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Abstract
The energy-versus-volume curve of the spin-density wave (SDW) in body-
centred-cubic Cr is calculated with the density functional theory/full-potential
linearized augmented plane wave (DFT/FLAPW) method using the generalized
gradient approximation (GGA). The predicted ground state is not the SDW, in
contrast to an earlier FLAPW calculation. A conjecture is formulated that the
widely varying results of the local density approximation (LDA) and GGA—
and of different solution methods—can be scaled by the size of the calculated
moment. As a consequence, experimentally relevant properties of the SDW
can be calculated by tuning the moment. The implications of these results for
the ability of DFT to describe Cr are discussed.

1. Introduction

Although it has a simple crystallographic structure and contains only one element, body-
centred-cubic (bcc) Cr keeps triggering experimental and theoretical work. The reason is its
peculiar magnetic ground state: an incommensurate antiferromagnetic (AF) spin-density wave
(SDW), which originates from nesting properties of the Fermi surface (see [1] for reviews).
During the past 20 years, most of the theoretical work on Cr has been done in the framework
of density functional theory (DFT), using both the local density approximation (LDA) and
generalized gradient approximation (GGA) [2–18]. None of these studies has succeeded in
giving a really satisfying description of Cr. Doubts have even been raised [17] as to whether
DFT is able to yield an SDW at all as the ground state for Cr. In this paper, we present
the first GGA energy-versus-volume minimization in the SDW state. This result combined
with the above-mentioned studies offers a clear picture of the systematics in DFT/LDA–GGA
predictions for Cr. It will be shown that neither LDA nor GGA captures the right physics for
ground state considerations, but we shall show how both nevertheless can be used for reliably
describing the magnetism of Cr.
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Figure 1. Total energy as a function of lattice constant for NM and AF Cr, calculated by LDA
and GGA. The energy axis has an arbitrary zero-point. The LDA and GGA curves are vertically
shifted over an arbitrary amount with respect to each other. The curves shown are Murnaghan fits,
obtained by 21 points for each curve. No scatter at all was present. Vertical arrows indicate the
branching point of the AF curve and the experimental lattice constant a

exp
SDW.

2. A survey of the literature

Although the SDW is the ground state in nature, computational convenience has made the
closely related AF state the theoretically most studied. Comparing several LDA [2–8, 11–13]
and GGA [9, 14–18] studies for the AF and nonmagnetic (NM) states, the following general
picture emerges. The NM and AF energy-versus-volume curves behave qualitatively similarly
in LDA and GGA (figure 1): at low volumes, the magnetic moment is quenched and the two
curves are identical. At a given volume the moment appears and the AF curve splits off from
the NM curve, the former being at lower energy. An important difference between LDA and
GGA is the position of this branching volume. For LDA it lies to the right of the total-energy
minimum [8, 11]; for GGA it lies to the left of it [14]. The numbers obtained for the NM
and AF equilibrium volume and for the bulk modulus cannot be compared with experiment
directly, as the experimental ground state is the SDW. The NM LDA volume is a few per
cent lower than V

exp
SDW (V

exp
SDW = (a

exp
SDW)3 = the experimental volume in the SDW state). The

GGA NM volume lies between the LDA NM volume and V
exp

SDW, while the GGA AF volume
almost coincides with V

exp
SDW. The NM bulk modulus both for LDA and GGA is larger than

the experimental SDW value, the AF GGA bulk modulus is comparable to the latter. At the
experimental lattice constant, the LDA AF moment matches the experimental amplitude of
the SDW. The GGA AF moment is twice as high. Also at the AF equilibrium volume, the AF
moment is much higher compared with experiment.

