
NUMERISCHE METHODEN IN DER PHYSIK
Fourth Exercise WS 2013/2014 [MATLAB]

Numerical evaluation of initial value problems using MATLAB
routines

• In this exercise we want to use the computational routines provided by
Matlab to numerically solve the initial value problems of the following
examples:

– Satellite example from the lecture notes
Data for comparisons can be found in the file exakte ellipse.

– Trajectories of charged particles in a magnetic field

– Oscillation behaviour of van der Pol oscillators

• The most important program of the matlab library in this case is ode45.

Its name can be easily explained: ODE stands for ordinary differential
equation and 45 signifies that it’s using a combination of two Runge-
Kutta algorithms of orders 4 and 5. These Runge-Kutta algorithms are
closely related to the Runge-Kutta-Fehlberg method introduced in the
lecture notes in Sec. 8.6 (German version).

• You can get a detailed view of all available functions and programs for
solving initial value problems in Matlab by browsing the HELP section
of Matlab. There you can also read up the exact way of how to use a
routine with a description of all input and output parameters.

Proper use of the Matlab function ode45:

Here we want to provide a very short description on how to use ode45 prop-
erly. A very basic option would be:

1



% Matlab example program ’ode_main.m’:

% Defining the interval in which the differential equation

% has to be solved (for initial value problems this is very

% often a time interval).

time=[tstart tend];

% Creating a vector with all initial values for the functions that

% solve the set of diff. eq.

y0=[y1_0 y2_0 ....];

% Using the function ’odeset’, a positive value for the relative accuracy

% is set:

TOL= ...; % z.B.: 0.0001

options=odeset(’RelTol’,TOL);

% Call of the program ’ode45’:

% Here we expect the existence of a Matlab file called ’odefunc.m’,

% in which the functions f of the set of diff. eq. are defined:

[timeout,y] = ode45(’odefunc’,time,y0,options);

% The output then is:

% vector ’timeout’ with the time arguments;

% matrix ’y’:

% first to nth column: values of the functions y1(t) y2(t) ... yn(t)

.

.

.

% Matlab example programm ’odefunc.m’:

%

% This program defines the functions f

% (the right hand side of the set of diff. eq.)

% This function corresponds to the algorithm ’DERIVS’

% described in the lecture notes.

function f = odefunc(t,y)

f=zeros(n,1); % a column vector. n is the order of the system

f(1)= ... ; % function f1(t,y1,y2,...)

f(2)= ... ; % function f2(t,y1,y2,...)

.

.
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Figure 1: Trajectory of an earth satellite

1. Exercise: Satellite example from the lecture

Test the performance of the Matlab program ode45 with the satellite
example from the lecture (see German lecture notes starting on page 245).

Defining the problem:

A satellite is set into motion with a velocity vmax, tangential to the surface
of the earth. We want to calculate its trajectory considering the following
constraints and approximations:

• vmax < escape velocity.

• The earth shall be approximated as an ideal sphere with rmin and
homogenous density.

• The influence of the earth’s atmosphere is neglected.

• The influence of all other celestial bodies is neglected.

With these constraints, the equation of motion of the satellite reads

r̈ = −γM
r3

r , (1)

where r denotes the vector originating from the earth’s center and ending at
the satellite’s momentary position.

Equation (1) leads in the end to a set of two differential equations of second
order for the distance r and the rotation angle ϕ:

r̈ = rϕ̇2 − γM

r2

ϕ̈ = −2ṙϕ̇

r
(2)
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Substituting
r → y1 ϕ→ y2 ṙ → y3 ϕ̇→ y4 ,

one gets a set of 4 differential equations of first order:

ẏ1 = y3 y1(t = 0) = rmin

ẏ2 = y4 y2(t = 0) = 0

ẏ3 = y1y
2
4 −

γM

y21
y3(t = 0) = 0 (3)

ẏ4 = −2y3y4
y1

y4(t = 0) =
vmax
rmin

Constants and initial values: M and γ are the earth’s mass and the gravita-
tional constant

M = 5.977 · 1024 kg and γ = 6.67 · 10−11 m3/(kg s2) .

The satellite starts at the earth’s surface (rmin = 6.37 ·106 m) with a velocity
of vmax = 10.4 · 103 m/s.

