
NUMERISCHE METHODEN IN DER PHYSIK
Fourth Exercise WS 2013/2014 [C]

Numerical evaluation of initial value problems with Runge-Kutta
algorithms

In this exercise we want to use the Runge-Kutta method to numerically solve
initial value problems of the following examples:

• Satellite example from the lecture notes
Data for comparisons can be found in the file exakte ellipse.

• Trajectories of charged particles in a magnetic field

• Oscillation behaviour of van der Pol oscillators

To do that we have provided you with two programs, which you can download
from our webpage:

runge_kutta_D.c (structure chart 26-28)

nrutil.c exakte_ellipse

How to use the Runge-Kutta package:

As described in Sec. 8.5 of the German version of the lecture note, the
Runge-Kutta algorithms is based on the routines ODEINT, RKQC and RK4.
(ODEINT is the program that has to be called from you main program.)
The user also has to provide a program called DERIVS, which defines the
set of n differential equations of first order for the given problem.

1

| DERIVS |

|

.....................

. | .

. ------- .

. | RK4 | .

. ------- .

. | .

. | .

. -------- .

. | RKQC | . program package

. -------- . "runge_kutta_D.c"

. | .

. | .

. ---------- .

. | ODEINT | .

. ---------- .

. | .

.....................

|

| main program |

Structure of the C program:

// Runge-Kutta program according to structure charts 26,27,28 in the German

// lecture notes, edition WS 2002/2003.

// Attention: "local extrapolation" Glg. (8.27) INACTIV !!

#include <stdio.h>

#include <math.h>

#include "nrutil.c"

void derivs(double x, double y[], double f[])

// Defining the functions f

{

f[1]=.... ; // Def. of f1(x, vec y)

f[2]=.... ; // Def. of f2(x, vec y)

.

.

}

2

#include "runge_kutta_D.c" // Input of the Runge-Kutta program you can

// download from our webpage.

// The "interface"-function you have to call

// from the main program is named

// ODEINT

// void odeint(double ystart[], int nvar, double x1, double x2, double eps,

// double h1, double hmin, int nstmax, int *nwerte,

// double xx[], double **yy)

// This is the driver program for the RuKu-package, which consists of

// the functions ODEINT, RKQC, RK4 and DERIVS.

// (see German lecture notes page 250 and following).

// Last update: 2-10-96

// Attention:

// ==========================

// There has to be a subprogram called

// void derivs(double x, double y[], double f[])

// which calculates for given point x known function values y[]

// the corresponding "right hand sides" of the set of

// differential equations f[].

// Parameters:

// ========================

// Input: ystart[] vector with initial values of the set of diff. eq.

// nvar number of eq.

// x1,x2 start- and endpoint of the integration interval

// eps required relative accuracy

// h1 guessed value for the step length of the

// RuKu-process

// hmin minimal value for the work step length

// nstmax maximal number of points between x1 and

// x2, which are saved in xx[] and yy[]

// Output: nwerte number of saved points

// xx[] x values of saved points

// yy[][] y values of saved points

// first index = index of function

// second index = index of point

int main()

{

3

int nvar,nstmax,nwerte,... ;

double t0,tmax,eps,h1,hmin;

double *ystart,*tfeld,**yfeld;

nvar=... ;

nstmax=... ;

y0=dvector(1,nvar);

tfeld=dvector(1,nstmax);

yfeld=dmatrix(1,nvar,1,nstmax);

t0=... ;

tmax=... ;

ystart[1]=... ;

ystart[2]=... ;

.

.

eps=... ;

h1=... ;

hmin=... ;

odeint(ystart,nvar,t0,tmax,eps,h1,hmin,nstmax,&nwerte,tfeld,yfeld);

.

.

return (0);

}

4

Figure 1: Trajectory of an earth satellite

1. Exercise: Satellite example from the lecture

Test the performance of your Runge-Kutta algorithm with the satellite
example from the lecture (see German lecture notes starting on page 245).

Defining the problem:

A satellite is set into motion with a velocity vmax, tangential to the surface
of the earth. We want to calculate its trajectory considering the following
constraints and approximations:

• vmax < escape velocity.

• The earth shall be approximated as an ideal sphere with rmin and
homogenous density.

• The influence of the earth’s atmosphere is neglected.

• The influence of all other celestial bodies is neglected.

With these constraints, the equation of motion of the satellite reads

r̈ = −γM
r3

r , (1)

where r denotes the vector originating from the earth’s center and ending at
the satellite’s momentary position.

