
NUMERICAL METHODS IN PHYSICS

First exercise Winter Semester 2013/2014 C

Roots of real-valued functions

With respect to its mathematical/numerical and physical sub-
stance, this first exercise is quite easy. The intention is, however,
to give those students who are not very familiar with the cho-
sen programming language and the LINUX-operating system the
opportunity to get used to both the language and the operating
system.

Method:

• Nested Intervals - NEW

as treated in chap. 5 of the lecture notes.

The routine

intsch.c

which is required for this exercise, can be found in the lecture notes (structure
chart 15) and on the website of this course.

Usage of the routine INTSCH new version:

#include <stdio.h>

#include <math.h>

#include "nrutil.c" //utility programs for dynamical storage

//taken from Numerical Recipes C

//on the website of this course.

double funcname(double x)

// Calculates the function values of ’F(x)’.

// Its name, which was chosen freely, has to be passed

// as the first parameter when calling intsch.

{

double f;

f= ... F(x) ...;

return f;

}

void intsch(double (*fct)(double),double anf, double aend, double h,

double gen, int anzmax, double nullst[], int *anz)

/*

This program performs a gross search in the interval [anf,aend]
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using the step width h. In case of a sign change of the function

’fct’, Nested Intervals are performed, until the root of the function

is known with the required accuracy ’gen’. All roots are being stored

in the one-dim array ’nullst’. This array and the number of found

roots (’anz’) are returned to the program calling the routine. In

case of an overrun of the array ’nullst’, meaning that ’anz>anzmax’,

an error message is returned. For a detailed description, see chap. 5.5

in the lecutre notes.

ATTENTION: It has proved to be virtually, that, when using INTSCH, it

is convenient to chose the name of the function which roots are required

from the program calling the routine. This is possible with the present

version of INTSCH. As one can see, the first parameter of INTSCH reads

double (*fct)(double) : this means that inside INTSCH, everytime

the function is being accessed, the wildcard fct is replaced by the

actual name of the function defined in the program calling INTSCH,

which has the form

&actual_name.

Naturally, a (double)-function with that particular name and which depends

on one (double)-argument has to exist.

*/

... (*fct)(x) ...

}

int main()

{

// main program: reading parameters,

// size of the array ’nullst’:

int anzmax=100, ...;

double *nullst; // Def. one-dim array.

nullst=dvector(1,anzmax);

//Allocating the array ’nullst’ using the

//NRUTIL-routine ’dvector’.

// calling INTSCH:

intsch(&funcname,anf,aend,hgrob,gen,anzmax,nullst,&anz);

// Here, the actual name of the function,

// which roots are to be calculated, is required.

// Returning the roots.

return (0)

}
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Preparatory tasks

Calculate the roots of the equation for the energy eigenvalues in the lec-
ture notes, p.156 (German script), and verify the energy eigenvalues of the
potential well.
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Figure 1: The Kronig-Penney-potential.

1. Task: Calculation of Kronig-Penney-energies

As mentioned before, the physical aspect (which is definitely very interesting)
should remain a little in the background in favor of the ’technical-numerical’
part of this exercise.

Just a few words on the theoretical aspects: an electron moves in the periodic
potential of a linear chain of atoms. From quantum mechanics, the electron
can only take certain (allowed) energy values E, which lie in fixed energy
regions, the so-called energy bands. It can be shown (a detailed calculation
can be found in numerous books about theoretical solid state physics) that
one gets the edges of these bands by calculating the roots of the function:

ϕ(E)− 1 and ϕ(E) + 1 (1)

where ϕ(E) is defined as:

ϕ(E) =
β2 − α2

2αβ
sinh(βb) sin(αa) + cosh(βb) cos(αa) (2)

with

α2 = E und β2 = V0 − E (3)

The parameters a, b and V0 define the form of the atomic potential. In the
’Kronig-Penney-approximation’, these are approximated as potential wells
(see fig. 1): b and V0 define the width and depth of a single potential and a
is the spacing between two neighboring potentials. The energy E is limited
to the potential interval, which means that

0 ≤ E ≤ V0 (4)

A note on units: we used the so-called atomic units. This means that the
values a and b are measured in Bohr lenghts and the potential V0 and the
energy E are given in Rydberg1.

