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be the flow of the vector field V with single field lines characterized by p(t, to, Xo)
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Figure 1: Integral lines of a vector field.

The flow z' = p'(t,t, %) induces a variable transformation in the differential
volume element (hodge dual of 1),
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where
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has been used.
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Time derivative of Jacobian,

A7'A = 1, CT'A = det(A)I, J&,
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Change of differential volume valid for the flow of any time dependent vector field

Conservation of total mass implies
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Liouville’s theorem says that in case of zero divergence of the vector field V, the
mass density along field lines is constant,

d 8

The theorem also says that phase space volume is conserved even in the case of
a time dependent vector field.

In kinetic plasma theory, particle conservation governed by the single particle
distribution function
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and the divergence free Hamiltonian vector field Vlasov*s equation is obtained
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Expressed by Liouville’s theorem, the distribution function is constant along the
integral lines of Hamiltonian vector fields.

The characteristic equations are

X = vV,
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and, therefore,

because



