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Abstract

Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct

methods of studying the electronic structure of solids. By measuring the kinetic

energy and angular distribution of the electrons photoemitted from a sample

illuminated with sufficiently high-energy radiation, one can gain information

on both the energy and momentum of the electrons propagating inside a

material. This is of vital importance in elucidating the connection between

electronic, magnetic, and chemical structure of solids, in particular for those

complex systems which cannot be appropriately described within the

independent-particle picture. The last decade witnessed significant progress in

this technique and its applications, thus ushering in a new era in photoelectron

spectroscopy; today, ARPES experiments with 2meV energy resolution and

0.28 angular resolution are a reality even for photoemission on solids. In this

paper we will review the fundamentals of the technique and present some

illustrative experimental results; we will show how ARPES can probe the

momentum-dependent electronic structure of solids providing detailed

information on band dispersion and Fermi surface as well as on the strength

and nature of many-body correlations, which may profoundly affect the one-

electron excitation spectrum and in turn the macroscopic physical properties.

1. Introduction

Photoelectron spectroscopy is a general term that refers to
all those techniques based on the application of the
photoelectric effect originally observed by Hertz [1] and
later explained as a manifestation of the quantum nature of
light by Einstein [2], who recognized that when light is
incident on a sample an electron can absorb a photon and
escape from the material with a maximum kinetic energy
Ekin ¼ h�� � (where � is the photon frequency and �; the
material work function, is a measure of the potential
barrier at the surface that prevents the valence electrons
from escaping, and is typically 4–5 eV in metals). In the
following, we will show how the photoelectric effect also
provides us with deep insights into the quantum descrip-
tion of the solid state. In particular, we will give a general
overview of angle-resolved photoemission spectroscopy
(so-called ARPES), a highly advanced spectroscopic
method that allows the direct experimental study of the
momentum-dependent electronic band structure of solids.
For a further discussion of ARPES and other spectroscopic
techniques based on the detection of photoemitted
electrons, we refer the reader to the extensive literature
available on the subject [3–34].
As we will see in detail throughout the paper and in

particular in Section 3, due to the complexity of the
photoemission process in solids the quantitative analysis
of the experimental data is often performed under the
assumption of the independent-particle picture and of the
sudden approximation (i.e., disregarding the many-body
interactions as well as the relaxation of the system during the
photoemission itself). The problem is further simplified
within the so-called three-step model (Fig. 1(a)), in which the

photoemission event is decomposed in three independent
steps: optical excitation between the initial and final bulk
Bloch eigenstates, travel of the excited electron to the
surface, and escape of the photoelectron into vacuum after
transmission through the surface potential barrier. This is
the most common approach, in particular when photoemis-
sion spectroscopy is used as a tool to map the electronic
band structure of solids. However, from the quantum-
mechanical point of view photoemission should not be
described in terms of several independent events but rather
as a one-step process (Fig. 1(b)): in terms of an optical
transition (with probability given by Eq. (12)) between
initial and final states consisting of many-body wave
functions that obey appropriate boundary conditions at
the surface of the solid. In particular (see Fig. 2), the initial
state should be one of the possible N-electron eigenstates of
the semi-infinite crystal, and the final statemust be one of the
eigenstates of the ionized ðN� 1Þ-electron semi-infinite
crystal; the latter has also to include a component consisting
of a propagating plane-wave in vacuum (to account for the
escaping photoelectron) with a finite amplitude inside the
crystal (to provide some overlap with the initial state).
Furthermore, as expressed by Eq. (12) which does represent
a complete one-step description of the problem, in order for
an electron to be photoemitted in vacuum not only there
must be a finite overlap between the amplitude of initial and
final states, but also the following energy and momentum
conservation laws for the impinging photon and the N-
electron system as a whole must be obeyed:

EN
f � EN

i ¼ h�; ð1Þ

kNf � kNi ¼ kh� ð2Þ

where the indexes i and f refer to initial and final state,
respectively, and kh� is the momentum of the incoming
photon. Note that, in the following, in proceeding with the
more detailed analysis of the photoemission process as well
as its application to the study of the momentum-dependent
electronic structure of solids (in terms of both conventional
band mapping as well as many-body effects), we will
mainly restrict ourselves to the context of the three-step
model and the sudden approximation.

2. Kinematics of photoemission

The energetics and kinematics of the photoemission
process are shown in Fig. 3 and 4, while the geometry of
an ARPES experiment is sketched in Fig. 6(a). A beam of
monochromatized radiation supplied either by a gas-
discharge lamp or by a synchrotron beamline is incident
on a sample (which has to be a properly aligned single
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crystal in order to perform angle or, equivalently,
momentum-resolved measurements). As a result, electrons
are emitted by photoelectric effect and escape in vacuum in
all directions. By collecting the photoelectrons with an
electron energy analyzer characterized by a finite accep-
tance angle, one measures their kinetic energy Ekin for a
given emission direction. This way, the wave vector or
momentum K ¼ p=h� of the photoelectrons in vacuum is
also completely determined: its modulus is given by
K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEkin

p
=h� and its components parallel

(Kjj ¼ Kx þ Ky) and perpendicular (K? ¼ Kz) to the sample
surface are obtained in terms of the polar (#) and
azimuthal (’) emission angles defined by the experiment:

Kx ¼
1

h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEkin

p
sin# cos ’; ð3Þ

Ky ¼
1

h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEkin

p
sin# sin ’; ð4Þ

Kz ¼
1

h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEkin

p
cos#: ð5Þ

The goal is then to deduce the electronic dispersion
relations EðkÞ for the solid left behind, i.e. the relation
between binding energy EB and momentum k for the
electrons propagating inside the solid, starting from Ekin

and K measured for the photoelectrons in vacuum. In order
to do that, one has to exploit the total energy and
momentum conservation laws (Eq. (1) and (2), respec-
tively).
Within the non-interacting electron picture, it is parti-

cularly straightforward to take advantage of the energy
conservation law and relate, as pictorially described in Fig.
3, the kinetic energy of the photoelectron to the binding
energy EB of the electronic-state inside the solid:

Ekin ¼ h�� �� jEBj: ð6Þ

More complex, as we will discuss below, is to gain full
knowledge of the crystal electronic momentum k: Note,
however, that the photon momentum can be neglected in
Eq. (2) at the low photon energies most often used in
ARPES experiments ðh� < 100 eVÞ; as it is much smaller
than the typical Brillouin-zone dimension 2�=a of a solid
(see Section 6 for more details). Thus, as shown in Fig. 4
within the three-step model description (see also Section 3),
the optical transition between the bulk initial and final

states can be described by a vertical transition in the
reduced-zone scheme (kf � ki ¼ 0), or equivalently by a
transition between momentum-space points connected by a
reciprocal-lattice vector G in the extended-zone scheme
(kf � ki ¼ G). In regard to Eq. (1) and (2) and the deeper
meaning of the reciprocal-lattice vector G note that, as
emphasized by Mahan in his seminal paper on the theory
of photoemission in simple metals [36], ‘‘in a nearly-free-
electron gas, optical absorption may be viewed as a two-step
process. The absorption of the photon provides the electron
with the additional energy it needs to get to the excited state.
The crystal potential imparts to the electron the additional
momentum it needs to reach the excited state. This
momentum comes in multiples of the reciprocal-lattice
vectors G: So in a reduced zone picture, the transitions are
vertical in wave-vector space. But in photoemission, it is more
useful to think in an extended-zone scheme.’’
On the contrary in an infinite crystal with no periodic
potential (i.e., a truly free-electron gas scenario lacking of
any periodic momentum structure), no k-conserving
transition is possible in the limit kh� ¼ 0; as one cannot
go from an initial to a final state along the same
unperturbed free-electron parabola without an external
source of momentum. In other words, direct transitions are
prevented because of the lack of appropriate final states (as
opposed to the periodic case of Fig. 4). Then again the
problem would be quite different if the surface was more
realistically taken into account, as in a one-step model
description of a semi-infinite crystal. In fact, while the
surface does not perturb the translational symmetry in the
x–y plane and kk is conserved to within a reciprocal lattice
vector Gk; due to the abrupt potential change along the z
axis the perpendicular momentum k? is not conserved
across the sample surface (i.e., k? is not a good quantum
number except than deeply into the solid, contrary to kk).
Thus, the surface can play a direct role in momentum
conservation, delivering the necessary momentum for
indirect transitions even in absence of the crystal potential
(i.e., the so-called surface photoelectric effect; see also Eq.
(12) and the related discussion).