We want to express all lengths in units of rmin, all velocities in units of vmax
and all times in units of the period of revolution T = 35705.83.

In these units the constant α = γM has the value 1966.39, and the intial
values for y1(0) and y4(0) are 1.0 and 58.29527 respectively.

According to eq. (3) the definition of the functions reads

function dy = f_satellit(t,y)

global alpha

dy = zeros(4,1); % a column vector

dy(1) = y(3);

dy(2) = y(4);

dy(3) = y(1)*y(4)^2 - alpha/(y(1)^2); % alpha GLOBAL = 1966.390

dy(4) = -2*y(3)*y(4)/y(1);

Tasks:

• Solve the set of equations for a time interval from 0 to 5 revolutions of
the satellite four times, each time with different tolerance values

TOL(rel) = 0.025 0.01 0.001 0.0001

• Present your results in four seperate figures depicting the calculated
trajectory in xy space. Compare these trajectories to the exact, ana-
lytically calculated elliptical trajectory. You can find the exact data in
the file

exakte_ellipse
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2. Exercise: Trajectory in an inhomogeneous magnetic field

Theoretical background

A particle with mass m and electrical charge q, which moves in a magnetic
field (with magnetic flux density B(r, t)) with a velocity of v(t) is subjected
to a Lorentz force

FL = q(v ×B) . (4)

To calculate the trajectory of the particle we start with Newton’s second
law

mr̈(t) = q [ṙ(t)×B(r, t)] . (5)

This vectorial differential equation of second order corresponds to the set of
differential equations

ẍ =
q

m
(ẏBz − żBy)

ÿ =
q

m
(żBx − ẋBz) (6)

z̈ =
q

m
(ẋBy − ẏBx)

Taking the initial values for the time t = 0 into account

x(t = 0) = xo y(t = 0) = yo z(t = 0) = zo

ẋ(t = 0) = vxo ẏ(t = 0) = vyo ż(t = 0) = vzo (7)

we are left with a uniquely defined initial value problem. The solutions
x(t), y(t) and z(t) are the spatial components of the trajectory parametrised
by t.

The space- and time-dependent vector of the magnetic field (more precisely
of the magnetic flux density) is of the form

B(r, t) = B0

 f1(r, t)
f2(r, t)
f3(r, t)

 (8)

Putting this vector in equation (6) results in a common factor in all of the
equations called the angular frequency qB0/m, which in our calculations is
set to the value

qB0

m
≡ σ = π .

Your task now is to write a program that can solve numerically the initial
value problem described above for arbitrary values of σ, xo, vxo, yo, vyo, zo
and vzo as well as for arbitrary functions fi(r, t) by using the Matlab function
ode45.
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Testing the program

If the magnetic field is constant in time as well as space and points exactly
in z-direction, i.e.

f1(r, t) = 0.0 f2(r, t) = 0.0 f3(r, t) = 1.0 ,

we can solve the problem analytically and obtain the following solution

x(t) = −vyo
σ

cos(σt) +
vxo
σ

sin(σt) + xo +
vyo
σ

(9)

y(t) =
vyo
σ

sin(σt) +
vxo
σ

cos(σt) + yo −
vxo
σ

(10)

z(t) = zo + vzot . (11)

In this case, the trajectory of the particle is a helix with the symmetry axis
in z-direction. Projecting the helix onto the xy plane one gets a circle with
center coordinates xo + vyo/σ and yo − vxo/σ and a radius of

√
v2xo + v2yo/σ.

In z-direction we have a uniform motion with velocity vzo independent of the
magnetic field.

Use these considerations to test your program, i.e. compare your results for
0 ≤ t ≤ 10 s with the analytic results from equations (9-11) for following
initial values:

xo = 0 yo = 0 zo = 0 vxo = 0 vyo = 2π vzo = 0.25

Tolerance TOL(rel) for all calculations = 10−5.

