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Fully self-consistentGW self-energy of the electron gas
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We present fully self-consistent results for the self-energy of the electron gas withBWhapproximation.
This means that the self-consistent Green'’s fundgras obtained from Dyson’s equation, is used not only for
obtaining the self-energy but also for constructing the screened interastiasithin the random-phase ap-
proximation. Such a theory is particle and energy conserving in the sense of Kadanoff and Baym. We find an
increase in the weight of the quasiparticle as compared to ordinary non-self-consistent calculations but also to
calculations with partial self-consistency using a fix&d The quasiparticle bandwidth is larger than that of
free electrons and the satellite structure is broad and featureless; both results clearly contradict the experimental
evidence. The total energy, though, is as accurate as that from quantum Monte Carlo calculations, and its
derivative with respect to particle number agrees with the Fermi energy as obtained directly from the pole of
the Green’s function at the Fermi level. Our results indicate that, unless vertex corrections are included,
non-self-consistent results are to be preferred for most properties except for the total energy.
[S0163-182607)04148-9

I. INTRODUCTION employ the random-phase approximati&®PA) using orbit-

als and eigenenergies from the LDA. Thus,
The present paper represents the second in a series of
papers describing our investigations of the effects of self- W=v+vPoW, ()

consistency within th&W approximation for the electronic | here the irreducible polarizabilitP,, within the RPA, is

self-energy. In our previous papewe stressed that the ef- approximated by the non-interacting density-density re-
ficiency of our present-day computers and our thorougképonse functiony, given by

knowledge of the one-electron structure of real solids have
now enabled us to _apply various approximat.ions within iPo=ixo=2G"°G™P. (4)
many-body perturbation theof§VIBPT) to real solids. As a
result, the last decade has seen a wealth of calculations of the Sometimes, further approximations are introduced such
physical properties of real solids using MBPT. Most calcu-as, e.g., describing the energy dependend®/ @is a sum of
lations employ the so-calle@W approximatiod (GWA)  plasmonlike poles. Other calculations have included particle-
meaning that the electronic self-energy is obtained from théole interactions in the polarizabilit,. Most often such
one-electron Green’s function in a Hartree-Fock-like fashiorvertex corrections have been energy independent and they
but with a screened interactidf in place of the bare Cou- are usually constructed from the LDA. Since the early days
lomb interactionu. of MBPT, it has, however, been known to be inappropriate to
include even static vertex corrections without simultaneously
3=iGW. (1) dressing up the Green’s function. There are strong cancella-
tions between the self-energy effects on the Green’s function
Such calculations can be carried out in a number of dif-and the effects of adding particle-hole interactions.
ferent ways. The one-electron Green’s function is usually, The point we wish to make here is that we have so far no
and often as a matter of convenience, taken to be B5)  a priori reason to prefer one or the other of all these different
obtained from a self-consistent density-functiond@F) computational procedures. We simply try them out and judge
calculatio based on the local-density approximation their merits by comparing to experiment. The problem is
(LDA).* Another choice would be the Green’s function ob- fundamental in nature and can only be rectified by finding a

tained from Dyson’s equation: systematic way of going beyond the GW A. We then remind
the reader that we are dealing with a divergent or condition-
G= GLD+GLD(E—U)L(CD)G, (2) ally convergent perturbation expansion and an infinity of

terms must always be summed in order to obtain reasonable
whereX is the GW self-energy and-> is the local energy- results. Thus, physical reason and intuition must be made to
independent exchange-correlation potential of the LDAbear when constructing approximations beyond the GWA.
Sometimes a hybrid scheme is used in which the Green’intil we have found a systematic way of proceeding, we
function is almost that of the LDA. The constituent LDA believe it to be worthwhile to investigate the consequences
eigenenergies are, however, replaced by quantities closer tf the different computational procedures proposed so far.
true one-electron excitation energies. Such a scheme has In the early 1960s, bearing in mind transport properties,
proven to be valuable and necessary, e.g., in NFor the  Kadanoff and Bayh’ proposed to judge the merits of dif-
screened interactiow/, on the other hand, most calculations ferent approximations by their ability to conserve quantities
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such as particle number, energy, and momentum under the Il. THEORY AND BASIC PROCEDURES
influence of external perturbations. Several such schemes are

