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1 FROM THE DENSITY FUNCTIONAL TO
THE DISTRIBUTION FUNCTION

Plasma kinetic theory is the theory of plasma taking into account the motions
of all of the particles. The Klimontovich and Liouville equation provide exact
descriptions of the plasma, however the equations are far from being solvable
for practical purposes. Usually one is rather interested in certain average or
approximate characteristics. The usefulness of the Klimontovich and Liouville
equation is as a starting point for the derivation of approximate equations that
describe the average properties of a plasma.
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Suppose we have a gas consisting of only one particle. This particle has an
orbit X1(t) in 3-D configuration space X with coordinates x. The orbit X1(t)
is the set of positions x occupied by the particle at successive times t. Likewise
the particle has an orbit V 1(t) in 3-D velocity space V with coordinates v.
We combine these spaces into 6-D phase space P with coordinates (x,v). The
density functional of one particle in P is

N(x,v, t) = δ(x−X(t))δ(v − V (t)). (1)

At any time t, the density of particles integrated over all phase space must yield
the total number of particles in the system.

Consider a system that contains two species of particles, electrons and ions,
each with N0 particles. The density Ns of species s is

Ns(x,v, t) =

N0∑
i=1

δ(x−Xi(t))δ(v − V i(t)) (2)

and the total density N is

N(x,v, t) =
∑
e,i

Ns(x,v, t). (3)

The exact positions and velocities of the particles are determined by their initial
conditions because the position Xi(t) of particle i satisfies the equation

Ẋi(t) = V i(t). (4)

Likewise, the velocity V i(t) of particle i satisfies the Lorentz force equation

msV̇ i(t) = qsE
m[Xi(t), t] +

qs
c
V i(t)×Bm[Xi(t), t]. (5)

The microscopic electric and magnetic fields are the fields produced selfconsis-
tently by the point particles themselves, together with externally applied fields.
The microscopic fields satisfy Maxwell’s equations

∇ ·Em(x, t) = 4πρm(x, t) (6)

∇ ·Bm(x, t) = 0 (7)

∇×Em(x, t) = −1

c

∂Bm(x, t)

∂t
(8)

∇×Bm(x, t) =
4π

c
Jm(x, t) +

1

c

∂Em(x, t)

∂t
(9)

The microscopic charge density and microscopic current density is

ρm(x, t) =
∑
e,i

qs

∫
dvNs(x,v, t) (10)
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and

Jm(x, t) =
∑
e,i

qs

∫
dv vNs(x,v, t), (11)

respectively. While Maxwell’s equations determine the fields in terms of the
exact particle orbits, the Lorentz equation determines the exact particle orbits
in terms of the exact fields. The entire set of equations is closed, so that if the
positions and velocities of all particles, and the fields, are known exactly at one
time, then they are known exactly at all later times.

2 KLIMONTOVICH EQUATION

An exact equation for the evolution of a plasma is obtained by taking the time
derivative of the density functional Ns. Using the relations aδ(a− b) = bδ(a− b)
and ∂/∂af(a − b) = −∂/∂bf(a − b) we finally arrive at the Klimontovich
equation,

∂Ns(x,v, t)

∂t
+ v · ∇xNs +

qs
ms

(
Em +

v

c
×Bm

)
· ∇vNs = 0. (12)

Together with Maxwell’s equations, it constitutes an exact description of a
plasma. The Klimontovich equation contains every one of the exact single par-
ticle orbits. What we really want instead is information about certain average
properties of the plasma. The Klimontovich equation expresses the incompress-
ibility of Ns(x,v, t) as it moves about in P.

Consider the orbit of a hypothetical particle in P. Imagine taking a time
derivative of any quantity along this orbit, i.e. the convective derivative that
not only considers the explicit time variation of the quantity but also the time
variation produced by changing the position in phase space P,

D

Dt
=

∂

∂t
+

dx

dt

∣∣∣∣
orbit

· ∇x +
dv

dt

∣∣∣∣
orbit

· ∇v. (13)

With this notation the Klimontovich equation simply says

DNs(x,v, t)

Dt
= 0, (14)

which means the density of particles of species s is a constant in time, as mea-
sured along the orbit of a hypothetical particle of species s.