Starting with the Korringa–Kohn–Rostoker (KKR) LDA work of Hirai [10, 12], a few
studies applying static DFT to the SDW state have been published [15–18]. Hirai finds an SDW
with the experimental period of about 20 lattice constants to be slightly (0.011 mRyd/atom)
lower in energy than the AF state (see [12] and reference 22 in [17]). Its amplitude is 0.67 µB

at the experimental lattice constant. The SDW solution branches off earlier than the AF curve
does, but still to the right of the NM minimum. The latter therefore remains the predicted
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Figure 2. Magnetic moment (µB) as a function of lattice constant (Å) for a simple AF cell with
GGA/FLAPW and LDA/FLAPW (both this work), for the SDW with p = 20 using GGA/FLAPW
(this work) and GGA/PAW (see [17]) and for the SDW using LDA/LMTO-ASA (see [17]) and an
estimate for LDA/PAW based on the latter data.

ground state. In the region where the SDW exists but the AF state does not, the amplitude
of the SDW is remarkably high (∼0.4 µB), especially when considering the small energy
gain [17]. The LDA/LMTO-ASA (linearized muffin-tin orbital method with atomic sphere
approximation) study from Hafner et al [17] led to a quite different conclusion. An SDW
with the experimental period is possible only from a lattice constant a = 2.895 Å onwards
(figure 2; see further for discussion). Extrapolation suggests that it reaches the experimental
amplitude at about a0 = 2.916 Å, and lies then 0.20 mRyd/atom higher in energy than the AF
state. Although it is not clear why the two studies yield different results3, they show that with
LDA the SDW cannot be found as the ground state.

When GGA is used with both LMTO-ASA (a = 2.884 Å, fixed) and the projector
augmented wave (PAW) method (a = 2.849 Å, fixed), an SDW can be obtained for a wide
range of periods of the wave [17, 18]. For all periods, the AF state is lower in energy than
the SDW, in contrast to a limited GGA/FLAPW study [15] that found an SDW with a period
of 14 unit cells and a = 2.85 Å to be lower in energy than AF (figure 3). This contradiction
is remarkable: PAW and FLAPW are both highly accurate methods and should, at the same
lattice constant, yield comparable results. All GGA studies confirm the greatly overestimated
amplitude of the SDW.

3. Method

All calculations in this work were made using the WIEN implementation [19] of the full-
potential linearized augmented plane wave (FLAPW) method. The LDA [20] and GGA [21]
functionals from Perdew et al are used (for the SDW only GGA). In the FLAPW procedure
wavefunctions, charge density and potential are expanded in spherical harmonics within
nonoverlapping atomic spheres of radius Rmt and in plane waves in the remaining space

3 We can mention here also that we were not able to obtain an SDW with LDA/FLAPW at the experimental lattice
constant.
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Figure 3. ESDW − EAF (mRyd/atom) as a function of the reduced wavevector q/(a/2π) =
(1 − p)/p, with p the period expressed in number of AF lattice constants. White symbols: PAW.
Black symbols: FLAPW (WIEN). Gray symbols: LMTO-ASA. ⊗: FLAPW (FLEUR). Squares
are used if the lattice constant is the experimental one, circles if it is the equilibrium GGA value and
triangles if the moment is tuned to the experimental moment. The legend lists the lattice constant
(Å) and the moment at p = 20.

of the unit cell. The maximum multipolarity l for the waves inside the atomic spheres was
confined to lmax = 10. The wavefunctions in the interstitial region were expanded in plane
waves with a cutoff of kmax = 9/Rmt for the NM and AF calculations, and kmax = 8/Rmt for
the SDW cases. The muffin-tin radius Rmt was 2.1 au for the NM and AF cases with small
unit cells and 2.25 au for supercells, the latter to keep the calculation time reasonable (smaller
Rmt are slightly more accurate, but much more expensive). For internal consistency, moments
obtained with Rmt = 2.25 au were rescaled to moments with Rmt = 2.1 au. The rescaling
relation was obtained by means of an extra series of AF calculations with Rmt = 2.25 au,
in the range of 2.74–2.95 Å. For the same reason and by the same procedure, total energies
were corrected. The validity of both corrections—which do not qualitatively change any of
our conclusions, but contribute to the quantitative consistency of the results—was checked by
a direct calculation of an AF and an SDW supercell using Rmt = 2.1 au at a = 2.78 Å, and
the agreement was excellent. The charge density was Fourier expanded up to Gmax = 16. A
mesh of 220 special k-points was taken in the irreducible wedge of the Brillouin zone for the
NM and AF cases; 36 special k-points were used for the supercell calculations. Because of the
small energy differences involved and the large range of lattice constants studied, it was crucial
to deal with the linearization energies properly. For a preliminary series of AF calculations,
the linearization energies were determined from the density of states (DOS) as a function of
volume. This yielded smooth functions, which were then used to run all calculations reported
below with the optimal linearization energies for that volume. No spin–orbit coupling was
taken into account. These calculations are therefore not sensitive to the polarization (transversal
or longitudinal) of the SDW.
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Table 1. High-precision FLAPW results using LDA and GGA for the NM and AF state, and using
GGA for the SDW. For NM and AF, the numbers are taken from a Murnaghan fit through nine points
in the volume region ±10% of the equilibrium, where the Murnaghan equation is valid. Tabulated
are the lattice constant in the NM and AF states (a0 [Å]), bulk modulus in the NM and AF states
(B [GPa]), magnetic moment per atom at the experimental lattice constant and at the calculated AF
lattice constant [µB] and the lattice constant asplit at which the magnetic curve branches off from
the NM one [Å]. This branching happens asymptotically; the reported asplit is the point at which
the moment exceeds 0.02 µB. The moment is defined within a sphere with radius Rmt = 2.1 au
for the NM and AF calculations, and corrected to the same sphere for the SDW. For the waves, the
moment is the amplitude. (∗) = extrapolated.