Reverting to the three-step model direct-transition

description of Fig. 4, the transmission through the sample

surface is obtained by matching the bulk Bloch eigenstates

Fig. 2. Initial (left) and final (right) eigenstates for the semi-infinite crystal.

Left: (a) surface resonance; (b) surface Shockley state situated in a gap of

the bulk band structure; (c) bulk Bloch state. Right: (d) surface resonance;

(e) in-gap evanescent state; (f) bulk Bloch final state (from Ref. [35]).

Fig. 1. Pictorial representation of three-step and one-step model descrip-

tions of the photoemission process (from Ref. [17]).
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inside the sample to free-electron plane waves in vacuum.
Because of the translational symmetry in the x–y plane
across the surface, from these matching conditions it
follows that the parallel component of the electron
momentum is actually conserved in the process:

kk ¼ Kk ¼
1

h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEkin

p
� sin# ð7Þ

where kk is the component parallel to the surface of the
electron crystal momentum in the extended-zone scheme
(upon going to larger # angles, one actually probes
electrons with kk lying in higher-order Brillouin zones; by
subtracting the corresponding reciprocal-lattice vector Gk;
the reduced electron crystal momentum in the first Brillouin
zone is obtained). As for the determination of k?; which is
not conserved but is also needed in order to map the
electronic dispersion EðkÞ vs the total crystal wave vector k;
a different approach is required. As a matter of fact, several
specific experimental methods for absolute three dimen-
sional band mapping have been developed [17,38,39],
which however are rather complex and require additional
and/or complementary experimental data. Alternatively,
the value of k? can be determined if some a priori
assumption is made for the dispersion of the electron
final states involved in the photoemission process; in
particular, one can either use the results of band structure
calculations, or adopt a nearly-free-electron description for
the final bulk Bloch states:

EfðkÞ ¼
h�
2k2

2m
� jE0j ¼

h�
2 k2k þ k2?

� �
2m

� jE0j ð8Þ

where once again the electron momenta are defined in the
extended-zone scheme, and E0 corresponds to the bottom
of the valence band as indicated in Fig. 4 (note that both E0

and Ef are referenced to the Fermi energy EF; while Ekin is
referenced to the vacuum level Ev). Because Ef ¼ Ekin þ �
and h�

2k2k=2m ¼ Ekin sin
2 #; which follow from Fig. 4 and

Eq. (7) one obtains from Eq. (8):

k? ¼
1

h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m Ekin cos2 #þ V0ð Þ

p
: ð9Þ

Here V0 ¼ jE0j þ � is the inner potential, which corre-
sponds to the energy of the bottom of the valence band
referenced to vacuum level Ev: From Eq. (9) and the
measured values of Ekin and #; if V0 is also known, one can
then obtain the corresponding value of k?: As for the
determination of V0; three methods are generally used: (i)
optimize the agreement between theoretical and experi-
mental band mapping for the occupied electronic state; (ii)
set V0 equal to the theoretical zero of the muffin tin
potential used in band structure calculations; (iii) infer V0

from the experimentally observed periodicity of the
dispersion Eðk?Þ: The latter is actually the most convenient
method as the experiment can be realized by simply
detecting the photoelectrons emitted along the surface
normal (i.e., Kk ¼ 0) while varying the incident photon
energy and, in turn, the energy Ekin of the photoelectrons
and thus Kz (see Eq. (5)). Note that the nearly-free electron
approximation for the final states is expected to work well
for materials in which the Fermi surface has a simple
spherical (free-electron-like) topology such as in the alkali
metals, and for high-energy final states in which case the
crystal potential is a small perturbation (eventually the
final-state bands become so closely spaced in energy to
form a continuum, and the details of the final states
become unimportant). However this approximation is
often used also for more complicated systems, even if the
initial states are not free electron-like.

A particular case in which the uncertainty in k? is less
relevant is that of the low-dimensional systems character-
ized by an anisotropic electronic structure and, in
particular, a negligible dispersion along the z axis (i.e.,
the surface normal, see Fig. 6(a)). The electronic dispersion
is then almost exclusively determined by kk (as in the case
of many transition metal oxides, such as for example the
two-dimensional copper oxide superconductors [11]). As a
result, one can map out in detail the electronic dispersion
relations EðkÞ simply by tracking, as a function of Kk; the

Fig. 4. Kinematics of the photoemission process within the three-step

nearly-free-electron final state model: (a) direct optical transition in the

solid (the lattice supplies the required momentum); (b) free-electron final

state in vacuum; (c) corresponding photoelectron spectrum, with a

background due to the scattered electrons (EB ¼ 0 at EF). From Ref. [37].

Fig. 3. Energetics of the photoemission process (from Ref. [17]). The

electron energy distribution produced by the incoming photons, and

measured as a function of the kinetic energy Ekin of the photoelectrons

(right), is more conveniently expressed in terms of the binding energy EB

(left) when one refers to the density of states in the solid (EB ¼ 0 at EF).
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energy position of the peaks detected in the ARPES spectra

for different take-off angles (as in Fig. 6(b), where both

direct and inverse photoemission spectra for a single band

dispersing through the Fermi energy EF are shown).

Furthermore, as an additional bonus of the lack of z

dispersion, one can directly identify the width of the

photoemission peaks with the lifetime of the photohole

[41], which contains information on the intrinsic correla-

tion effects of the system and is formally described by the

imaginary part of the electron self energy (see Section 4).

On the contrary, in 3D systems the linewidth contains

contributions from both photohole and photoelectron

lifetimes, with the latter reflecting final state scattering

processes and thus the finite probing depth; as a

consequence, isolating the intrinsic many-body effects

becomes a much more complicated problem.
What just discussed for the lifetime can be easily seen

from the expression for the FWHM of an ARPES

lineshape for a single nearly-free electron-like band [41]:

� ¼
�i=jvi?j þ �f=jvf?j

1�mvik sin
2 #=h� kk

� �
=vi?� 1�mvfk sin

2 #=h� kk
� �

=vf?
�� �� :

ð10Þ

Here �f and �i are the inverse lifetime of photoelectron and
photohole in the final and initial states, respectively, and vi
and vf are the corresponding group velocities (e.g.,
h� vi? ¼ @Ei=@k?). Note in particular that: (i) for initial
states very close to EF;�i ! 0 and the linewidth reflects
only the lifetime of the final state �f : (ii) Eq. (10) simplifies
considerably in the case of a material characterized by a
two dimensional electronic structure, for which jvi?j ’ 0 :
as a result, the final-state lifetime contribution vanishes:

� ¼
�i

1�mvik sin
2 #=h� kk

�� �� � C�i: ð11Þ

Furthermore, depending on the sign of vik; the measured
linewidth can be compressed or expanded with respect to
the intrinsic value of the inverse lifetime �i: The two
limiting cases mentioned above are beautifully exemplified
by the data from the three-dimensional system Ag(100)
presented in Fig. 5 [40]. While the normal incidence
spectrum is dominated by �f � �i and is extremely
broad, the grazing incidence data from a momentum
space region characterized by vi? ¼ 0; vik < 0 and large,
and kk small (which result in a compression factor
C ¼ 0:5), exhibit a linewidth which is even narrower than
the intrinsic inverse lifetime �i: Note that this does not
imply any fundamental violation of the basic principles of
quantum mechanics, but is just a direct consequence of the
kinematics constrains of the photoemission process.

