NUMERISCHE METHODEN IN DER PHYSIK Dritte Übung WS 2013/2014 C

Nicht-Lineare Least-Squares-Auswertung experimenteller Daten mittels der Methode von Gauss-Newton-Marquardt

Die Programme und Testdatensätze für diese Übung finden Sie im Internet:

gnmcode.c gnmtest.txt nrutil.c Al_Testspektrum Al_Spektrum Cu_Spektrum elettra.txt

"GNMCODE" enthält die Routinen MRQMIN, MRQCOF, LUDCMP, LUBKSB (Skriptum Abschnitte 4.5.5, 4.5.6, 2.3.4, 2.3.5).

Programmstruktur:

|-----| L Hauptprogramm (vgl. Skriptum S. 128) T Input der x/y-Daten Input der GNM-Param. Steuerung der GNM-Iteration | Statistische Auswertung L Output |-----| _____| MRQMIN (s. Abschnitt 4.5.5) -----MRQCOF LUDCMP (s. Abschnitt 4.5.6) LUBKSB (s. Abschnitte 2.3.4 | und 2.3.5) |------| "GNMCODE" |-----| FUNCS | Berechnung der Funktionswerte der Modell- | | funktion sowie deren Ableitungen nach den | Modell-Parametern. |-----|

Das Hauptprogramm und die Routine FUNCS sind von Ihnen zu entwickeln.

• <u>Anmerkung</u>: Wenn Sie routinemäßig mit "Funktions-Prototypen"¹ arbeiten, können Sie diese Anmerkung vergessen. Ansonsten muss bei C-Programmen immer darauf geachtet werden, daß alle Programm-Routinen in der richtigen logischen Reihenfolge angeordnet sind.

Die Grundstruktur Ihres Least-Squares-Programms könnte zum Beispiel so aussehen:

Nun folgen die <u>Headlines</u> der Routinen MRQMIN und FUNCS:

 $^{^1\}mathrm{s.}$ z. B.: $c_hilfe.txt,$ 8. Thema auf der Website dieser LV.

Vorbereitungsaufgabe

Austesten Ihres Programmes mittels des im Skriptum beschriebenen Testbeispiels S. 128ff. Das entsprechende Zitat finden Sie im folgenden:

Gegeben sei ein radioaktives Präparat, das aus einem Gemisch von J radioaktiven Isotopen besteht. Beide Kernarten zerfallen, ausgehend von einer Anfangsaktivität A_j mit einer Halbwertzeit T_j , gemäß dem radioaktiven Zerfallsgesetz:

$$A_i(t) = A_i e^{-\ln 2 \cdot t/T_j}$$

Die Gesamtaktivität der Quelle beträgt demnach

$$A(t) = \sum_{j=1}^{J} A_j e^{-\ln 2 \cdot t/T_j}$$

Die Messung geht nun wie folgt vor sich: Während einer fixen Zeitspanne Δ werden die von der Quelle herrührenden Zerfälle gezählt und das Ergebnis wird gespeichert. Danach wird die Zählung für eine zweite Zeitspanne Δ durchgeführt usw. Man erhält auf diese Weise eine Reihe von Zählwerten Z_k , wobei

$$Z_k = C \cdot \int_{t=(k-1)\Delta}^{k\Delta} dt A(t) \quad (k = 1, 2, \ldots)$$

Die Konstante C ist dabei ein Maß für die Empfindlichkeit der Zählapparatur.

Ein solches Experiment ist natürlich ein typisches Zählexperiment d.h. die Meßwerte sind um ihre jeweiligen Erwartungswerte *poisson-verteilt* (s. S.102f).

