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Abstract
We review some recent conceptual improvements of the Korringa–Kohn–
Rostoker (KKR) Green function method for electronic structure calculations.
After an introduction into the KKR–Green function method we present an
extension of this method into an accurate full-potential scheme, which allows
calculation of forces and lattice relaxations. The additional numerical effort
compared to the atomic sphere approximation scales only linear with the
number of atoms. In addition, we discuss the recently developed screened
KKR method which represents a reformulation of the multiple scattering theory
with exponentially decreasing structure constants. This method, which has
the same accuracy as the standard KKR method, exhibits strong advantages
for two-dimensional systems like multilayers or surfaces, since the numerical
effort scales linearly with the number of layers. The strength of both methods
is illustrated in typical applications.

1. The KKR method

1.1. Introduction

The KKR method of band structure calculations was already introduced in 1947 by Korringa [1]
and in 1954 by Kohn and Rostoker [2]. A characteristic feature of this method is the use of
the multiple scattering theory for solving the Schrödinger equation. In this way the problem is
broken up into two parts. First, one solves the single scattering problem presented by a single
potential in free space. Second, one solves the multiple scattering problem by demanding that
the incident wave to each potential should be the sum of the outgoing waves from all other
scattering centres. The resulting equations show a beautiful separation between potential and
structural properties being characteristic for the KKR method. Another characteristic feature
of the KKR method is that it does not rely on a finite basis set for the expansion of the wave
functions as practically all other methods of electronic structure calculations do. The choice
of the basis functions usually completely characterizes each method and is the decisive factor
for the successes and limitations of the method. In the KKR method one solves the radial
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Schrödinger equation for each site exactly, which in a sense may be interpreted as using a
size-, angular momenta- and energy-adapted basis set, which is optimally small.

While the traditional KKR band structure scheme was not very popular, the method
experienced a revival as a Green function method. Here the full strength of multiple scattering
theory, being at the heart of the KKR method, can be much better exploited than in the wave
function scheme. In particular, due to the introduction of the complex energy integration
it is well suited for ground-state calculations, with an efficiency comparable to typical
diagonalization methods. This development opened the way to deal with solids with reduced
symmetry, as, for example an impurity in an otherwise ordered host crystal, or surfaces, layered
systems, etc. Another important application is the investigation of randomly disordered alloys
by means of the coherent potential approximation (KKR-CPA). It is basically the availability
of the Green function which makes this method so powerful and which uniquely distinguishes
it from other electronic structure methods.

The original KKR method and also the Green function version for impurities are well
known and treated in several books [3–6]. For a special summary of multiple scattering
methods related to KKR we refer to the proceedings of an MRS Symposium [7]. Here we
want to review recent advances in conceptual improvements of the KKR–Green function
method, which have been mostly achieved in our group. In section 2 we present the extension
of the KKR method to ‘full’ potentials and show that this method allows calculation of forces
and lattice relaxations. The full potential method is very accurate and requires only a modest
increase in computing time, since the additional effort scales linearly with the number of
atoms. The calculated lattice relaxations around defects in metals and semiconductors are
compared with EXAFS data and results obtained by other ab initio methods.

In section 3 we present the screened or tight binding KKR method recently introduced
in collaboration with the Vienna/Budapest group [8]. This is a new and exact reformulation
of multiple scattering with structure constants which decay exponentially in real space and
which can therefore be cut off after several shells. We demonstrate that this screened KKR
method has the same accuracy as the usual KKR method. For three-dimensional systems it
eliminates the difficulties in calculating the KKR structure constants. However the greatest
advantage occurs for systems with two-dimensional translational symmetry like multilayers
and surfaces, since here the numerical effort shows N-scaling behaviour. The strength of the
method is demonstrated in typical applications. Section 4 summarizes the main result and
gives an outlook for future research.

1.2. Green function and charge density

The strategy of Green function calculations consists of avoiding the calculation of eigenvalues
Eα and eigenstates ψα of the Hamiltonian, but rather calculating directly the Green function
G(r, r′;E) of the system, which is determined by the solution of the Schrödinger equation
with a source term:

( − ∂2
r + V (r) − E

)
G(r, r′;E) = −δ(r − r′) (1)

with atomic units h̄2/2m = 1 used here and in the following. Using the spectral representation
for the (retarded) Green function

G(r, r′;E + iε) =
∑
α

ψα(r)ψ∗
α(r

′)
E + iε − Eα

(2)
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it is easy to show that the charge density n(r) can be directly expressed by an energy integral
over the imaginary part of the Green function:

n(r) = 2
∑
α

Eα<EF

|ψα(r)|2 = − 2

π

∫ EF

dE Im G(r, r ;E). (3)

This relation directly allows calculation of the charge density from the imaginary part of the
Green function, which can be interpreted as the local density of states at the position r. In this
way the evaluation of the wave functions ψα(r) can be avoided. Due to the strong energy-
dependent structure of the density of states, the evaluation of the energy integral is usually
very cumbersome and typically about 103 energy points are needed in an accurate evaluation
of this integral.

The numerical effort can be strongly decreased, if the analytical properties of the Green
functionG(z) for complex energies z = E + i� are used. Since G(z) is analytical in the whole
complex energy plane, the energy integral can be transformed into a contour integral in the
complex energy plane [9]

n(r) = − 2

π
Im

∫ EF

EB

dzG(r, r ; z) (4)

where the contour starts at an energy EB below the bottom of the valence bands, goes into the
complex plane and comes back to the real axis at the Fermi level. Since for complex energies all
structures of the Green function are broadened by the imaginary part�, the contour integral can
be accurately evaluated by rather few energy points, typically 20–30, leading to a large saving
of computer time. In this way Green function methods are competitive with diagonalization
methods. Additional advantages occur for systems with two- or three-dimensional symmetry,
since as a result of the energy broadening the k-integration over the Brillouin zone requires
for complex energies fewer k-points. In the evaluation of the contour integral, special care
is necessary for the piece of the path close to EF, since here the full structure of G(E ) on
the real axis reappears. Therefore the energy mesh should become increasingly denser when
approaching EF.

The integration over a complex energy contour can also be extended to finite temperatures
by using the analytical properties of the Fermi–Dirac distribution [10]. Here the essential
point is that the contour close to EF is replaced by a sum over Matsubara energies
zj = EF + iπ(2j − 1)kT , j = 1, 2, . . . . Then only complex energies are needed, since the
energy point closest to EF still has an imaginary part of πkT. This is of particular advantage
for layered systems, where the two-dimensional Brillouin zone integration has to be evaluated
by the special points method. Here the finite imaginary part πkT means an energy smearing
of the k‖-dependent Green function G(k‖;E), so that the k‖-dependence becomes smooth,
ensuring a convergence of the k‖-integration.

It is worthwhile to remember that in density functional theory the eigenvalues and wave
functions do not have a direct physical meaning, but are only auxiliary quantities introduced
to evaluate the charge density. Using the shortcut of the complex energy integration is just in
the spirit of density functional theory, and in this sense the method is similar to the density
matrix method [11].

1.3. Green function and Dyson equation

The only effective way to determine the Green function G(E ) of a considered system is to
relate it to a reference system, the Green function G0(E ) of which is known. Let H 0 + V be
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the Hamiltonian of the real system considered, H 0 the one of the reference system, then the
two Green functions are connected by the Dyson equation

G(E) = G0(E) + G0(E) V G(E) = [1 −G0(E)V ]−1G0(E) (5)

which has to be solved to obtain G(E).
The easiest reference system is the free space, since the Green function is known

analytically. This can, e.g., be used to calculate the Green function of a cluster, or by
exploiting the periodicity by means of Fourier transform, the Green function of an ideal
crystal. This Green function can again be used to calculate the Green function for a point
defect in an otherwise ideal crystal or of a clean surface. The latter may serve as the reference
Green function, for example for an adatom on the surface. More details will be presented in
section 1.5.