Equation (1) leads in the end to a set of two differential equations of second
order for the distance r and the rotation angle ϕ:

r̈ = rϕ̇2 − γM

r2

ϕ̈ = −2ṙϕ̇

r
(2)

5

Substituting
r → y1 ϕ→ y2 ṙ → y3 ϕ̇→ y4 ,

one gets a set of 4 differential equations of first order:

ẏ1 = y3 y1(t = 0) = rmin

ẏ2 = y4 y2(t = 0) = 0

ẏ3 = y1y
2
4 −

γM

y21
y3(t = 0) = 0 (3)

ẏ4 = −2y3y4
y1

y4(t = 0) =
vmax
rmin

Constants and initial values: M and γ are the earth’s mass and the gravita-
tional constant

M = 5.977 · 1024 kg and γ = 6.67 · 10−11 m3/(kg s2) .

The satellite starts at the earth’s surface (rmin = 6.37 ·106 m) with a velocity
of vmax = 10.4 · 103 m/s.

We want to express all lengths in units of rmin, all velocities in units of vmax
and all times in units of the period of revolution T = 35705.83.

In these units the constant α = γM has the value 1966.39, and the intial
values for y1(0) and y4(0) are 1.0 and 58.29527 respectively.

According to eq. (3) the definition of the functions reads

function dy = f_satellit(t,y)

global alpha

dy = zeros(4,1); % a column vector

dy(1) = y(3);

dy(2) = y(4);

dy(3) = y(1)*y(4)^2 - alpha/(y(1)^2); % alpha GLOBAL = 1966.390

dy(4) = -2*y(3)*y(4)/y(1);

Tasks:

• Solve the set of equations for a time interval from 0 to 5 revolutions of
the satellite four times, each time with different tolerance values

EPS = 0.25 0.05 0.01 0.001

• Present your results in four seperate figures depicting the calculated
trajectory in xy space. Compare these trajectories to the exact, ana-
lytically calculated elliptical trajectory. You can find the exact data in
the file

exakte_ellipse

6

2. Exercise: Trajectory in an inhomogeneous magnetic field

Theoretical background

A particle with mass m and electrical charge q, which moves in a magnetic
field (with magnetic flux density B(r, t)) with a velocity of v(t) is subjected
to a Lorentz force

FL = q(v ×B) . (4)

To calculate the trajectory of the particle we start with Newton’s second
law

mr̈(t) = q [ṙ(t)×B(r, t)] . (5)

This vectorial differential equation of second order corresponds to the set of
differential equations

ẍ =
q

m
(ẏBz − żBy)

ÿ =
q

m
(żBx − ẋBz) (6)

z̈ =
q

m
(ẋBy − ẏBx)

Taking the initial values for the time t = 0 into account

x(t = 0) = xo y(t = 0) = yo z(t = 0) = zo

ẋ(t = 0) = vxo ẏ(t = 0) = vyo ż(t = 0) = vzo (7)

we are left with a uniquely defined initial value problem. The solutions
x(t), y(t) and z(t) are the spatial components of the trajectory parametrised
by t.

The space- and time-dependent vector of the magnetic field (more precisely
of the magnetic flux density) is of the form

B(r, t) = B0

 f1(r, t)
f2(r, t)
f3(r, t)

 (8)

Putting this vector in equation (6) results in a common factor in all of the
equations called the angular frequency qB0/m, which in our calculations is
set to the value

qB0

m
≡ σ = π .

Your task now is to write a program that can solve numerically the ini-
tial value problem described above for arbitrary values of σ, xo, vxo, yo,
vyo, zo and vzo as well as for arbitrary functions fi(r, t) by using the
ODEINT+RKQC+RK4 program package.

7

Testing the program

If the magnetic field is constant in time as well as space and points exactly
in z-direction, i.e.

f1(r, t) = 0.0 f2(r, t) = 0.0 f3(r, t) = 1.0 ,

we can solve the problem analytically and obtain the following solution

x(t) = −vyo
σ

cos(σt) +
vxo
σ

sin(σt) + xo +
vyo
σ

(9)

y(t) =
vyo
σ

sin(σt) +
vxo
σ

cos(σt) + yo −
vxo
σ

(10)

z(t) = zo + vzot . (11)

In this case, the trajectory of the particle is a helix with the symmetry axis
in z-direction. Projecting the helix onto the xy plane one gets a circle with
center coordinates xo + vyo/σ and yo − vxo/σ and a radius of

√
v2xo + v2yo/σ.

In z-direction we have a uniform motion with velocity vzo independent of the
magnetic field.

Use these considerations to test your program, i.e. compare your results for
0 ≤ t ≤ 10 s with the analytic results from equations (9-11) for following
initial values:

xo = 0 yo = 0 zo = 0 vxo = 0 vyo = 2π vzo = 0.25

EPS for all calculations = 10−5.