Durch die Auswertung des obigen Integrals erhält man die Modellfunktion mit 2J Parametern

$$Z(k; A_1, \dots, A_J, T_1, \dots, T_J) = \sum_{j=1}^J \left(C \frac{A_j}{\ln 2} \right) T_j \left(e^{+\Delta \ln 2/T_j} - 1 \right) e^{-\Delta \ln 2 \cdot k/T_j}$$

Die Ableitungen $\partial Z/\partial A_j$ bzw. $\partial Z/\partial T_j$ können daraus ohne Probleme berechnet werden, und die Routine *funcs*, die Sie als Benutzer von *mrqmin* und *mrqcof* zu schreiben haben, könnte für das gegebene Beispiel etwa so aussehen:

```
#define DELTA 15.0 // Konstante des Experiments
void funcs(double x, double a[], double *z, double dzda[], int ma)
// C-VERSION
{
  int mterm,j,ind;
  double con,fac1,fac2,fac3,fac4;
  con=DELTA*log(2.0);
  mterm=ma/2;
  *z=0.0;
  for(j=1;j<=mterm;j++) {</pre>
    ind=mterm+j;
    fac1=con/a[ind];
    fac2=exp(fac1);
    fac3=fac2-1.0;
    fac4=exp(-fac1*x);
    dzda[j]=a[ind]*fac3*fac4/log(2.0);
    *z=*z + a[j]*dzda[j];
    dzda[ind]=a[j]/log(2.0)*fac4*(fac3*(1.0+fac1*x)-fac1*fac2);
  }
}
```

```
Nun die Angaben zu dem konkreten Beispiel:
```

Gemessen wurden die Zählraten eines aus zwei Komponenten bestehenden radioaktiven Präparates d.h. J = 2. Es wurden 40 Messungen durchgeführt, jede über einen Zeitraum von $\Delta = 15$ Sekunden.

40 Datenwerte:

1	15376.0	21	981.0
2	10903.0	22	939.0
3	7950.0	23	857.0
4	5865.0	24	790.0
5	4653.0	25	814.0
6	3721.0	26	766.0
7	3089.0	27	691.0
8	2683.0	28	681.0
9	2396.0	29	614.0
10	1992.0	30	576.0
11	1910.0	31	529.0
12	1820.0	32	488.0
13	1726.0	33	472.0
14	1600.0	34	464.0
15	1495.0	35	434.0
16	1410.0	36	380.0
17	1271.0	37	382.0
18	1197.0	38	365.0
19	1106.0	39	387.0
20	1004.0	40	296.0

Diese 40 Meßdaten (Poisson-Statistik !) befinden sich auf dem File gnmtest.txt.

guessed values:	C*A1 = 2000.0
	C*A2 = 500.0
	T1 = 30.0 s
	T2 = 200.0 s
rel. Genauigkeit	EPS = 0.00001
	guessed values: rel. Genauigkeit

Der Verlauf der Iteration mittels des Gauss-Newton-Marquardt-Verfahrens:

t	chisq	C*A1	C*A2	T1	T2
0	196876 304	2000 000	500 000	30 000	200 000
1	1233.069	976.760	237.577	26.378	184.784
2	45.645	998.414	229.228	22.949	172.341
3	43.535	1005.360	226.315	23.159	173.250
4	43.535	1005.458	226.349	23.153	173.245
5	43.535	1005.457	226.348	23.153	173.246
Konverg	enz wurde er	reicht!			

VARIANZ = 1.209 (sollte zwischen 0.764 und 1.236 liegen)

	Modellparameter	SD
C*A1	1005.457	10.182
C*A2	226.348	4.129
T1(s)	23.153	0.353
T2(s)	173.246	2.320

Die Kovarianz-Matrix:

C*A1	C*A2	T1	T2
1.0000	-0.0494	-0.4642	0.0811
-0.0494	1.0000	-0.7345	-0.9370
-0.4642	-0.7345	1.0000	0.6405
0.0811	-0.9370	0.6405	1.0000
	C*A1 1.0000 -0.0494 -0.4642 0.0811	C*A1 C*A2 1.0000 -0.0494 -0.0494 1.0000 -0.4642 -0.7345 0.0811 -0.9370	C*A1 C*A2 T1 1.0000 -0.0494 -0.4642 -0.0494 1.0000 -0.7345 -0.4642 -0.7345 1.0000 0.0811 -0.9370 0.6405

Figure 1: Schema einer 2γ -Positron-Elektron-Annihilation.