"“°W.”' such as the Hartree-Fock approximation, the SehcFetical expressions needed in this work. We will also give a
consistenflT-matrix approach, and the self-

consistent GWA. o\ details concerning the computational methods. Most of

The essence of the latter method is that the Green's func[h . . .
. . X e formulas have appeared in previous wovkith com-
tion should be obtained from Dyson’s equat{@y. (2)] and 1 \onts and, in some cases, derivations. We remind the reader
the screened interactio should be obtained from the RPA -+ the two features that change this project from a formi-

but again using the same interacting Green’s function. Thugyapie challenge into a reasonable computational task are as

follows: (1) Working with the electron gas, the necessary
k-space integrations become much simpler integrations over
one polar angle and the length of tkevector, and(2) our
physical way of representing the Green’s function in terms of
) . o ) its real non-negative spectral function which, in turn, is rep-
Until now, this approximation has not been applied to anyresented as a sum of Gaussian functions. The latter represen-
system with realistic screening properties. An interesting firStation has many advantages.
attempt was made by de Groetal,® who applied the (a) A true spectral function of the electron gas has a main
method to a semiconducting wire. We speculate that the lacljuasiparticle peak of weight less than unity and a series of
of an efficient computational procedure has discouragedyccessively smaller satellite peaks corresponding to the
people from Undertaking this interesting task. Their hesitashakeup mainly of p|asm0ns and, to a smaller extent, of
tion could, however, also have a deeper reason. The fullparticle-hole pairs. Such a structure is easily modeled by a
self-consistent procedure clearly violates the rule statedgries of Gaussians.
above. Within this scheme, the polarizabilify, is con- (b) Any real non-negative function can be represented by
structed from dressed-up Green'’s functions, i.e., Green's sum of Gaussians, albeit, sometimes with a very large
functions with self-energy insertions, without including the nymber of terms.
Corresponding vertex corrections. As a consequence, the re- (C) The necessary frequency integra|s invo|ving products
sulting screened interactiddf is unphysical and, e.qg., it does of spectral functions at different momenta can be carried out
not obey thef-sum rule like a normal response function. gnalytically regardless of the sharpness of the structures.
Within the self-consistent GWAWN is thus merely an auxil- (d) Most importantly, the sensitivity of the spectral func-
iary quantity for obtaining a, hopefully, better self-ene®ly  tion that one obtains from the calculation is relatively insen-
Because of the doubts raised above about the fully selfsitive to details of the spectral function that is used as input
consistent procedure, our first paper dealt with a partial selfto the calculation. This was the case in our previous work on
consistency in which the Green’s function entering the calpartial self-consistency, a circumstance that carries over to
culation of the self-energy was that obtained from Dyson'sthe present case and that greatly facilitates the numerical
equation. The screened interactigvy was, however, kept procedures.

fixed at the level of the RPA with noninteracting Green’s  As an assistance to the reader we list the relevant formu-
functions. ThusW, is a plausible screened interaction that, |as below.
e.g., obeys thef-sum rule. The resulting self-consistent  The Green’s functiorG(k,w) is obtained from the spec-

