
NUMERICAL METHODS IN PHYSICS

First exercise Winter Semester 2013/2014 Matlab

Roots of real-valued functions

With respect to its mathematical/numerical and physical sub-
stance, this first exercise is quite easy. The intention is, however,
to give those students who are not very familiar with the cho-
sen programming language and the LINUX-operating system the
opportunity to get used to both the language and the operating
system.

Method:

• Nested Intervals - NEW

• Gross search using iterative improving

as treated in chap. 5 of the lecture notes.

The file

intsch.m

referring to the method of Nested Intervals can be found on the website of
this course. It is a realization of the structure chart 15 in the lecture notes as
a Matlab-function; the program was written by my colleague Peter Licht-
enberger in 2002 and underwent further improvements by Martin Ratschek
in October 2006:

function nullst=intsch(fct,anf,aend,h,gen,varargin)

%

% intsch.m calculates the roots of a function given in fct using

% the method of Nested Intervals after performing a gross search

% with the step width h.

% Attention: 1. fct has to take the x values as a vector and return

% the calculated y values as a vector of the same size.

%

% INPUT-parameters: fct name of the function to investigate

% anf,aend start and end of the interval for the

% gross search

% h step size for the gross search

% gen accuracy limit

% varargin all other parameters for the function have

% to be passed in an array

% The function fct has to take the additional

% parameters in an enclosed array

% -> fct(x,param)
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%

% OUTPUT-parameters: nullst vector containing the calculated roots

%

%

% COMMENT: If the function fct is defined in a separate file with the name

% "aktuell", it can be passed in the following manner:

% intsch(@aktuell,anf,aend,h,gen);

% In that case, the function must be defined in the file

% aktuell.m

% Additional parameters can be passed in the varaible ’varargin’.

% One can also use the methods of "global variables".

% AUTHOR: Peter Lichtenberger

% DATE: 3.Oktober 2002

%

% Expanded: Martin Ratschek

% Date: 10. Oktober 2006

Comment: When calling intsch.m in Matlab, one does not need a memory
allocation for the array ’nullst’ where the roots are stored. For that reason,
the parameter ANZMAX mentioned in the structure chart 15 of the lecture
notes is not required in the Matlab-version!

On the definition of functions:

Let us assume the function fcttest has the form fcttest(x; a, b) where x is the
independent variabel and a and b act as parameters. The function will now
be defined as an external Matlab-file, where the parameter a is defined as
a global variable and b is an element, which is transferred from the calling
program to the function program.
This would look like:

File containing the calling program:

====================================

.

.

global a

a= ...;

anf=...; aend=...; h=...; gen=...;

b=...;

nullst=intsch(@fcttest,anf,aend,h,gen,b);

% The vector ’nullst’ contains the roots in the interval

% anf <= x <= aend .

File with the name fcttest.m containing the func-definitions:
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===============================================================

function fct=fcttest(x,b)

global a

fct = Function(x) incl. parameters a und b ;

In the second problem of this exercise, the gross search, should be combined
with an iterative root calculation as treated in chap. 5.3.3 of the lecture
notes. However, for Matlab-Users, it makes sense to use the internal Mat-
lab routine

fzero.m

instead of the Newton-Raphson-program discussed in the lecture notes. En-
tering help fzero in the command line prints informations about the input
and output parameters of fzero. It produces the following output:

fzero.m

function [b,fval,exitflag,output] = fzero(FunFcnIn,x,varargin)

%FZERO Scalar nonlinear zero finding.

% X = FZERO(FUN,X0) tries to find a zero of the function FUN near X0.

% FUN accepts real scalar input X and returns a real scalar function value F

% evaluated at X. The value X returned by FZERO is near a point where FUN

% changes sign (if FUN is continuous), or NaN if the search fails.

%

% X = FZERO(FUN,X0), where X0 is a vector of length 2, assumes X0 is an

% interval where the sign of FUN(X0(1)) differs from the sign of FUN(X0(2)).

% An error occurs if this is not true. Calling FZERO with an interval

% guarantees FZERO will return a value near a point where FUN changes

% sign.

etc.

Preparatory tasks

• Use intsch.m to calculate the roots of the equation for the energy eigen-
values in the lecture notes, p.156 (German script), using intsch.m and
verify the energy eigenvalues of the potential well.

• Using fzero.m, calculate the roots of the energy eigenvalue equation
from the lecture notes, p.156 (German script). The required initial
intervals for fzero are calculated using a gross search as described in
chap. 5.3.3 of the lecture notes. Check that you obtain the correct
energy eigenvalues as listed on p.157 of the lecture notes.
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Figure 1: The Kronig-Penney-potential.