One important advantage of the Green function method is that one does not need an
‘Ersatz geometry’. For instance, once the Green function of the ideal crystal is available, one
can treat the problem of a single point defect exactly, i.e. without approximating it by a small
cluster with a defect in the centre or by a periodically repeated supercell. Analogously, one
can handle the problem of a single defect on a surface, once the Green function of the surface
is available. The screened KKR method to be presented in section 3 even allows the treatment
of arbitrary layered systems, such as e.g. a semi-infinite system like a surface or two coupled
semi-infinite halfspaces.

1.4. Multiple scattering and the KKR–Green function

The Green function method within the frame of conventional KKR band structure method
was proposed by Dupree [12], Beeby [13] and Morgan [14] and first applied in self-consistent
calculations for impurities in metals by our group [15]. In this method one divides the whole
space into non-overlapping and space-filling cells centred at position Rn. In each cell the
electrons are scattered by potentials vn, which in this section are assumed to be spherically
symmetric and centred at Rn. By introducing cell-centred coordinates the Green function
G(r + Rn, r′ + Rn′ ;E) can then be expanded in each cell as a function of r and r′ into spherical
harmonics:

G(r + Rn, r′ + Rn′ ;E) = δnn′
√
E

∑
L

Hn
L(r〉;E)Rn

L(r〈;E)

+
∑
LL′

Rn
L(r;E) Gnn′

LL′(E) R
n′
L′(r′ ;E). (6)

Here r and r′ are restricted to the cells n and n′ and r〈 and r〉 denote one of the two vectors r and
r′ which has the smaller or larger absolute value. The Rn

L(r ;E) and Hn
L(r ;E) are products

of spherical harmonics and radial eigenfunctions to the central potential vn(r):

Rn
L(r ;E) = Rn

l (r;E) YL(r) (7)

Hn
L(r ;E) = Hn

l (r;E) YL(r). (8)

Here Rn
L(r, E) is the regular solution which varies at the origin as r l and which represents

the solution for an incoming spherical Bessel function jl(
√
Er)YL(r), while Hn

l is the
corresponding irregular solution which varies as 1/rl+1 at the origin and is identical to the
spherical Hankel function hl(

√
Er) outside the range of the potential. Both radial functions

are connected by the Wronskian relation, which guarantees that the first term in equation (6)
represents the exact Green function for the single potential vn(r) in free space. Since this term
already satisfies the source condition −δ(r − r′) for the Green function of equation (1), the
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second term is source-free and contains in the double angular momentum expansion only the
regular solutions Rn

L and Rn′
L′ .

By construction, the expression (6) for the Green function satisfies in each cell n the
general solution of the Schrödinger equation (1) for the Green function, while the matrix
Gnn′

LL′(E), the so-called structural Green function, describes the connection of the solutions in
the different cells and thus contains all the information about the multiple scattering problem,
which is in this way reduced to the solution of an algebraic problem. The clear separation
between the single-site properties, described by the radial solutions Rn

L(r) and Hn
L(r) and the

multiple scattering properties as described by the matrix Gnn′
LL′ , is the main advantage of the

KKR method.
In principle, the structural Green function matrixGnn′

LL′(E) can be determined by matching
the solutions of the neighbouring cells at the cell boundaries. However at the cell boundaries
the angular momentum expansion converges rather slowly, so that presumably a large lmax

cut-off would be needed. The more elegant and at the same time more efficient way consists
in using the power of multiple scattering theory, where the Green function is basically only
needed in the inner region of the cell, where the potential is strong, so that the l-convergence
does not represent a problem. As shown by Beeby [13] and others [4, 6, 12, 14], the structural
Green function matrix can be determined from the corresponding matrix g in free space by
the Dyson equation

Gnn′
LL′(E) = gnn

′
LL′(E) +

∑
n′′L′′

gnn
′′

LL′′ t
n′′
l′′ G

n′′n′
L′′L′ (9)

where the t-matrix tnl for the potential vn(r) is given by

tnl (E) =
∫ R

0
dr r2 jl(

√
Er) vn(r) Rn

l (r;E). (10)

The derivation of this equation is lengthy and straightforward so that we refer for this to the
literature cited above. An elementary derivation, also valid for the full-potential case, has
been given by Zeller [19].

1.5. Crystals, impurities, surfaces, layers

In this section we discuss the solution of the Dyson equation for different geometries,
representing the most important and time-consuming problem in the application of Green
function methods. The most trivial case is a finite cluster of scattering centres in free
space, where equation (9) has to be solved by direct inversion in real space. Naturally
the computational effort might be reduced by exploiting the point symmetry of the cluster by
means of group theory. The case of an ideal crystal is already a non-trivial example, where
one can take advantage of the translation symmetry by means of the Fourier transform. For
instance, for a crystal with one atom per unit cell, the t-matrix tl is the same for all atoms, and
the matrix Gnn′

LL′ depends only on the difference vector Rn − Rn′
, as the free Green function

gnn
′

LL′ always does. The Fourier-transformed Green function G(k, E ) is then given by

G(k, E) = [1 − g(k, E)t(E)]−1g(k, E) (11)

where both G and g are matrices in angular momentum space. The Green function Gnn′
LL′(E)

in real space follows directly by backtransformation. The generalization to crystals with many
atoms per unit cell is straightforward.

Let us now consider an impurity, or in general a localized region of perturbed potentials
in an otherwise ideal crystal. By taking the ideal crystal Green function G

0,nn′
LL′ (E) as the
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reference, the t-matrices tnl = t0
l +#tnl have nonvanishing perturbations #tnl in a finite region

so that the corresponding Dyson equation

Gnn′
LL′(E) = G

0,nn′
LL′ (E) +

∑
n′′L′′

G
0,nn′′
LL′′ #t

n′′
l′′ G

n′′n′
L′′L′ (12)

can be solved by matrix inversion in real space, possibly by again taking advantage of the
point group symmetry of the system.

For layered systems with a two-dimensional ‘in-plane’ periodicity it is advisable to use
a mixed representation with the in-plane degrees of freedom considered in reciprocal space
and the perpendicular-to-plane coordinates in real space. This results in a Green function
Gii′

LL′(k‖;E) with layer indices i and i ′ which contains both the energy E and the k‖ vectors as
parameters. The resulting Dyson equation with the corresponding ideal crystal Green function
as the reference

Gii′
LL′(k‖;E) = G

0,ii′
LL′ (k‖;E) +

∑
i′′L′′

G
0,ii′′
LL′′ (k‖;E)#ti′′l′′ Gi′′i′

L′′L′(k‖;E) (13)

has the structure of the equation for a linear chain with atoms i and i′. For a finite number of
perturbed layers the solution can be obtained by inversion. In this way accurate calculations for
surfaces can be performed by removing the atomic potentials in a few, e.g. five, layers, so that
two half-infinite crystals are formed, which due to the strong vacuum barrier are practically
not coupled.

This method has, however, several disadvantages. First, by relying on the ideal crystal
as the reference, both halfspaces are necessarily identical, which is a serious limitation for
layered systems. Second, layer relaxations are difficult to describe since reference is made to
the ideal positions. Moreover, the numerical effort scales like the third power of the number
N of the perturbed layers. All this is avoided by the much more elegant and efficient screened
KKR scheme to be presented in section 3.

The availability of the Green function for the surface or for a layered system again allows
the treatment of perturbations like an impurity or a small cluster in this system. The resulting
Dyson equation is the same as for the impurity-in-bulk case (12) except that the Green function
G

0,nn′
LL′ has to be replaced by, e.g., the surface Green function and the perturbations #tnl refer

to the deviations from the unperturbed surface values. In our group we have used this method
in numerous calculations investigating the strongly enhanced magnetism of single adsorbate
atoms and small clusters on surfaces [20–23].