3. Three-step model and sudden approximation

To develop a formal description of the photoemission

process, one has to calculate the transition probability wfi

for an optical excitation between the N-electron ground

state �N
i and one of the possible final states �N

f : This can be
approximated by Fermi’s golden rule:

wfi ¼
2�

h�
jh�N

f jHintj�
N
i ij

2�ðEN
f � EN

i � h�Þ ð12Þ

where EN
i ¼ EN�1

i � Ek
B and EN

f ¼ EN�1
f þ Ekin are the

initial and final-state energies of the N-particle system
(E k

B is the binding energy of the photoelectron with kinetic
energy Ekin and momentum k). The interaction with the
photon is treated as a perturbation given by:

Hint ¼
e

2mc
ðA � pþ p � AÞ ¼

e

mc
A � p ð13Þ

where p is the electronic momentum operator and A is the
electromagnetic vector potential (note that the gauge � ¼ 0
was chosen for the scalar potential �; and the quadratic
term in A was dropped because in the linear optical regime
it is typically negligible with respect to the linear terms). In
Eq. (13) we also made use of the commutator relation
½p;A� ¼ �ih� r � A and dipole approximation (i.e., A con-
stant over atomic dimensions and therefore r � A ¼ 0;
which holds in the ultraviolet). Although this is a routinely
used approximation, it should be noted that r � A might
become important at the surface where the electromagnetic
fields may have a strong spatial dependence. This surface
photoemission contribution, which is proportional to
("� 1) where " is the medium dielectric function, can
interfere with the bulk contribution resulting in asymmetric
lineshapes for the bulk direct-transition peaks [14,42–44].
At this point, a more rigorous approach is to proceed with
the so-called one-step model (Fig. 1(b)), in which photon
absorption, electron removal, and electron detection are
treated as a single coherent process [36,45–58]. In this case
bulk, surface, and vacuum have to be included in the
Hamiltonian describing the crystal, which implies that not
only bulk states have to be considered but also surface and
evanescent states, and surface resonances (see Fig. 2). Note
that, under the assumption r � A ¼ 0; from Eq. (13) and
the commutation relation ½H0; p� ¼ ih� rV (where

Fig. 5. Normal and grazing emission ARPES spectra from Ag(100)

measured with photon energies specifically chosen to give rise to peaks

with the same binding energy (from Ref. [40]).
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H0 ¼ p2=2mþ V is the unperturbed Hamiltonian of the
semi-infinite crystal) it follows that the matrix elements
appearing in Eq. (12) are proportional to h�N

f jA � rVj�N
i i:

This shows explicitly that for a true free-electron like
system it would be impossible to satisfy simultaneously
energy and momentum conservation laws inside the
material because there rV ¼ 0: The only region where
electrons could be photoexcited is at the surface where
@V=@z 6¼ 0; which gives rise to the so-called surface
photoelectric effect. However, due to the complexity of
the one-step model, photoemission data are usually
discussed within the three-step model (Fig. 1(a)), which
although purely phenomenological has proven to be rather
successful [49,59,60]. Within this approach, the photoemis-
sion process is subdivided into three independent and
sequential steps:

(i) Optical excitation of the electron in the bulk.
(ii) Travel of the excited electron to the surface.
(iii) Escape of the photoelectron into vacuum.

The total photoemission intensity is then given by the
product of three independent terms: the total probability
for the optical transition, the scattering probability for the
travelling electrons, and the transmission probability
through the surface potential barrier. Step (i) contains all
the information about the intrinsic electronic structure of
the material and will be discussed in detail below. Step (ii)
can be described in terms of an effective mean free path,
proportional to the probability that the excited electron
will reach the surface without scattering (i.e, with no
change in energy and momentum). The inelastic scattering
processes, which determine the surface sensitivity of
photoemission (see Section 6), give rise to a continuous
background in the spectra which is usually ignored or
subtracted. Step (iii) is described by a transmission
probability through the surface, which depends on the
energy of the excited electron and the material work
function � (in order to have any finite escape probability
the condition h�

2k2?=2m � jE0j þ � must be satisfied).
In evaluating step (i), and therefore the photoemission

intensity in terms of the transition probability wfi; it would
be convenient to factorize the wavefunctions in Eq. (12)
into photoelectron and ðN� 1Þ-electron terms, as we have
done for the corresponding energies. This however is far
from trivial because during the photoemission process itself
the system will relax. The problem simplifies within the
sudden approximation, which is extensively used in many-
body calculations of the photoemission spectra from
interacting electron systems, and is in principle applicable
only to high kinetic-energy electrons. In this limit, the
photoemission process is assumed to be sudden, with no
post-collisional interaction between the photoelectron and
the system left behind (in other words, an electron is
instantaneously removed and the effective potential of the
system changes discontinuously at that instant). The final
state �N

f can then be written as:

�N
f ¼ A�k

f�
N�1
f ð14Þ

where A is an antisymmetric operator that properly
antisymmetrizes the N-electron wavefunction so that the
Pauli principle is satisfied, �k

f is the wavefunction of the

photoelectron with momentum k, and �N�1
f is the final

state wavefunction of the ðN� 1Þ-electron system left
behind, which can be chosen as an excited state with
eigenfunction �N�1

m and energy EN�1
m : The total transition

probability is then given by the sum over all possible
excited states m: Note, however, that the sudden approx-
imation is inappropriate for low kinetic energy photoelec-
trons, which may need longer than the system response
time to escape into vacuum. In this case, the so-called
adiabatic limit, one can no longer factorize �N

f in two
independent parts and the detailed screening of photoelec-
tron and photohole has to be taken into account [62].