Graphic representation:

1. Present the three functions x(t), y(t) and z(t) in one figure (see fig. 2).

2. Show the calculated trajectory in 3D-space, as for example shown in
fig. 3.

You can make use of the very convenient plotting function
plot3(vec-x,vec-y,vec-z) in Matlab for these kinds of trajectories
[x(t), y(t), z(t)]. There are also similar functions available for other
graphic libraries (gnuplot,...).

8

0 1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2

3

4

ZEIT (s)

X

Y

Z

Figure 2: The functions x(t), y(t) and z(t) in the test case.

X

Z

Y

Figure 3: Trajectory of the charged particle for the test example.

9

Application example

Use the following inhomogeneous magnetic fields:

Example: Magnetic field, inhomogeneous in time:

Calculate the trajectories for the time interval 0 ≤ t ≤ 10 s and the initial
values

xo = 0 yo = 0 zo = 0

vxo = 0 vyo = 1.5 vzo = 2π

(a) for the magnetic field

f1(r, t) =
1√
2

eγt f2(r, t) =
1√
2

eγt f3(r, t) = 0

with
γ = 0.5 ,

(b) for the magnetic field

f1(r, t) =
√

2 eγt f2(r, t) =
√

2 eγt f3(r, t) = 0

with
γ = −0.25 .

10

Example: “Tilted” magnetic field:

Calculate the trajectories for the time interval 0 ≤ t ≤ 20 s and the initial
values

xo = 0 yo = 0 zo = 0

vxo = 0 vyo = 2π vzo = 0.25

In the time interval 0 ≤ t ≤ ta the magnetic field is considered constant and
to point in z-direction

f(r, t) =

 0
0
1

 .

In the time interval ta ≤ t ≤ tb the vector f rotates linearly in time towards
the x-direction (see fig. 4).

For times t > tb the magnetic field is constant and points in x-direction:

f(r, t) =

 1
0
0

 .

Time parameter: (a) ta = 8.5 s tb = 9.5 s
(b) ta = 9.0 s tb = 10.0 s

Z

X

TA

TB

Figure 4: Tilting the magnetic field

11

3. Exercise: van der Pol oscillator

Theoretical background

We want to study the properties of the so-called van der Pol oscillator.
This kind of oscillators appears for example in an electromagnetic transmit-
ter, whose losses through the resistance are compensated by backcoupling to
a control grid of a triode.
The differential equation describing this case can in principle be only solved
numerically. There are, however, analytic approximations for the attractor
curve, as will be described later.

The van der Pol oscillator is described by the following equation of motion

mẍ− 2mγ(x)ẋ+mω2x = 0 (12)

with x(t = 0) = x0 and ẋ(t = 0) = v0. The reason for only being able to
solve this numerically lies in the non-linearity of γ(x)

γ(x) := γ0

[
1− x(t)2

x2kr

]
(13)

appearing in the damping term (with constants γ0 > 0 and xkr). xkr is a crit-
ical displacement, above which oscillations are damped. For displacements
x < xkr we have γ(x) < 0, in which case the oscillations are amplified.

• Solve the initial value problem (12), (13) by employing a Runge-Kutta
algorithm thrice with following parameters (γ0, ω are given in units of
s−1, xkr and x0 in cm and v0 in cm/s):

1. ω = π γ0 = 0.025 xkr = 0.5
x0 = 5.0 v0 = 0.0
0 ≤ t ≤ 61 s EPS = 0.00001

2. ω = π γ0 = 1.25 xkr = 0.5
x0 = 5.0 v0 = 0.0
0 ≤ t ≤ 31 s EPS = 0.00001

3. ω = π γ0 = 2.5 xkr = 1.0
x0 = 0.1 v0 = 0.0
0 ≤ t ≤ 31 s EPS = 0.0001

• Plot the function x(t) for all of these cases.

• Show a phase diagram of your results, i.e. depict the displacements
x(t) as functions of the velocities ẋ(t). You will see that in all cases
the oscillations heads towards a limiting curve, which is a periodic
solution of the system itself. This solution, called attractor curve, can
be approximately stated in an analytic form

x(t) = 2xkr cos(ωt)− γ0
xkr
2ω

sin(3ωt) ,

12

and its respective time derivative. Plot these approximations in the
same figures with your phase diagrams.1

• Discuss and interpret the three cases. What type of oscillations are
they?

1More information on the van-der-Pol oscillator can be found example in: F. Scheck,
Mechanik: von den Newtonschen Gesetzen zum deterministischen Chaos, Springer-
Lehrbuch 1992, S.293f;
Ch. Gerthsen, Physik, 18. Auflage, neubearbeitet von H. Vogel, Springer, Berlin, 1995, S.
976f.

13