Green’s function gave a smaller reduction of the strength ofral function A(k,w) according to the usual Lehman repre-
the quasiparticles as compared to non-self-consistent calcgentation,

lations and the bandwidth was 5-10% larger than that of

In the present section, we will summarize the basic theo-

iP,=2GG. (5)

free electrons. Another undesirable feature of that calculation Ak,o") ,

was that it resulted in a total energy whose derivative with G(k,w)= jc To—o' do’, (6)
respect to particle number did not correspond to the calcu-

lated Fermi energies. whereC is the contour in the complex frequency plane de-

The last deficiency mentioned in the previous paragraph i§ined as a straight line froro to 0 just above the real axis
remedied in our present fully self-consistent calculationsand another straight line from 0 tojust below the real axis.
Furthermore, we obtain very accurate total energies, i.e., that this point we mention that here and throughout this paper,
energies of these calculations are very close to those of sthe zero of energy is always chosen at the Fermi energy.
phisticated quantum Monte Carlo calculation®therwise, Thus, all propagators, fermion or boson, interacting or non-
we obtain a slightly inferior description of the guasiparticlesinteracting, always change their analytic structureat0.
and the satellite part of the one-electron spectrum becomes It follows directly from the approximation defined by Eq.
much worse. Thus, the new results do not justify the very(5) that the corresponding irreducible polarization propagator
large increase in the computational effort caused by going t#,(d, @) has a spectral representation of the usual form
full self-consistency.

The outline of the paper is the following: In Sec. Il we go Po(q0) = So(g, ") do’ @
through the theory and mention a few computational details ol@ e c w— o @
and in Sec. lll we present the results. Then, in Sec. IV we
compute the total energy from the Galitskii-Migfaéxpres-  in terms of a spectral functio8y(q, ») given by
sion and make a few remarks of theoretical nature and in

Sec. V we give our conclusions and speculate on future de- So(q w)=22 ij(k o' —0)Ak+q,0')do’. (8
velopments. ’ k Jo 7 '
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Note that=, is short for f[d®k(27) "2 and the factor of It is clear that wherk is below the Fermi surfacek(
two is associated with the spin degeneracy. <kg), there is very little spectral weight at positive energies,
Also the screened interactiof(q,w) has a similar spec- i.e., above the Fermi energy. This fact is accounted for by the
tral representation, factor 1—n, in the first equation just above. Notice, how-
ever, that due to the interactions, this factor never vanishes
W(q,0)=v(q)+ J B(q,w") doo’ © belowkg but it is close to zero at the bottom of the Fermi sea
' c w—w' ' (k=0). Similarly, there is very little spectral weight below

the Fermi level at momenta above the Fermi surface. This is
It follows from Eq.(3) that the spectral functioB(q, »), the motivation for the factom, in the second equation above.

in this case, is given by The momentum distribution functiom, approaches zero
rather slowly at large momentabut it never vanishegsee
B(0,0)= v2(0)So(0, ) 10 Fig. 11). In the free-electron case, both energigsand E

are simplyk?/2— k,2:/2, but in the present case, they are both

~ [1-v(q)Po(q,®)[*’
closer to the Hartree-Fock enery, = e, + 3 (k).

wherev (q) =4/q? is the Fourier transform of the Coulomb Bearing these facts in mind we see from Etf) that its
interaction.

Finally, the spectral decomposition of the Sehc_energynght—hand side is not proportional tff and it does not even

; : tend to zero withg. This demonstrates the breakdown of the
2(k,) follows directly from the GWA, i.e., from Eq(1), f-sum rule. We stress, however, that this breakdown does not

I'(k,o') preclude a reasonable description of the quasiparticle prop-
2(k,w)=EHF(k)+f — do’ (11)  erties as we shall soon see.

c w—o Incidently, it follows from the similar analytic structure
and large frequency behavior Bf(q,w) andW(q,w) [Eq.

(3)] that

in terms of the spectral functioki(k,w), which, in the fully
self-consistent case has the form

F(k,w):% fowA(k-i-q,w—w’)B(q,w’)dw’. (12) J;) B(q,w)wdeUZ(q)fo So(q,w)wdw. (18)

We have found this sum rule and the one given in Eg.