11 Bohr length is equal to 0.529 Angstroem, and 1 Rydberg is equal to 13.6 electron
volts.
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Figure 2: The Kronig-Penney-function ϕ(E) and the definition of the energy
bands (schematic).

Numerical solution of the problem

To solve the problem, we will use the method of Nested Intervals:

Calculate the roots (energies) of the function (1), with a maximum
inaccuracy of 10−7.

What is the physical meaning of the calculated roots? Let us take a look at
fig. 2 which shows the function ϕ(E). If one takes the intersections of the
function with the horizontal lines at y = +1 and y = −1 as shown in the
plot, one gets the following allowed areas for the energy (bands).

1. energy band from E-1 to E-2

2. energy band from E-3 to E-4

.

.

etc.

Calculate such a table of energy values for a periodic arrangement of potential
wells using the following parameters:

a = 6.48 Bohr b = 0.12 Bohr V0 = 110.0 Rydberg
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2. Task: Calulation of the Maxwell-line of a van-der-Waals-gas

The second program required for this exercise origins from Numerical Recipes
C, p.1842. It deals with the

real-valued solutions of a cubic equation with real-valued
coefficients:

The equation
c1x

3 + c2x
2 + c3x+ c4 = 0

resp.

x3 +
c2
c1
x2 +

c3
c1
x+

c4
c1

= 0

can be treated in the following manner:

For the cubic equation

x3 + a1x
2 + a2x+ a3 = 0

with real-valued coefficients a1, a2 and a3, the first step is to calculate

Q =
a21 − 3a2

9
und R =

2a31 − 9a1a2 + 27a3
54

Next, one checks if Q3 − R2 ≥ 0. If this holds, the equation has
3 real-valued roots. Those can be calculated using

Θ = arccos

(
R√
Q3

)
The roots read as

x1 = −2
√
Q cos

(
Θ

3

)
− a1

3

x2 = −2
√
Q cos

(
Θ + 2π

3

)
− a1

3

x3 = −2
√
Q cos

(
Θ + 4π

3

)
− a1

3

The required program KUBGL.C looks like this:

double min(double a,double b,double c)

{

double wert;

if(a<b && a<c) wert=a;

if(b<a && b<c) wert=b;

if(c<a && c<b) wert=c;

return wert;

}

2The following equations can already be found in a work by Francois Viete named De
emendatione, chap. VI (1615).
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double max(double a,double b,double c)

{

double wert;

if(a>b && a>c) wert=a;

if(b>a && b>c) wert=b;

if(c>a && c>b) wert=c;

return wert;

}

int kubgl(double c1, double c2, double c3, double c4, double *x1, double *x2,

double *x3)

// PROGRAM FOR THE CALCULATION OF 3 REAL-VALUED ROOT OF A

// CUBIC EQUATION.

// INPUT-parameters: c1 c2 c3 c4 : coefficients defining the equation

// OUTPUT-parameters: x1 x2 x3 : real-valued roots

// problem : .false. = 3 real-valued roots

// : .true. = 1 real-valeud,

// 2 complex-conj. roots

{

int problem;

double a1,a2,a3,q,r,z1,z2,y1,y2,y3,theta;

problem=0;

a1=c2/c1;

a2=c3/c1;

a3=c4/c1;

q=(a1*a1-3.e0*a2)/9.e0;

r=(2.e0*pow(a1,3)-9.e0*a1*a2+27.e0*a3)/54.e0;

if(pow(q,3)-r*r < 0.e0) {

printf("IN KUBGL: EIN NULLSTELLENPAAR KONJ.-KOMPLEX\n");

problem=1;

