 1996.

[7] W.S. Dorn and D.D. McCracken, Numerical Methods with Fortran IV
Case Studies, Wiley 1972.

[8] A. Björck and G. Dahlquist, Numerische Methoden, Oldenburg Verlag
1972.

[9] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Nu-
merical Recipes, 2nd ed., Cambridge Uni Press 1992.

[10] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Nu-
merical Recipes in C, 2nd ed., Cambridge Uni Press 1992.

[11] M. Abramowitz and I.A. Segun, Handbook of Mathematical Functions,
Dover Publications 1968.

[12] G.E. Forsythe und C.B. Moler, Computer-Verfahren für lineare alge-
braische Systeme, Oldenbourg Verlag 1971.

[13] G. Paulin und E. Griepentrog, Numerische Verfahren der Program-
miertechnik, VEB Verlag Berlin 1975.

[14] P.K. MacKeown and D.J. Newman, Computational Techniques in
Physics, Hilger 1987.

[15] I.S. Beresin und N.P. Shidkow, Numerische Methoden 2, VEB Verlag
Berlin 1971.

181

[16] I.S. Beresin und N.P. Shidkow, Numerische Methoden 1, VEB Verlag
Berlin 1970.

[17] Y.A. Shreider, The Monte Carlo Method, Pergamon Press Oxford 1967.

[18] R. Frühwirt, M. Regler, Monte-Carlo-Methoden, BI Mannheim 1983.

[19] B. P. Demidowitsch, L. A. Maron und E. S. Schuwalowa, Numerische
Methoden der Analysis, VEB Verlag Berlin 1968.

[20] G. N. Poloshi, Mathematisches Praktikum, Teubner Verlag Leipzig 1963.

[21] Ch. Überhuber, Computer-Numerik 1, Springer-Verlag Berlin 1995.

[22] Ch. Überhuber, Computer-Numerik 2, Springer-Verlag Berlin 1995.

[23] P. L. DeVries, Computerphysik, Spektrum Akademischer Verlag Heidel-
berg, 1995.

182

Contents

1 Introduction 3
1.1 Basics. 3
1.2 Errors: general considerations 4

1.2.1 Absolute and relative errors. Machine precision. 4
1.2.2 Input errors. Ill-conditioned problems. 7
1.2.3 Algorithmic errors. 7
1.2.4 Methodological errors. 7
1.2.5 Roundoff errors. 8

1.3 Methodological and roundoff errors. 9
1.3.1 Connection between roundoff errors and algorithm. . . 9
1.3.2 Roundoff and methodological errors in numerical dif-

ferentiation. 11
1.3.3 Error diagnostics in the numerical evaluation of the

error function. 14
1.3.4 Example of stable and unstable algorithms 16

2 Numerical methods for linear inhomogeneous sets of equa-
tions. 21
2.1 The basic problem . 21
2.2 Aim of the direct methods: transformation of the matrix of

coefficients into a triangular matrix. 22
2.3 Gauss’ elimination principle in the formulation of Doolittle

und Crout (LU decomposition). 23
2.3.1 Demonstration of a memory-efficient LU-decomposition 24
2.3.2 Optimization of the rounding error through partial piv-

oting. 26
2.3.3 Conditioning of a system of equations. 28
2.3.4 The program LUDCMP. 29
2.3.5 The sub-program LUBKSB 32
2.3.6 Possible uses of the programs LUDCMP and LUBKSB. 34
2.3.7 Examples for the programs LUDCMP and LUBKSB. . 35

2.4 Iterative improvement of the solution. 37
2.5 Rounding errors in ill-conditioned and singular systems. 38
2.6 Methods for direct solution of systems with special matrix of

coefficients. 40
2.6.1 Solution of systems of equations with tridiagonal ma-

trices of coefficients. 40
2.6.2 The program TRID. 41

183

2.6.3 Other special forms of the matrix of coefficients. 43
2.7 The Gauss-Seidel method. 44

2.7.1 General discussion. 44
2.7.2 The basic principle of the Gauss-Seidel method. 44
2.7.3 The Gauss-Seidel method for band matrices. 45
2.7.4 Convergence criteria and error behaviour. 47
2.7.5 The sub-program GAUSEI. 48
2.7.6 A variant of the Gauss-Seidel method. 51
2.7.7 Efficiency of the Gauss-Seidel method. 52