As in previous work, the Hartree-Fock self-ener - . -
P k oy (15) to be quite convenient as a check on our numerical

> (k) is given by

accuracy.
For the purpose of closing our self-consistency loop, we
Sue(k)= —E v(Q)Nk4q (13 use Dyson’s equation
q
in terms of the momentum distribution function, G(K,w)= ot (19)
' w—e—2(K,w)’
nk=fo Ak, w)dw. (14)  Wwhere the free-electron energy has been shifted by the

chemical potentiaju in order to stick to our convention of

) ] having the pole of the Fermi-surface Green’s function at
In our previous work we derived a few sum rules of ,—q. Thus,

pertinence also to the present investigation. For instance, it
follows from the fact that the spectral functioh(k,w) is €= 3K>—u, (20
normalized to unity and from Edq12) that

with
f I'(k,w)dw= >, f Bo(q, 0)dw. (15) p=3kE+3(Ke,0). (21)
— % q 0
o _ Using the spectral representations given by the Egs.
From Eq.(8) we similarly obtain and(11), Eq.(19) can more conveniently be written in terms
of the spectral functioné\(k,w) andI'(k,w),
f So( @) wdw =23 N(1=Nesq)[ERq— EL], I'(k.0)
0 Ak, )= 5. (22
(16) |o—e—2(K,0)|
where we have defined the average partid) (and hole Our computational procedure should now be evident. We
(Ey) energies through the integrals start from some reasonable spectral functifk,»), e.g.,
the one obtained from our older procedure with partial
fmA(k,w)wdw=(1—nk)Ep, self—co_nsistenc&.This A(k,w) is thus given as a sum of
0 Gaussians,
17
0 W, (k) F{ [w—Ey(k)]T
Ak, 0)odw=nEf. Ak, w)= expg — . (23
Lo (k 0)wdw=nEy (k) E V2l (k) 2I'2(k) @3
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We then obtairs,(q,w) from Eq.(8), which amounts to a 0.040 ' '
two-dimensional integral. Due to the Gaussians, the fre- n
guency integral can be done analytically and the integral
over azimuthal angle simply gives a factor of.2The real 0.030
part of the “polarizability” Py(q,w) is then taken from the
Hilbert transform defined by Ed7), and the spectral func-
tion B(g,w) is obtained from Eq(10). The most time con- &
suming task of the project is the calculation of the spectral £ 0020
function I'(k,w) from Eg. (12). This gives rise to a three- &
dimensional integral for eack and w. Finally, the real part
of the self-energy(k,w) is obtained from the Hilbert trans- 0.010 L
form of I [Eq. (11)] where after a new spectral function ‘
A(w) is given by Eq.(22). (If not nessecary for the context,
we will sometimes supress the momentum dependence o
spectral function$.This newA(w) is then refitted to a sum 00007 ,
of Gaussian$Eq. (23)] and the whole procedure is repeated o/e,
until no further changes occur in the outpMtw). We here
stress that the final, convergédw) is independent of the ~ FIG. 1. The spectral functiofy(q,w) (solid) of the irreducible
startingA(w) and convergence is usually reached after re|a_‘‘poIz?lrlzablllty.,” here obtalned from a Gr.een’s fungtlon from our
tively few iterations. This is due to the fact that the outputPrevious partially self-consistent calculatiofigef. 1), is compared
A(w) is rather insensitive to the inp#(w) as long as the © the corresponding quantity for noninteracting electratashed
latter has the correct physical behavior. It should, e.g., have 'gomema and energies are measured in un'tS.Of the Fermi momen-
main quasiparticle peak of approximately the correct Weigh{um (ke) and the Fermi energyk/2), respectively. In these re-

and position and some kind of satellite or incoherent regio duced units the noninteracting result is independentsofNotice
p st . ; It¢ ! 9100e peaks at the plasma frequengy and at 2v, . The first peak is
carrying the remainder of the total weight1).