1. Aufgabe

Anwendung der Least-Squares-Methode für nicht-lineare Modellfunktionen (<u>Gauss-Newton-Marquardt-Methode</u>) auf das Problem der statistischen Auswertung von Positronen-Winkelkorrelationsspektren.

Theoretische Grundlagen

Bringt man von außen *Positronen* (= Antiteilchen zu den Elektronen) in Materie ein, so kommt es nach relativ kurzer Zeit zu einer *Vernichtung (Annihilation)* der Positronen mit den Materie-Elektronen (Teilchen-Antiteilchen-Zerstrahlung). Die dabei freiwerdende Energie und der Gesamtimpuls jedes annihilierenden $e^+ - e^-$ -Paares wird durch (meist zwei) Annihilations-Photonen γ wegtransportiert (Abb.1).

Die beiden Annihilations-Photonen enthalten demnach Informationen über den Gesamtimpuls des $e^+ - e^-$ -Paares

$$\vec{p} = \vec{p}_+ + \vec{p}_-$$

Da in den meisten Fällen der Positronenimpuls sehr viel kleiner ist als der Impuls des Elektrons, gilt in guter Näherung

$$\vec{p} \approx \vec{p}_{-}$$

D.h.: Eine experimentelle Analyse der Annihilationsstrahlung erlaubt Aussagen über die *Impulsverteilung der Elektronen in der Probe.*

In welcher Weise kann man nun die Impulse \vec{p} aus der gemessenen Photonenstrahlung bestimmen? Angenommen, das annihilierende $e^+ - e^-$ -Paar hätte keinen Impuls gehabt ($\vec{p} = 0$). In diesem Fall müßten die beiden Annihilationsphotonen *exakt diametral* auseinanderfliegen (Impulserhaltungssatz!). Im Falle $\vec{p} \neq 0$ müssen die beiden Photonen einen resultierenden Impuls \vec{p} wegtransportieren, was bedeutet, daß sie mit einem von 180 Grad verschiedenen Winkel auseinanderstreben (Abb.2).

Der Winkel Θ , der die Abweichung von 180 Grad beschreibt, hängt mit \vec{p} (approximativ) über die einfache Beziehung

$$\Theta \approx \frac{|\vec{p}|}{m_0 c} \tag{1}$$

Figure 2: Richtung der beiden Annihilationsphotonen.

Figure 3: Prinzip der Winkelkorrelationsmethode.

 $(m_0 \dots$ Ruhemasse von Elektron und Positron, $c \dots$ Lichtgeschwindigkeit) zusammen. Wegen | \vec{p} |<< $m_0 c$ ist dieser Winkel relativ klein und wird gewöhnlich in Milli-Radianten (mrad) angegeben.

Die Winkel-Korrelations-Methode

beruht auf diesem Zusammenhang (Abb.3): Die Positronen aus der e^+ -Quelle dringen in die Probe ein und annihilieren dort. Die Annihilations-Photonen werden mit Hilfe zweier Detektoren registriert, von denen der eine fix montiert ist und der zweite bzgl. des Winkels Θ beweglich ist. Die Detektoren sind dabei *in Koinzidenz* geschaltet, d.h. es werden nur jene Photonen erfaßt, die zum selben Annihilationsakt gehören. Auf diese Weise erhält man die Winkelverteilung $N(\Theta)$ der Elektronenimpulse. Diese experimentelle Methode wird in der Literatur als Angular Correlation of Annihilation Radiation (ACAR) method bezeichnet.

Abb.4 zeigt ein typisches ACAR-Spektrum einer metallischen Probe. Es handelt sich dabei um eine Gauss-förmige Verteilung, der eine Parabel aufgesetzt ist. Es ist im Rahmen dieser kurzen Problembeschreibung nicht möglich, genau auf die Ursachen dieser speziellen Form der ACAR-Kurven einzugehen. Hier nur die Ergebnisse:

Der <u>Parabel-Anteil</u> der ACAR-Verteilung resultiert aus der Annihilation der Positronen mit *fast-freien Valenzelektronen*. Da solche Elektronen nur einen Impulsbereich von Null bis zum sogenannten *Fermi-Impuls* p_F aufweisen, bricht die Parabel bei den entsprechenden Winkeln

$$\pm \Theta_F = \pm \frac{p_F}{m_0 c}$$

abrupt ab (Fermi cut-off Winkel).