a0 a0 B B µ µ

(NM) (AF) (NM) (AF) (aexp
0 ) (atheo

0 ) asplit

LDA 2.794 308 0.63 2.81
GGA 2.851 2.871 260 184 1.16 1.08 2.71
SDW-GGA 2.865 217 1.15 1.04 2.76(∗)

SDW-exp 2.881 191 0.62

4. Results

For present-day computers, NM and AF Cr (one and two atoms per unit cell, respectively) are
easy systems to calculate. The numerical accuracy can therefore be pushed to high limits. In
figures 1 and 2 and in table 1 we present total energies, magnetic moments and lattice constants,
obtained from FLAPW calculations with settings described above. For the sake of numerical
comparison, the NM and AF unit cells were both taken to contain two atoms. These results can
be considered to be the ‘true’ LDA and GGA results, without numerical inaccuracies, and they
are in good agreement with recent values obtained by PAW [17] and an independent FLAPW
implementation [15]. For the SDW, we use a supercell of dimensions (a, a, 20 a) (a is a bcc
Cr lattice constant), which is close to the observed period of the SDW (20.83 a). First we
check our supercell calculations against other methods. Figure 3 shows the energy difference
ESDW −EAF for different values of the reduced wavevector q/a∗ (p = 1/(1−q/a∗) with p the
period in bcc lattice constants, q is the wavevector of the SDW and a∗ = 2π/a) obtained with
GGA/FLAPW (FLEUR implementation) [15] and GGA/PAW [17,18]. Both for a = 2.884 Å
(squares) and a = 2.849 Å (circles) there is excellent agreement between the PAW data (white)
and our FLAPW results (black), even on this mRy/atom scale (the deviating values [17] of the
less accurate LMTO-ASA method will be discussed below). Also the FLEUR-FLAPW point
at q/a∗ = 0.917 is in good agreement, the one at q/a∗ = 0.292 that favours the SDW is not.
Because it can now be excluded that this is due to the FLAPW method, we can strengthen
the conclusion of Hafner et al that the latter point is erroneous, and we show that there is no
contradiction between PAW and FLAPW.

Figure 4 shows the total energy (mRyd/atom) for the AF, NM and SDW states as a
function of lattice constant. The AF and NM are not directly the ones obtained in figure 1: due
to systematic numerical errors, the total energy of an (a, a, 20 a) AF supercell is never exactly
equal to 20 times the total energy of a two-atom AF cell, but is shifted over a small constant
amount. In order to compare total energies, calculations must always be performed in identical
circumstances. Therefore we calculated two AF supercells at a = 2.815 and 2.905 Å. After
a rigid vertical shift, the AF curve from figure 1 nicely fits these points (figure 4). The total
energy of the SDW supercells can now be directly compared with this curve. Four of these
SDW supercells were calculated, and a Murnaghan equation of state was fitted (table 1 and
figure 4). The energy difference ESDW − EAF is shown in the inset of figure 4 (the curve is the
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Figure 4. Total energy as a function of lattice constant for the NM, AF and SDW states.
Inset: ESDW − EAF; the curve is the difference between the two Murnaghan fits. The two points
of references [17] and [18] are in excellent correspondence.