For the initial state, let us first assume for simplicity that
�N

i is a single Slater determinant (i.e., Hartree–Fock
formalism), so that we can write it as the product of a
one-electron orbital �k

i and an ðN� 1Þ-particle term:

�N
i ¼ A�k

i �
N�1
i : ð15Þ

More generally, however, �N�1
i should be expressed as

�N�1
i ¼ ck�

N
i ; where ck is the annihilation operator for an

electron with momentum k. This also shows that �N�1
i is

not an eigenstate of the ðN� 1Þ particle Hamiltonian, but is
just what remains of the N-particle wavefunction after
having pulled out one electron. At this point, we can write
the matrix elements in Eq. (12) as:

h�N
f jHintj�

N
i i ¼ h�k

f jHintj�
k
i ih�

N�1
m j �N�1

i i ð16Þ

where h�k
f jHintj�

k
i i � Mk

f;i is the one-electron dipole matrix
element, and the second term is the ðN� 1Þ-electron
overlap integral. Here, we replaced �N�1

f with an eigenstate
�N�1

m ; as discussed above. The total photoemission
intensity measured as a function of Ekin at a momentum
k, namely Iðk;EkinÞ ¼

P
f;i wf;i; is then proportional to:

X
f;i

Mk
f;i

���
���2 X

m

jcm;ij
2 � Ekin þ EN�1

m � EN
i � h�

� �
ð17Þ

where jcm;ij
2 ¼ jh�N�1

m j�N�1
i ij2 is the probability that the

removal of an electron from state i will leave the ðN� 1Þ-
particle system in the excited state m: From here we see
that, if �N�1

i ¼ �N�1
m0

for one particular m ¼ m0; the
corresponding jcm0;ij

2 will be unity and all the others cm;i

zero; in this case, if also Mk
f;i 6¼ 0; the ARPES spectra will

be given by a delta function at the Hartree–Fock orbital
energy Ek

B ¼ ��k; as shown in Fig. 6(b) (i.e., non-
interacting particle picture). In the strongly correlated
systems, however, many of the jcm;ij

2 will be different from
zero because the removal of the photoelectron results in a
strong change of the system effective potential and, in turn,
�N�1

i will have an overlap with many of the eigenstates
�N�1

m : Therefore, the ARPES spectra will not consist of
single delta functions but will show a main line and several
satellites according to the number of excited states m
created in the process (Fig. 6(c)).

What discussed above is very similar to the situation
encountered in photoemission from molecular hydrogen
[63] in which not simply a single peak but many lines
separated by few tenths of eV from each other are observed
(solid line in Fig. 6(c), bottom right). These so-called
‘shake-up’ peaks correspond to the excitations of the
different vibrational states of the Hþ

2 molecule. In the case

Probing the Low-Energy Electronic Structure of Complex Systems by ARPES 65

# Physica Scripta 2004 Physica Scripta T109



of solid hydrogen (dashed line in Fig. 6(c), bottom right),
as discussed by [61], the vibrational excitations would
develop in a broad continuum while a sharp peak would be
observed for the fundamental transition (from the ground
state of the H2 to the one of the Hþ

2 molecule). Note that
the fundamental line would also be the only one detected in
the adiabatic limit, in which case the ðN� 1Þ-particle
system is left in its ground state.

4. One-particle spectral function

In the discussion of photoemission on solids, and in
particular on the correlated electron systems in which
many jcm;ij

2 in Eq. (17) are different from zero, the most
powerful and commonly used approach is based on the
Green’s function formalism [64–69]. In this context, the
propagation of a single electron in a many-body system is
described by the time-ordered one-electron Green’s func-
tion Gðt� t0Þ; which can be interpreted as the probability
amplitude that an electron added to the system in a Bloch
state with momentum k at a time zero will still be in the
same state after a time jt� t0j: By taking the Fourier
transform, Gðt� t0Þ can be expressed in energy-momentum
representation resulting in Gðk; !Þ ¼ Gþðk; !Þ þ G�ðk; !Þ;
where Gþðk; !Þ and G�ðk; !Þ are the one-electron addition
and removal Green’s function, respectively. At T ¼ 0 :

G�ðk; !Þ ¼
X
m

�N�1
m c�k

�� ���N
i

	 
�� ��2
!� EN�1

m þ EN
i � i�

ð18Þ

where the operator cþk ¼ cyk�ðc
�
k ¼ ck�Þ creates (annihilates)

an electron with energy !; momentum k, and spin � in the
N-particle initial state �N

i ; the summation runs over all
possible ðN� 1Þ-particle eigenstates �N�1

m with eigenvalues
EN�1
m ; and � is a positive infinitesimal (note also that from

here on we will take h� ¼ 1). In the limit � ! 0þ one can
make use of the identity ðx� i�Þ�1

¼ Pð1=xÞ � i��ðxÞ;
where P denotes the principle value, to obtain the one-
particle spectral function Aðk; !Þ ¼ Aþðk; !Þ þ A�ðk; !Þ ¼
�ð1=�Þ Im Gðk; !Þ; with:

A�ðk; !Þ ¼
X
m

jh�N�1
m jc�k j�

N
i ij

2 �ð!� EN�1
m þ EN

i Þ ð19Þ

and Gðk; !Þ ¼ Gþðk; !Þ þ ½G�ðk; !Þ�	; which defines the
retarded Green’s function. Note that A�ðk; !Þ and Aþðk; !Þ

define the one-electron removal and addition spectra which
one can probe with direct and inverse photoemission,
respectively. This is evidenced, for the direct case, by the
comparison between the expression for A�ðk; !Þ and Eq.
(17) for the photoemission intensity (note that in the latter
�N�1

i ¼ ck�
N
i and the energetics of the photoemission

process has been explicitly accounted for). Finite tempera-
tures effect can be taken into account by extending the
Green’s function formalism just introduced to T 6¼ 0 (see,
e.g., Ref. [67]). In the latter case, by invoking once again
the sudden approximation the intensity measured in an
ARPES experiment on a 2D single-band system can be
conveniently written as:

Iðk; !Þ ¼ I0ðk; �;AÞfð!ÞAðk; !Þ ð20Þ

where k ¼ kk is the in-plane electron momentum, ! is the
electron energy with respect to the Fermi level, and
I0ðk; �;AÞ is proportional to the squared one-electron
matrix element jMk

f;ij
2 and therefore depends on the

electron momentum, and on the energy and polarization
of the incoming photon. We also introduced the Fermi
function fð!Þ ¼ ðe!=kBT þ 1Þ�1 which accounts for the fact
that direct photoemission probes only the occupied
electronic states. Note that in Eq. (20) we neglected the
presence of any extrinsic background and the broadening
due to the energy and momentum resolution, which
however have to be carefully considered when performing
a quantitative analysis of the ARPES spectra (see Section 5
and Eq. (27)).

The corrections to the Green’s function originating from
electron-electron correlations can be conveniently
expressed in terms of the electron proper self energy
�ðk; !Þ ¼ �0ðk; !Þ þ i�00ðk; !Þ: Its real and imaginary part
contain all the information on the energy renormalization
and lifetime, respectively, of an electron with band energy
�k and momentum k propagating in a many-body system.
The Green’s and spectral functions expressed in terms of
the self energy are then given by:

Gðk; !Þ ¼
1

!� �k ��ðk; !Þ
; ð21Þ

Aðk; !Þ ¼ �
1

�

�00ðk; !Þ

½!� �k ��0ðk; !Þ�2 þ ½�00ðk; !Þ�2:
ð22Þ

Because Gðt; t0Þ is a linear response function to an external
perturbation, the real and imaginary parts of its Fourier

Fig. 6. (a) Geometry of an ARPES experiment; the emission direction of the photoelectron is specified by the polar (#) and azimuthal (’) angles.

Momentum resolved one-electron removal and addition spectra for: (b) a non-interacting electron system (with a single energy band dispersing across the

Fermi level); (c) an interacting Fermi liquid system. The corresponding ground-state (T ¼ 0 K) momentum distribution function nðkÞ is also shown.