1. Task: Calculation of Kronig-Penney-energies

As mentioned before, the physical aspect (which is definitely very interesting)
should remain a little in the background in favor of the ’technical-numerical’
part of this exercise.

Just a few words on the theoretical aspects: an electron moves in the periodic
potential of a linear chain of atoms. From quantum mechanics, the electron
can only take certain (allowed) energy values E, which lie in fixed energy
regions, the so-called energy bands. It can be shown (a detailed calculation
can be found in numerous books about theoretical solid state physics) that
one gets the edges of these bands by calculating the roots of the function:

ϕ(E)− 1 and ϕ(E) + 1 (1)

where ϕ(E) is defined as:

ϕ(E) =
β2 − α2

2αβ
sinh(βb) sin(αa) + cosh(βb) cos(αa) (2)

with

α2 = E und β2 = V0 − E (3)

The parameters a, b and V0 define the form of the atomic potential. In the
’Kronig-Penney-approximation’, these are approximated as potential wells
(see fig. 1): b and V0 define the width and depth of a single potential and a
is the spacing between two neighboring potentials. The energy E is limited
to the potential interval, which means that

0 ≤ E ≤ V0 (4)

A note on units: we used the so-called atomic units. This means that the
values a and b are measured in Bohr lenghts and the potential V0 and the
energy E are given in Rydberg1.

11 Bohr length is equal to 0.529 Angstroem, and 1 Rydberg is equal to 13.6 electron
volts.
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Figure 2: The Kronig-Penney-function ϕ(E) and the definition of the energy
bands (schematic).

Numerical solution of the problem

To solve the problem, we will use the method of Nested Intervals:

Calculate the roots (energies) of the function (1), with a maximum
inaccuracy of 10−7.

What is the physical meaning of the calculated roots? Let us take a look at
fig. 2 which shows the function ϕ(E). If one takes the intersections of the
function with the horizontal lines at y = +1 and y = −1 as shown in the
plot, one gets the following allowed areas for the energy (bands).

1. energy band from E-1 to E-2

2. energy band from E-3 to E-4

.

.

etc.

Calculate such a table of energy values for a periodic arrangement of potential
wells using the following parameters:

a = 6.48 Bohr b = 0.12 Bohr V0 = 110.0 Rydberg
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2. Task: Calulation of the Maxwell-line of a van-der-Waals-gas

For this exercise, 2 routines are required. Both of them are already coded in
Matlab, namely the already discussed program fzero.m and

• a program for calculating the roots of a cubic equation:

roots.m

roots.m

function r = roots(c)

%ROOTS Find polynomial roots.

% ROOTS(C) computes the roots of the polynomial whose coefficients

% are the elements of the vector C. If C has N+1 components,

% the polynomial is C(1)*X^N + ... + C(N)*X + C(N+1).

%

Theoretical background

The van-der-Waals equation-of-state:

An equation-of-state of a thermodynamic system relates the state variables
pressure, volume and temperature:

p = p(v, T )

A very good approximation for the equation-of-state for real gases is the
van-der-Waals equation

p =
RT

(v − b)
− a

v2
(5)

In (5), R is the general gas constant, while a and b are the so-called van-der-
Waals-parameters, which can be found for many gases in numerous publica-
tions. The following figure shows three isotherms of a van-der-Waals-gas in
a (p,v)-diagram.
Fig. 3 shows the most important properties of van-der-Waals-isotherms. A
critical temperature Tcr exists. Isotherms with T > Tcr are monotonically
decreasing with increasing volume, isotherms with T < Tcr however show
distinct minima and maxima. The isotherm at the critical temperature have
an inflection point with a horizontal tangent (point P in fig. 3). The coor-
dinates of this inflection point (the so-called critical point) can be deducted
from the gas equation (5). One gets:

Tcr =
8a

27Rb
pkr =

a

27b2
vkr = 3b (6)

For further calculations, it is convenient to write the van-der-Waals-equation
(5) in reduced units:

p̂ ≡ p

pkr
T̂ ≡ T

Tcr
v̂ ≡ v

vkr
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Figure 3: Isotherms of a van-der-Waals-gas: T1 < Tcr, T2 = Tcr, T3 > Tcr.

One can show easily that this lead to the parameter-free equation-of-state

p̂ =
8T̂

3v̂ − 1
− 3

v̂2
(7)

The Maxwell-line

For further considerations, have a look at fig. 4: Consider a thermodynamic
system completely in one phase (high volume, point A). Tracing the phase
transition of the gas along an isotherm (T < Tcr) constantly decreasing the
volume (arrow), the gas pressure increases at first. This increase of pressure
should end at a certain maximum value (point B) and decrease with further
compression of the gas. After reaching a minimal pressure (point C) the
pressure should increase rapidly, a typical behaviour of a liquid.