3 Least squares approximation 54
3.1 The basic problem. 54
3.2 Mathematical formulation of the problem. 55
3.3 Statistical analysis of the least squares problem. 55

3.3.1 Basic concepts: expectation value and standard devi-
ation of a measure. 55

3.3.2 Accounting for statistics in the LSQ method 58
3.3.3 Determination of the standard deviations of the values. 59

3.4 Model Functions with Linear Parameters. 60
3.4.1 Standard deviation of the fitting parameters 61
3.4.2 The program LFIT. 63
3.4.3 Uses of LFIT. 67

3.5 Model functions with non linear parameters. 71
3.5.1 What are non linear parameters? 71
3.5.2 Linearization of non-linear problems. 71
3.5.3 The Gauss-Newton (GN) method. 74
3.5.4 Convergence problems in the GN method. Mar-

quardt’s variant. 76
3.5.5 The program MRQMIN. 80
3.5.6 The program MRQCOF. 83
3.5.7 Use of MRQMIN and MRQCOF 85

3.6 Add-ons: . 90

4 Numerical solution of transcendental equations. 91
4.1 The basic problem. 91
4.2 Iterative methods. 92

4.2.1 General concepts. 92
4.2.2 Convergence criteria and estimate of the error. 93

4.3 The Newton Raphson method. 97
4.3.1 Macon’s method. 99
4.3.2 The program RTNEWT. 99
4.3.3 A test program for RTNEWT. 102

4.4 The Regula Falsi. 105
4.5 The bissection method. 105

4.5.1 Problems with the bissection method. 106
4.5.2 The program INTSCH. 107
4.5.3 An example from quantum mechanics. 110

4.6 Non linear systems. 113

184

4.6.1 An example. 115

5 Eigenvalues and Eigenvectors of real matrices 116
5.1 Introduction: general and regular eigenvalue problems. 116

5.1.1 Eigenvalues and eigenvectors of matrix with special forms118
5.2 Numerical solution of regular eigenvalue problems 120

5.2.1 General Considerations 120
5.3 The method of von Mises . 120

5.3.1 The calculation of the smallest eigenvector 122
5.3.2 Improvement of the convergence through spectral shift 123
5.3.3 The program MISES 123
5.3.4 Von Mises method: Tests and problems. 126

5.4 The method of Jacobi . 129
5.4.1 An iterative approximation for the tranformation ma-

trix U . 129
5.4.2 Choice of the parameters i, j and ϕ. 131
5.4.3 The program JACOBI. 133
5.4.4 Variant of the JACOBI algorithm in C. 135
5.4.5 Two tests for JACOBI. 136
5.4.6 An application for the program JACOBI. 137
5.4.7 Extended symmetrical eigenvalue problems 139
5.4.8 The program CHOLESKY. 142
5.4.9 ’More advanced programs’ 145

5.5 Eigenvalues of generic real matrices 145
5.5.1 Transformation of a matrix into an upper-Hessenberg

form. 145
5.5.2 The program ELMHES. 146
5.5.3 Determination of the eigenvalues of a matrix in UHF. . 148
5.5.4 The method of Hyman. 149
5.5.5 Eigenvalues of tridiagonal matrices. 151

6 Numerical methods for ordinary differential equations: ini-
tial value problems. 155
6.1 General considerations. 155
6.2 Expansion of the solution in Taylor series. 156
6.3 Euler’s method. 156
6.4 Runge-Kutta Methods. 157

6.4.1 Second-order Runge-Kutta methods. 157
6.4.2 Higher-order Runge-Kutta methods. 161
6.4.3 Use of Runge-Kutta formulas: 163
6.4.4 An example: quality problem. 163
6.4.5 Error estimate and stepsize adaptation in Runge-Kutta

methods. 166
6.5 The programs ODEINT, RKQC and RK4. 169

6.5.1 The program ODEINT. 169
6.5.2 The program RKQC. 170
6.5.3 The programs RK4 and DERIVS. 172

185

6.5.4 Application of ODEINT+RKQC+RK4 to the ’satellite
problem’. 175

6.6 The Runge-Kutta-Fehlberg method. 177
6.7 Other numerical methods for initial value problems. 179

6.7.1 Stiff sets of differential equations: 180

186