(c) Bottom right: photoelectron spectrum of gaseous hydrogen and ARPES spectrum of solid hydrogen developed from the gaseous one (from Ref. [11]).
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transform Gðk; !Þ have to satisfy causality and, therefore,
are related by Kramers–Kronig relations. This implies that
if the full Aðk; !Þ ¼ �ð1=�Þ Im Gðk; !Þ is available from
photoemission and inverse photoemission, one can calcu-
late Re Gðk; !Þ and then obtain both the real and
imaginary parts of the self energy directly from Eq. (21).
However, due to the lack of high-quality inverse photo-
emission data, this analysis is usually performed only using
ARPES spectra by taking advantage of certain approxima-
tions (such as, e.g., particle-hole symmetry within a narrow
energy range about EF [70]).
In general, the exact calculation of�ðk; !Þ and, in turn, of

Aðk; !Þ is an extremely difficult task. In the following, as an
example we will briefly consider the interacting FL case [71–
73]. Let us start from the trivial �ðk; !Þ ¼ 0 non-interacting
case. The N-particle eigenfunction �N is a single Slater
determinant and we always end up in a single eigenstate
when removing or adding an electron with momentum k.
Therefore, Gðk; !Þ ¼ 1=ð!� �k � i�Þ has only one pole for
each k, andAðk; !Þ ¼ �ð!� �kÞ consists of a single line at the
band energy �k (as shown in Fig. 6(b)). In this case, the
occupation numbers nk� ¼ cyk�ck� are good quantum num-
bers and for a metallic system the momentum distribution
(i.e., the expectation value nðkÞ � hnk�i; quite generally
independent of the spin � for nonmagnetic systems), is
characterized by a sudden drop from 1 to 0 at k ¼ kF (Fig.
6(b), top), which defines a sharp Fermi surface. If we now
switch on the electron-electron correlation adiabatically, (so
that the system remains at equilibrium), any particle added
into a Bloch state has a certain probability of being scattered
out of it by a collision with another electron, leaving the
system in an excited state in which additional electron-hole
pairs have been created. The momentum distribution nðkÞ
will now show a discontinuity smaller than 1 at kF and a
finite occupation probability for k > kF even at T ¼ 0 (Fig.
6(c), top). As long as nðkÞ shows a finite discontinuityZk > 0
at k ¼ kF; we can describe the correlated Fermi sea in terms
of well defined quasiparticles, i.e., electrons dressed with a
manifold of excited states, which are characterized by a pole
structure similar to the one of the non-interacting system but
with renormalized energy "k and mass m	; and a finite
lifetime !k ¼ 1=�k: In other words, the properties of a FL are
similar to those of a free electron gas with damped
quasiparticles. As the bare-electron character of the
quasiparticle or pole strength (also called coherence factor)
is Zk < 1 and the total spectral weight must be conserved
(see Eq. (25)), we can separate Gðk; !Þ and Aðk; !Þ into a
coherent pole part and an incoherent smooth part without
poles [74]:

Gðk; !Þ ¼
Zk

!� "k þ i�k
þ Ginch; ð23Þ

Aðk; !Þ ¼ Zk
�k=�

ð!� "kÞ
2
þ �k2

þ Ainch; ð24Þ

where

Zk ¼ ð1� @�0=@!Þ�1; "k ¼ Zk�k; �k ¼ Zkj�
00j;

and the self energy and its derivatives are evaluated at
! ¼ "k: It should be emphasized that the FL description is
valid only in proximity to the Fermi surface and rests on

the condition "k � � � j�00j for small ð!� �Þ and
ðk� kF Þ: Neglecting for simplicity any momentum depen-
dence and expanding real and imaginary part to first and
second order in !, respectively, the self energy for a FL
system in two or more dimensions [74,75] is given by
�FLð!Þ ’ 	!þ i
 ½!2 þ ð�kBTÞ

2
�, where we have set � ¼ 0

(note that additional logarithmic corrections should be
included in the two-dimensional case [76]). By comparing
the electron removal and addition spectra for a FL of
quasiparticles with those of a non-interacting electron
system (in the lattice periodic potential), the effect of the
self-energy correction becomes evident (see Fig. 6(c) and
(b), respectively). The quasiparticle peak has now a finite
lifetime (due to �00), and it sharpens up rapidly thus
emerging from the broad incoherent component upon
approaching the Fermi level, where the lifetime is infinite
corresponding to a well defined quasiparticle [note that the
coherent and incoherent part of Aðk; !Þ represent the main
line and satellite structure discussed in the previous section
and shown in Fig. 6(c), bottom right]. Furthermore, the
peak position is shifted with respect to the bare band
energy �k (due to �0): as the quasiparticle mass is larger
than the band mass because of the dressing (m	 > m), the
total dispersion (or bandwidth) will be smaller (j"kj < j�kj).

Among the general properties of the spectral function
there are also several sum rules. A fundamental one, which
in discussing the FL model was implicitly used to state thatÐ
d!Ach ¼ Zk and

Ð
d!Ainch ¼ 1� Zk (where Ach and Ainch

refer to coherent and incoherent parts of the spectral
function, respectively), is the following:

ðþ1

�1

d!Aðk; !Þ ¼ 1 ð25Þ

which reminds us that Aðk; !Þ describes the probability of
removing/adding an electron with momentum k and energy
! to a many-body system. However, as it also requires the
knowledge of the electron addition part of the spectral
function, it is not so useful in the analysis of ARPES data.
A sum rule more relevant to this task is:

ðþ1

�1

d! fð!ÞAðk; !Þ ¼ nðkÞ ð26Þ

which solely relates the one-electron removal spectrum to
the momentum distribution nðkÞ: When electronic correla-
tions are important and the occupation numbers are no
longer good quantum numbers, the discontinuity at kF is
reduced (as discussed for the FL case) but a drop in nðkÞ is
usually still observable even for strong correlations [78]. By
tracking in k-space the loci of steepest descent of the
experimentally determined nðkÞ; i.e., maxima in jrknðkÞj;
one may thus identify the Fermi surface even in those
correlated systems exhibiting particularly complex ARPES
features. However, great care is necessary in making use of
Eq. (26) because the integral of Eq. (20) does not give just
nðkÞ but rather I0ðk; �;AÞnðkÞ [11].

5. Matrix elements and finite resolution effects

As discussed in the previous section and summarized by
Eq. (20), ARPES directly probes the one-particle spectral
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function Aðk; !Þ: However, in extracting quantitative
information from the experiment, not only the effect of
the matrix element term I0ðk; �;AÞ has to be taken into
account, but also the finite experimental resolution and the
extrinsic continuous background due to the secondaries
(those electrons which escape from the solid after having
suffered inelastic scattering events and, therefore, with a
reduced Ekin). The latter two effects may be explicitly
accounted for by considering a more realistic expression
for the photocurrent Iðk; !Þ :

ð
d ~!! d ~kk I0ð ~kk; �;AÞ fð ~!!ÞAð ~kk; ~!!ÞRð!� ~!!ÞQðk� ~kkÞ þ B ð27Þ

which consists of the convolution of Eq. (20) with energy
(R) and momentum (Q) resolution functions (R is typically
a Gaussian, Q may be more complicated), and of the
background correction B. Of the several possible forms for
the background function B [17], two are more frequently
used: (i) the step-edge background (with three parameters
for height, energy position, and width of the step-edge),
which reproduces the background observed all the way to
EF in an unoccupied region of momentum space; (ii) the
Shirley background BShð!Þ /

