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Atomic calculation using DFT:
Solving the Schrodinger-like equation

One particle Kohn-Sham equations



Difficulty: how to deal accurately with both 
the core and valence electrons
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Si atomic configuration: 1s2 2s2 2p6 3s2 3p2

core valence



Core eigenvalues are much deeper than 
valence eigenvalues

Atomic Si

Core

Valence
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Valence wave functions must be orthogonal 
to the core wave functions

Atomic Si

Core electrons…

highly localized

very depth energy

… are chemically inert



Fourier expansion of a valence wave function 
has a great contribution of short-wave length

To get a good approximation we would have 
to use a large number of plane waves. 



Pseudopotential idea:

Core electrons are chemically inert 

(only valence electrons involved in bonding)

Core electrons make the calculation more expensive

more electrons to deal with

orthogonality with valence ⇒⇒⇒⇒ poor convergence in PW

Idea:

Ignore the dynamics of the core electrons (freeze them)

And replace their effects by an effective potential

Core electrons main effect: screen nuclear potential



Orthogonalized Plane Waves (OPW) take into 
account effects of the cores upon valence electrons

C. Herring, Phys. Rev. 57, 1169 (1940)

are functions localized around each nucleus

(typically the core orbitals)



Example of the OPW method:
Valence function with a 3s character close to the nucleus

Orthogonal to 1s and 2s

Rapidly varying function 
close to the nuclei

⇓⇓⇓⇓

Poor convergence in PW  

R. M. Martin, Electronic structure, Basic Theory and Practical Methods, 
Cambridge University Press, Cambridge, 2004

r



Orthogonalizing the function to the core 
functions we get a smoother wave function.

Fourier series for 
converge rapidly

r

Atomic core functions



The wave function can be expanded in a rapidly 
convergent serie of orthogonalized plane waves!!

⇓⇓⇓⇓



The OPW method is the prescience of all the 
modern pseudopotential and PAW methods

Distinguishes between core and valence electrons

Divides the space into a smooth part and a localized part

Requires the solution of the Schrodinger equation for the 
isolated atom

Much rapid convergence of the wave functions with the 
number of plane waves



The pseudopotential transformation:
Seeking for the wave equation of the “smooth”

J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959)

Replace the OPW form of the wave function into the Schrödinger equation 

Equation for the smooth part, with a non local operator

⇓⇓⇓⇓



The original potential is replaced by a 
weaker non-local pseudopotential

J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959)

Advantages

Repulsive

⇓⇓⇓⇓

VPKA is much weaker than the 
original potential V(r)
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The original potential is replaced by a 
weaker non-local pseudopotential

J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959)

Advantages Disadvantages

Repulsive

⇓⇓⇓⇓

VPKA is much weaker than the 
original potential V(r)

Spatially localized

vanishes where ψj
c = 0

Non-local operator 

l-dependent

are not orthonormal

is not smooth 



Fundamental idea of pseudopotential:
“Replace one problem with another”

The properties of the wave function outside the 
scattering region can be reproduced over a wide 
range of energies by another potential chosen to 

have more desirable properties.

The pseudopotential can be chosen to be both 
weaker and smoother

The pseudopotential is not unique. 

There exists many different pseudopotential



Model ion potential constructed by
fitting experiments or from first-principles

CORE

Veff



Model ion potential constructed by
fitting experiments or from first-principles

Model potentials

Empty core
N. W. Ashcroft, Phys. Lett. 23, 48 (1966)



Empirical pseudopotential method (EPM):
from expt. input  to the whole band structure

T. C. Chiang et al., Phys. Rev. B 21, 3513 (1980)

Band structure of GaAs

-adsorption edge

-reflectivity features



Ab-initio pseudopotential method:
fit the valence properties calculated from the atom



List of requirements for a good                   
norm-conserving pseudopotential:

D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si:  1s2 2s2 2p6 3s2 3p2

core valence

1. All electron and pseudo valence eigenvalues agree
for the chosen reference configuration
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a chosen cutoff radius Rc (might be different for each shell)
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List of requirements for a good                   
norm-conserving pseudopotential:

