
NUMERISCHE METHODEN IN DER

PHYSIK

Second exercise WS 2013/2014 MATLAB

Numerical evaluation of a linear system of inhomogeneous
equations with sparse coefficient matrices by means of the

Gauss-Seidel method

Presentation of the method: Script chapter 2.7 (German script)

For this exercise the following software will be provided on the homepage of
this course:

gausei.m elektr_Linse_1.dat to elektr_Linse_5.dat

The routine gausei.m is a Matlab version of the Gauss-Seidel algorithm which
is presented in the script in section 2.7.5 (German script) and structure chart
8 (German script) respectively:

function [t,sol,error] = gausei(n,ndiag,s,diag,f,tmax,w,irel,gen)

% Matlab realisation of the structure chart 8 (German script):

% Gauss-Seidel iteration for band matrices.

% The theoretical basics can be found in section 2.7 of the

% lecture notes (German script).

% H. Sormann 2-11-2004 last update 8-11-2004

% INPUT parameters:

% n number of rows/columns of the coeff.matrix

% ndiag number of occupied diagonals in the coeff.matrix

% s vector with the relative positions of the

% occupied diagonals

% diag matrix with the values of the occupied diagonals:

% first index = row number,

% second index = number of the diagonal

% f inhomogeneous vector

% tmax maximum number of iteration steps

% w relaxation parameter

% irel: 1 = relative error search

% else absolute error search

% gen (relative or absolute) accuracy

% OUTPUT parameters:

% t number of executed iteration steps

% sol solution vector of the linear equation system

% error 1 = error occurred during the Gauss-Seidel process,

% 0 = Gauss-Seidel process terminated without errors
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Theoretical and numerical basics

Application of the Gauss-Seidel method for solving the Laplace
equation in two dimensions by means of the finite difference
method.

Note: The following exercise is basically taken from the book: E.W.
Schmid, G. Spitz und W. Lösch, Theoretische Physik mit dem Personal Com-

puter, Springer-Verlag Berlin, 1987, Kap. 9

Physical problem:
The problem considered here comes from electrostatics: The following figure
shows a strongly simplified electric lense, as nowadays still found in electron
optics:

Fig. 1: Schema of an electric lense.

A cylindrical metal pipe with the radius r0 is interrupted by a flange F1, F2.
The flange and the perforated plates F1, F2 form a plate capacitor with the
distance 2d, and the two pipes R1, R2 are connected to the plates. On the
right side of the construction a voltage of 1000 V is applied and on the left
side a voltage of -1000 V. Now we are interested in the distribution of the
potential Φ in the pipes and between the capacitor plates.

The spatial distribution of the Potential Φ(r) is described by one of the most
important differential equation in theoretical physics, the Laplace equation:

∆Φ(r) =

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

Φ(x, y, z) = 0 (1)

The boundary conditions of the problem determine the potential on the sur-
face of the region where the equation (1) is to be solved.
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For a better understanding of the following approach, a profile of fig. 1, is
shown in the next figure:

z−Achse

r−Achse

Fig. 2: Profile of the electric lense.
The region where the Laplace equation should be solved, is shaded green.

From fig. 1 and fig. 2 follows:

• Due to the geometrical form of the electrical lense it is reasonable to use
cylindrical coordinates (z,r,ϕ) instead of Cartesian coordinates (x,y,z).
In this coordinate system the Laplace equation reads

∆Φ =
∂2Φ

∂z2
+

1

r

∂Φ

∂r
+

∂2Φ

∂r2
+

1

r2
∂2Φ

∂ϕ2
= 0 (r > 0) . (2)

• Concerning the simple geometry of the problem it is obvious, that the
solution of the differential equation (2) has to have cylindrical symme-
try around the z-axis. This means that

Φ(r) = Φ(z, r, ϕ) = Φ(z, r) (3)

has to hold. The Laplace equation is thus reduced to:

∆Φ =
∂2Φ

∂z2
+

1

r

∂Φ

∂r
+

∂2Φ

∂r2
= 0 (r > 0) . (4)

• Likewise one can easily see, that the above equation only has to be
solved for the shaded region in fig. 1. Symmetry considerations lead to
the relations

Φ(−z, r) = −Φ(z, r) , (5)
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and
Φ(z,−r) = Φ(z, r) . (6)

Note: This relations of course does not mean that the length of the
radial vector (r) can be negative. It only expresses that the distribution
of the potential Φ in fig. 2 has to be mirror symmetrical with respect
to the z-axis.