2. Full potential KKR method, forces and lattice relaxations

2.1. Full potential

All-electron methods based on a spherical potential of muffin-tin type or on the atomic
sphere approximation (ASA) have in general proven to be very successful and efficient for the
description of the electronic structure of solids. However, systems with lower symmetry and/or
open structures require a more accurate treatment going beyond the spherical approximation.
This is also necessary, if forces and lattice relaxations are calculated, since for these problems
the spherical approximation fails completely. We show in this section that the KKR method
can be extended into an accurate and efficient full potential method, fulfilling all desired
requirements for successful electronic structure calculations. We will not discuss the strongly
debated l-convergence problems of the KKR method for the case of full potentials [4, 7, 19].
To a large extent we consider these as a more mathematical problem, which in practical
applications does not prevent highly accurate calculations with low lmax-cut-offs of lmax= 3 or 4.
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As we demonstrate in this section, such full potential KKR calculations have the same accuracy
as the FLAPW method.

The fundamental equation (6) for the KKR–Green function is also valid in the full
potential case so that the important separation between the single-potential problem and the
multiple scattering problem survives fully. However the single-site eigenfunctions Rn

L(r ;E)
and Hn

L(r ;E) are now the solutions for the general potential vn(r) no longer being spherical
[19]. For instance, Rn

L′(r ;E) is the solution of the Schrödinger equation for a spherical wave
jl′(

√
Er)YL′(r) incident on the potential v(r)

RL′(r ;E) = jl′(
√
Er)YL′(r) +

∫
d3r ′g(r, r′;E)v(r′)RL′(r′;E) (14)

where g(r, r′;E) is the Green function for free space. Clearly, the index L′ refers to the angular
momentum of the incoming partial wave. Solving equation (14) in this form would require a
three-dimensional integration. By expanding both the potential as well as the wave function
RL′(r;E) into spherical harmonics

v(r) =
∑
L

vL(r)YL(r) (15)

RL′(r ;E) =
∑
L

RLL′(r)YL(r) (16)

we obtain coupled radial equations for the double-indexed radial functions RLL′

RLL′(r;E) = δLL′jl′(
√
Er) +

∫ S

0
dr ′r ′2gl(r, r ′;E)

∑
L′′

vLL′′ (r)RL′′L′(r ′;E). (17)

Here the first index L refers to the r-coordinate of the outgoing partial wave and the second
one L′ to the angular momentum of the incoming wave. The radial integral extends up to the
range S of the potential. Moreover,

vLL′(r) =
∑
L′′

CLL′L′′vL′′(r) (18)

where CLL′L′′ = ∫
d'YLYL′YL′′ are the Gaunt coefficients.

The solution of the integral equation (17) or of the equivalent differential equation∑
L′′

[(
−1

r

∂2

∂r2
r +

l(l + 1)

r2
− E

)
δLL′′ + vLL′′(r)

]
RL′′L′(r;E) = 0 (19)

is rather complicated [29]. In order to avoid numerical problems we have transformed
equations (17) into a modified integral equation [18], where the effect of the spherical part of

the potential is already included in the incident radial wave function
◦
Rl (r,E)

RLL′(r, E) = δLL′
◦
Rl (r, E) +

∫ S

0
dr ′r ′2Gl(r, r

′;E)
∑
L′′

#vLL′′(r)RL′′L′(r ′;E) (20)

and where Gl(r, r
′;E) is the l-dependent radial Green function for the spherical component

of the potential

Gl(r, r
′;E) =

√
E

◦
Hl (r〉;E)

◦
Rl (r〈;E) (21)

and #vLL′ the non-spherical component of the potential

#vLL′(r) =
∑
L′′ �=0

CLL′L′′vL′′(r) (22)
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which provides the coupling between the different angular momenta. Since the non-spherical
potential #v is always rather small, we solve equation (20) by iteration, being equivalent to
a Born series expansion in powers of #v. Usually two to four iterations are sufficient for
convergence. However, 10 or 20 iterations are not prohibitively expensive, so that in practical
cases this iteration procedure does not present an approximation.

While for non-spherical potentials the general equation (6) for the Green function remains
valid and only RL(r) and HL(r) have to be replaced by the single-site solutions for the
anisotropic potential, the same is also true for the Dyson equation (9) describing multiple
scattering. Only the t-matrix tnl (E) has to be replaced by the t-matrix tnLL′(E) for a general
potential vn(r) being given by

tnLL′(E) =
∫ S

0
dr ′r ′2jl(

√
Er ′)

∑
L′′

vnLL′′(r
′)Rn

L′′L′(r
′;E). (23)

Since the Green functions occurring in the Dyson equation are anyhow L, L′-matrices, the
numerical effort in solving the multiple scattering problem is the same for both, the spherical
and non-spherical potentials. Therefore, the additional numerical effort for full potentials
scales in the KKR method only linearly with the number N of non-equivalent atoms. This
advantage is a direct consequence of the multiple scattering character of the KKR method,
meaning that in typical calculations the full-potential method does not require a significant
increase in computing time. This is particularly true for two- or three-dimensional systems,
where the Dyson equation includes an additional k-loop.

In the case of a full-potential treatment the Wigner–Seitz (WS) spheres used in the
atomic sphere approximation (ASA) have to be replaced by the exact WS cells, which are
non-overlapping and fill the whole space completely. This is done by the use of a step
function((r) which is one inside the WS polyhedron and zero outside, and is used to truncate
the potential outside the cell. All integrals are convoluted with ((r) which is expanded in
spherical harmonics:

((r) =
∑
L

(L(r)YL(r). (24)

The expansion coefficients can be calculated for polyhedra of an arbitrary shape [30, 31].
Note that the expansion (24) converges very slowly. However, this is not a real problem for the
calculations, since expanding the wave functions in spherical harmonics and restricting the
angular momentum expansion to a cut-off lmax imposes a natural cut-off of 2lmax for the charge
density and the potential. Therefore, in the evaluation of the Coulomb integrals naturally
only (L-coefficients up to 4lmax are required and this cut-off is also highly accurate for the
exchange correlation terms. Thus the slow convergence of equation (24) is irrelevant. This
is a direct consequence of the property of the Gaunt coefficients: CLL′L′′ �= 0 only when
|l′ − l′′| � l� l′ + l′′.

A similar full-potential extension for the Dirac equation is also possible and a full-
potential, spin-polarized, relativistic KKR method was presented in [29] together with
applications for the elemental ferromagnets Fe, Co, Ni.

2.2. Full-potential results for bulk systems and surfaces

The full-potential KKR–Green function method was used for the calculation of the cohesive
properties for a series of metals and semiconductors in [16]. In table 1 we compare the FP KKR
results for the lattice constants and bulk moduli of seven metals, with calculations using the
FLAPW method. In both cases the local density approximation has been used. As is seen, the
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Table 1. Comparison of lattice constants and bulk moduli of selected metals calculated by two full-
potential methods: the full-potential KKR using the LDA (FP KKR LDA) or using the generalized
gradient approximation (FP KKR GGA) and the full-potential linearized augmented plane wave
method (FLAPW) using the LDA (FLAPW LDA).

Al Fe Ni Cu Rh Pd Ag

Lattice constants (a.u.)
FP KKR (LDA) 7.52 5.20 6.46 6.63 7.09 7.25 7.53
FLAPW (LDA) 7.51 5.18 6.46 6.63 7.09 7.25 7.54
FP KKR (GGA) 7.64 5.34 6.63 6.84 7.22 7.43 7.80
Experiment 7.65 5.42 6.66 6.84 7.19 7.35 7.72

Bulk Modulus (Mbar)
FP KKR (LDA) 0.82 2.43 2.54 1.88 3.18 2.28 1.39
FLAPW (LDA) 0.85 2.57 2.56 1.90 3.12 2.29 1.41
FP KKR (GGA) 0.73 1.88 2.00 1.38 2.58 1.72 0.98
Experiment 0.72 1.68 1.86 1.37 2.70 1.81 1.01

Table 2. Surface energies of the low index surfaces of Cu, Rh, and Pd. Comparison between
FP-KKR and other theoretical calculations and experiment.

