
NUMERICAL METHODS IN PHYSICS

Third Exercise WS 2013/2014 MATLAB

Nonlinear least-squares analysis of experimental data by means of
the Gauss-Newton-Marquardt method

The programs and test data for this exercise can be found on the Internet:

mrqmin.m mrqcof.m gnmtest.txt

Al_Testspektrum Al_Spektrum Cu_Spektrum elettra.txt

(see lecture notes section 4.5.5 and 4.5.6, German version).

Structure of the program:

|-------------------------------------|

| main program |

| input of x/y data |

| input of GNM parameters |

| GNM iteration control |

| statistical evaluation |

| Def.: funcs=@<name of your choice> |

| output |

|-----------------|-------------------|

|

|--------------------------|------------------------------------|

| MRQMIN |

| (see section 4.5.5) |

| | |

| | |

| MRQCOF |

| (see section 4.5.6) |

| | |

|--------------------------|------------------------------------|

|

|-------------------|-----------------------|

| <name of your choice> |

| Calculating the function values of the |

| model function and its derivatives with |

| respect to the model parameters. |

|-------------------------------------------|

The main program and the routine containing the model function have to be
developed by you.
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MATLAB

Headline and explanations of the procedure mrqmin.m:

=====================================================

function [a,alpha_mrq,covar,beta_mrq,chisq,ochisq,alamda,vmar]

= mrqmin(funcs,x,y,sig,ndata,ma,a,alamda,alpha_mrq,beta_mrq,ochisq);

% This function performs an iteration step of the

% Gauss-Newton-Marquardt method according to the lecture

% notes, section 4.5.5ff (German version).

% PARAMETER DESCRIPTION see lecture notes

% Note: This version directly hands over the function as function handle

% and the parameters alpha, beta and ochisq are input- and output-

% parameters.

% This program calls the following routine mrqcof which works

% exactly as described in the lecture notes.

% The routine mrqcof calls the routine <name of your choice>:

%

% [ymod,dyda] = <name of your choice>(x,a,ma,ndata);

% Input-Parameters: as described above

% Output-Parameters: ymod row vector containing the ndata values

% of the model function

% dyda matrix (1st index=parameter number,

% 2nd index=data point number)

% containing the partial derivatives

% of the model function with respect

% to the model parameters

% THIS FUNCTION HAS TO BE PROVIDED BY THE USER OF THE MRQMIN PROGRAM

% (usually in the Matlab script <name of your choice>.m).

Preparatory Exercise

Test your program using the example described in the lecture notes
(German) on page 128ff. Below you find the corresponding cita-
tion:

We examine a radioactive compound that consists of a mixture of J radioac-
tive isotopes. Both types of atomic nuclei decay, starting from an initial
activity Aj with a half-life Tj, according to the law of radioactive decay:

Aj(t) = Aje
− ln 2·t/Tj .

The total activity of the source is thus

A(t) =
J∑

j=1

Aje
− ln 2·t/Tj .
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The measurement is performed as follows: During a fixed time span ∆ the
decays originating from the source are counted and the result is saved. Then,
the count is repeated for another time span ∆, etc. That way you get a series
of count values Zk, where

Zk = C ·
∫ k∆

t=(k−1)∆
dtA(t) (k = 1, 2, . . .) .

The constant C is a measure of the sensitivity of the counting apparatus.

Of course, an experiment like that is a typical counting experiment, i.e. the
measured values lie on a Poisson distribution around their expectation value
(see page 102f., German version).
By evaluating the above integral you get the model function with 2J param-
eters:

Z(k;A1, . . . , AJ , T1, . . . , TJ) =
J∑

j=1

(
C
Aj

ln 2

)
Tj
(
e+∆ ln 2/Tj − 1

)
e−∆ ln 2·k/Tj .

The derivatives ∂Z/∂Aj and ∂Z/∂Tj can easily be calculated from this for-
mula. For the given example, the routine <name of your choice>.m, which
you have to write as a user of mrqmin.m and mrqcof.m, could look like this1:

function [z,dzda] = testmodel(x,a,ma,ndata);

% x is a vector with ndata components

dzda=zeros(ma,ndata);

delta=15.0; % measuring time

con=delta*log(2);

mterm=fix(ma/2);

for j=1:mterm

fac1=con/a(mterm+j);

fac2=exp(fac1);

fac3=fac2-1;

fac4=exp(-fac1*x);

dzda(j,:)=a(mterm+j)*fac3.*fac4/log(2);

dzda(mterm+j,:)=a(j)/log(2).*fac4.*(fac3*(1+fac1*x)-fac1*fac2);

end

z=a(1:mterm)*dzda(1:mterm,:);

1The following program corresponds nearly exactly to the program in the lecture notes
(German), page 129.
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Now the description of the actual example:

The count rates of a radioactive compound consisting of two components (i.e.
J = 2) were measured. In total 40 measurements were performed, each for a
time span of ∆ = 15 seconds.