? o responsible for killing the plasmon satellite in the subsequent itera-
At this stage one could almost anticipate the outcome of &\ Here r.=4 and|q|=0.25
. ils . . .

full calculation. Suppose that we start from a spectral func-

tion A(w) from our partial self-consistency. Such aw) here a structure if'(w) at w, below the quasiparticle and,

. U . t
had a main quasiparticle peak at approximately the free- o )
electron energy with a weight 0£0.7 (r,=4). In addition it consequently, no plasmon satellite in the spectral function

had a single plasmon satellite starting at the plasma freP(d, ). In the next iteration there will be no peak $y(w)

quency o, below the quasiparticle energy and having its 3L ©@p > but still a finite value giving a larger but broad struc-

maximum approximately half a plasma frequency furtherre in B atw, and inT'(w) at w, below the quasiparticle.

down and a weight of-0.3. (According to experiment, the Thus, the incoherent structureA{w) will increase but there

satellite should have been smaller, more narrow, and pos}’—"III be no sharp structure. In the next iteration agag«)

tioned closer in energy to the quasiparticle. Also, therewiII thus increase somewhat at the plasma frequency thereby

should have been additional smaller plasmon satellites fUIJgroademng _the mqoherent structure/kqw_). A_fter a few
ther down in energy.The occurrence of the plasmon satel- further iterations things settle down to a situation with broad,

lite in our previous results is simply understood in terms ofiaturéless structures in bofy(q, ») andA(k, ) as can be

the structure of the bare or unscreened polarizabitigyof seen from Figs. 2,(@), and &b).

free electrons, a quantity used in all our older calculatfons.

For free electrons, the spectral functid(w) \{anishes ll. RESULTS

around the plasma frequency where the denominator of Eq.

(10) has a root. Consequently, at the plasma frequency, there The emphasis in the present work is on the qualitative
is a large s-function contribution to the spectral function aspects of different ways of doif@W calculations. We are
B(q,w). This contribution dominate®(w), especially at thus mainly interested in trends and not in actual numbers.
small g, and is strongly reflected ifi(w) at w, below the ~ Therefore, we believe it to be instructive to present our re-
quasiparticld Eq. (12)]. It is this structure il(w) that gives  sults in the form pictures. Most of the effects in which we are
the plasmon satellite iA(w) [Eq. (22)]. Now, using instead interested increase with the effective strength of the Cou-
the partially self-consistent result fok(w) in computing lomb interaction, i.e., withrg giving the average distance
So(w) from the convolution integral in Eq12) we obtain  between electronfn=3/(47r3)]. Therefore, most figures
three structures iB,(w). One strong feature near zero fre- picture the situation at;=4 corresponding to the low elec-
quency corresponding to the overlap of the quasiparticle antfon density of sodium.

the quasihole, one weaker feature at the plasma frequency In Fig. 1 we present the spectral functiSg(qg,w) of the
corresponding to the overlap of a quasiparticle or hole with drreducible polarization propagat&(qd,») obtained from a
plasmon, and at twice the plasma frequency there is the vergpectral functionA(k,w) with a proper plasmon structure.
weak feature corresponding to the overlap of two plasmonsThe quantity Sy(w) is compared with the corresponding
Thus, even though the real part of the dielectric functionquantity for free electrons, which produces the well-known
€(g,0)=1—-v(q)Po(q,w) still might have a zero neav,,, Lindhard functiont! The peaked structures at the plasma fre-
there is now a peak in the imaginary p&s(q,w) and, there- quencyw, and at 2v, are clearly discerned. It is the one at
fore, no strong structure iB(g,w) [Eq. (10)]. Neither is o, that is responsible for killing the plasmon structure in the
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FIG. 4. The spectral functioB(q,») of the screened interaction

larizability” at full self-consistency[rs=2 (dashedl and r,=4 W(g,) (solid) is compared to the corresponding quantity within

(solid)] is compared to the corresponding quantity for noninteract-norm"jII RPA(dashe@i Notice t.he plasmon pole.alp in the case of

ing electrongdotted. The latter is independent of in the reduced the_ RPA. The re5|dqe of this pole is essentially the same as the

units defined under Fig. 1 and used throughout. Notice the mucliveight under the entirg(«w) curve. Herey =4, and|q|=0.25.

more extended tail in the more strongly interacting case=@).