γ (Jm−2) FPKKR FCLMTO a Experiment

Cu (111) 1.91 1.95 1.59b 1.79e, 1.83f

(001) 2.15 2.17 1.71b

(110) 2.31 2.24 1.85b

Rh (111) 2.65 2.47 2.53c, 2.85d 2.66e, 2.70f

(001) 3.12 2.80 2.81c, 3.28d

(110) 3.22 2.90 2.88c, 2.37d

Pd (111) 2.01 1.92 1.64c 2.00e, 2.05f

(001) 2.22 2.33 1.86c

(110) 2.39 2.23 1.97c

a Full charge LMTO Green function in [37].
b Pseudopotentials in [39].
c FP-LMTO in [38].
d Pseudopotentials in [40].
e Experiment in [44].
f Experiment in [45].

differences between the two ab initio methods are very small. Additionally, we present results
using the generalized gradient approximation (GGA) to the exchange correlation potential. In
all cases the GGA corrects the well-known LDA over-binding and is in better agreement with
the experimental data. However, it is worth pointing out that the full potential is not crucial
for the calculation of cohesive properties of the elemental metals. Our calculations show that
accurate cohesive properties can also be obtained with spherical potentials, provided the full
charge density is taken into account and all space integrals for the Coulomb and exchange-
correlation energies are extended over the Wigner–Seitz polyhedra (instead of Wigner–Seitz
spheres) [16]. This eliminates most of the inaccuracies of the standard ASA method.

Including the full anisotropic potential should be more decisive for systems of lower
symmetry like surfaces. In table 2 we have collected the surface energies of the low-index
surfaces of Cu, Rh and Pd. We compare our FP KKR results with other calculations in the
literature and with other experiments. No lattice relaxation was taken into account in the FP
KKR results. As we can see, the method provides surface energies in good agreement with the
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experimental results and other calculations. A detailed discussion about the surface energies
can be found in the study of Galanakis et al [41, 42]. This study shows that the orientation
dependence of the surface energies of the fcc metals is well described by the ‘broken-bond
rule’: for different orientations the surface energy scales accurately with the number of broken
nearest neighbour bonds.

2.3. Forces and lattice relaxations

Accurate treatment of the full potential is crucial for the calculation of forces, since in deriving
an expression for the force, the extremal properties of the total energy are used so that the
force formula is no longer variationally invariant. By taking the derivative of the total energy
with respect to the coordinate Rm of atom m, the force is given by

Fm = − ∂E

∂Rm
|n(r;Rm) −

∫
d3r

δE

δn(r)
∂n(r; Rm)

∂Rm
. (25)

The first term, to be evaluated for constant density n(r; Rn), is the Hellmann–Feyman (HF)
force, while the second term gives corrections due to approximations made in the solution of the
Kohn–Sham equations. It vanishes in an exact treatment, since then δE

δn(r) = EF is a constant.
Within the full-potential KKR formalism, the Kohn–Sham equations for the valence electrons
are solved almost exactly, with the only approximation being the lmax cut-off. However, the
use of the HF formula, i.e. the first term in (25), also requires a full-potential treatment of the
core electrons. If an atom is shifted, the charge density of the core electrons experiences in a
solid a small anisotropic distortion induced by the crystal field, which leads to an important
contribution to the force on the nucleus and which unfortunately cannot be described in a
spherical-core treatment. This problem can be overcome by making a spherical ansatz for the
core density entering in the total-energy expression. The force is then calculated as a derivative
of the total energy with respect to the nuclear position assuming that the Kohn–Sham equations
are solved exactly for the valence electrons only. The resulting expression for the force Fm on
the atom Rm is given by

Fm = Zm ∂VM(r)
∂r

|r=Rm −
∫

d3rnc(|r − Rm|)∂V (r)
∂r

(26)

where Z m is the nuclear charge and nc(r − Rm) the core charge density of atom m. Furthermore,
VM(r) is the Madelung potential and V (r) the Kohn–Sham potential. While the first term is the
force on the nucleus as given by the Hellmann–Feynman theorem (but without the contribution
from the core electrons at atom Rm), the second term represents the force on these core electrons
and also includes an exchange-correlation contribution, arising from the exchange between
the valence and core electrons. Thus basically (26) gives the force on the ion consisting of
the nuclear charge and the core charge of atom m. We note that contrary to basis-set methods
like the LMTO [33] or the FLAPW [34, 35] no finite-basis-set corrections [32] occur in the
KKR formalism. Due to the vector character of the potential derivatives in equation (26), only
the l = 1 components of the potentials VM(r) and V (r) are needed for the force. Since in the
present full-potential treatment the coefficients VL(r) are anyhow calculated during the self-
consistency cycles, the calculation of the force does not require additional efforts. Moreover,
the l = 1 components of the potentials are essentially determined by the l = 1 components of the
valence charge density n(r). Therefore, one obtains only contributions from the interference
of wave functions differing by #l = ±1, i.e. sp, pd, df, fg, . . . interference terms. For these
reasons we find that the convergence of the force expression (26) with respect to the maximal
angular momentum lmax for the wave functions is unproblematic. For instance, in the cases
given below, lmax = 4 gives reliable results for transition metals, while for semiconductors
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lmax = 3 is sufficient. Additional complications in the force calculation can arise from the
higher core states. The core states are calculated within muffin-tin spheres to ensure the
vanishing overlap between the core electrons of neighbouring atoms. For the more extended
semi-core states, the confinement within the muffin-tin sphere might lead to errors in the core
energies. To overcome this problem, higher core states are treated on the same footing as
valence electrons by starting the energy integration at an energy, which is below the energies
of these semi-core states [25].

In contrast to the simplicity of the force calculation, the description of lattice relaxation
effects is rather complicated within the KKR method. The main reason is the site-centered
angular momentum expansions used in the Green function. In the case of lattice relaxations one
needs an angular momentum expansion around the shifted position, i.e. around a non-lattice
site. While, in principle, the host Green function can be calculated for any interstitial site by
introducing a supercell with additional empty positions, this is a cumbersome procedure for
the small lattice relaxations occurring for substitutional defects. In this case a transformation
formalism, used e.g. in [25], is more convenient. The structural host Green function is
transformed from the unshifted coordinates to new coordinates being shifted by sn

G̃
nn′

LL′(E) =
∑
L′′L′′′

ULL′′(sn;E)Gnn′
L′′L′′′(E)UL′L′′′(sn

′ ;E) (27)

where

UL′L(s;E) = 4π
∑
L′′

ıl
′+l′′−lCLL′L′′jl′′(

√
Es)Yl′′(s). (28)

The G̃ is the host Green function but expanded in the shifted coordinate system. An analogous
U transformation has to be made for the t-matrix. Finally we must solve the following Dyson
equation for the structural Green function to obtain the new Green function for potentials or
t-matrices on the shifted sites.

Ḡ = G̃
0

+ G̃
0
[t − t̃0]Ḡ (29)

where G̃0 and t̃0 are the host Green function and host t-matrix in the angular momentum
expansion around the shifted sites (27). Thus, apart from the U-transformation, the structure
of the Dyson equation is unchanged. While the U-transformation (27) is exact, if the sums
over L′′ and L′′′ are extended over infinite angular momenta, in practical calculations an
lmax-cut-off is used. As can be seen from equation (28), for small s the ULL′ -matrix couples
states with l − l′ = ±1. Thus a relatively high lmax is chosen and the error increases with
increasing displacements. All the following results have been obtained with lmax = 4, and test
calculations (with larger lmax values) show that the resulting shifts are accurate up to 10% of
the nearest neighbour distance, which is completely sufficient for substitutional defects. For
interstitial defects the method of Brillouin-zone integration has to be used.

