Übungen Analytische Mechanik WS 2005: 9. Übungsblatt

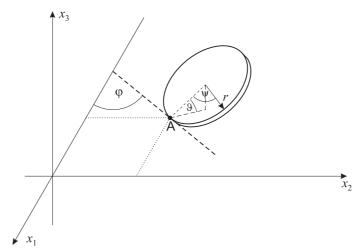
1. Hamiltonsche Bewegungsgleichungen

Wir betrachten kleine eindimensionale Schwingungen eines dreiatomigen Moleküls. Die Auslenkungen der Atome um ihre Ruhelagen werden mit x_1 , x_2 und x_3 bezeichnet. Die drei Atome (von links nach rechts) der Massen m_1 , m_2 und $m_3 = m_1$ sind über zwei Federn derselben Federkonstante D aneinander gekoppelt. Stellen Sie die Hamiltonfunktion auf und bestimmen Sie die Bewegungsgeichungen für die drei Atome aus den Hamiltonschen Gleichungen. Lösen Sie die Bewegungsgleichungen und diskutieren Sie die möglichen Schwingungsformen.

2. Trägheitstensor:

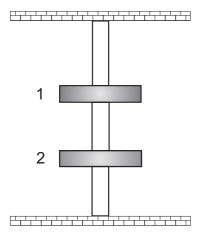
Berechnen Sie die Diagonalelemente des Trägheitstensors für Drehungen um den Schwerpunkt:

- (a) Eines homogenen Quaders der Abmessungen a, b und c, sowie der Masse M.
- (b) Eines honogenen Zylinders vom Radius r, der Höhe h und der Masse M.
- (c) Einer homogenen Kugel vom Radius r und der Masse M.
- (d) Eines dünnen Reifens vom Radius r und der Masse M. (Die Dicke des Reifens ist gegen den Radius vernachlässigbar.) Die Symmetrieachse sei die x_3 -Achse.
- (e) Stellen Sie die Bewegungsgleichung einer dünnen umkippenden Kreisscheibe (dünner Zylinder, $r\gg h$, Masse M) auf. Der Auflagepunkt ist durch A gekennzeichnet, die Winkel φ und ψ bleiben konstant, und der Winkel ϑ wächst entweder auf 180° , oder vermindert sich auf 0° .



Hinweis: Beachten Sie Gln. (5.26) und (5.20) der Vorlesungsunterlage!

3. Schwingung:



Zwei idente Scheiben der Masse M und des Radius R werden von drei identen Torsionsfedern der Länge ℓ gehalten. Ihr Rückstell-Drehmoment ist durch $\tau = -k\theta$ gegeben, wobei k die Torsionskonstante für die Länge ℓ ist, θ ist der Verdrehwinkel. Die Scheiben können frei um die vertikale Achse der Tosrionsfedern rotieren und haben die Winkel θ_1 bzw. θ_2 als Auslenkung aus der Gleichgewichtslage. Die Torsionsfedern haben kein Trägheitsmoment. Das Trägheitsmoment der Scheiben in Bezug auf die Drehachse sei I. Es sind die Anfangsbedingungen $\theta_1(0) = 0$, $\theta_2(0) = 0$, $\dot{\theta}_1 = 0$ und $\dot{\theta}_2(0) = \Omega$, mit Ω einer Konstanten, vorgegeben. Wie lange

benötigt es, bis die Scheibe 1 die gesamte kinetische Energie übernommen hat? (Angabe als implizite Gleichung ist ausreichend.) Ist die kinetische Energie im System konstant?

4. Fluiddynamik:

Unabhängig davon ob das Fluid inkompressibel ist oder nicht gilt die Kontinuitätsgleichung

$$\frac{\partial \rho(\mathbf{r}, t)}{\partial t} + \nabla(\rho \mathbf{u}) = 0,$$

welche die Erhaltung der Masse ausdrückt, wenn $\rho(\mathbf{r},t)$ die (veränderliche) Dichte des Fluids ist. Zeigen Sie, daß diese Gleichung auch als

$$\frac{D\rho(\mathbf{r},t)}{Dt} + \rho \nabla \mathbf{u} = 0$$

geschrieben werden kann. Daraus folgt, daß für $\nabla \mathbf{u} = 0$, $D\rho/Dt = 0$ ist. Was bedeutet dies? Ist dieses Ergebnis sinnvoll?