Der <u>Gauss-Anteil</u> der ACAR-Verteilung resultiert aus der Annihilation der Positronen mit stärker gebundenen Elektronen [*Core-Elektronen* bzw. *d-Elektronen* bei Übergangsmetallen (Ni, Pd, ...) und Edelmetallen (Cu, Ag, Au, ...)].

Die Modellfunktion

Die ideale Modellfunktion kann wie folgt angeschrieben werden:

$$N_{ideal}(\Theta) = \begin{cases} A \cdot (1 - \Theta^2 / \Theta_F^2) + \hat{B} \cdot \exp\left(-\hat{C} \cdot \Theta^2\right) & |\Theta| \le \Theta_F \\ \hat{B} \cdot \exp\left(-\hat{C} \cdot \Theta^2\right) & |\Theta| > \Theta_F \end{cases}$$
(2)

mit den Modellparametern

A = Parabel-Peak,

 $\hat{B} = \text{Gauss-Peak},$

 $\hat{C} =$ Breite der Gauss-Verteilung,

 Θ_F = Winkel des Fermi cut-off's.

Die Gleichung (2) kommt jedoch noch nicht als Modellfunktion für ein experimentell erhaltenes ACAR-Spektrum in Frage, weil (2) die <u>Idealsituation</u> beschreibt, daß die Meßapparatur *keinerlei Meßunsicherheiten aufweist.* Tatsächlich hat jedoch die Apparatur nur ein *beschränktes Auflösungsvermögen*; deshalb muß in ein reales Modell noch die Auflösungsfunktion $R(\Theta)$ eingehen:

$$N(\Theta) = \int_{y=-\infty}^{+\infty} dy \quad R(\Theta - y) \cdot N_{ideal}(y) \tag{3}$$

Die Auflösungsfunktion kann meist recht gut durch eine auf Eins normierte Gauss-Funktion beschrieben werden, also durch

$$R(\Theta) = \frac{1}{\sqrt{\pi s}} \cdot \exp\left[-(\Theta/s)^2\right] \quad , \tag{4}$$

wobei die Größe s die Breite der Auflösungsfunktion darstellt: je kleiner s ist, desto besser ist die Qualität des Experimentes. Dieses s ist <u>kein</u> zu fittender Parameter, sondern eine <u>fixe</u> (und bekannte) Größe der Meßapparatur; **bitte beachten Sie dazu die Anmerkungen auf den Seiten 10/11 dieser Übungsbeschreibung**.

Setzt man (4) und (2) in das Integral (3) ein, erhält man als entgültige (reale) Modellfunktion den Ausdruck

$$N(\Theta) = \frac{1}{\sqrt{\pi s}} \left\{ A \int_{y=-\Theta_F}^{+\Theta_F} dy \left(1 - \frac{y^2}{\Theta_F^2} \right) \cdot \exp\left[-\left(\frac{\Theta - y}{s}\right)^2 \right] + \hat{B} \int_{y=-\infty}^{+\infty} dy \exp\left[-\left(\frac{\Theta - y}{s}\right)^2 \right] \cdot \exp\left(-\hat{C}y^2\right) \right\} + U \quad , \quad (5)$$

Figure 4: ACAR-Spektrum einer metallischen Kupfer-Probe.