2.4. Lattice relaxations around impurities

The full-potential KKR method was used for the calculation of the ground-state configuration
of several defects in metals and semiconductors, and the resulting geometries were compared
with other ab initio calculations as well as experimental data.

As an accuracy test we have calculated the total energy and the force for several atomic
configurations for a Pd substitutional impurity atom in a Cu host (figure 1). First the Green
function of the infinite Cu host is calculated. The local perturbation of the Pd atom and 78
Cu atoms surrounding the defect in the fcc lattice is calculated self-consistently using the
Dyson equation. The first neighbours to the impurity are relaxed radially and for each atomic
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Figure 1. Total energy and radial force on a neighbouring Cu atom as a function of the nearest
neighbour distance, for a Pd impurity in Cu. A linear fit for the force and a parabolic one for the
energy are shown. The force is calculated both from the HF theorem and from the derivative of
the fit to the total energy values (dashed line).
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Figure 2. Calculated lattice relaxations around 3d and 4sp impurities in Cu. The displacements of
the nearest neighbour Cu atoms (in percentage of the nearest-neighbour distance) are given. The
triangles with error bars refer to EXAFS results.

configuration the electronic structure, the total energy and the HF force are calculated. The
total energy values are interpolated by a parabolic fit, from which the force can be calculated
again by differentiation (dashed line). The good agreement between the two results for the
force ensures the overall consistency of the calculation and demonstrates the accuracy of
the force formula. The lattice relaxation and the influence on the magnetic properties of
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Figure 3. Ground-state configuration of In-donor complexes in Si (InSb, InP, InAs). The numbers
denote the relaxations in percentage of the nearest-neighbour distance. The first number refers to
KKR calculations, the second one (in brackets) to pseudopotential results.

impurities in Cu [25] and Al [26] were systematically studied. In figure 2 we present the
calculated nearest neighbour shift around 3d impurities in Cu together with the experimental
data from EXAFS measurements. All calculations agree well with the EXAFS data, as well
as with lattice parameter measurements [25].

The accuracy of the KKR forces was also tested against pseudopotential methods [24]
in calculations of the equilibrium configuration of donor–acceptor pairs in Si and Ge. These
defects are electrically and magnetically inactive and experimental information about the
structure is difficult to obtain. One of the few methods to investigate such defects are perturbed
angular correlation (PAC) experiments which measure the electric field gradients. In figure 3
we present the calculated atomic configurations for In–P, In–Sb, In–As pairs in Si. The FP
KKR results are compared with the results obtained from pseudopotential calculations. The
atomic configurations obtained using both ab initio methods are essentially the same, but
the KKR can give direct access to properties that are determined by the core electrons, like
hyperfine fields or electric field gradients. The electric field gradients (EFG) of the Cd-donor
pairs in Si and Ge have been measured. While calculations without lattice relaxations give
the wrong trend with respect to the atomic numbers of the donor atoms, the agreement greatly
improves if the relaxed configurations, as e.g. given in figure 3 for the corresponding In-
pairs in Si, are considered [28]. Thus reliable calculation of the relaxations is decisive for
understanding the EFG.

The effect of lattice distortions was also studied for the hyperfine fields of superheavy
impurities in Fe [27], as well as on the energetics of vacancies in metals [43].



2812 N Papanikolaou et al

−5

0

5

10

15

−50

0

50

100

150

Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As

F
or

ce
(m

R
y

a
B

)

ASA

FP

Figure 4. The x-component of the force exerted on the first nearest neighbours around 3d
impurities in Cu. Results of full-potential calculations (full squares, left panel) and ASA-potential
calculations, but including the full charge density (empty squares, right panel) are shown. Note
the different scales for the ASA and FP forces.

The importance of the full potential for the force calculation is demonstrated in figure 4.
The force calculated using the full potential (FP) is compared with the force obtained using a
spherical potential but including the full anisotropic charge density (ASA). The force calculated
using the spherical potential can reproduce the correct trend for the impurities in Cu; however,
the actual values are an order of magnitude too large. Thus the calculation of atomic forces
sets the limits for the validity of the spherical approximation which works quite well for most
electronic properties, but fails completely in the calculation of atomic forces.

2.5. Phonon dispersions

Efficient and accurate force calculations open the possibility to study phonon dispersion
relations. Frozen phonon calculations, based on supercells, are usually used to obtain the
phonon frequencies for high symmetry points of the Brillouin zone. In this approach for
each k-value a different supercell calculation has to be performed. Here we use an alternative
method in real space, which is directly related to the definition of the Born–von Karman
coupling parameters and apply this to the calculation of the phonons in Al. By considering the
impurity-in-bulk geometry, we shift the central Al atom by 0.5% and calculate self-consistently
the forces on six neighbouring shells, which directly yields the coupling parameters between
the central atom and any atom in this cluster. The effect of the finite value of the displacement
is corrected by considering that only the harmonic contributions to the forces, but not the
leading anharmonic corrections, change sign by inverting the direction of the shift. By
Fourier transform we obtain the dynamical matrix and the phonon frequencies and eigenstates
in the whole Brillouin zone. Thus this method gives for cubic crystals the whole phonon
information in a single self-consistent calculation. However, a disadvantage of this approach
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is that a relatively big cluster, including many atoms, has to be used in an impurity-in-
bulk configuration to account for long range elastic interactions present, for example, in
semiconductors. Due to the finite shift of the central atom, anharmonic effects can also be
calculated this way. In figure 5 we show the phonon dispersion of Al calculated by this
procedure. As can be seen a calculation with 6 nn interactions reproduces the experimental
data quite well. The same procedure was used in [27] for bcc Fe. Based on the Kanzaki model,
the calculated phonon information has also been used to calculate the lattice relaxations of
atoms further away from the defect [25, 27].

3. The screened (tight-binding) KKR method

In recent years much work has been addressed to improving the efficiency of first-principles
density-functional calculations. A particular goal is to develop methods which show
better computational complexity than the O(N3) scaling of traditional electronic-structure
calculations. Here N is the system size, i.e. the number of atoms or electrons in the
system. For fast calculations the traditional KKR method suffers from the fact that the
structural Green function matrix elements decay very slowly in real space. Consequently, their
Fourier sums converge only conditionally and require cumbersome Ewald techniques for their
evaluation. In this respect a major breakthrough has been achieved by the concept of screening
[46, 47], by which the KKR method can be transformed into a tight-binding form with short-
range interactions between the atoms. The tight-binding formulation is very useful from
the numerical point of view, since the short range of coupling allows many computational
simplifications. It is important to point out here that the transformation is exact and that the
resulting tight-binding KKR method works for all kind of materials, i.e. metals, semiconductors
and insulators. This is in contrast to other modern O(N ) scaling methods, recently reviewed
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by Goedecker [48], which gain their efficiency essentially from the exponential decay of the
density matrix. The short-range interactions in the tight-binding KKR method are not based
on the properties of the density matrix, but have a different origin as explained below.

One way to develop the tight-binding form of the KKR method has been given by Andersen
et al [46], who showed that by generalizing the screening concept of the tight-binding LMTO
method [46] to energy-dependent screening parameters [47] and by optimizing the screening
parameters exponentially decreasing ‘screened’ structure constants can be obtained. Based on
this idea Szunyogh et al [49] formulated a screened KKR method for surfaces and interfaces
and successfully applied it in relativistic ab initio calculations for surfaces [50]. Unfortunately,
the screened structure constants obtained according to [49] do not decrease sufficiently fast,
thus limiting the accuracy.