40 data points:

1 15376.0 21 981.0

2 10903.0 22 939.0

3 7950.0 23 857.0

4 5865.0 24 790.0

5 4653.0 25 814.0

6 3721.0 26 766.0

7 3089.0 27 691.0

8 2683.0 28 681.0

9 2396.0 29 614.0

10 1992.0 30 576.0

11 1910.0 31 529.0

12 1820.0 32 488.0

13 1726.0 33 472.0

14 1600.0 34 464.0

15 1495.0 35 434.0

16 1410.0 36 380.0

17 1271.0 37 382.0

18 1197.0 38 365.0

19 1106.0 39 387.0

20 1004.0 40 296.0

These 40 data points (Poisson statistics !) can be found in the file
gnmtest.txt.
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GNM-Parameters: guessed values: C*A1 = 2000.0

=============== C*A2 = 500.0

T1 = 30.0 s

T2 = 200.0 s

rel. precision EPS = 0.00001

The course of the iteration using the Gauss-Newton-Marquardt method:

t chisq C*A1 C*A2 T1 T2

0 196876.304 2000.000 500.000 30.000 200.000

1 1233.069 976.760 237.577 26.378 184.784

2 45.645 998.414 229.228 22.949 172.341

3 43.535 1005.360 226.315 23.159 173.250

4 43.535 1005.458 226.349 23.153 173.245

5 43.535 1005.457 226.348 23.153 173.246

Convergence was reached!

VARIANCE = 1.209 (should be between 0.764 and 1.236)

model parameter SD

C*A1 1005.457 10.182

C*A2 226.348 4.129

T1(s) 23.153 0.353

T2(s) 173.246 2.320

Covariance matrix:

C*A1 C*A2 T1 T2

C*A1 1.0000 -0.0494 -0.4642 0.0811

C*A2 -0.0494 1.0000 -0.7345 -0.9370

T1 -0.4642 -0.7345 1.0000 0.6405

T2 0.0811 -0.9370 0.6405 1.0000
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Figure 1: Schematic of a 2γ positron electron annihilation.

Task 1

Application of the least-squares method for non-linear model func-
tions (Gauss-Newton-Marquardt-Method) to the problem of the
statistical analysis of positron angular correlation spectra.

Theoretical Foundations

If you shoot positrons (= antiparticles of electrons) into matter, after a rel-
atively short time span the positrons annihilate with the electrons in the
matter (particle-antiparticle annihilation). The energy thereby released and
the total momentum of every e+− e− pair are carried away by (usually two)
annihilation photons γ (see figure 1).
Therefore the two annihilation photons contain information about the total
momentum of the e+ − e−-pair

~p = ~p+ + ~p− .

As in most of the cases the momentum of the positron is much lower than
the momentum of the electron, the following approximation is valid:

~p ≈ ~p− .

That is, the experimental analysis of annihilation radiation allows us to de-
termine the momentum distribution of the electrons in the specimen.

How is it now possible to determine the momenta ~p from the measured photon
radiation? Suppose the annihilating e+−e− pair had no momentum (~p = 0).
In that case the two annihilation photons would have to fly away in exactly
diametral directions (conservation of momentum!). In the case ~p 6= 0 the two
photons would have to carry away a resulting momentum ~p, which means
that they fly away with an angle different from 180 degrees (figure 2).
The angle Θ, describing the deviation from 180 degrees, is related to ~p ap-
proximately as

Θ ≈ | ~p |
m0c

(1)
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Figure 2: The direction of the two annihilation photons.

Figure 3: Principle of the angular correlation method.

(m0 ... rest mass of electron and positron, c ... speed of light). As | ~p |� m0c
this angle is relatively small and is usually given in milli-radians (mrad).