wobei noch berücksichtigt wurde, daß es auf Grund von hier nicht weiter zu diskutierenden Gründen zu einem konstanten Untergrund U kommt. Nach Auswertung der beiden Integrale ergibt sich schließlich

$$N(\Theta) = A \cdot \left\{ \frac{1}{2} \left[\left(1 - \frac{\Theta^2}{\Theta_F^2} \right) - \frac{s^2}{2\Theta_F^2} \right] \cdot \left[\operatorname{erf} \left(\frac{\Theta + \Theta_F}{s} \right) - \operatorname{erf} \left(\frac{\Theta - \Theta_F}{s} \right) \right] + \frac{s}{2\sqrt{\pi}\Theta_F^2} \left[(\Theta + \Theta_F) \exp\left\langle - \left(\frac{\Theta - \Theta_F}{s} \right)^2 \right\rangle - (\Theta - \Theta_F) \exp\left\langle - \left(\frac{\Theta + \Theta_F}{s} \right)^2 \right\rangle \right] \right\} + B \cdot \exp\left(-C\Theta^2 \right) + U.$$
(6)

Beachten Sie, daß in der Glg. (6) die Größen B und C neu definiert wurden. Es gilt

$$B = \frac{\hat{B}}{\sqrt{1 + \hat{C}s^2}} \qquad \text{und} \qquad C = \frac{\hat{C}}{1 + \hat{C}s^2}$$

Eine unangenehme Formel:

Wie die Theorie zum Gauss-Newton-Verfahren zeigt (s. Skriptum, Abschnitt 4.5.3), muß bei Anwendung dieses Verfahrens ein Funktionsprogramm geschrieben werden, in dem die Modellfunktion *sowie die partiellen Ableitungen der Modellfunktion nach allen Fit-Parametern* enthalten sind.

Wenn Sie sich die konkrete Modellfunktion (6) ansehen, ist dies zwar etwas mühsam, aber nicht besonders schwierig. Größere Probleme macht höchstens die Ableitung von $N(\Theta)$ nach dem Parameter Θ_F . Um Ihnen diese Rechnung zu ersparen, gebe ich im folgenden das Ergebnis an:

$$\frac{\partial N(\Theta)}{\partial \Theta_F} = A \frac{(2\Theta^2 + s^2)}{2\Theta_F^3} \left[\operatorname{erf} \left(\frac{\Theta + \Theta_F}{s} \right) - \operatorname{erf} \left(\frac{\Theta - \Theta_F}{s} \right) \right] - A \frac{s}{\sqrt{\pi}\Theta_F^3} \left[(\Theta + \Theta_F) \exp\left\{ - \left(\frac{\Theta - \Theta_F}{s} \right)^2 \right\} - (\Theta - \Theta_F) \exp\left\{ - \left(\frac{\Theta + \Theta_F}{s} \right)^2 \right\} \right].$$
(7)

In den Gleichungen (6) und (7) kommt die sog. *error function* vor, die wie folgt definiert ist:

$$\operatorname{erf}(x) \equiv \frac{2}{\sqrt{\pi}} \int_0^x dz \, \mathrm{e}^{-z^2} \, .$$

In C steht Ihnen diese Funktion mittels des Aufrufs erf(x) zur Verfügung.

Numerische Auswertung eines Spektrums

Es geht also darum, die gemessenen Zerfallsraten $N_M \equiv N_{Messung}$ bei den Winkeln Θ_k , k = 1, ..., n unter Verwendung des Modells (6) zu approximieren:

$$\chi^2 = \sum_{k=1}^n g_k \left[N_M(\Theta_k) - N(\Theta_k; A, \Theta_F, B, C, U) \right]^2 \quad \longrightarrow \quad \text{Minimum.} \tag{8}$$

Die Modellfunktion enthält als <u>Fit-Parameter</u> die Intensität A des Parabel-Anteils sowie den Fermi cut-off Winkel Θ_F , die Intensität B des Gauss-Anteils sowie den Parameter C, welcher die Breite der Gauss-Kurve beschreibt, und zuletzt noch den Messuntergrund U.

Noch ein Wort zu den <u>Gewichtsfaktoren</u> g_k : diese werden in der Routine *mrqmin* automatisch berechnet, und zwar nach der Formel (4.5) im Vorlesungsskriptum

$$g_k = \frac{1}{\sigma_k^2} \, .$$

Dabei ist σ_k die Standardabweichung des k-ten Meßwertes; da es sich bei dem ACAR-Experiment um ein typisches Zählexperiment im Sinne des Vorlesungsskriptums (s. Abschnitt 4.3.3) handelt, unterliegen diese Werte der Poisson-Statistik, d.h. es gilt

$$\sigma_k \approx \sqrt{N_M(\Theta_k)}$$
 .