D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si:  1s2 2s2 2p6 3s2 3p2

core valence

4. The integrals from 0 to r of the real and pseudo charge densities
agree for r > Rc for each valence state 

Ql is the same for ψlPSas for the all electron radial orbital ψl

•Total charge in the core region is correct

•Normalized pseudoorbital is equal to the true orbital outside of Rc

⇓⇓⇓⇓



List of requirements for a good                   
norm-conserving pseudopotential:

D. R. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979)

Choose an atomic reference configuration Si:  1s2 2s2 2p6 3s2 3p2

core valence

5. The first energy derivative of the logarithmic derivatives of the 
all-electron and pseudo wave functions agrees at Rc

Central point due to Hamann, Schlüter and Chiang:

Norm conservation [(4)] ⇒⇒⇒⇒ (5)



Equality of AE and PS energy derivatives of  the 
logarithmic derivatives essential for transferability

If condition 5 is satisfied, the change in the eigenvalues to 
linear order in the change in the potential is reproduced

Atomic Si Bulk Si



Generation of l-dependent        
norm-conserving pseudopotential

Freedom (different approaches) 

All electron self consistent atomic calculation

Each state l,m treated independently

Identify the valence states

Generate the pseudopotential Vl,total(r) and pseudoorbitals ψlPS(r)

Vl,total (r) screened pseudopotential acting on valence electrons

“Unscreened” by substracting from the total potential VHxc
PS(r)



Different methods to generate       
norm-conserving pseudopotential

R. M. Martin, Electronic structure, Basic Theory and Practical Methods, 
Cambridge University Press, Cambridge, 2004

Troullier-Martins Kerker
Haman-Schlüter-

Chiang Vanderbilt

s-state p-state

C



Balance between softness and 
transferability controlled by Rc

TRANSFERABILITY

SOFTNESS

Rc

Si

Shorter Rc: harder pseudo

Larger Rc: softer pseudo



A transferable pseudo will reproduce the AE  energy 
levels and wave functions in arbitrary environments

3s2 3p2    (reference)
3s2 3p1 3d1

3s1 3p3

3s1 3p2  3d1

3s0 3p3  3d1

•Compute the energy of two different configurations

•Compute the difference in energy

•For the pseudopotential to be transferible:



Problematic cases: first row elements
2p and 3d elements

pseudopotential is hard

No nodes because there 
are no p states to be 
orthogonal to

O:  1s2 2s2 2p4

core valence



Conclusions

•Core electrons…

highly localized and very depth energy

… are chemically inert

•Pseudopotential idea

Ignore the dynamics of the core electrons (freeze them)

And replace their effects by an effective potential

•Pseudopotentials are not unique

there might be many “best choices”

•Two overall competing factors: transferability vs hardness

•Always test the pseudopotential in well-known situations

•Norm conservation helps transferability
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Any function can be expanded as a sum of
plane waves (Fourier expansion)

M. Payne et al., Rev. Mod. Phys. 64, 1045 (1992)

ADVANTAGES

•Conceptually simple

•Asymptotically complete

•Allow systematic convergence

•“Easy” to implement (FFT)

DISADVANTAGES

•Not suited to represent any 
function in particular

•Hundreths of wave functions per 
atom to achieve a good accuracy

•Not well suited for Order-N 
methods



Order-N methods: The computational load
scales linearly with the system size

N  (# atoms)

CPU 
load

~ 100

Early

90’s

~ N

~ N3

G. Galli and M. Parrinello, Phys. Rev Lett. 69, 3547 (1992)



Locality is the key point
to achieve linear scaling

W. Yang, Phys. Rev. Lett. 66, 1438 (1992)

"Divide and Conquer"

x2

Large system



Locality ⇒⇒⇒⇒ Basis set of localized functions

Efficient basis set for linear scaling
calculations: localized, few and confined

Regarding efficiency, the important aspects are:
- NUMBER of basis functions per atom
- RANGE of localization of these functions

N  (# atoms)