3 PLASMA KINETIC EQUATION

The solutions of the Klimontovich equation would contain all of the particle
orbits and would be far too detailed for any practical purpose. It tells us whether
or not a particle with infinite density is to be found at a given point (x,v) ∈ P.
What we really want to know is how many particles are likely to be found in a

3



small volume ∆x∆v of phase space, centered at (x,v). Thus we are really not
interested in the spikey function Ns(x,v, t), but rather in the smooth function

fs(x,v, t) = 〈Ns(x,v, t)〉, (15)

where 〈 〉 is an ensemble average over an infinite number of realizations of the
plasma.

The distribution function fs(x,v, t) is the number of particles of species s
per unit configuration space per unit velocity space. Consider a box of a size
much greater than a mean interparticle spacing but much smaller than a Debye
length. We can now count the number of particles of species s in the box at
time t with velocities in the range v to v +∆v, divide by a unit volume ∆x∆v
and call the result fs(x,v, t). This number will of course fluctuate with time
but, if there are very many particles in the box, the fluctuations will be tiny.

An equation for the time evolution of fs(x,v, t) can be obtained from the
Klimontovich equation by ensemble averaging under consideration of

Ns(x,v, t) = fs(x,v, t) + δNs(x,v, t) (16)

Em(x,v, t) = E(x,v, t) + δE(x,v, t) (17)

Bm(x,v, t) = B(x,v, t) + δB(x,v, t), (18)

where 〈Bm〉 = B and 〈Em〉 = E, and 〈δNs〉 = 0, 〈δE〉 = 〈δB〉 = 0. The
plasma kinetic equation is

∂fs(x,v, t)

∂t
+ v · ∇xfs +

qs
ms

(
E +

v

c
×B

)
· ∇vfs

= − qs
ms
〈(δE + v/c× δB) · ∇vδNs〉. (19)

The LHS varies smoothly in P, while the RHS is the ensemble average of prod-
ucts of very spikey quantities. Thus, the LHS is insensitive to the discrete-
particle nature of the plasma, while the RHS is very sensitive to the discrete-
particle nature of the plasma, which gives rise to collisional effects. The LHS
represents collective effects, while the RHS represents collisional effects. The ra-
tio of the importance of collisional effects to the importance of collective effects
is O(Λ−1), which is a very small number. For many phenomena in a plasma the
RHS might be neglected. Letting go n0 → ∞,me → 0, e → 0 simultaneously,
which is called pulverization procedure, while n0e = const, e/me = const, the
LHS becomes infinite and the RHS constant. Thus, the relative importance of
the RHS vanishes and we are left with the Vlasov equation,

∂fs(x,v, t)

∂t
+ v · ∇xfs +

qs
ms

(
E +

v

c
×B

)
· ∇vfs = 0, (20)

sometimes also called collisionless Boltzmann equation. E and B are the
ensemble averaged fields that satisfy the ensemble averaged version of Maxwell’s
equations.
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4 LIOUVILLE EQUATION

Like the Klimontovich equation, the Liouville equation is exact. It provides
a starting point for an approximate form of the RHS of the plasma kinetic
equation, which tells us how the distribution function changes in time due to
collisions. The Klimontovich equation describes the behaviour of individual
particles. By contrast, the Liouville equation describes the behaviour of systems.

Consider a system of two particles. We introduce a set of coordinate axes
for each particle, (x1,v1) for particle 1 and (x2,v2) for particle 2. There is
one system in this 12-D phase space. The density of systems, each having two
particles, in this phase space is

N(x1,v1,x2,v2, t) = δ(x1 −X1(t))δ(v1 − V 1(t))δ(x2 −X2(t))δ(v2 − V 2(t)).
(21)

Generalizing to a system of N0 particles we associate a 6-D coordinate system
Pi with coordinates (xi,vi) with each particle i and thereby construct a 6N0-D
phase space P. The density of systems in this phase space is