Ð �
! d!0Pð!0Þ; which allows to

extract from the measured photocurrent Ið!Þ ¼ Pð!Þ
þcShBShð!Þ the contribution Pð!Þ of the unscattered
electrons (with only the parameter cSh [79]).
Let us now very briefly illustrate the effect of the matrix

element term I0ðk; �;AÞ / jMk
f;ij

2; which is responsible for
the dependence of the photoemission data on photon
energy and experimental geometry, and may even result in
complete suppression of the intensity [80–83]. By using the
commutation relation h� p=m ¼ �i½x;H �; we can write
jMk

f;ij
2 / jh�k

f j" � xj�
k
i ij

2; where " is a unit vector along the
polarization direction of the vector potential A: As in Fig.
7(a), let us consider photoemission from a dx2�y2 orbital,
with the detector located in the mirror plane (when the
detector is out of the mirror plane, the problem is more
complicated because of the lack of an overall well defined
even/odd symmetry). In order to have non vanishing

photoemission intensity, the whole integrand in the overlap
integral must be an even function under reflection with
respect to the mirror plane. Because odd parity final states
would be zero everywhere on the mirror plane and
therefore also at the detector, the final state wavefunction
�k
f itself must be even. In particular, at the detector the

photoelectron is described by an even parity plane-wave
state eikr with momentum in the mirror plane and fronts
orthogonal to it [82]. In turn, this implies that ð" � xÞj�k

i i

must be even. In the case depicted in Fig. 7(a) where j�k
i i is

also even, the photoemission process is symmetry allowed
for A even or in-plane (i.e., "p � x depends only on in-plane
coordinates and is therefore even under reflection with
respect to the plane) and forbidden for A odd or normal to
the mirror plane (i.e., "s � x is odd as it depends on normal-
to-the-plane coordinates). For a generic initial state of
either even or odd symmetry with respect to the mirror
plane, the polarization conditions resulting in an overall
even matrix element can be summarized as:

�k
f jA � pj�k

i

D E �k
i even hþj þ jþi ) A even

�k
i odd hþj � j�i ) A odd:

8<
: ð28Þ

In order to discuss the photon energy dependence, from
Eq. (13) and by considering a plane wave eikr for the
photoelectron at the detector, one may more conveniently
write jMk

f;ij
2 / jð" � kÞh�k

i je
ikrij2: The overlap integral, as

sketched in Fig. 7(b), strongly depends on the details of the
initial state wavefunction (peak position of the radial part
and oscillating character of it), and on the wavelength of
the outgoing plane wave. Upon increasing the photon
energy, both Ekin and k increase, andMk

f;i changes in a non-
necessarily monotonic fashion (see Fig. 7(c), for the Cu 3d
and the O 2p atomic case). In fact, the photoionization
cross section is usually characterized by one minimum in
free atoms, the so-called Cooper minimum [84], and a series
of them in solids [85].

6. State-of-the-art photoemission

The configuration of a generic angle-resolved photoemis-
sion beamline is shown in Fig. 8. A beam of white radiation
is produced in a wiggler or an undulator (these so-called
‘insertion devices’ are the straight sections of the electron
storage ring where radiation is produced): the light is then
monochromatized at the desired photon energy by a
grating monochromator, and is focused on the sample.
Alternatively, a gas-discharge lamp can be used as a
radiation source (once properly monochromatized, to
avoid complications due to the presence of different
satellites and refocused to a small spot size, essential for
high angular resolution). However, synchrotron radiation
offers important advantages: it covers a wide spectral range
(from the visible to the X-ray region) with an intense and
highly polarized continuous spectrum, while a discharge
lamp provides only a few resonance lines at discrete
energies. Photoemitted electrons are then collected by the
analyzer, where kinetic energy and emission angle are
determined (the whole system is in ultra-high vacuum at
pressures lower than 5
 10�11 torr).

Fig. 7. (a) Mirror plane emission from a dx2�y2 orbital. (b) Sketch of the

optical transition between atomic orbitals with different angular momenta

(the harmonic oscillator wavefunctions are here used for simplicity) and

free electron wavefunctions with different kinetic energies (from Ref. [17]).

(c) Calculated photon energy dependence of the photoionization cross-

sections for Cu 3d and O 2p atomic levels (from Ref. [77]).
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A conventional hemispherical analyzer consists of a
multi-element electrostatic input lens, a hemispherical
deflector with entrance and exit slits, and an electron
detector (i.e., a channeltron or a multi-channel detector).
The heart of the analyzer is the deflector which consists of
two concentric hemispheres (of radius R1 and R2). These
are kept at a potential difference �V; so that only those
electrons reaching the entrance slit with kinetic energy
within a narrow range centered at Epass ¼ e�V=ðR1=R2

�R2=R1Þ will pass through this hemispherical capacitor,
thus reaching the exit slit and then the detector. This way it
is possible to measure the kinetic energy of the photoelec-
trons with an energy resolution given by �Ea ¼ Epassðw=R0

þ	2=4Þ; where R0 ¼ ðR1 þ R2Þ=2;w is the width of the
entrance slit, and 	 is the acceptance angle. The role of the
electrostatic lens is that of decelerating and focusing the
photoelectrons onto the entrance slit. By scanning the lens
retarding potential one can effectively record the photo-
emission intensity versus the photoelectron kinetic energy.
One of the innovative characteristics of the state-of-the-art
analyzer is the two-dimensional position-sensitive detector
consisting of two micro-channel plates and a phosphor
plate in series, followed by a CCD camera. In this case, no
exit slit is required: the electrons, spread apart along the Y
axis of the detector (Fig. 8) as a function of their kinetic
energy due to the travel through the hemispherical
capacitor, are detected simultaneously (in other words, a
range of electron energies is dispersed over one dimension
of the detector and can be measured in parallel; scanning
the lens voltage is in principle no longer necessary, at least
for narrow energy windows (a few percent of Epass)).
Furthermore, contrary to a conventional electron spectro-
meter in which the momentum information is averaged
over all the photoelectrons within the acceptance angle
(typically �1�), state-of-the-art 2D position-sensitive elec-
tron analyzers can be operated in angle-resolved mode,
which provides energy-momentum information not only at
a single k-point but along an extended cut in k-space. In
particular, the photoelectrons within an angular window of
�14� along the direction defined by the analyzer entrance
slit are focused on different X positions on the detector
(Fig. 8). It is thus possible to measure multiple energy
distribution curves simultaneously for different photoelec-
tron angles, obtaining a 2D snapshot of energy versus
momentum (Fig. 9).
State-of-the-art spectrometers typically allow for energy

and angular resolutions of approximately a few meV and
0:2�; respectively. Taking as example the transition metal
oxides and in particular the cuprate superconductors (for
which 2�=a ’ 1:6 �A

�1
), one can see from Eq. (7) that 0:2�

corresponds to �0:5% of the Brillouin zone size, for the

21.2 eV photons of the HeI	 line typically used in ARPES

systems equipped with a gas-discharge lamp. In the case of

a beamline, to estimate the total energy resolution one has

to take into account also �Em of the monochromator,

which can be adjusted with entrance and exit slits (the

ultimate resolution a monochromator can deliver is given

by its resolving power R ¼ E=�Em; it can be as good as

1–2meV for 20 eV photons but worsens upon increasing

the photon energy). To maximize the signal intensity at the

desired total �E; monochromator and analyzer should be

operated at comparable resolutions. As for the momentum

resolution �kk; note that from Eq. (7) and neglecting the

contribution due to the finite energy resolution one can

write:

�kk ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEkin=h�

2

q
� cos# ��# ð29Þ

where �# is the finite acceptance angle of the electron
analyzer. From Eq. (29) it is clear that the momentum
resolution is better at lower photon energy (i.e., lower Ekin),
and larger polar angles # (one can effectively improve the
momentum resolution by extending the measurements to
momenta outside the first Brillouin zone).