CPU 
load

~ 100

Early

90’s

~ N

~ N3



Basis sets for linear-scaling DFT
Different proposals in the literature

• Bessel functions in ovelapping spheres 
P. Haynes & M. Payne

• B-splines in 3D grid    
D. Bowler & M. Gillan

• Finite-differences (nearly O(N))  
J. Bernholc

• Linear Combination of Atomic Orbitals



Main features of the Atomic Orbitals:
the pros and the cons

• Very efficient
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• Main features:

–Size

–Range

–Shape

• Lack of systematic for convergence



Atomic Orbitals: different representations

---- Gaussian based + QC machinery

G. Scuseria (GAUSSIAN),

M. Head-Gordon (Q-CHEM)              

R. Orlando, R. Dobesi (CRYSTAL)

- Numerical atomic orbitals (NAO)

SIESTA

S. Kenny &. A Horsfield (PLATO)

T. Ozaki (ABRED)

O. Sankey (FIREBALL)

Numerical solution of the Kohn-Sham Hamiltonian for the
isolated pseudoatom with the same approximations

(xc,pseudos) as for the condensed system



Our method

Linear-scaling DFT based on 
NAOs (Numerical Atomic Orbitals)

•Born-Oppenheimer   (relaxations, mol.dynamics)
•DFT                                                 (LDA, GGA)
•Pseudopotentials (norm conserving, factorised)
•Numerical atomic orbitals as basis      (finite range)
•Numerical evaluation of matrix elements   (3D grid)

Implemented in the SIESTA program

J. M. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002)

P. Ordejon, E. Artacho & J. M. Soler , Phys. Rev. B 53, R10441 (1996)

J. M.Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002)



Size (number of basis set per atom)

Quick and dirty

calculations
Highly converged

calculations

Multiple-ζ

+

Polarization

+

Diffuse orbitals

Minimal basis set

(single-ζ; SZ)

Depending on the required accuracy and

available computational power



Converging the basis size:
from quick and dirty to highly converged calculations

Single-ζζζζ (minimal or SZ)

One single radial function per angular

momentum shell occupied in the free –atom

Radial flexibilization: 

Add more than one radial 
function within the same

angular momentum than SZ

Multiple-ζζζζ

Angular flexibilization:

Add shells of different atomic
symmetry (different l)

Polarization

Improving the quality



Examples of different sizes of basis sets



Convergence of the basis set with Si

Bulk Si

Cohesion curves PW and NAO convergence



4.635.285.375.345.345.335.234.914.844.72Ec

(eV)

98.8969696979798989689B
(GPa)

5.435.415.385.395.395.395.425.455.465.52a
(Å)

ExpAPWPWTZDPTZPDZPSZPTZDZSZ

SZ = single-ζζζζ

DZ= doble- ζζζζ

TZ=triple- ζζζζ

P=Polarized

DP=Doble-
polarized

PW: Converged Plane Waves (50 Ry)

APW: Augmented Plane Waves

Convergence of the basis set with Si

Bulk Si



Range (spatial length of the basis functions)

• How to get sparse matrix for O(N)

– Neglecting interactions below a tolerance or beyond some scope
of neighbours ⇒⇒⇒⇒ numerical instablilities for high tolerances.

– Strictly localized atomic orbitals (zero beyond a given cutoff
radius, rc)

•Accuracy and computational efficiency depend on the range
of the atomic orbitals

•Way to define all the cutoff radii in a balanced way

⇓⇓⇓⇓



Convergence with the range

J. Soler et al., J. Phys: Condens. Matter, 14, 2745 (2002) 

Bulk Si

equal s, p
orbitals radii



7692313αααα-quartz

5928413diamond

2222713Si

864544213O2

34112965H2

Ecut (Ry)PW # funct.
per atom

DZP # funct.
per atom

System

Equivalent PW cutoff (Ecut) to optimal DZP

For molecules: cubic unit cell 10 Å of side

(J. Junquera et al, Phys. Rev. B, 64, 23511 (2001))



3.57
165
4.37

-
-
-

3.56
172
4.24

3.52
192
4.29

3.60
138
3.50

a
Cu     B

Ec

3.98
9.2
1.22

3.95
8.8
1.22

3.98
8.7
1.28

4.05
9.2
1.44

4.23
6.9

1.11

a
Na B

Ec

3.54
453
8.81

3.53
466
8.90

3.54
436
8.96

3.54
470

10.13

3.57
442
7.37

a
C       B

Ec

4.07
188
4.03

4.05
191
4.19

4.07
190

-

4.05
198

-

4.08
173
3.81

a
Au B

Ec

DZPPW
(same ps)

PW
(Literature)

LAPWExpSystem

a (Å)      B(GPa)       Ec(eV)



Conclusions

•Within the pseudopotential framework, many different choices of basis:

- PW

- Real space grids

- Localized basis sets

•Plane waves (PW):

- Asymptotically complete with systematic convergence.