Now an important point follows: From the mathematical point of view, this
boundary value problem (4) has a unique solution, only if the behavior of the
solution Φ(z, r) is specified on the whole margin of the (shaded) integration
region. To discuss this problem in more detail, we look at the integration
region of fig. 2 once again in more detail:

1 2 3 4 5 6
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13 14

15 16

17 18

D C

E

BA

F

m = 1 usw.

n = 1 usw.

Fig. 3: The base region of the problem ”electrical lense”. The horizontal axis
is the z-axis, the vertical axis is the r-axis. The points on the boundary of
the base region can be read as follows:
diamonds = boundary condition (BC) (1.), (2.); squares = BC (3.); stars =
BC (4.).
The (numbered) circles show the so-called ”inner points”. The potential
values of these points have to be calculated by the solution of the Laplace
equation. They form a quadratic control network where the points on the
z-axis satisfy the symmetry condition (5.).
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1. In the region C→D→E the potential has a constant value V0

Φ(C → D → E) = V0 .

2. If the pipes are long enough, the inner potential at the end will change
only marginally. This means that the end of the pipe can be locked
with a metal plate, which leads to the boundary condition

Φ(B → C) = V0 .

3. As regards the distribution of the potential between the cylindrical
plates, it is obvious that on the plane of symmetry perpendicular to
the z-axis at z=0 the potentials on the left and right side compensate
each other. So the boundary condition is

Φ(A → F ) = 0 .

4. Now the boundary condition on the upper margin between point F
(Φ = 0) and point E (Φ = V0) is still missing. As a good approximation
a linear gradient of the potential between the capacitor plates can be
expected.

Φ(F → E) = V0 · z

5. The values along the z-axis have to be considered in more detail, as
this is not a margin of the base region, but a symmetry axis. Due to
the 1/r singularity of the z-axis, the Laplace equation cannot be eval-
uated in cylindrical coordinates (4). It has to be written in Cartesian
coordinates (1):

Φ(−x, 0, z) = Φ(x, 0, z) and Φ(0,−y, z) = Φ(0, y, z)

The numerical exercise is to solve the DE (2) by considering the boundary
conditions described on this page. For this the finite difference method is
frequently used. Thereby a control network is constructed in the base region
and this network defines the (inner and outer) grid points. It is obvious
that this discretization of a continuous problem introduces a methodological
error and furthermore it is clear that the methodological error is reduced by
increasing the point density in the base region, i.e. by rising the number of
grid points.

For a correct graphical display of the potential values obtained, it is necessary
to know the position of each (inner) grid point in the base region. For this
the following convention is employed:

• An index n is assigned to each row of the grid points starting with the
lowest row (along the z-axis) which gets the index n = 1.

• An index m is assigned to each column of the grid points starting with
the column to the very left which gets the index m = 1.
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Now the quantity mmax(n) is defined, which gives the number of inner grid
points for the n-th row:

mmax =

{

ma for 1 ≤ n ≤ na

mb for na < n ≤ na + nb

, (7)

where the 4 parameters mean:

na number of ”long” rows (na = 2 in fig. 3),

ma points per ”long” row (ma = 6 in fig. 3),

nb number of ”short” rows (nb = 3 in fig. 3),

mb points per ”short” row (mb = 2 in fig. 3),

the total number of inner grid points Ntot is:

Ntot = na ma + nb mb . (8)

The approximate calculation of the solution of the DE (4) at the Ntot grid
points by considering the boundary conditions defined on page 5 employs - as
already mentioned - the ”finite difference method”. Though the DE including
the boundary conditions is converted into a system of inhomogeneous, linear

equations.