N(x1,v1,x2,v2, . . . ,xN0
,vN0

, t) =

N0∏
i=1

δ(xi −Xi(t))δ(vi − V i(t)). (22)

As with the Klimontovich equation, the Liouville equation is obtained by
taking the time derivative of the appropriate density. Because the density of
systems is the product of 6N0 terms, its time derivative involves the sum of 6N0

terms. The time derivative is

∂N

∂t
+

N0∑
i=1

V i(t) · ∇xi

N0∏
j=1

δ(xj −Xj)δ(vj − V j)

+

N0∑
i=1

V̇ i(t) · ∇vi

N0∏
j=1

δ(xj −Xj)δ(vj − V j) = 0 (23)

which after short rearrangement gives the Liouville equation

∂N

∂t
+

N0∑
i=1

vi · ∇xi
N +

N0∑
i=1

V̇ i(t) · ∇vi
N = 0. (24)

It contains all of the exact 6-D orbits of the individual particles in a single
system orbit in 6N0-D space. Again, the equation has the form of a convective
time derivative in the 6N0-D phase space,

D

Dt
N(x1,v1,x2,v2, . . . ,xN0 ,vN0 , t) = 0. (25)

The density of systems, taken along the system orbit is zero – the density of
systems is incompressible. It can be put in the form of a continuity equation

∂N

∂t
+

N0∑
i=1

∇xi · (viN) +

N0∑
i=1

∇vi · (V̇ iN) = 0 (26)
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where it expresses the conservation of systems in 6N0-D phase space. As the
individual particle of the system move about in 6-D phase space, the system
itself moves along a continuous orbit in 6N0-D phase space. Each system in the
ensemble moves along an orbit, carrying its piece of probability with it. A large
probability for point A at time t0 implies a large probability for point B at time
t > t0, provided that both points lie on the same trajectory in P. We can think
of the probability density fN0 as a fluid moving in 6N0-D phase space. Since
probability is neither created nor destroyed and each element of the probability
fluid moves along a continuous orbit, the probability fluid satisfies a continuity
equation in 6N0-D phase space,

∂fN0

∂t
+

N0∑
i=1

vi · ∇xi
fN0

+

N0∑
i=1

V̇ i · ∇vi
fN0

= 0. (27)

Of course, the total probability, i.e. fN0
integrated over all P gives unity. The

probability density fN0
is incompressible also, DfN0

/Dt = 0.

5 BBGKY HIERARCHY

The probability density fN0
represents the joint probability density that parti-

cle 1 has coordinates between (x1,v1) and (x1 + dx1,v1 + dv1) and particle 2
has coordinates between (x2,v2) and (x2 + dx2,v2 + dv2) and . . . and parti-
cle N0 has coordinates between (xN0 ,vN0) and (xN0 + dxN0 ,vN0 + dvN0). We
may also consider reduced probabiliy distributions

fk(x1,v1, . . . ,xk,vk, t) = V k

∫
dxk+1

∫
dvk+1 . . .

∫
dxN0

∫
dvN0

fN0
(28)

which give the joint probability of particles 1 through k having coordinates be-
tween (x1,v1) and (x1+ dx1,v1+ dv1) and . . . and (xk,vk) and (xk+ dxk,vk+
dvk), irrespective of the coordinates of particles k+ 1, k+ 2, . . . , N0. The factor
V k is a normalization factor. We assume that fN0

→ 0 as xi, yi, zi → ±∞ and
fN0 → 0 as vxi , vyi , vzi → ±∞. Furthermore fN0 is symmetric with respect to
particle labels. This means, if we set k = 1, the function f1(x1,v1, t) is the
number of particles per unit real space per unit velocity space and has the same
meaning as the function fs(x,v, t) of the plasma kinetic equation. From now
on we adopt the Coulomb model, which ignores the magnetic fields produced
by the charged particle motion. In this model, the accelaeration is

V̇ i(t) =

N0∑
j=1

aij (29)

where

aij =
q2s

ms|xi − xj |3
(xi − xj) (30)
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is the acceleration of particle i due to the Coulomb electric field of particle j,
and, of course aii = 0∀i. This equation replaces Maxwell’s equations and the
Lorentz force law! The Liouville equation becomes