}

else {

theta=acos(r/sqrt(pow(q,3)));

z1=-2.e0*sqrt(q);

z2=-a1/3.e0;

y1=z1*cos(theta/3.e0)+z2;

y2=z1*cos((theta+2.e0*M_PI)/3.e0)+z2;

y3=z1*cos((theta+4.e0*M_PI)/3.e0)+z2;

*x1=min(y1,y2,y3);

*x3=max(y1,y2,y3);

if(y1>*x1 && y1<*x3) *x2=y1;

else if(y2>*x1 && y2<*x3) *x2=y2;
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else *x2=y3;

}

return problem;

}

Theoretical background

The van-der-Waals equation-of-state:

An equation-of-state of a thermodynamic system relates the state variables
pressure, volume and temperature:

p = p(v, T )

A very good approximation for the equation-of-state for real gases is the
van-der-Waals equation

p =
RT

(v − b)
− a

v2
(5)

In (5), R is the general gas constant, while a and b are the so-called van-der-
Waals-parameters, which can be found for many gases in numerous publica-
tions. The following figure shows three isotherms of a van-der-Waals-gas in
a (p,v)-diagram.

Figure 3: Isotherms of a van-der-Waals-gas: T1 < Tcr, T2 = Tcr, T3 > Tcr.

Fig. 3 shows the most important properties of van-der-Waals-isotherms. A
critical temperature Tcr exists. Isotherms with T > Tcr are monotonically
decreasing with increasing volume, isotherms with T < Tcr however show
distinct minima and maxima. The isotherm at the critical temperature have
an inflection point with a horizontal tangent (point P in fig. 3). The coor-
dinates of this inflection point (the so-called critical point) can be deducted
from the gas equation (5). One gets:

Tcr =
8a

27Rb
pkr =

a

27b2
vkr = 3b (6)
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For further calculations, it is convenient to write the van-der-Waals-equation
(5) in reduced units:

p̂ ≡ p

pkr
T̂ ≡ T

Tcr
v̂ ≡ v

vkr

One can show easily that this lead to the parameter-free equation-of-state

p̂ =
8T̂

3v̂ − 1
− 3

v̂2
(7)

The Maxwell-line

For further considerations, have a look at fig. 4: Consider a thermodynamic
system completely in one phase (high volume, point A). Tracing the phase
transition of the gas along an isotherm (T < Tcr) constantly decreasing the
volume (arrow), the gas pressure increases at first. This increase of pressure
should end at a certain maximum value (point B) and decrease with further
compression of the gas. After reaching a minimal pressure (point C) the
pressure should increase rapidly, a typical behaviour of a liquid.

Decreasing pressure when compressing a gas (B → C) however is not
seen in experiment!

In reality, the transition from the gas phase to the liquid phase happens in a
slightly different way: The gas (A) is compressed until the point B1 on the
isotherm is reached. Upon further reduction of the volume, the gas starts to
condense at a constant pressure po (line B1 → C1). At the point C1, the
condensation process is completed, a pure liquid phase exists, which reacts
with high increase in pressure on further decrease of the volume. The line
through p̂o parallel to the volume axis is called the Maxwell-line.

Figure 4: On the definition of the Maxwell-line.
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Conditions for the Maxwell-line

The pressure p̂o (reduced units) is given by the implicit equation∫ v̂B1
(p̂o)

v̂C1
(p̂o)

dv̂

{
8T̂

3v̂ − 1
− 3

v̂2
− p̂o

}
= 0 (8)

which means that p̂o has exactly the value where the two shaded areas in fig.
4 cancel out. One has to consider that the limits of integration also depend
on p̂o! A theoretical deduction of this statement can be found in every book
about thermodynamics3.

Tasks

Develop a program you can use for a numerical calculation of the parameters
of the Maxwell-line (p̂o, v̂B1(p̂o), v̂C1(p̂o)) for every desired temperature T̂ < 1.