difference between the SDW and AF Murnaghan fits). The energy of the SDW is intermediate
between the AF and NM states, and over the complete volume range the AF energy is lowest.
Also equilibrium volume and bulk modulus are intermediate between AF and NM, and agree
rather well with experiment. The point at a = 2.849 Å is read from figure 3 in [17] and the
one at a = 2.884 Å from figure 3 in [18]. They agree excellently with our results. The SDW
Murnaghan fit is made down to a = 2.78 Å. For somewhat lower volumes the SDW will
disappear and the total-energy curve must coincide with the NM, which in this volume region
is very close to the AF state. The energy difference at a = 2.78 Å between SDW and AF
supercells with Rmt = 2.1 au is shown too. The small difference between this value and the
value obtained after correction for Rmt = 2.25 au can be taken as the error bar on our results.

The amplitude of the SDW is shown in figure 2, together with the GGA and LDA AF
moment. Six instead of four SDW amplitudes are reported, including two cases with not the
best linearization energies. This considerably affected the energies, but not the moments. The
amplitude is almost equal to the AF moment for large volumes, and linearly decreases. Earlier
than the AF moment does, the amplitude leaves the linear curve and drops to zero. Also here,
the amplitude obtained in [17, 18] is in good agreement.

5. Discussion

As was mentioned above, the different predictions of LDA and GGA for Cr are two
manifestations of what actually is a qualitatively very similar underlying behaviour. The
similarity is even more striking than was shown so far. Hafner et al [17] present LDA/LMTO-
ASA results for slightly expanded lattices, where an SDW with the experimental period appears
to exist. The results from their figure 6 in reference [17] are given in figure 2. Their figure 1
shows how LDA/LMTO-ASA underestimates the AF moment with respect to LDA/PAW (an
effect due to spherical averaging in the ASA). In figure 2 we use this information to estimate
the corresponding amplitude of the better LDA/PAW SDW. This suggests that also the LDA
SDW amplitude follows the AF moment, and then drops to zero earlier than the AF moment
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does. There seems to be no fundamental difference between LDA and GGA: with GGA the
same magnetic effects are visible as with LDA, but at lattice constants about 0.1 Å smaller.

A peculiar behaviour can be noticed when the SDW amplitude reaches its experimental
value of 0.62 µB (at a = 2.810 Å for GGA). At this volume, the AF moment can be read
from figure 2 to be slightly larger: 0.68 µB. This is in agreement with the somewhat enhanced
experimental AF moment, which is 0.68 µB [22] or 0.66 µB [23]. The SDW is experimentally
known to be almost sine-like, which means that in its Fourier expansion only the first term M1

is very different from zero. The second term and all other even terms are zero by symmetry,
and the third term M3 gives the first order deviation from the sine shape. A negative M3—or
a negative ratio M3/M1—results in a slightly more ‘rectangular’ wave, while positive values
yield a more ‘triangular’ wave. Higher order terms (M5 and higher) are very small and
essentially zero. The experimental value of M3/M1 is −0.016 or −0.021 [24]. In figure 5 (left
axis), calculated values of this ratio are given as a function of lattice constant and the dahsed
line indicates the experimental value. At a = 2.810 Å, the calculated ratio comes very close
to experiment and is an order of magnitude better than the ratio obtained at a

exp
SDW = 2.884 Å.

The SDW is known to be accompanied by a charge density wave (CDW), which has, due to
symmetry, the odd terms equal to zero in its Fourier expansion. The only term appreciably
different from zero is the second one, N2, but the experimental value is not well known
(0.003 → 0.02, see reference [10]). The right scale of figure 5 shows N2 as a function of
lattice constant. At a = 2.810 Å, the calculated value has the right order of magnitude, and
is two orders of magnitude closer to experiment than in previous calculations [10]. All this
suggests that if the GGA amplitude is constrained to the experimental value, the calculated
electronic structure comes close to the true situation. As a result, Cr with a = 2.810 Å can
be used as a ‘laboratory’ to study the properties of the SDW with GGA. The tuned value of
the lattice constant has no physical meaning and can be considered as a free parameter, set
to a value that correctly reproduces magnetism. Working with this ‘Cr laboratory’ therefore
means leaving the ab initio level of theory, and limits the kind of properties that can be studied.
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This is a price that has to be paid, but probably an acceptable one: by setting only a single
parameter, several different aspects of magnetic behaviour are coming out right. This suggests
that enough predictive power is left, and that electronic structure insight obtained from this
‘laboratory’ will survive in the real world. We are currently using this approach to calculate
hyperfine fields on impurities in SDW Cr.