For this exercise I will make it easier for you by giving you the already
”complete” system of linear, inhomogeneous equations which arises out of
the Laplace equation. Such a system has e.g. for the point distribution seen
in fig. 3 the following characteristic structure:

+ + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + +

+ + + + +

+ + + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + +

+ + + +
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Independently of the parameters na, ma, nb and mb, the coefficient matrix is
always formed by 7 diagonals:

s[1] s[2] s[3] s[4] s[5] s[6] s[7]

The definition of the integer field s can be seen in the script, section 2.7.3
(German script). At this point it should only be remarked, that the way
of numbering the diagonals does not matter! It is only important where
the diagonals can be found in the coefficient matrix. The relative positions
(relating to the main diagonal) depend on the parameters na, ma, nb and mb;
The main diagonal always has to be fully occupied (this means one of the s
values has to be zero) and there always has to be a first lower (s=-1) and a
first upper (s=1) diagonal.

The elements of the main diagonal have the values -4 or -6 and they are in
absolute values much bigger than the absolute values of the other diagonals.
This means that the rule of thumb stated in the script on page 46 for the
convergence of the iterative Gauss-Seidel method is full filled very well for
the given problem!

The inhomogeneous vector appears additionally, it contains information
about the boundary conditions.

As mentioned at the beginning, I have prepared for you five systems of linear
equations, each with 7 diagonals of the coefficient matrix and the correspond-
ing inhomogeneous vector, for the following parameters:

File name na ma nb mb Ntot V0 (Volt) Occupation (%)
elektr Linse 1 2 6 3 2 18 1000.0 38.9
elektr Linse 2 8 27 12 11 348 1000.0 2.0
elektr Linse 3 8 27 12 5 276 1000.0 2.5
elektr Linse 4 8 27 12 2 240 1000.0 2.9
elektr Linse 5 16 55 24 5 1000 1000.0 0.7

The occupation describes the amount of memory needed for the sparse matrix
compared to the amount that would be needed to save the whole matrix.

The associated relative positions of the seven diagonals of the coefficient
matrices are:

File name s(1) s(2) s(3) s(4) s(5) s(6) s(7)
elektr Linse 1 0 +1 +6 -1 -6 +2 -2
elektr Linse 2 0 +1 +27 -1 -27 +11 -11
elektr Linse 3 0 +1 +27 -1 -27 +5 -5
elektr Linse 4 0 +1 +27 -1 -27 +2 -2
elektr Linse 5 0 +1 +55 -1 -55 +5 -5

The according data can be found in the files

elektr_Linse_1.dat elektr_Linse_2.dat ..... elektr_Linse_5.dat
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Those files are structured in the following way:

na ma nb mb

Ntot

s(1) s(2) s(3) s(4) s(5) s(6) s(7) inhom.vector

.

.

line by line 8 data entries

.

.

Task 1

• Test the Gauss-Seidel program gausei.m for the Laplace problem
elektr Linse 1 (18 inner nodes). Use for the simulation ω=1.0 and
GEN(abs)=10−6.

If you print the 18 values of the potential field Φ line by line, you should
get the result:

332.55 665.73 0.00 0.00 0.00 0.00

330.81 663.30 0.00 0.00 0.00 0.00

326.34 654.86 0.00 0.00 0.00 0.00

315.96 618.66 874.16 957.73 985.83 995.68

311.38 604.41 840.49 941.87 979.82 993.76

Start with the second task if and only if you get exactly the above test values!

Task 2

• For the following calculations evaluate the Laplace problem
elektr Linse 5 (1000 inner nodes), again with an accuracy of
GEN(abs)=10−6.

Calculate this problem for different relaxation parameters ω in the
range of 1 ≤ ω < 2 and plot the number of required iteration steps
as a function of ω in a diagram.

How many iteration steps are needed at ω = 1.0?
Which value has the optimum ω (with an accuracy of 2 significant
places after the decimal point)?
How many iteration steps does gausei.m need at this ωopt?

• Now you have to extend the existing Gauss-Seidel program by im-
plementing an automatic ω optimization (see German script equation
(2.26) and (2.27)). As a value for t0 take 50.

What is the value of ωideal that is reached by your extended program
and how many iteration steps does the program need to solve the
Laplace problem elektr Linse 5?
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Task 3

• After those numerical tests, calculate the distribution of the poten-
tial for the series of data sets elektr Linse 2.dat, elektr Linse 3.dat,
elektr Linse 4.dat and elektr Linse 5.dat.

• Concerning the graphical presentation of the calculated distribution of
the potential by so called contour plots, you can find some important
comments in the text file

en_lense_contourplot.txt

• Discuss the results phenomenologically.
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