Here, |q|=0.25. several zeros, none of which occurdag} (see Fig. 3. Fortu-
nately, these zeros do not have a large effect on the resulting

SubsequenA(w) as described in Sec. Il. Thus, the fU”y Spectra| functiorB(q'w)' F|g 4. The reason is tha)(q,w)

self-consistenBy(w) has a normal particle-hole structure at jg always finite at the zeros af(q,). It should be noted

small frequencies supplemented by a very broad structurgya; these anomalies occur mainly at small momentum trans-

extending to very large energiesee Fig. 2 fers (small q) and their possible adverse effects are washed

. Ihn ﬁig. %fwe_ also see tr?atfthhe eéter?t ofbthis tail i!"Cfefise%ut by the ensuing momentum integration involved in com-
with the effective strength of the Coulomb interaction, "e"puting I'(w) from Eq. (12).

with rg. The tail has the effect of wiping out structure in the In Figs. 5a) and §b), we compare the self-consistent

screened version dy(w) [essentiallyB(q,w) without the spectral functiorl for the self-energy with the correspond-

v<(q)] as seen in Fig. 4. The long tail also causes some : . . : X : )
problems concerning numerical convergence. ing quantity obtained previously in partially self-consistent

The unphysical nature d&(w) also causes the real part calculations. Around the Fermi level the two results Faare
of the dielectric functione(q, ) =1—v(q)Po(q, ) to have similar; i.e., both results show the well-known, correct qua-
' ot dratic energy dependence. At a distaaggand further away

0.10 : : from the Fermi level, however, the differences are striking.
\ The sharp structures produced by the Lindhard screening
function in the partially self-consistent case have almost van-
ished in the fully self-consistent result. Instead, there is broad
and rather structureless spectral weight of considerable mag-
nitude at large energies—positive and negative. Such weight
is of little consequence to the spectral functibras seen in
Eqg. (22). Needless to say, the loss of the sharp structure at
the plasma frequency in the self-consistent calculation is the
reason for the disappearance of the plasmon satellite in that
calculation.
In Fig. 6 we do the same comparison for the real part of
the correlation contribution to the self-energy, i.e., the last
040 J , term in Eqg.(11). Again, we notice the loss of sharp structure
0.0 2.0 4.0 6.0 and the larger magnitudes far away from the Fermi level in
/e the fully self-consistent calculation. At the Fermi level, how-
FIG. 3. The real part of the dielectric functien 1—uv P at full ever, the two cu-rves havg al,mOSt the same yalue, indipati-ng
self-consistency(solid) is compared to the dielectric function of that the correlation contribution to the chemical potential is
Lindhard (RPA) (dashedl The lattere has a zero at the plasma Similar in the two cases. As a matter of fact, the same is
frequencyw, where the noninteractingy(w) vanishes, giving rise ~ approximately true also for the Hartree-Fock part of the self-
to the well-known plasmon pole. At the zeros of the self-consisten€nergies and the chemical potentials of @&/ and theG W,
e the self-consistery(w) has a reasonable magnitudég. 2) and  calculations are thus rather similar.
the plasmon is killed. Here ;=4 and|q|=0.25. We also notice the smaller slope of tlaN result at the

FIG. 2. The spectral functioBy(q, ) of the irreducible “po-

0.05

0.00 |-

£(q,0)