We are now in the position to formulate the following Conjecture. Across different
approximations (LDA–GGA) and different methods (FLAPW, PAW, LMTO, . . .), the dominating
factor in Cr is the size of the SDW amplitude. If scaled to the same moment, all approximations
and methods yield the same behaviour. Arguments for this conjecture are (1) the LDA–GGA
similarity in figure 2. (2) The coincidence in figure 3 between the PAW-FLAPW results
at a = 2.849 Å and the LMTO result at 2.884 Å which all have about the same moment
at q/a∗ = 0.95 (0.87 µB for PAW, 0.92 µB for FLAPW, 0.87 µB for LMTO). Even a
method such as LMTO-ASA that is known to be less reliable—and therefore deviates from
the energies found with PAW and FLAPW at a = 2.884 Å—yields energies that are identical
to PAW and FLAPW in cases where they have the same moment. The moment rather than
the lattice constant is the dominating factor. (3) The estimated ESDW − EAF is 0.20 mRy/at
from figure 5 in reference [17] at a = 2.916 Å, where LDA/LMTO-ASA should find the
experimental amplitude. This estimate is indicated in figure 3 (gray triangle) and agrees with
our corresponding GGA/FLAPW result (black triangle) at 2.810 Å (= the lattice constant
where GGA/FLAPW finds the experimental amplitude with p = 20).

If it will survive new results obtained by other methods, a consequence of this conjecture
would be that for every combination ‘approximation/method’ a lattice constant exists at which a
realistic SDW is found. We showed this value to be 2.810 Å for GGA/FLAPW, and estimate it is
similar for GGA/PAW, 2.905 Å for LDA/PAW and LDA/FLAPW and 2.916 Å for LDA/LMTO-
ASA. Another consequence is of more fundamental importance. Hafner et al claim [17] that
the final DFT answer for the ground state of Cr is AF (at least with LDA and GGA), which
would need to invoke temperature and dynamics to understand the appearance of the SDW
in nature. We believe this might be true, but it cannot be considered as proven yet. Due to
the quantitative differences between LDA and GGA, and between the different methods, and
regarding the small energy differences involved, more high-precision data are required. The
magnetic moment conjecture provides a good tool for this: if for the experimental amplitude
(tuned by the volume and at p = 20) the results of all approximations/methods bunch together
around our value of 0.135 mRyd/atom in figure 3, the answer(s) of DFT can be said to be
consistent and trustworthy. If in this way can be proven that the AF ground state is indeed the
final LDA-GGA answer, two alternative conclusions can be drawn. Either DFT in its LDA or
GGA formulation is not accurate enough to describe Cr. This would make Cr an ideal testing
ground for improved exchange-correlation functionals: a newly proposed general-purpose
exchange-correlation functional that claims to be better than LDA-GGA should reproduce
LDA-GGA results there where they are correct, and improve on them where LDA-GGA fails,
e.g. for Cr. Or alternatively, the LDA-GGA answer comes close to the true DFT result. Then
dynamic features will be necessary to explain the Cr magnetism.

Finally, although GGA is a necessary extension in order to describe other 3d transition
metals correctly, we want to stress that for Cr it cannot be decided whether GGA or LDA is
superior. It is therefore dangerous to rely too heavily on features specific to for example LDA, as
is done in the model of Marcus et al to understand the appearance of the SDW [8, 11]. Another
warning is that it seems to be possible to make predictions about structural properties of Cr by
using GGA (but then the magnetic moments do not make sense) or about magnetic properties
in any approximation if the volume is well tuned. But if both the lattice and magnetism are
involved (e.g. in magnetic Fe/Cr multilayers, where the Cr volume is determined by Fe) one
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has to be extremely cautious. A careful treatment such as that used by Klautau et al [13] is
needed then.
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