• In thermodynamics, the so-called locus of all points v̂B1(p̂o) and v̂C1(p̂o)
for all temperatures in the interval 0 ≤ T̂ ≤ 1 is of particular interest.
In a (p,v)-diagram, this curve separates the areas with only one phase
(liquid or gas) from those areas where a mixed phase can occur.

Print this limiting curve in a table which contains the numer-
ical values of p̂o, v̂B1(p̂o) and v̂C1(p̂o) in the interval 0.20 ≤ T̂ ≤
0.9999 with ∆T̂ = 0.025.

• Furthermore, print the curve in a (p,v)-diagram.
Comments: Range of the volume-axis: 0 to 10.

Steps for this task

The problem can be solved as follows:

1. Fix a reduced temperature T̂ < 1.

2. Calculation of the pressure interval where the isotherm has 3 real-valued
intersections with the line p = const. This region p̂min ≤ p̂ ≤ p̂max
can be found by calculating the roots of the first derivative of the gas
equation (7):

dp̂

dv̂
= − 24T̂

(3v̂ − 1)2
+

6

v̂3
= 0

The resulting cubic equation for v̂,

4T̂ v̂3 − 9v̂2 + 6v̂ − 1 = 0 (9)

has three real-valued roots v̂1 < v̂2 < v̂3. As seen in fig. 4 the extremal
value belonging to v̂1 lies in the physically irrelevant region v̂ < 1/3.
So one can state that

p̂min ≡ p̂(v̂2) und p̂max ≡ p̂(v̂3)

3e.g.: F. Reif, Statistik und Physik der Wärme, de Gruyter (1976) chap. 8.6, p.359.
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The numerical calculation of the roots of the cubic equation (9) could
of course be done using INTSCH.C. But it is recommended to use the
routine KUBGL.C.

3. In the region p̂min ≤ p̂ ≤ p̂max, the isotherm always has 3 intersections
with every line p̂ = const with the corresponding volumes v̂α < v̂β < v̂γ.
Using

p̂− 8T̂

3v̂ − 1
+

3

v̂2
= 0

the calculation of these v̂-values again leads to a cubic equation which
reads

3p̂v̂3 − (p̂+ 8T̂ ) · v̂2 + 9v̂ − 3 = 0 (10)

This equation can also be solved using KUBGL.C.

Now p̂ has to be varied in the interval p̂min to p̂max until the integral
condition (8) is satisfied, which means that the root of the function

F (p̂) =

∫ v̂γ(p̂)

v̂α(p̂)

dv̂

{
8T̂

3v̂ − 1
− 3

v̂2
− p̂

}
= 0 (11)

has to be found. This root, which should be located using Nested
Intervals method (INTSCH.C), defines the Maxwell-pressure:

F (p̂o) = 0

Comments

• Calculate the values of the Maxwell-pressure p̂o and the corresponding
volumes v̂α(p̂o) and v̂γ(p̂o) for temperatures ranging from

0.2 ≤ T̂ ≤ 0.9999 .

For reduced temperatures below 0.2, numerical results become unsta-
ble, since p̂o < 10−6 and v̂γ > 106!

• When computing F (p̂) according to eqn. (11), for p̂ = p̂min problems
can occur. To avoid this, start the Maxwell-search slightly below pmin,
e.g. at

1.0000001 p̂min .

• For smaller values of T̂ , the pressure minimum becomes negative. But
since for negative pressures, vγ doesn’t exist, in this case the search for
the Maxwell-pressure has to start at p̂ = 0!

General comments on creating plots using C

There are numerous possibilities to create plots and diagrams using C/C++.
Here it should be noted, that a very effective and easy method is to store
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data in a file and read the content of that file in Matlab, where plots
can be done easily. An alternative method would be to use gnuplot (http:
//www.gnuplot.info) instead of Matlab.
There are a few (some rudimentary) interfaces for directly accessing gnuplot
from C (e.g. gnuplot i). Of course, such tools can be used as well, we
however do not recommend them, since using such systems normally require
an unreasonable amount of time to get used to them and we cannot guarantee
any trouble-free function of such piping-systems.
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