∂fN0

∂t
+

N0∑
i=1

vi · ∇xifN0 +

N0∑
i=1

N0∑
j=1

aij · ∇vifN0 = 0. (31)

Equations for the reduced distributions fk are obtained by integrating the Li-
ouville equation over all xk+1vk+1, . . . ,xN0vN0 . E.g. to obtain the equation for
fN0−1 we integrate over all xN0

vN0
, obtaining∫

dxN0

∫
dvN0

∂fN0

∂t
+

∫
dxN0

∫
dvN0

N0∑
i=1

vi · ∇xifN0

+

∫
dxN0

∫
dvN0

N0∑
i=1

N0∑
i=1

aij · ∇vi
fN0

= 0. (32)

where the first term is

∂

∂t

∫
dxN0

∫
dvN0

fN0
= V 1−N0

∂

∂t
fN0−1. (33)

Simplifying the above equation one gets an equation for fN0−1 which still de-
pends on fN0 . It is exact within the Coulomb model. By the same procedure
we can calculate fN0−2, which also still involves fN0−1. Comparing the pattern
of the emerging equations, the following relation

∂

∂t
fk +

k∑
i=1

vi · ∇xi
fk +

k∑
i=1

k∑
j=1

aij · ∇vi
fk

+
N0 − k
V

k∑
i=1

∫
dxk+1

∫
dvk+1 ai,k+1 · ∇vifk+1 = 0. (34)

has been obtained by Bogoliubov, Born, Green, Kirkwood and Yvon. It is the
so-called BBGKY hierarchy. As it stands, the BBGKY hierarchy is still
exact within the Coulomb model. It consists of N0 coupled integro-differential
equations. Progress will come only when we take just the first few equations for
k = 1, k = 2, etc. and then use an approximation to close the set and cut off
the dependence on higher-order equations.

The k = 1 equation is

∂tf1(x1,v1, t) + v1 · ∇x1
f1 +

N0 − 1

V

∫
dx2

∫
dv2 a12

· ∇v1f2(x1,v1,x2,v2, t) = 0. (35)

This is coupled to the k = 2 equation via f2. One way to proceed is to find some
approximation for f2 in terms of f1. f1(x1,v1, t) dx1dv1 is the probability that a

7



given particle finds itself in the region of phase space between (x1,v1) and (x1+
dx1,v1 + dv1). The function f2 is the ensemble averaged number of particles
per unit x1 real space per unit x2 real space per unit v1 velocity space per unit
v2 velocity space. f2(x1,v1,x2,v2, t) is proportional to the joint probability
that particle 1 finds itself at (x1,v1) and particle 2 finds itself at (x2,v2). If
the joint probability would be the probability of two statistically independent
quantities, then simply f2(1, 2) = f1(1)f1(2)1 Yet, if these quantities are not
completely uncorrelated, we have to consider a correlation term g as follows,

f2(x1,v1,x2,v2, t) = f1(x1,v1, t)f1(x2,v2, t) + g(x1,v1,x2,v2, t). (36)

This is called the Mayer cluster expansion. Substitution into the equation
for f1 yields

∂tf1(x1,v1, t)+v1 ·∇x1
f1+n0

∫
dx2

∫
dv2 a12 ·∇v1

(f1(1)f1(2)+g(1, 2, t)) = 0

(37)
thereby also replacing (N0 − 1)/V ≈ n0 because N0 � 1.

Let us just once assume that g = 0. That is, the particles in the plasma
behave as if they were completely independent of the particular positions and
velocities of the other particles. This would be true by performing the pulver-
ization procudure: n0 → ∞, me → 0, Λ → ∞, n0e = const, e/me = const.
Then each particle would have zero charge and its presence would not affect
any other particle. Collective effects would still happen, as these involve only
f1 and not g. Considering that the ensemble averaged acceleration experienced
by particle 1 due to all other particles is

a(x, t) = n0

∫
dx2

∫
dv2 a12f1(x2,v2, t) (38)

we are then left with

∂tf1 + v1 · ∇x1
f1 + a · ∇v1

f1 = 0, (39)

which, again is the Vlasov equation. It does not include collisional effects that
are represented by the two-particle correlation function g.