Wichtige Anmerkung: bitte verwechseln Sie nicht die Standardabweichungen der Messwerte (σ_k , k = 1, ..., n) mit der Breite der Apparate-Auflösungsfunktion s, welche im Zusammenhang mit Glg. (4) eingeführt wurde. Diese beiden Größen haben nichts miteinander zu tun!

Aufgabenstellung

- Es ist ein Programm zu entwickeln, mit Hilfe dessen eine statistische Least-Squares-Auswertung mit der Modellfunktion (6) durchgeführt werden kann. Es ist dafür die Methode von **Gauss-Newton-Marquardt** anzuwenden.
- Es gilt für alle durchzuführenden Auswertungen

$$s = 2.06833291$$
 mrad.

• Alle Fit-Parameter sind bis einer relativen Genauigkeit von 0.000001 zu berechnen.

Ein Testbeispiel

Überprüfen Sie die Korrektheit Ihres Programmes an Hand des folgenden Testspektrums für Aluminium:

Al_Testspektrum

Dieses Spektrum enthält 256 Werte (Winkelbereich von 0 bis ca. 145 mrad); es wurde von mir per Computer simuliert, und es enthält <u>keine</u> statistischen Unsicherheiten. Aus diesem Grund sollten Sie bei diesem Test das Ergebnis

$$\chi^2 \to 0$$

erhalten!

Dieser Test hat den Sinn, daß Sie überprüfen, ob Sie die Modellfunktion bzw. deren Ableitungen richtig programmiert haben. Machen Sie erst weiter, wenn Sie sich überzeugt haben, daß Ihr Programm die folgenden Ergebnisse liefert:

Al_Testspektrum

```
eps = 0.10000E-05
tmax =
        100
FIXER Wert fuer die Aufloesungsfunktion: s = 2.06833291 mrad
ANFANGSWERTE fuer die 5 Fit-Parameter:
a(1) = A
              = 0.400000E+06
a(2) = Theta-F = 0.690000E+01
a(3) = U
              = 0.150000E+03
a(4) = B
                0.930000E+05
           =
a(5) = C
           =
                0.230000E-01
```

ITERATIONSSCHRITTE:

	chi-sq	a1	a2	a3	a4	a5
0	0.929E+04	0.400000E+06	0.690000E+01	0.150000E+03	0.930000E+05	0.230000E-01
1	0.264E+02	0.391290E+06	0.692998E+01	0.202988E+03	0.114981E+06	0.240534E-01
2	0.639E-02	0.390010E+06	0.693100E+01	0.202997E+03	0.116290E+06	0.239983E-01
3	0.573E-02	0.389999E+06	0.693100E+01	0.202997E+03	0.116301E+06	0.239999E-01
4	0.573E-02	0.389999E+06	0.693100E+01	0.202997E+03	0.116301E+06	0.239999E-01

Ergebnisse mittels MRQMIN und MRQCOF:

Modellparameter: Standardabweichung:

А	0.39000E+06	0.16447E+04
Theta-F	6.931	0.005
U	0.20300E+03	0.94987E+00
В	0.11630E+06	0.16728E+04
С	0.24000E-01	0.12059E-03

Die Varianz = 0.000 sollte zwischen 0.911 und 1.089 liegen.

Beachten Sie, daß wegen der fehlenden statistischen Schwankungen der Eingabewerte bei diesem Test die Ergebnisse: *Standardabweichungen der Fit-Ergebnisse und Varianz* keine Bedeutung haben.

Zwei Anwendungsbeispiele

Wenden Sie Ihr ausgetestetes Programm nun auf die beiden gemessenen ACAR-Spektren

Al_Spektrum und Cu_Spektrum

einer <u>Aluminium-Probe</u> und einer <u>Kupfer-Probe</u> an. Beide Spektren bestehen ebenfalls aus 256 Werten und umfassen einen Winkelbereich von 0 bis ca. 145 mrad.