Decreasing pressure when compressing a gas (B → C) however is not
seen in experiment!

In reality, the transition from the gas phase to the liquid phase happens in a
slightly different way: The gas (A) is compressed until the point B1 on the
isotherm is reached. Upon further reduction of the volume, the gas starts to
condense at a constant pressure po (line B1 → C1). At the point C1, the
condensation process is completed, a pure liquid phase exists, which reacts
with high increase in pressure on further decrease of the volume. The line
through p̂o parallel to the volume axis is called the Maxwell-line.

Conditions for the Maxwell-line

The pressure p̂o (reduced units) is given by the implicit equation∫ v̂B1
(p̂o)

v̂C1
(p̂o)

dv̂

{
8T̂

3v̂ − 1
− 3

v̂2
− p̂o

}
= 0 (8)
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Figure 4: On the definition of the Maxwell-line.

which means that p̂o has exactly the value where the two shaded areas in fig.
4 cancel out. One has to consider that the limits of integration also depend
on p̂o! A theoretical deduction of this statement can be found in every book
about thermodynamics2.

Tasks

Develop a program you can use for a numerical calculation of the parameters
of the Maxwell-line (p̂o, v̂B1(p̂o), v̂C1(p̂o)) for every desired temperature T̂ < 1.

• In thermodynamics, the so-called locus of all points v̂B1(p̂o) and v̂C1(p̂o)
for all temperatures in the interval 0 ≤ T̂ ≤ 1 is of particular interest.
In a (p,v)-diagram, this curve separates the areas with only one phase
(liquid or gas) from those areas where a mixed phase can occur.

Print this limiting curve in a table which contains the numer-
ical values of p̂o, v̂B1(p̂o) and v̂C1(p̂o) in the interval 0.20 ≤ T̂ ≤
0.9999 with ∆T̂ = 0.025.

• Furthermore, print the curve in a (p,v)-diagram.
Comments: Range of the volume-axis: 0 to 10.

2e.g.: F. Reif, Statistik und Physik der Wärme, de Gruyter (1976) chap. 8.6, p.359.
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Steps for this task

The problem can be solved as follows:

1. Fix a reduced temperature T̂ < 1.

2. Calculation of the pressure interval where the isotherm has 3 real-valued
intersections with the line p = const. This region p̂min ≤ p̂ ≤ p̂max
can be found by calculating the roots of the first derivative of the gas
equation (7):

dp̂

dv̂
= − 24T̂

(3v̂ − 1)2
+

6

v̂3
= 0

The resulting cubic equation for v̂,

4T̂ v̂3 − 9v̂2 + 6v̂ − 1 = 0 (9)

has three real-valued roots v̂1 < v̂2 < v̂3. As seen in fig. 4 the extremal
value belonging to v̂1 lies in the physically irrelevant region v̂ < 1/3.
So one can state that

p̂min ≡ p̂(v̂2) und p̂max ≡ p̂(v̂3)

The numerical calculation of the roots of the cubic equation (9) should
be done using the Matlab-routine roots.m.

3. In the region p̂min ≤ p̂ ≤ p̂max, the isotherm always has 3 intersections
with every line p̂ = const with the corresponding volumes v̂α < v̂β < v̂γ.
Using

p̂− 8T̂

3v̂ − 1
+

3

v̂2
= 0

the calculation of these v̂-values again leads to a cubic equation which
reads

3p̂v̂3 − (p̂+ 8T̂ ) · v̂2 + 9v̂ − 3 = 0 (10)

This equation can also be solved using roots.m.

Now p̂ has to be varied in the interval p̂min to p̂max until the integral
condition (8) is satisfied, which means that the root of the function

F (p̂) =

∫ v̂γ(p̂)

v̂α(p̂)

dv̂

{
8T̂

3v̂ − 1
− 3

v̂2
− p̂

}
= 0 (11)

has to be found. This root, which should be located using the Nested
Intervals method (INTSCH.C), defines the Maxwell-pressure:

F (p̂o) = 0

9



Comments

• Calculate the values of the Maxwell-pressure p̂o and the corresponding
volumes v̂α(p̂o) and v̂γ(p̂o) for temperatures ranging from

0.2 ≤ T̂ ≤ 0.9999 .

For reduced temperatures below 0.2, numerical results become unsta-
ble, since p̂o < 10−6 and v̂γ > 106!

• When computing F (p̂) according to eqn. (11), for p̂ = p̂min problems
can occur. To avoid this, start the Maxwell-search slightly below pmin,
e.g. at

1.0000001 p̂min .

• For smaller values of T̂ , the pressure minimum becomes negative. But
since for negative pressures, vγ doesn’t exist, in this case the search for
the Maxwell-pressure has to start at p̂ = 0!
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