Another method to obtain the tight-binding form of the KKR method, which is physically
and mathematically more simple and transparent, is based on Green function methods and the
concept of a repulsive reference system. This concept was introduced by us in collaboration
with the Vienna/Budapest group [8]. For a suitably chosen reference system, for instance,
consisting of an infinite array of repulsive spherical wells, the resulting structure constants
decrease exponentially for energies sufficiently below the top of the well.

3.1. Theory

A simple way to understand the physics and the mathematics involved in the formulation of
the tight-binding KKR method is based on the concept of an arbitrary reference system with
reference potential V r(r). For two different potentials V (r) and V r(r) the Green functions
G(r, r′, E) and Gr(r, r′, E) are connected by an integral Dyson equation

G(r, r′, E) = Gr(r, r′, E) +
∫

d3r ′′Gr(r, r′′, E)[V (r′′)− V r(r′′)]G(r′′, r′, E) (30)

which by the use of (1) can be verified, if the operator −∂2
r +V (r)−E is applied to both sides

of (30). By multiple scattering theory the Dyson equation can be transformed into a system
of linear equations

Gnn′
LL′(E) = G

r,nn′
LL′ (E) +

∑
n′′

∑
L′′

G
r,nn′′
LL′′ (E)

∑
L′′′

[
tn

′′
L′′L′′′(E)− t

r,n′′
L′′L′′′(E)

]
Gn′′n′

L′′′L′(E) (31)

where space dependence only occurs in the site indices n, n′, n′′. The traditional reference
system is empty space, where the potential and consequently the t-matrix vanish. The free-
space structural Green function matrix elements gnn

′
LL′ are analytically known as

gnn
′

LL′(E) = −4π i
√
E(1 − δnn′)

∑
L′′

il+l
′′−l′CLL′L′′hl′′(

√
E|Rnn′ |)YL′′(Rnn′

) (32)

with Rnn′ = Rn − Rn′
and CLL′L′′ = ∫

4π d'r YL(r)YL′(r)YL′′(r). Here hl are spherical Hankel
functions and YL spherical harmonics.

Because of this analytical formula potential-free space seems to be the easiest system and
is the traditional choice for the reference system. However, it has serious disadvantages. For
instance, in periodic geometries one needs Fourier sums like

gLL′(k, E) =
∑
n′

exp(ik · Rnn′
)gnn

′
LL′(E) (33)

which converge only conditionally and require complicated Ewald procedures [51] for their
evaluation as a consequence of the slowly decaying Hankel functions in (32). This problem
is connected with the fact that the traditional KKR structure constants gLL′(k, E) show the
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Figure 6. Density of states (DOS) for a fcc reference system. The height of the repulsive potentials
is chosen as 0, 1, 2, 4 Ry and the corresponding DOS are plotted with dotted, solid, dashed and
dash-dotted curves. The Brillouin-zone sampling was done with 11 726 special points in the
irreducible part and smoothed by a temperature broadening with T = 800 K.

well-known free-electron singularities for E = |k + Kh|2, where k denotes the wave vector
and Kh a reciprocal lattice vector. Thus the numerical ineffiencies of the traditional reference
system are caused by the eigenstates of potential-free space. It is much better to start from
a reference system, which has no eigenstates in the energy range of the valence electrons,
typically covering energies below 1 Ry. In this energy range the reference Green function
would then decay exponentially. Whereas the structural Green function elements of free
space are known analytically (32), the structural Green function elements Gr,nn′

LL′ (E) of other
reference systems must be calculated numerically according to

G
r,nn′
LL′ (E) = gnn

′
LL′(E) +

∑
n′′

∑
L′′

gnn
′′

LL′′(E)
∑
L′′′

t
r,n′′
L′′L′′′(E)G

r,n′′n′
L′′′L′ (E). (34)

It is easy to show [8] that the structural Green function elementsGnn′
LL′(E) of the real system do

not depend on the choice of the reference system. This arbitrariness of the reference system
can be exploited to make the Green function elements Gr,nn′

LL′ (E) exponentially decaying with
the distance |Rn − Rn′ |. As a consequence exponentially small matrix elements Gr,nn′

LL′ (E) can
be neglected in (31) and (34), which enormously simplifies the calculations as detailed below.

A particular choice for a reference system, which has no eigenstates in the energy range
of the valence electrons, is given by an infinite array of repulsive, constant, finite potentials
within nonoverlapping spheres around each scattering centre Rn and a zero potential in the
interstitial region between the spheres. It is also possible to choose infinite height for these
repulsive potentials. For not too high potentials the application of first-order perturbation
theory indicates that the eigenstates should be shifted to higher energies by an amount which
is given by the product of potential strength and volume filling. The calculated density of
states for such an potential array at fcc lattice sites with volume filling of 74% is shown in
figure 6 and confirms the shift to higher energies. Contrary to first-order perturbation theory
the shift is not uniform and also shows a saturation effect. The lowest eigenstate is at 0.7
Ry for potentials of 1 Ry height, at 1.35 Ry for potentials of 2 Ry height and at 2.25 Ry for
potentials of 4 Ry height, whereas the estimates from first-order perturbation theory are 0.74,
1.48 and 2.96 Ry. It was shown by Zahn [52] that by increasing the potential strength the shift
saturates at about 3 Ry if a maximal angular momentum lmax = 3 is used and at about 4 Ry
for lmax = 4 or 5.

It is clear from figure 6 that there are no eigenstates below a certain energy and that the
energy range is large enough for potential heights above 2 Ry in order to cover the typical
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Figure 7. Screened (left panel) and unscreened (right panel) partial norms for l = l′ and E = 0.65
Ry as a function of the distance in units of the lattice constant. The results for l = 0, 1, 2, 3, 4 are
shown from top to bottom.

valence energies occuring in ground-state calculations. The nonexistence of eigenstates means
that the structural Green function matrix elements Gr,nn′

LL′ (E) must decay exponentially in this
energy range. To visualize the decay of Gr,nn′

LL′ (E) as a function of |Rn − Rn′ |, the following
‘partial norm’ was introduced in [8]

Nll′(|Rnn′ |;E) = |E|(l+l′)/2

(2l + 1)!!(2l′ + 1)!!

[∑
mm′

∣∣Gr,nn′
lm,l′m′(E)

∣∣2

]1/2

(35)

with (2l + 1)!! = (2l + 1)(2l − 1) . . . (3)(1). In figure 7 (left panel) the partial norms are
plotted for l = l′ as a function of the distance |Rnn′ | for the choice E = 0.65 Ry which is
representative of the Fermi energy of Cu. They are compared with the corresponding norms
of the Green function g for potential-free space in figure 7 (right panel). It is obvious from
figure 7 that the partial norms for the screened structure constants Gr,nn′

LL′ (E) decay rapidly
and essentially exponentially. Whereas the unscreened norms typically decrease by less than
a factor of ten in the distance range shown in figure 7, the screened norms decrease to about
10−5 of their nearest-neighbour values. As a function of energy the decay remains similar as
shown in [8] even up to energies less than 0.4 Ry below the lowest eigenstate of the repulsive
reference system. If, of course, the energy approaches the lowest eigenstate of the reference
system, then the exponential decay breaks down and the screened structure constants become
strongly energy dependent.