Yet, we would like to have at least an approximate equation that does include
collisional effects and that, therefore, predicts the temporal evolution of f1 due
to collisions. We must therefore return to the exact k = 1 and k = 2 equations
and find some method to evalueate g = f2(1, 2)− f1(1)f1(2). Setting k = 2 we
have

∂tf2 + (v1 · ∇x1 + v2 · ∇x2)f2 + (a12 · ∇v1 + a21 · ∇v2)f2

+ n0

∫
dx3

∫
dv3(a13 · ∇v1 + a23 · ∇v2)f3 = 0. (40)

1Here we introduced the shorthand notation (1, 2) = (x1,v1,x2,v2)
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The next order in the Mayer cluster expansion is

f3(123) = f1(1)f2(2)f3(3)+f1(1)g(23)+f1(2)g(13)+f1(3)g(12)+h(123). (41)

We neglect h, i.e. three-particle correlations or three-particle collisions. These
are of higher order in Λ−1. The resulting set of equations constitute two equa-
tions in two unknowns f1 and g. Thus we have truncated the BBGKY hierarchy
while retaining the effects of collisions to a good approximation. Substitution
of f3 yields two equations, one for the time evolution of g(12) and one for the
time evolution of f1(1):

ġ(12) + (v1 · ∇x1
+ v2 · ∇x2

)g(12)

=− (a12 · ∇v1
+ a21 · ∇v2

)[f1(1)f1(2) + g(12)]

−
{
n0

∫
dx3

∫
dv3 a13 · ∇v1 [f1(1)g(23) + f1(3)g(12)] + (1↔ 2)

}
(42)

ḟ1(1) + v1 · ∇x1f1 + a · ∇v1f1 = −n0
∫

dx2

∫
dv2 a12 · ∇v1g(12) (43)

The simplifications so far have been:

• 1� N0 ⇒ (N0 − 1)/V ≈ n0

• neglect of h, i.e. three-particle collisions, though in reality each particle is
interacting with Λ particles simultaneously

• Coulomb model

So far these approximations have been extremely good ones – by contrast, the
simplifications needed to convert these two equations into managable form are
sometimes quite drastic and less justifiable as we will see in the next section.

6 BOGOLIUBOV’S HYPOTHESIS

Further assumptions are needed to simplify these two equations. Consider a spa-
tially homogeneous ensemble of plasmas. Then, any ensemble averaged function
of two spatial variables can only be a function of the difference between those
variables and any function of a spatial variable must be independent of that
variable. These assumptions simplifies the set of equations considerably to

∂tf1(v1, t) = −n0
∫

dx2

∫
dv2 a12 · ∇v1g(x1 − x2,v1,v2, t) (44)

and
∂g(12)

∂t
+ V1g + V2g = S (45)
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by application of the pulverization procedure and comparision of the relative
importance of terms w.r.t. to O(Λ−1). The operator V1 acting on g and the
source function S are defined as

V1g(12) = v1 · ∇x1
g(12) + [n0

∫
d3a13g(23)] · ∇v1

f1(1). (46)

and
S(x1 − x2,v1,v2) = −(a12 · ∇v1

+ a21 · ∇v2
)f1(1)f1(2), (47)

respectively. The important physical situation to which this discussion applies
is as follows: imagine a beam of electrons incident on a Maxwellian electron
plasma. The beam of electrons represented by the bump at large positive v will
eventually produce a new Maxwellian at a higher temperature. This process is
relevant e.g. for ion ohmic heating of a tokamak.