Beurteilung der Fit-Ergebnisse und deren physikalische Interpretation

- 1. Berechnen Sie die Intensitäten A und B, die Gauss-Breite C, den Untergrund U sowie den Fermi cut-off Winkel Θ_F mitsamt den entsprechenden Standardabweichungen.
- 2. Stellen Sie auf Grund der <u>Varianz</u> fest, ob das Modell (6) ein 'gutes' Modell im Sinne des Vorlesungsskriptums ist.
- 3. Vor allem für metallische Festkörper ist der Fermi cut-off Winkel eine physikalisch interessante Größe, denn dieser Winkel hängt mit dem sog. Fermi-Impuls p_F nach (1) gemäß

$$p_F \approx m_0 c \cdot 10^{-3} \cdot \Theta_F \qquad \Theta_F \text{ in mrad.}$$

zusammen². Das ACAR-Experiment liefert also einen *experimentellen* Zugang zu dieser sehr wichtigen Größe der Metallphysik.

Dieses p_F kann aber auch theoretisch bestimmt werden. So ergibt sich nach der *Sommerfeld-Theorie* für kubisch-flächenzentrierte Metalle wie Al und Cu die Formel³

$$p_F = \frac{\hbar}{a} \sqrt[3]{12\pi^2 \gamma} \quad ,$$

wobei a die Gitterkonstante und γ die chemische Wertigkeit des jeweiligen Metalls ist. Für die im Rahmen dieser Aufgabe untersuchten Metalle gilt:

	<i>a</i> [m]	γ
Al	$4.04 \cdot 10^{-10}$	3
Cu	$3.61 \cdot 10^{-10}$	1

Vergleichen Sie die experimentellen p_F aus den Auswertungen der ACAR-Messungen mit den theoretischen Ergebnissen nach der Sommerfeld-Theorie.

4. Eine weitere interessante Information über die Metallelektronen erhält man, wenn man die Flächen betrachtet, die im verwendeten Modell (6) vom Parabel-Anteil bzw. vom Gauss-Anteil eingenommen werden. Die entsprechenden Formeln sind aus der Gleichung (6) leicht abzuleiten; hier sollen nur die Ergebnisse angegeben werden:

Parabelfläche =
$$\frac{4A\Theta_F}{3}$$
,
Gauss-Fläche = $\frac{B\sqrt{\pi}}{\sqrt{C}}$.

Berechnen Sie die prozentuellen Flächenbeiträge für Aluminium und Kupfer. Versuchen Sie eine Interpretation dieser Resultate unter Berücksichtigung des Textes "Die Winkel-Korrelations-Methode" in dieser Übungsbeschreibung.

 $^{^{2}}m_{0}c$ in SI-Einheiten: $2.731 \cdot 10^{-22} \ kgm/s$.

 $^{{}^{3}\}hbar$ in SI-Einheiten = $1.05459 \cdot 10^{-34} \ kgm^2/s$.

2. Aufgabe

Echtzeit-Röntgenbeugung zur Untersuchung der Kinematik von Phospholipid-Phasenübergängen.

• Die Experimente, die dieser Übung zugrunde liegen, wurden von G. Pabst, M. Rappolt, H. Amenitsch und P. Laggner (Institut für Biophysik und Röntgenstrukturforschung der Österreichischen Akademie der Wissenschaften Graz) und von S. Bernstorff (ELET-TRA, Sincrotrone Trieste, Italia) am Synchrotron ELETTRA in Triest durchgeführt.

Ich danke dem Projektleiter, Herrn Prof. P. Laggner, sowie Herrn UDoz. G. Pabst für die Erlaubnis, Ergebnisdaten dieser Experimente im Rahmen dieser Übung zu verwenden.

• **Phospholipide** sind Hauptbestandteile biologischer Membranen. In wässriger Dispersion bestehen diese Membranen aus lamellenförmig angeordneten Phospholipid-Bilayern mit der temperaturabhängigen Gitterkonstanten *d* (s. Abb. 5).