The angular correlation method

is based on this relation (figure 3): The positrons coming from the e+ source
penetrate the sample and annihilate there. The annihilation photons are
registered using two detectors: one detector is mounted on a fixed position
while the other can move to different angles Θ. The two detectors are op-
erated in coincidence, i.e. only photons belonging to the same annihilation
process are registered. Thus you get an angular distribution of the electron
momenta N(Θ). This experimental method is called Angular Correlation of
Annihilation Radiation (ACAR) method in the literature.
Figure 4 shows a typical ACAR spectrum of a metallic specimen. It is a
Gauss-shaped distribution with a parabola put on top. It is not possible to
discuss the cause for this special shape of the ACAR curves in this short
problem description. Here the results:

The parabolic portion of the ACAR measurement results from the annihila-
tion of the positrons with nearly-free valence electrons. As these electrons
can only have a momentum between zero and the so-called Fermi momentum
pF , the parabola cuts off abruptly at the corresponding angles

±ΘF = ± pF
m0c

(Fermi cut-off angle).

The Gaussian portion of the ACAR distribution results from the annihilation
of the positrons with stronger bound electrons [core electrons or d-electrons
in transition metals (Ni, Pd, ...) and noble metals (Cu, Ag, Au, ...)].
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The model function

The ideal model function can be written as:

Nideal(Θ) =

 A · (1−Θ2/Θ2
F ) + B̂ · exp

(
−Ĉ ·Θ2

)
| Θ |≤ ΘF

B̂ · exp
(
−Ĉ ·Θ2

)
| Θ |> ΘF

(2)

with the model parameters

A = amplitude of the parabola,

B̂ = amplitude of the Gaussian,

Ĉ = width of the Gaussian distribution,

ΘF = angle of the Fermi cutoff.

But equation (2) does not yet qualify as a model function for an experimen-
tally obtained ACAR spectrum, because (2) describes the ideal situation,
where the measuring apparatus does not have any measurement uncertainty.
However, in reality the apparatus only has a limited resolution; therefore the
resolution function R(Θ) has to be included in a real model:

N(Θ) =
∫ +∞

y=−∞
dy R(Θ− y) ·Nideal(y) . (3)

Most of the time the resolution function can be described quite well by a
Gaussian function normalized to one, i.e. by

R(Θ) =
1√
πs
· exp

[
−(Θ/s)2

]
, (4)

where s is the width of the resolution function: the smaller s, the better the
quality of the experiment. However, this s is not a fitting parameter, but a
fixed (and known) characteristic of the measuring apparatus; please note
the corresponding remarks on page 10/11 in this exercise descrip-
tion.
When you plug (4) and (2) into the integral (3), you get the final (real) model
function

N(Θ) =
1√
πs

{
A
∫ +ΘF

y=−ΘF

dy

(
1− y2

Θ2
F

)
· exp

[
−
(

Θ− y
s

)2
]

+

+ B̂
∫ +∞

y=−∞
dy exp

[
−
(

Θ− y
s

)2
]
· exp

(
−Ĉy2

)}
+ U , (5)

where a constant background term U was included (this term is necessary for
reasons not discussed here).
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Figure 4: ACAR-spektrum of a metallic copper sample.

After the evaluation of both the integrals we finally get

N(Θ) = A ·
{

1

2

[(
1− Θ2

Θ2
F

)
− s2

2Θ2
F

]
·
[
erf
(

Θ + ΘF

s

)
− erf

(
Θ−ΘF

s

)]
+

+
s

2
√
πΘ2

F

[
(Θ + ΘF ) exp〈−

(
Θ−ΘF

s

)2

〉 − (Θ−ΘF ) exp〈−
(

Θ + ΘF

s

)2

〉
]}

+

+ B · exp
(
−CΘ2

)
+ U . (6)

Note that in equation (6) the quantities B and C were introduced. They are
defined as

B =
B̂√

1 + Ĉs2

and C =
Ĉ

1 + Ĉs2
.
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An unpleasant formula:

As the theory of the Gauss-Newton method shows (see lecture notes [Ger-
man], section 4.5.3), in order to apply this method we need to evaluate the
model function and all its partial derivatives with respect to all fit parameters.

If you look at the actual model function (6), this task is a bit cumbersome,
but not particularly difficult. Bigger problems might be encountered in the
calculation of the derivative of N(Θ) with respect to the parameter ΘF . The
result of this calculation is:

∂N(Θ)

∂ΘF

= A
(2Θ2 + s2)

2Θ3
F

[
erf
(

Θ + ΘF

s

)
− erf

(
Θ−ΘF

s

)]
−

−A s√
πΘ3

F

[
(Θ + ΘF ) exp

{
−
(

Θ−ΘF

s

)2
}
− (Θ−ΘF ) exp

{
−
(

Θ + ΘF

s

)2
}]

. (7)

Equation (6) and (7) contains the so-called error function, which is defined
as follows:

erf(x) ≡ 2√
π

∫ x

0
dz e−z

2

.