Graphic representation:

1. Present the three functions x(t), y(t) and z(t) in one figure (see fig. 2).

2. Show the calculated trajectory in 3D-space, as for example shown in
fig. 3.

You can make use of the very convenient plotting function
plot3(vec-x,vec-y,vec-z) for these kinds of trajectories [x(t), y(t), z(t)].
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Figure 2: The functions x(t), y(t) and z(t) in the test case.
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Figure 3: Trajectory of the charged particle for the test example.
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Application example

Use the following inhomogeneous magnetic fields:

Example: Magnetic field, inhomogeneous in time:

Calculate the trajectories for the time interval 0 ≤ t ≤ 10 s and the initial
values

xo = 0 yo = 0 zo = 0

vxo = 0 vyo = 1.5 vzo = 2π

(a) for the magnetic field

f1(r, t) =
1√
2

eγt f2(r, t) =
1√
2

eγt f3(r, t) = 0

with
γ = 0.5 ,

(b) for the magnetic field

f1(r, t) =
√

2 eγt f2(r, t) =
√

2 eγt f3(r, t) = 0

with
γ = −0.25 .
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Example: “Tilted” magnetic field:

Calculate the trajectories for the time interval 0 ≤ t ≤ 20 s and the initial
values

xo = 0 yo = 0 zo = 0

vxo = 0 vyo = 2π vzo = 0.25

In the time interval 0 ≤ t ≤ ta the magnetic field is considered constant and
to point in z-direction

f(r, t) =

 0
0
1

 .

In the time interval ta ≤ t ≤ tb the vector f rotates linearly in time towards
the x-direction (see fig. 4).

For times t > tb the magnetic field is constant and points in x-direction:

f(r, t) =

 1
0
0

 .

Time parameter: (a) ta = 8.5 s tb = 9.5 s
(b) ta = 9.0 s tb = 10.0 s

Z

X

TA

TB

Figure 4: Tilting the magnetic field
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3. Exercise: van der Pol oscillator

Theoretical background

We want to study the properties of the so-called van der Pol oscillator.
This kind of oscillators appears for example in an electromagnetic transmit-
ter, whose losses through the resistance are compensated by backcoupling to
a control grid of a triode.
The differential equation describing this case can in principle be only solved
numerically. There are, however, analytic approximations for the attractor
curve, as will be described later.

The van der Pol oscillator is described by the following equation of motion

mẍ− 2mγ(x)ẋ+mω2x = 0 (12)

with x(t = 0) = x0 and ẋ(t = 0) = v0. The reason for only being able to
solve this numerically lies in the non-linearity of γ(x)

γ(x) := γ0

[
1− x(t)2

x2kr

]
(13)

appearing in the damping term (with constants γ0 > 0 and xkr). xkr is a crit-
ical displacement, above which oscillations are damped. For displacements
x < xkr we have γ(x) < 0, in which case the oscillations are amplified.

• Solve the initial value problem (12), (13) by employing a Runge-Kutta
algorithm thrice with following parameters (γ0, ω are given in units of
s−1, xkr and x0 in cm and v0 in cm/s):

1. ω = π γ0 = 0.025 xkr = 0.5
x0 = 5.0 v0 = 0.0
0 ≤ t ≤ 61 s TOL(rel) = 0.00001

2. ω = π γ0 = 1.25 xkr = 0.5
x0 = 5.0 v0 = 0.0
0 ≤ t ≤ 31 s TOL(rel) = 0.00001

3. ω = π γ0 = 2.5 xkr = 1.0
x0 = 0.1 v0 = 0.0
0 ≤ t ≤ 31 s TOL(rel) = 0.0001

• Plot the function x(t) for all of these cases.

• Show a phase diagram of your results, i.e. depict the displacements
x(t) as functions of the velocities ẋ(t). You will see that in all cases
the oscillations heads towards a limiting curve, which is a periodic
solution of the system itself. This solution, called attractor curve, can
be approximately stated in an analytic form

x(t) = 2xkr cos(ωt)− γ0
xkr
2ω

sin(3ωt) ,
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and its respective time derivative. Plot these approximations in the
same figures with your phase diagrams.1

• Discuss and interpret the three cases. What type of oscillations are
they?

1More information on the van-der-Pol oscillator can be found example in: F. Scheck,
Mechanik: von den Newtonschen Gesetzen zum deterministischen Chaos, Springer-
Lehrbuch 1992, S.293f;
Ch. Gerthsen, Physik, 18. Auflage, neubearbeitet von H. Vogel, Springer, Berlin, 1995, S.
976f.
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