3.2. Calculation of the tight-binding structure constants

The implementation of the tight-binding KKR method requires calculation of the tight-
binding structure constants. The direct solution of (34), e.g. in periodic crystals by Fourier
transformation and Brillioun-zone integration, has the same numerical complexity as the
solution of (31) and can therefore not be used to speed up the calculations. Here it is important
to note that the exponential decay allows restriction of the sum over n′′ in (34) to a finite
number of sites around Rn′

. This means that (34) can be solved independently for each
site n′ by taking only a finite cluster of repulsive potentials at positions Rn′′

into account.
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Thus the exponential decay makes the solution of (34) suitable for parallel computing and the
effort to obtain the structural Green function matrix elementsGr,nn′

LL′ (E) scales linearly with the
number of sites n′ in the system for which one wishes to calculate the electronic structure. Of
course, the solution of (34) in real space with a finite number of repulsive potentials represents
an approximation which one could try to minimize with particular choices of the potential
wells. For nonoverlapping potentials this problem has been investigated by Zahn [52], who
varied both the height of the potentials and the radii of the spheres, in which the potentials are
confined. Contrary to the expectation from perturbation theory the best results are not obtained
with infinite heights and touching spheres. This is a consequence of the finite lmax-cut-off used,
which does not allow description of the strong angular variation of the wave functions near
the region where the hard spheres touch. Thus, either one uses touching muffin tins, but with a
reduced height of for example 4 Ry, or one uses infinitely strong muffin tins, but with a reduced
muffin-tin radius, e.g. reduced by 20%. In both cases the angular variations of the single-site
wave functions is sufficiently smooth that an lmax-cut-off of 3 or 4 can be used. The choice
of the overlapping potentials of ASA type has been investigated in detail by Wildberger et al
[54] and Höhler [55]. Here it turned out that ASA potentials with a cutoff at the Wigner–Seitz
radius can be used and yield similarly accurate results as muffin-tin potentials. However, if the
overlap becomes larger, unphysical ghost states appear in the multiple scattering contribution
within the valence band range and the method totally fails. Such states also occur for ASA
potentials, but only for deep negative energies, where they do not do any harm. Another idea
which turned out to be not useful is to calculate the structural Green function matrix elements
G

r,nn′
LL′ (E) very accurately by using large clusters of repulsive potentials in (34), but using only

nearest neighbour couplings in (31) in order to reduce the computational effort in the solution
of (31). In our experience the best procedure is the most consistent one, which uses the same
coupling range for the reference Green function Gr as for the cluster of repulsive potentials.

3.3. Accuracy for density-of-states calculations

For numerical accuracy and efficiency it it interesting to know how many sites n′′ must be
taken into account in (34) in order to obtain accurate results. A crucial test for the tight-
binding KKR method is the calculation of the electronic states for potential-free space. It
is well known that the traditional KKR method gives the exact band structure and the exact
density of states (DOS) for free space. The tight-binding KKR method can reproduce the
exact result only up to an energy somewhat below the lowest eigenstates of the repulsive
reference system and accuracy is affected by the real-space solution of (34) with a restricted
sum over n′′. In [53] and [54] these questions have been discussed extensively. Representative
results are shown in figures 8 and 9. The density of the states shown were calculated for
an empty fcc lattice with a lattice constant of 361.50 pm. The angular-momentum cut-off
was lmax = 3 and the Brillouin-zone sampling was performed by using a large number of
11 726 symmetry inequivalent points and by an artificial broadening which corresponds to a
temperature of T = 800 K. Figure 8 shows the results as a function of energy calculated with
repulsive potentials of 2, 4 and 8 Ry height and with the structure constants obtained from a
finite cluster with 79 sites n′′. For comparison the exact result is also shown. The curves follow
the familiar square root behaviour except for a small deviation near E = 0 as a consequence
of temperature broadening. The tight-binding KKR results agree with the exact one for lower
energies. For higher energies they suddenly deviate and can also have unphysical, negative
values. The energy range where the screened KKR method is applicable becomes larger for
higher potentials and for larger clusters (see below) and a sudden breakdown arises when
the TB parameters Gr,n′′n′

L′′L′ (E) begin to decay so slowly that solving (34) in real space makes
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Figure 8. Density of states (DOS) for free space. Broken
lines refer to screened KKR calculations, solid lines to
the exact result. The numbers indicate the height (in units
of Ry) of the 79 repulsive potentials used to determine
the tight-binding structure constants.

Figure 9. Density of states (DOS) for free space. Broken
lines refer to screened KKR calculations, solid lines to the
exact result. The numbers indicate how many repulsive
potentials of height 8 Ry were used to determine the
tight-binding structure constants.

Figure 10. Total energies for Pd as a function of the lattice constant. The Brillouin-zone
integrations were done with 891 symmetry inequivalent points. Dashed, dotted and solid lines
refer to 13, 19 and 55 potentials of 8 Ry height which were used to determine the tight-binding
structure constants. The traditional KKR result is indistinguishable from the solid line.

no sense. It is satisfying to see that accurate DOS values can be calculated almost up to
energies of 3 Ry, which is clearly large enough for the calculations of occupied electronic
states, but also for low-lying unoccupied ones. Figure 9 shows the results obtained by using
different numbers of repulsive potentials. The energy range where the screened KKR method is
applicable becomes larger if more repulsive potentials are used. For energies up to about 1 Ry
the use of 13 or 19 repulsive potentials seems to be enough. As discussed below, this
also remains true for self-consistent density-functional calculation with moderate accuracy.

3.4. Accuracy for total-energy calculations

Zeller [53] provides results for total energies, lattice constants and bulk moduli for the fcc
metals Al, Cu and Pd as typical examples for simple, noble and transition metals. The results
were obtained both by the traditional and the tight-binding KKR method with an angular-
momentum cut-off lmax = 3 in full-potential mode as described above. The calculations were
nonrelativistic and the exchange-correlation potential in the parameterization of Vosko et al
[56] was used. Representative results are shown in figure 10 and tables 3 and 4.
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Table 3. Total-energy differences #E between traditional and screened KKR calculations with an
angular-momentum cut-off lmax = 3. The first row contains the number of repulsive potentials of
height V r which were used to determine the tight-binding structure constants. The Brillouin-zone
integrations were done with 891 symmetry inequivalent points corresponding to 37 288 points in
the full zone.

No of potentials 13 19 43 55 79 153 225

# E
V r

(Ry) (mRy) (mRy) (mRy) (µRy) (µRy) (µRy) (µRy)

Al 2 6.39 0.99 0.08 −15.2 6.3 −0.27 0.05
4 −0.19 −0.19 0.53 37.3 10.8 0.52 0.11
8 −2.88 −0.98 1.24 57.7 26.2 1.14 0.53

Cu 2 −0.48 2.28 0.32 6.4 −13.9 −0.67 −0.03
4 −3.38 0.62 0.28 −20.5 0.0 −0.07 0.06
8 −3.89 0.55 0.51 −24.0 −1.0 0.11 0.34

Pd 2 −0.66 0.93 0.55 14.4 1.1 −0.18 0.06
4 −1.84 0.59 0.63 −3.0 −1.9 −0.03 0.11
8 −1.77 1.10 1.07 8.8 0.6 0.25 0.33

Table 4. Lattice constants a and bulk moduli B0 for Al, Cu, and Pd determined by traditional and
screened KKR calculations with an angular-momentum cut-off lmax = 3. The potentials used to
obtain the tight-binding structure constants were 8 Ry high. The Brillouin-zone integrations were
done with 891 symmetry inequivalent points corresponding to 37 288 points in the full zone.