Abb. 1: Struktur von Phospholipid-Bilayer-Membranen in H₂O.

Figure 5: Die Struktur von Phospholipid-Bilayer-Membranen in H₂O.

Die **experimentelle** Bestimmung der Gitterkonstante d solcher Bilayer-Strukturen kann mittels Röntgen-Beugung erfolgen. Eine typische Versuchsanordnung ist in Abb. 6 dargestellt.

Die Leistungsfähigkeit der heute zur Verfügung stehenden Synchrotron-Röntgenquellen ermöglicht **zeitaufgelöste** Beugungsexperimente, d.h. man kann die Veränderung von Strukturen (Gitterkonstanten) in Abhängigkeit von der Zeit untersuchen.

Bei dem in Abb. 6 dargestellten Experiment wurde wie folgt vorgegangen:

Die Probe (Phospholipide in H_2O) befindet sich in einer Küvette und wird von einem Röntgenstrahl durchsetzt; die entstehenden Beugungsbilder werden am Detektor dargestellt.

Ein von einem Erbium-Laser ausgesandter Infrarot-Impuls (1.54 $\mu m)$ von kurzer Dauer (2 ms) und großer Energie (4 Joule) wird auf die

Figure 6: Schema des experimentellen Aufbaus einer Temperatursprung-Messung mittels Röntgen-Kleinwinkelstreuung (ELETTRA, Triest, Italien).

Probe gelenkt und bewirkt innerhalb dieser 2 ms einen Temperatursprung von ca. 15 Grad.

Die Reaktion des untersuchten Systems auf diese sprunghafte Temperaturerhöhung besteht in einer ebenso sprunghaften Reduktion der Gitterkonstanten des Bilayer-Systems um ca. 7 Prozent. Im Anschluß daran **relaxiert** das System relativ langsam wieder zu seiner ursprünglichen Struktur d.h. d steigt wieder bis zu seinem Wert vor der "Laserstörung" an. Dieser Relaxationsprozess kann mittels der zeitaufgelösten Röntgenbeugung genau mitverfolgt werden. Ein typisches Ergebnis einer solchen Messung finden Sie im Datenfile elettra.txt bzw. in der Abb. 7.

- **Problemstellung:** Least-Squares-Auswertung der im File elettra.txt enthaltenen 245 Meßdaten unter Anwendung des Gauss-Newton-Marquardt-Verfahrens. Dabei sind die folgenden Punkte zu beachten:
 - 1. Die 245 Datenwerte streuen um ihre Erwartungswerte mit einer (mittleren) **Standardabweichung** von $\sigma = 0.069$ Angstroem.
 - 2. Die Erstellung einer geeigneten **Modellfunktion** ist Ihre Sache! Beginnen Sie mit einem möglichst einfachen Modell und verfeinern Sie dieses Modell solange, bis die <u>Varianzbedingung</u> (s. Skriptum, Abschnitt 4.3.2) erfüllt ist.
 - 3. Achten Sie besonders darauf, daß Ihr Modell auch <u>physikalisch</u> plausibel ist (Relaxationsprozess!).
 - 4. Überlegen Sie sich die **physikalische Bedeutung** der gefitteten Parameter.
 - 5. Die GNM-Iteration wird abgebrochen, wenn die gefitteten Parameter mit einer relativen Genauigkeit von 0.00001 bekannt sind.
 - 6. Erstellen Sie für jedes Ihrer Modelle einen <u>Ergebnis-File</u>, der die folgenden drei Spalten enthaelt:

t [s]	d_exp [A]	d_modell [A]
 xxx	 xxx	XXX

Graphische Ausgabe der experimentellen Datenwerte inklusive der berechneten Modellkurven mittels MATLAB.

time [s]

Figure 7: Abhängigkeit der Gitterkonstanten d der Phospholipid-Bilayer in H₂O (in Angstroem) von der Zeit t (in Sekunden), gemessen ab dem laserinduzierten Temperatursprung (G. Pabst, M. Rappolt, H. Amenitsch, S. Bernstorff und P. Laggner, 1998).