In Matlab this function is available as erf(x).

Numerical evaluation of a spectrum

This task is about approximating the measured decay rates NM ≡
Nmeasurement at the angles Θk, k = 1, . . . , n using the model (6):

χ2 =
n∑

k=1

gk [NM(Θk)−N(Θk;A,ΘF , B, C, U)]2 −→ minimum. (8)

The model function contains as fit parameters the amplitude A of the
parabola part and the Fermi cut-off angle ΘF , the amplitude B of the Gaus-
sian part and the parameter C describing the width of the Gaussian curve,
and the measuring background U .

A few words about the weighting factors gk: they are calculated automat-
ically in the routine mrqmin, using the formula (4.5) in the lecture notes
(German):

gk =
1

σ2
k

.

Here, σk is the standard deviation of the kth measured value; as the ACAR-
experiment is a typical counting experiment as described in the lecture notes
(see section 4.3.3 [German]), these values obey Poisson statistics, i.e.

σk ≈
√
NM(Θk) .
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Important remark: please do not confuse the standard deviations of the
measured values (σk, k = 1, ..., n) with the width of the resolution function
s of the apparatus, which was introduced in equation (4). The one has
nothing to do with the other.

Task

• Develop a program which allows you to perform a statistical least-
squares analysis with the model function (6). Use the Gauss-Newton-
Marquardt method.

• For all the analyses you perform, s is

s = 2.06833291 mrad.

• All fit parameters have to be calculated to a relative precision of
0.000001.

An example for testing purposes

Check the correctness of you program using the following test spectrum for
aluminium:

Al_Testspektrum

This spectrum contains 256 values (angle interval from 0 to about 145 mrad);
it was simulated on the computer and contains no statistical uncertainties.
Therefore you should obtain the result

χ2 → 0

in this test.

The aim of this test is for you to check whether you have programmed the
model function and its derivatives correctly. Continue only after you have
made sure that your program yields the following results:

Al_Testspektrum

tmax = 100 eps = 0.100000E-05

FIXED value for the resolution function: s = 2.06833291 mrad

INITIAL VALUES for the 5 fit parameters:

a(1) = A = 0.4000000E+06

a(2) = Theta-F = 0.6900000E+01

a(3) = U = 0.1500000E+03

a(4) = B = 0.9300000E+05

a(5) = C = 0.2300000E-01
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ITERATION STEPS:

chi-sq a1 a2 a3 a4 a5

0 0.929E+04 0.400000E+06 0.690000E+01 0.150000E+03 0.930000E+05 0.230000E-01

1 0.264E+02 0.391290E+06 0.692998E+01 0.202988E+03 0.114981E+06 0.240534E-01

2 0.639E-02 0.390010E+06 0.693100E+01 0.202997E+03 0.116290E+06 0.239983E-01

3 0.573E-02 0.389999E+06 0.693100E+01 0.202997E+03 0.116301E+06 0.239999E-01

4 0.573E-02 0.389999E+06 0.693100E+01 0.202997E+03 0.116301E+06 0.239999E-01

Results using MRQMIN and MRQCOF:

model parameters: standard deviation:

A 0.39000E+06 0.16447E+04

Theta-F 6.931 0.005

U 0.20300E+03 0.94987E+00

B 0.11630E+06 0.16728E+04

C 0.24000E-01 0.12059E-03

The variance = 0.000 should be between 0.911 and 1.089.

Please note that due to the missing statistical deviations of the input values
in this test the results standard deviation of the fit results and variance have
no meaning.

Two sample applications

Now apply your well-tested program to the two measured ACAR spectra

Al_Spektrum and Cu_Spektrum

of an aluminium sample and a copper sample. Both spectra contain 256
values as well and include an angle interval from 0 to about 145 mrad.

Evaluation of the fit results and their physical interpretation

1. Calculate the amplitude A and B, the Gaussian width C, the back-
ground U and the Fermi cut-off angle ΘF with their respective standard
deviations.

2. Using the variance, determine whether the model (6) is a ’good’ model
as discussed in the lecture notes.

3. Mainly for metallic solids the Fermi cut-off angle is a physically interest-
ing quantity, as this angle is related to the so-called Fermi momentum
pF in (1) via2

pF ≈ m0c · 10−3 ·ΘF ΘF in mrad.