Because at lower photon energies it is possible to achieve

higher energy and momentum resolution, most of the

ARPES experiments are performed in the ultraviolet

(typically for h� < 100 eV). An additional advantage is

that at low photon energies one can disregard the photon

momentum kh� ¼ 2�=l in Eq. (7), as for 100 eV photons

the momentum is 0:05 �A
�1

(only 3% of the Brillouin zone

size, by taking again the cuprates as an example), and at

21.2 eV (HeI	) it is only 0:008 �A
�1

(0.5% of the zone). If on

the contrary the photon momentum is not negligible, the

photoemission process does not involve vertical transitions

and � must be explicitly taken into account in Eq. (7). For

example, for 1487 eV photons (the Al K	 line commonly

Fig. 8. Beamline equipped with a plane grating monochromator and a 2D

position-sensitive electron analyzer.

Fig. 9. Energy ð!Þ versus momentum ðkkÞ image plot of the photoemission

intensity from Bi2Sr2CaCu2O8þ� along ð0; 0Þ � ð�; �Þ: This k-space cut was
taken across the Fermi surface (see sketch of the 2D Brillouin zone) and

allows a direct visualization of the photohole spectral function Aðk; !Þ

(weighted by Fermi distribution and matrix elements): the quasiparticle

dispersion can be followed up to EF; as emphasized by the white circles.

Energy scans at constant momentum (right) and momentum scans at

constant energy (top) define energy distribution curves (EDCs) and

momentum distribution curves (MDCs). From Ref. [36].
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used in X-ray photoemission) kh� ’ 0:76 �A
�1
; which cor-

responds to 50% of the zone size.
A major drawback of working at low photon energies is

the extreme surface sensitivity. As shown in Fig. 10, the

mean free path for unscattered photoelectrons is char-

acterized by a minimum of approximately 5 �A at 20–100 eV

kinetic energies [87], which are typical values in ARPES

experiments. This means that a considerable fraction of the

total photoemission intensity will be representative of the

topmost surface layer, especially on systems characterized

by a large structural/electronic anisotropy. Therefore,

ARPES experiments have to be performed on atomically

clean and well-ordered systems, which implies that atom-

ically fresh and flat surfaces have to be ‘‘prepared’’

immediately prior to the experiment in ultra-high vacuum

conditions (typically at pressures lower than

5
 10�11 torr). Even then, however, because of the lower

atomic coordination at the surface, the coexistence of bulk

and surface electronic states, and the possible occurrence of

chemical and/or structural surface instabilities, photoemis-

sion data may not always be representative of the intrinsic

bulk electronic structure. In order address with this issue,

great care has to be taken also over the structural and

chemical characterization of the sample surface, which can

be done independently by low-energy electron diffraction

(LEED) and core-level X-ray photoemission spectroscopy

(XPS), respectively (either prior to or during the ARPES

experiments). In this regard it has to be emphasized that,

although the ultimate resolutions are not as good as in the

UV regime, the sensitivity to bulk over surface electronic

states can be enhanced (see Fig. 10) by performing the

ARPES experiments in the soft X-ray regime (500–

1500 eV). The significance of this approach is well

exemplified by recent angle-integrated resonance photo-

emission experiments performed on Ce compounds [88].

These Kondo systems are characterized by a very different

degree of hybridization between the 4 f electronic states and

other valence bands: the hybridization is stronger the larger

the Kondo temperature TK: However, although CeRu2Si2
and CeRu2 are characterized by very different TK

(approximately 22 and 1000K, respectively), earlier photo-

emission studies reported similar spectra for the Ce 4f

electronic states. By performing angle-integrated high

resolution photoemission experiments at the 3d-4f

ðh� ’ 880 eV; �E ’ 100meVÞ and 4d-4f ðh� ’ 120 eV;
�E ’ 50meVÞ resonances (see Fig. 11), it was observed
that, while the spectra for the two compounds are indeed
qualitatively similar at 120 eV photon energy, they are
remarkably different at 880 eV. As the photoelectron mean
free path increases from approximately 5 to almost 20 Å
upon increasing the photon energy from 120 to 880 eV
(Fig. 10), it was concluded that the 4d-4f spectra mainly
reflect the surface 4f electronic states. These are different
from those of the bulk and are not representative of the
intrinsic electronic properties of the two compounds, which
are more directly probed at 880 eV: the 3d-4f spectra show
a prominent structure corresponding to the tail of a Kondo
peak in CeRu2Si2; and a broader feature reflecting the
more itinerant character of the 4f electrons in CeRu2 [88].

In the following, we will move on to the review of recent
ARPES results from several materials, such as
Sr2RuO4; 2H-NbSe2; Be(0001), and Mo(110). These exam-
ples will be used to illustrate the capability of this technique
and some of the specific issues that one can investigate in
detail by ARPES. In particular, these test cases will
demonstrate that, by taking full advantage of the
momentum and energy resolution as well as of the photon
energy range nowadays available, state-of-the-art ARPES
is a unique tool for momentum space microscopy.

6.1. Sr2RuO4: Bands and Fermi surface

To illustrate how one can study electronic bands and Fermi
surfaces by ARPES, and how critical the improvement in
resolution has been in this regard, the novel superconductor
Sr2RuO4 is a particularly good example. Its low-energy
electronic structure, as predicted by band-structure calcula-
tions is characterized by three bands crossing the chemical
potential [91,92]. These define a complex Fermi surface
comprised of two electron pockets and one hole pocket (Fig.
12(d)), which have been clearly observed in de Haas–van
Alphen experiments [93,94]. On the other hand, early
photoemissionmeasurements suggested a different topology
[95–97], which generated a certain degree of controversy in

Fig. 10. Kinetic energy dependence of the ‘‘universal’’ mean free path for

excited electrons in solids (from Ref. [87]).

Fig. 11. High energy angle-integrated resonance photoemission data from

Ce compounds at T ¼ 20K (from Ref. [88]).
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the field [98]. This issue was conclusively resolved only by
taking advantage of the high energy and momentum
resolution of the ‘‘new generation’’ of ARPES data: it was
then recognized that a surface reconstruction [99] and, in
turn, the detection of several direct and folded surface bands
were responsible for the conflicting interpretations [90,100–
102]. Figure 12(a) and (b) show high resolution ARPES data
(�E ¼ 14meV; �k ¼ 1:5% of the zone edge) taken at 10K
with 28 eV photons on a Sr2RuO4 single crystal cleaved at
180K (for Sr2RuO4; as recently discovered, high-tempera-
ture cleaving suppresses the reconstructed-surface contribu-
tions to the photoemission signal and allows one to isolate
the bulk electronic structure [90]). Many well defined
quasiparticle peaks disperse towards the Fermi energy and
disappear upon crossing EF: A Fermi energy intensity map
(Fig. 12(c)) can then be obtained by integrating the spectra
over a narrow energy window about EFð�10meVÞ: As the
spectral function (multiplied by the Fermi function) reaches
its maximum at EF when a band crosses the Fermi energy,
the Fermi surface is identified by the local maxima of the
intensity map. Following this method, the three sheets of
Fermi surface are clearly resolved and are in excellent
agreement with the theoretical calculations (Fig. 12(d)).