Al Cu Pd
No of
potentials a (pm) B0 (GPa) a (pm) B0 (GPa) a (pm) B0 (GPa)

13 402.22 80.69 358.52 165.41 393.97 178.33
19 401.08 80.64 358.02 170.83 393.97 179.48
43 400.96 81.21 358.18 168.91 394.02 180.22
79 400.93 81.49 358.20 169.68 394.16 178.82
Traditional 400.93 81.47 358.20 169.63 394.16 178.78

Figure 10 displays the total energy calculated for Pd as a function of the lattice constant.
Whereas the results obtained with tight-binding structure constants calculated from finite
clusters with 13 or 19 repulsive potentials differ by about 2 or 1 mRy from the exact results,
the results obtained by using a finite cluster with 55 repulsive potentials are indistinguishable
from the exact results. A detailed account of the total-energy differences is given in table 3.
For structure constants determined from (34) with 153 or 225 repulsive potentials, the total
energies differ less than 1 µRy from the values of standard KKR calculations. For 225
potentials of 2 or 4 Ry height the total energies even agree within 0.1 µRy. This means that
total energies of the order a several thousands Ry can be obtained with a relative precision of
10−10. If a moderate mRy accuracy is sufficient, nearest-neighbour couplings (13 sites) are
enough to determine the structural Green function matrix elements of the repulsive reference
system.

Table 4 shows for the same fcc metals also that equilibrium properties like lattice constants
and bulk moduli can be calculated by the tight-binding KKR method with high accuracy.
Typical errors for total energies, lattice constants and bulk moduli are 1 mRy, 0.2 pm and
1 GPa, if 19 potentials of 8 Ry height on central, nearest and next-nearest neighbour sites are
used, and 5 µRy, 0.01 pm and 0.05 GPa, if 79 potentials are used.
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3.5. Efficiency for large-scale calculations

The essential simplification of the tight-binding KKR method compared to the traditional
KKR method arises from the exponential decay of the tight-binding structure constants. If
exponentially small elements are neglected in the Green function matrix Gr,nn′

LL′ (E), the matrix
operations to solve (31) involve sparse matrices in the tight-binding KKR method compared to
dense matrices in the traditional KKR method. Whereas general sparse-matrix algorithms to
solve (31) are difficult to obtain because Green function matrices are not Hermitian but general
complex matrices, the situation is much more favourable for systems with two-dimensional
periodicity like multilayers, surfaces, interfaces, finite slabs, or half-infinite crystals. Here
two-dimensional Fourier transformation can be exploited and the resulting structural Green
function matrix contains layer indices i and i ′and depends on the two-dimensional wave
vector k‖. Schematically, as a function of the layer indices, the structural Green function
matrix Gr,ii′

LL′ (E, k‖) has a sparsity structure of the form
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(36)

where each x denotes a nonvanishing matrix block. The blocks would be submatrices with L
and L′ indices, if only nearest neighbouring layers couple. For longer ranged coupling one
can use the principal layer technique by which several layers are combined into a principal
layer such that only nearest neighbouring principal layers couple. Then again one obtains
the form (36), but now the blocks are submatrices with L and L′ indices and i and i ′ indices
enumerating the layers within the principal layer. The matrix structure displayed in (36) is the
appropriate one for the multilayer geometry, whereas in slab geometry the lowest left block
and the highest right block vanish. For surfaces, interfaces, halfcrystals the matrix (36) has an
infinite range on one or both sides. In any case the numerical complexity is greatly reduced
from O(N3) to O(N) for N different layers and O(log N) for N identical principal layers. The
treatment of matrices like (36) is well known in tight-binding surface physics and, for instance,
for the tight-binding linear-muffin-tin-orbital method [46], Wenzien et al [57] have presented
an efficient formalism to calculate the Green function of an ideal semi-infinite crystal and the
corresponding k‖-resolved densities of states.

In [54] the N-scaling behaviour is demonstrated for Cu slabs of varying thickness where
coupling to first and second neighbouring layers is taken into account. Figure 11 shows the
computing time for the solution of the Dyson equation in one self-consistency iteration as a
function of the number N of layers considered. The slope of the linear curve is changed from
about 4.6 s/layer for lmax = 2 to about 13.5 s/layer for lmax = 3 due to the corresponding
increase of the matrix size from 9 × 9 (for lmax = 2) to 16 × 16 (for lmax = 3). The computing
time refers to a (now outdated) IBM/RS 6000 3CT workstation. Most important is that the
linear proportionality to N already starts at N-values smaller than 10 and that already for such
thin slabs the computing time is lower than in traditional KKR calculations. Thus accurate
tight-binding KKR calculations are feasible for very large systems with two-dimensional
periodicity.
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Figure 11. Computing time in seconds for solving the Dyson equation as a function of the number
N of layers in the slab. One iteration with lmax = 2, lmax = 3, respectively, has been performed.

3.6. Recent applications

As the screened (tight-binding) KKR method greatly reduces the computational effort for
layered systems due to the N-scaling, and because it greatly simplifies the calculation of
the structure constants due to the discard of Ewald procedures, it has already been applied
to a great variety of large and complex systems. Since the method essentially treats all
electrons on an equal footing and since it is generalized in a straightforward manner to
relativistic calculations, it has been particularly applied to problems in magnetism. Properties
like giant magnetoresistance, magnetic anisotropy, transport through magnetic structures,
interlayer exchange coupling, Bloch wall thickness [58], surface energies [41, 42], hyperfine
fields of impurities at interfaces [59] and magnetic moments of monoatomic rows on vicinal
surfaces [60] belong to the problems which have been investigated. The systems treated
are rather complex, e.g. calculations for the giant magnetoresistance of layered systems are
performed for ideal interfaces [61], for interfaces with impurities [62], for interfaces between
elemental metals and alloys [66]. Calculations for the magnetic anisotropy include metals
[67], systems with metallic overlayers [63] and with ordered and disordered overlayer alloys
[63–65]. Transport calculations have been performed for magnetic multilayers [71] and
magnetic tunnel junctions [68–70]. The largest systems treated up to now include monoatomic
rows on vicinal surfaces [60] where up to 60 inequivalent atoms, i.e. 30 layers and 2 inequivalent
atoms per layer, are studied and the Bloch wall thickness in bcc Fe [58], where up to 800
layers are investigated.

4. Conclusions

We have presented in this paper two recent improvements of the KKR Green function method.
The first one is the extension into a full-potential scheme, which preserves the characteristic
division into single scattering and multiple scattering properties of the KKR method. As
we have demonstrated, the accuracy of the method is comparable to the FLAPW method,
while the additional effort compared to the spherical potentials is rather modest and affects
only the N-scaling single-scattering parts. The full potential method allows a straightforward
calculation of the forces and the calculated relaxations around the defects agree well with
experimental results.

The second recent achievement is the screened (or tight-binding) KKR method. This is
basically a reformulation of multiple scattering theory in terms of exponentially decreasing
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structure constants, which can be obtained by an exact screening transformation. As we
have demonstrated, this screened KKR method has the same accuracy as the standard KKR
method. The screened structure constants are easy to use and have no singularities. The
biggest advantage of the new method is that it allows N-scaling calculations for layered
systems. All these systems, a finite number of monolayers, i.e. a ‘slab’, a halfcrystal or two
coupled halfcrystals with some monolayers in between, can be calculated with a rather modest
effort, and, if the full-potential version is used, with FLAPW accuracy.

With these properties the KKR–Green function method is an excellent tool for ground-
state calculations. It is particularly well suited for nanostructures like surfaces, multilayers,
impurities in the bulk or on surfaces etc. It has the further advantage of all Green function
methods that the availability of the Green function allows more than just ground-state
calculations. For instance, one can calculate the linear response with respect to an electric
or magnetic field, whether time dependent or stationary. A special application like this
is quantum transport theory as described by the Kubo–Greenwood or Landauer formalism,
where the availability of the Green function means a strong simplification, in particular if
transport in nanostructures is considered. Another example is the electronic structure of
disordered alloys as calculated by the coherent potential approximation, where the KKR-CPA
has the advantage that only diagonal disorder has to be considered. Finally, we should mention
in this context also the problem of excited states. For approximations of the self-energy like
GW or the dynamical mean field approximation the availability of Green functions represents
an excellent starting point.
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