Thus the ACAR experiment makes this very important quantity for the
physics of metals experimentally accessible.

2m0c in SI-units: 2.731 · 10−22 kgm/s.
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This quantity pF can also be determined theoretically. According to
the Sommerfeld theory for face centered cubic metals as Al and Cu the
Fermi momentum is given by the formula3

pF =
h̄

a
3

√
12π2γ ,

where a is the lattice constant and γ is the chemical valence of each
metal. The following table shows these values for the metals examined
in this exercise:

a [m] γ
Al 4.04 · 10−10 3
Cu 3.61 · 10−10 1

Compare the experimental pF obtained by the evaluation of the ACAR
measurements with the theoretical results using the Sommerfeld theory.

4. Another interesting information about electrons in a metal can be ob-
tained by looking at the areas that are occupied by the parabola part
and the Gaussian part in our model (6). The corresponding formulae
can easily be derived from equation (6); here just the results are given:

area of the parabola =
4AΘF

3
,

area of the Gaussian =
B
√
π√
C

.

Calculate the percentage of these two area parts (with respect to the
whole area) for aluminium and copper. Try to interpret these results
with the help of the text ”The angular correlation method” in this
exercise description.

3h̄ in SI-units = 1.05459 · 10−34 kgm2/s.
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Task 2

Realtime X-ray diffraction to examine the kinematics of phospho-
lipid phase transitions.

• The experiments that are at the basis of this exercise were performed by
G. Pabst, M. Rappolt, H. Amenitsch and P. Laggner (Institut für Bio-
physik und Röntgenstrukturforschung, Österreichische Akademie der
Wissenschaften Graz) and by S. Bernstorff (ELETTRA, Sincrotrone
Trieste, Italia) at the synchrotron ELETTRA in Trieste.

I thank the project leader, Prof. P. Laggner, and UDoz. G. Pabst for
the permission to use the resulting data of these experiments for this
exercise.

• Phospholipids are the main constituents of biological membranes. In
aqueous dispersion these membranes consist of lamellar phospholipid
bilayers with a temperature dependent lattice constant d (see figure 5).

Figure 5: The structure of phospholipid bilayer membranes in H2O.

The experimental determination of the lattice constant d of such
bilayer structures can be done by X-ray diffraction. A typical experi-
mental setup is shown in figure 6.

The performance of the synchrotron X-ray sources available today al-
lows for time-resolved diffraction experiments, i.e. the change of
structures (lattice constants) with time can be examined.

In the experiment shown in figure 6 the following steps were performed:

The sample (phospholipids in H2O) is in a cuvette and is illuminated
by an X-ray; the resulting diffraction patterns are displayed at the
detector.
An infrared pulse emitted by an Erbium laser (1.54 µm) with a short
duration (2 ms) and big energy (4 Joule) is shone onto the sample and
leads to a temperature jump of about 15 degrees within these 2 ms.
The examined system reacts to this sudden temperature increase by an
equally sudden reduction of the lattice constant of the bilayer system by
about 7 percent. Then the system relaxes quite slowly to its original
structure, i.e. d increases to its value before the ”laser perturbation”.
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Figure 6: Schematic of the experimental setup of a temperature jump mea-
surement using X-ray small angle diffraction (ELETTRA, Trieste, Italy).

This relaxation process can be closely observed using time-resolved X-
ray diffracion. You find a typical result of a measurement like this in
the data file
elettra.txt and in figure 7.
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• Problem description: Least-Squares-evaluation of the 245 mea-
sured data points in the file
elettra.txt using the Gauss-Newton-Marquardt method. Please con-
sider the following points:

1. The 245 data points are distributed around their expectation val-
ues with a (mean) standard deviation σ = 0.069 Angstroem.

2. Generating an appropriate model function is up to you! Start
out by choosing the model as simple as possible and refine it until
the variance condition (see lecture notes [German], section 4.3.2)
is fulfilled.

3. Pay attention that your model is physically plausible (relaxation
process!).

4. Think about the physical meaning of the fitted parameters.

5. The GNM iteration is stopped when the fitted parameters are
known to a relative precision of 0.00001.

6. For each of your models, plot the experimental data including the
calculated model curves.
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Figure 7: Dependence of the lattice constant d of the phospholipid bilayer
in H2O (in Angstroem) on the time t (in seconds), measured from the laser-
induced temperature jump (G. Pabst, M. Rappolt, H. Amenitsch, S. Bern-
storff und P. Laggner, 1998).
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