Figure 1: Beam of electrons relaxing to Maxwellian for t→∞

Bogoliubov’s hypothesis assumes that the two-point correlation function
g relaxes on a time scale very short compared to the time scale on which f1
relaxes. Mathematically this assumption is incorporated by ignoring the time
dependence of f1(v1, t) and f1(v2, t) in the source function S. The resultant
equation is linear for g with a constant source function on the right. This linear
equation for g(x1 − x2,v1,v2, t → ∞) can be solved on the short time scale
(t → ∞). The solution for g is then substituted on the equation for the time
evolution of f1. By doing so we finally truncate the BBGKY hierarchy and
express the entire plasma kinetic equation in terms of one unknown function
f1(v1, t). The solution is obtained by Fourier transformation in space, Laplace
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transformation in time, and their inverses. It is stated here without derivation:

∂f(v, t)

∂t
=− 8π4n0

m2
e

∇v ·
∫

dk

∫
dv′ k ⊗ k

ϕ2(k)

|ε(k,k · v)|2

· δ(k · (v − v′))[f(v)∇v′f(v′)− f(v′)∇vf(v)], (48)

where ϕ(k) is the Fourier transform of the Coulomb potential ϕ(x) = e2/|x|,
i.e. ϕ(k) = e2/(2π2k2). This is the Lenard-Balescu equation. We also
introduced the dielectric function,

ε(k, ω) = 1 +
ω2
e

k2

∫
dv

k · ∇vf(v)

ω − k · v
, (49)

which represents the plasma shielding of the field of a test charge. Due to
the assumptions made earlier, the Lenard Balescu equation is applicable to
situations such as the collisional relaxation of a beam in a plasma, but is not
applicable in general to any phenomena that involve high frequencies.

At large k the integral diverges like
∫

dk/k ∼ ln k, we find a logarithmic
divergence at large k, or small distances. The derivation of the Lenard-Balescu
equation is based on the assumption that in the expression

f2(12) = f1(1)f1(2) + g(12) (50)

we have |g| � |f1f1|. However, this assumption is not always valid. It is not
possible for two electrons to get very close to each other. Therefore, we must
have f2 → 0 as x1 → x2, which implies g = −f1f1. Thus, for small values of
|x1 − x2| (i.e. for large k), it is not correct to assume |g| � |f1f1|. In practice,
since the divergence is logarithmic, we can simply cut off the integral at some
upper limit wave number corresponding to some lower limit spatial scale. For
this purpose, the impact parameter p0 for large angle collisions is a reasonable
choice. The error that is commited thereby contributes only logarithmically. As
t→∞, any f approaches a Maxwellian.

We can put the Lenard-Balescu equation in more compact form by intro-
duction of the tensor Q

Q(v,v′) = −8π4n0
m2

e

∫
dk k ⊗ k

ϕ2(k)

|ε(k,k · v)|2
δ(k · (v − v′)) (51)

as follows:

∂f(v, t)

∂t
= −∇v ·

∫
dv′Q(v,v′) · (∇v −∇v′)f(v)f(v′). (52)

We can orient the k̂1 axis in the v−v′ direction from which follows that Qij = 0
for all i, j apart from the terms

Q22(v,v′) = Q33(v,v′) = − 2πn0e
4

m2
e |v − v′|

lnΛ (53)
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which can be conveniently expressed by

Q(v,v′) = −2πn40 lnΛ

m2
e

g2I− g ⊗ g

g3
. (54)

We can further transform this equation to

∂f(v, t)

∂t
= −∇v · [Af(v)] +

1

2
∇v ⊗∇v : [Bf(v)] (55)

which is the standard form2 of a Fokker-Planck equation with A being the
coefficient of dynamic friction

A(v, t) =
8πn0e

4 lnΛ

m2
e

∇v

∫
dv′

f(v′, t)

|v − v′|
(56)

and B, the diffusion coefficient

B(v, t) =
4πn0e

4 lnΛ

m2
e

∇v ⊗∇v

∫
dv|v − v′|f(v′, t). (57)

The coefficient of dynamic friction A represents the slowing down of a typical
particle due to many small angle collisions. The diffusion coefficient B represents
the increase of a typical particle’s velocity in the direction perpendicular to its
instantaneous velocity due to many small angle collisions. Thus the two terms
on the RHS of the Fokker-Planck equation tend to balance each other.