- Easy to implement

- Not suited for Order-N

•Atomic orbitals:

- No systematic convergence.

- From “quick and dirty” to highly converged

- Order-N



Different schemes to double the basis set

•Quantum Chemistry: Split Valence

Slowest decaying (most extended) gaussian (ϕϕϕϕ)

•Nodes:

Use excited states of atomic calculations

Orthogonal, asympotically complete but inefficient

Only works for tight confinement

•Chemical hardness:

Derivative of the first-ζ respect the atomic charge.

•SIESTA: extension of the Split Valence to NAO.

  

φµ
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Split valence in NAO formalism

E. Artacho et al., Phys. Stat. Sol. (b), 215, 809 (1999) 

( )2brar
l −



Split valence - Chemical hardness

E. Anglada, J. Junquera, J. M. Soler, E. Artacho,

Phys. Rev. B 66, 205101 (2002)

•Similar shapes

•SV: higher efficiency
(radius of second-ζζζζ can
be restricted to the inner
matching radius)



Two different ways of generate
polarization orbitals

E. Artacho et al., Phys. Stat. Sol. (b), 215, 809 (1999) 

Atomic polarizationPerturbative polarization

Apply a small electric field to the
orbital we want to polarize

Solve Schrödinger equation for  
higher angular momentum

EEEE

s s+p

unbound in the free atom ⇒⇒⇒⇒

require short cut offs

Si 3d 

orbitals



Energy shift: cutting the orbitals in 
a balance way

Fireballs
O. F. Sankey & D. J. Niklewski, 
Phys. Rev. B  40, 3979 (1989)

But:

A different cut-off radius 
for each orbital

A single parameter for 
all cutoff radii

Convergence vs Energy shift of
Bond lengths           Bond energies

E. Artacho et al., Phys. Stat. Solidi (b) 215, 809 (1999)



4.85
5.38
1.611
1.611
140.0

4.88
5.40

-
-
-

4.81
5.32
1.605
1.605
139.0

4.89
5.38
1.60
1.60

-

4.84
5.41

1.611
1.617
140.2

4.92
5.41

1.605
1.614
143.7

a(Å)
c(Å)
d1

Si-O(Å)
d1

Si-O(Å)
ααααSi-O-Si(deg)

DZPPWePWdPWcPWbExpa

a Levien et al, Am. Mineral, 65, 920 (1980)

b Hamann, Phys. Rev. Lett., 76, 660 (1996)

c Sautet (using VASP, with ultrasoft pseudopotential)

d Rignanese et al, Phys. Rev. B, 61, 13250 (2000)

e Liu et al, Phys. Rev. B, 49, 12528 (1994) (ultrasoft pseudopotential)

Transferability: αααα-quartz

Si basis set optimized in c-Si

O basis set optimized in water molecule



0.975                      105.0                            12.73

0.972                      104.5                        12.94
0.967                      105.1                            13.10
0.968                      103.9                            11.05
0.958                      104.5                        10.08

Transfer

Opt
PW

LAPW
Exp

dO-H (Å)                  θθθθH-O-H(deg)                  Eb(eV)H2O

2.456                      6.50                             38

2.457                      6.72                             24
2.456                      6.674                        23

Transfer

PW
Exp

a (Å)                       c (Å)                            ∆∆∆∆E(meV)Graphite

4.13                        157                              11.81

4.10                        167                         11.87
4.10                        168                              11.90
4.21                        152                         10.30

Transfer

Opt
PW
Exp

a (Å)                       B(GPa)                        Ec(eV)MgO

PropertiesBasisSystem