6.2. 2H�NbSe2: Superconducting gap

2H-NbSe2 is an interesting quasi two-dimensional system
exhibiting a charge-density wave phase transition at
approximately 33K, and a phonon-mediated supercon-
ducting phase transition at 7.2K. As indicated by band
structure calculations [103], the valence-band electronic
structure is characterized by a manifold of dispersive bands
in a 6 eV range below the Fermi energy. At low energy,
three dispersive bands are expected to cross the chemical
potential and define three sheets of Fermi surface in the
hexagonal Brillouin zone. Both the band manyfold and the
Fermi surface topology have been studied in great detail by
ARPES; exception made for a weak energy renormaliza-
tion, the normal-state experimental data are in extremely
good agreement with the results of theoretical calculations
(as shown in Fig. 13, where ARPES spectra and band
structure calculations are compared for the �-K high
symmetry direction). As for the low temperature charge-
density wave phase, despite the intense effort no agrement
has been reached yet on the driving force responsible for
the transition [37,104].

Owing to the great improvement in energy and
momentum resolution, it has now become possible to
study by ARPES also the momentum and temperature
dependence of the superconducting gap on low-Tc materi-
als (until recently, experiments of this kind could been
performed only for the much larger d-wave gap of the high-
Tc superconductors [11]). The data presented in Fig. 14,
which are one of the most impressive examples of
combined high energy and momentum resolution in
ARPES experiments on solid samples (i.e., �E ¼ 2:5meV
and �k ¼ 0:2�), provide direct evidence for Fermi surface
sheet-dependent superconductivity in 2H-NbSe2 [106]. A
superconducting gap of about 1meV was successfully
detected along two of the normal-state Fermi surface
sheets, but not along the third one. In fact, the opening of
the gap is directly evidenced in Fig. 14(b) and (c) by the
shift to high binding energies of the 5.3K spectra leading-
edge midpoint (which is instead located at EF at 10K, as
expected for a metal), and by the simultaneous appearance
of a peak below EF (which reflects the piling up of the
density of states due to the gap opening). This behavior is
absent for the inner Fermi surface pocket (Fig. 14(a)).

6.3. Self energy and collective modes

As discussed in Section 4, the introduction of the electron
self energy �ðk; !Þ ¼ �0ðk; !Þ þ i�00ðk; !Þ is a powerful
way to account for many-body correlations in solids. Its
real and imaginary parts correspond, respectively, to the

Fig. 12. ARPES spectra and corresponding intensity plot from Sr2RuO4 along (a) �-M; and (b) M-X. (c) Measured and (d) calculated [89] Fermi

surface. All data were taken at 10K on a Sr2RuO4 single crystal cleaved at 180K (from Ref. [90]).

Fig. 13. (a) 2H-NbSe2 ARPES spectra (measured at 20K with 21.2 eV

photons), (b) corresponding image plot, and (c) band structure calcula-

tions along �-K (from Ref. [105]).
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energy renormalization with respect to the bare band

energy �k and to the finite lifetime of the quasiparticles in

the interacting system. Owing to the energy and

momentum resolution nowadays achievable, both com-

ponents of the self energy can be in principle estimated

very accurately from the analysis of the ARPES intensity

in terms of energy distribution curves (EDCs) and/or

momentum distribution curves (MDCs), which is one of

the aspects that make ARPES such a powerful tool for

the investigation of complex materials. In some cases the

MDC analysis may be more effective than the analysis of

the EDCs in extracting information on the self energy. In

fact, EDCs are typically characterized by a complex

lineshape (Fig. 9) because of the nontrivial ! dependence

of the self energy, the presence of additional background,

and the low-energy cutoff due to the Fermi function.

Furthermore, as evidenced by the generic expression for

the spectral function Aðk; !Þ in Eq. (22), the EDC peak

position is determined by �0ðk; !Þ as well as �00ðk; !Þ;
because both terms are strongly energy dependent. On the

other hand, if the self energy is independent of k normal

to the Fermi surface (and the matrix elements are a

slowly-varying function of k), then the corresponding

MDCs are Lorentzians centered at k ¼ kF þ ½!��0ð!Þ�=
v0F with FWHM given by 2�00ð!Þ=v0F; where v0F is the bare

Fermi velocity normal to the Fermi surface (this is
obtained by approximating �k ’ v0Fðk� kF Þ in Eq. (22)).
Lorentzian lineshapes were indeed observed for the
MDCs (Fig. 9).

As an example of this kind of analysis we will briefly
discuss the case of electron-phonon coupling on metallic
surfaces, for which the established theoretical formalism
can be applied very effectively [86,107–112]. The electron-
phonon interaction involving surface phonons and the �-
surface state on the Be(0001) surface was investigated by
two groups, and qualitatively similar conclusion were
drawn [107,108,110,111]. Figure 15(a) shows results for
the Be(0001) surface state along the �M direction of the
surface Brillouin zone; a feature is seen dispersing
towards the Fermi level [107]. Close to EF the spectral
function exhibits a complex structure characterized by a
broad hump and a sharp peak, with the latter being
confined to within an energy range given by the typical
bandwidth !ph of the surface phonons. This behavior
corresponds to a ‘‘two-branch’’ splitting of the near-EF

dispersion, with a transfer of spectral weight between the
two branches as a function of binding energy. While the
high-energy dispersion is representative of the bare
quasiparticles, at low energy the dispersion is renorma-
lized by the electron-phonon interaction (this behavior is
shown, for a similar electron-phonon coupled system, in
the inset of Fig. 15(b)). In other words, the weaker
dispersion observed at energies smaller than !ph describes
dressed quasiparticles with an effective mass enhanced by
a factor of ð1þ lÞ; where l is the electron-phonon
coupling parameter [114]. The latter can also be estimated
from the ratio of renormalized (vk) and bare (v0k)
quasiparticle velocities, according to the relation
vk ¼ h�

�1@"k=@k ¼ ð1þ lÞ�1v0k: This way, for the data
presented in Fig. 15(a) the value l ¼ 1:18 was obtained
(alternatively l can also be estimated from the tempera-
ture dependence of the linewidth near EF [108]).

A similar example of electron-phonon coupled system is
the surface of Mo(110) [113]. In this case, the real and
imaginary part of the self energy shown in Fig. 15(b) were
obtained directly from the EDC analysis: �00 corresponds
to the EDC width and �0 to the difference between the
observed quasiparticle dispersion and a straight line
approximating the dispersion of the non-interacting system
(Fig. 15(b), inset). The step-like change at 30meV in �00 is
interpreted as the phonon contribution (dashed line) and
the parabolic part at higher energies is attributed to
electron-electron interactions. The phonon contribution to
the real part of the self energy is calculated from the
Kramers–Kronig relations (see Section 4) and agrees well
with the data (dotted line). As an additional confirmation
of the electron-phonon description, it was noted that the
temperature dependence of the scattering rate is well
reproduced by the calculations [113].
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Fig. 14. Normal (10K, gray) and superconducting state (5.3K, black)

ARPES spectra from 2H-NbSe2; measured at k-points belonging to the

three different sheets of Fermi surface (see insets). The value of the

superconducting gap obtained by fitting the arpes data is indicated in each

panel (from Ref. [106]).

Fig. 15. (a) ARPES spectra for the Be(0001) surface state (from Ref.

[107]). (b) Self energy estimated from the Mo(110) surface state ARPES

spectra, and corresponding quasiparticle dispersion (inset). Calculated

electron-phonon contributions to the real and imaginary part of �ðk; !Þ
are indicated by dotted and dashed lines, respectively (the latter was offset

by 26meV to account for impurity scattering). From Ref. [113].
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