A simpler, less accurate form of the Fokker-Planck equation is given by the
Krook model,

∂f

∂t
= −ν(f − f0) (58)

where ν is a collision frequency, and f0 is the appropriate Maxwellian distribu-
tion. This equation is also called the BGK equation, after Bhatnagar, Gross
and Krook.

7 Appendix – THE FOKKER-PLANCK EQUA-
TION

The Fokker-Planck equation is a very general equation in physics; it describes
not only Brownian particles, but any phenomenon that in some approximate
sense can be thought of as a Markov process. A Markov process is one whose
value at the next measuring time depends only on its value at the present
measuring time, and not on any previous measuring time. Thus, if x(t) is the
random process, and xn = x(tn) with tn > tn−1 > . . . > t1 > t0, a Markov
process has a probability density such that

ρ(xn|xn−1xn−2 . . . x1x0) = ρ(xn|xn−1) (59)

2The double dot product of two tensors is defined by P : R =
∑

i,j P
ijRji or also XA :

ST = A · ST ·X = (A · S)(T ·X)
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where the notion ρ(a|b) means the probability density of a given that b was true.
Thus for a Markov process, the probability that xn = 5 depends only on what
the value of xn−1 was; it does not depend on what the values of xn−2, xn−3,
etc. were. An example for a discrete Markov process is given by flipping a coin.
Here ρ(xn) does not depend on xn−1, much less on xn−2, xn−3, etc.

To give an example of a continous Markov process is more difficult, because
continuous Markov processes cannot exist in nature. Any random function in
nature can be drawn as a smooth curve. Now it appears that xn+1 not only
depends on xn but also on xn−1. That is, xn+1 not only depends on xn, but
also on the derivative of the function dx(t)/dt|t=t0 , which can be written

dx(t)

dt

∣∣∣∣
t=t0

=
xn − xn−1

∆t
. (60)

Thus, such a function is not a Markov process. In fact, no function that is a
continuous curve and, therefore, no physical function, can be a Markov process.

This does not mean that Markov processes cannot be a good approximation
to a physical process. Consider the velocity function of a Brownian particle.
It consists of rapid fluctuations due to each molecular collision, together with
a slowing down or net friction force. Thus, on the time scale of molecular
collisions, the process is not Markovian. However, on the much longer time scale
of many collision times, the situation is very nearly Markovian. The Brownian
particle is performing a random walk in velocity space, and soon forgets the
details of its orbit near t = 0. For a Markov process

ρ(xn, xn−1, xn−2, . . . , x0) = ρ(xn|xn−1)ρ(xn−1|xn−2) . . . ρ(x2|x1)ρ(x1|x0)ρ(x0)
(61)

and also

ρ(x2|x0) =

∫
dx1 ρ(x2|x1)ρ(x1|x0) (62)

which is the famous Chapman-Kolmogorov equation. If we assume that all of
the important physics happens for small ∆x and take the limit as ∆t→ 0, i.e.
letting ∆t become very small, much smaller than any macroscopic time scale,
we arrive at the Fokker-Planck equation

∂ρ(x, t)

∂t
= − ∂

∂x
[D(1)(x, t)ρ(x, t)] +

∂2

∂x2
[D(2)(x, t)ρ(x, t)]. (63)

For Brownian motion, the random variable x is replaced by the particle velocity
v(t). This we can compare to the Lenard-Balescu equation in the form of a
Fokker-Planck equation,

∂f(v1, t)

∂t
= −∇v1

· (Af) +
1

2
∇v1
∇v1

: (Bf). (64)

Because we assumed g(1, 2)� f1(1)f1(2) in the derivation of the Lenard Balescu
equation, we have effectively limited ourselves to small angle two-body collisions.
The quantity f(v1, t) may be thought of as the probability density of particles
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in velocity space. Thus, f(v1, t) is changing slowly on the time scale for a two-
body collision. The coefficient A represents the slowing down of a particle due
to many small angle Coulomb collisions. Likewise, the coefficient B represents
the diffusion of the plasma particles in velocity space due to many small angle
collisions. In the steady state, a typical particle is suffering dynamic friction
plus diffusion; the net effect is to produce a Maxwellian.
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