-0.05
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(a) W/e, /e,
1.5 ; : — . FIG. 6. The real part of the correlation contribution,
11‘ ReX (ke ,w)—2ne(ke), to the self-energy at full self-consistency
i; (solid) is compared to the corresponding quantidashed from a
! GW, calculation(Ref. 1). Notice again the loss of sharp structure in
N the full GW result and the smaller slope at the Fermi level. Here,
10 b : . r=4.
_3» of the self-energy aEy is a measure of the width of the
~ quasiparticle peak. As we shall see below, the quasiparticle
05 L " i peak below the Fermi level is so sharp tikgtreally corre-
h sponds to the maximum of the quasiparticle peak in the spec-
fooh tral function A(w).
R PSS In Fig. 7 we display the quantitg, , which thus gives the
Sy weight of the quasiparticle relative to all satellite structures.
00 0 200 300 00 100 200 200 We see that the weight of the quaS|partche_ has increased
(b) ole. with respect not only to a norm& W, calculation but also

compared to a partially self-consistégat\, calculation. This

FIG. 5. The spectral functiof'(k,w) of the self-energy at full
self-consistency(solid) is compared to corresponding quantity
(dasheglfrom a partially self-consister® W, calculation(Ref. 1) at
the Fermi surfacék=Kkg (a)] and at the bottom of the barjdk
=0 (b)]. Notice the same parabolic shapes around the Fermi level
but also the transformation of the sharp structures inGN&, case
to the very wide structures obtained in the f@MW calculation.
Here,rs=4.

Fermi level. This slope determines the so-called quasiparticle
renormalization facto?, according to

-1

J ReX (k,w)
Jw

Z=|1- , (24)

w=E

where the quasiparticle ener@y,, as usual, is defined to be
the solution to the Dyson-like equation that determines the
real part of the poles of the Green’'s functipEg. (19)].
Thus,

x
N

is also evident from Table I, giving the renormalization fac-
torZg=27,_at the Fermi surface at two different densities. In

Fig. 7, we also see the loss of structure in the self-consistent

1.0

0.8

06

0.2

0.0

1.0

2.0

Kk

4.0

FIG. 7. The quasiparticle renormalization facE[Eq. (24)] of

the full GW calculation(solid) is compared to the corresponding

quantity from aGW, calculation(dashed and from aG,W, calcu-
lation (dotted. Notice the increase of quasiparticle weight with a

Ek:6k+2(k,Ek) . (25)
The imaginary part,
1
Ie=— [ImZ(k,E)[=T (k,Ey) (26)

larger degree of self-consistency. Notice also the loss of structure
due to plasmon decay in the fulW result. Herey =4.
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TABLE |. The quasiparticle renormalization fact@: from 0.4 . | ; T
three different calculationsGoW,, GW,, and GW. Results are —— Full s-c.
given for the densities correspondingrig=2 and 4. 021 |---- 'F:’a“t'at' sC. e
rrrrr irst it.
0.0 F | —-— Non-int. s 1
ZF
I’s G()WO GWO GW 0.2 ]
2 0.764 0.804 0.846 & 1
4 0.645 0.702 0.793 uF 06 |
0.8 .
result. This is, of course, again associated with the replace- 4, i
ment of the plasmon satellite with a broad and featureless
structure. 1.2 ]
The resulting self-consistent one-electron spectral func- ;4 ‘ ‘ \ . .
tions A(k,w) are displayed in the Figs.(® and &b) and 0.0 0.2 0.4 0.6 0.8 1.0 1.2
compared with those of our previous partially self-consistent krke

GW, results. The most notable differences are the disappear-

0.10 T T T T

0.08

0.06

Alkg,®)

0.04

0.02

(a)

3.0 T T T T

20 +

A(k,®)

10 |

FIG. 8. The resulting one-electron spectral functidgk,w)
from the full GW calculation(solid) is compared to the correspond-
ing quantity from the partially self-consisterW, calculation

FIG. 9. The dispersiok, of the quasiparticles is compared to a
free-electron parabolésmall dot3 for the casesGyW, (dotted,
GW, (dash-dottej and GW (solid). Only the simplestGyW,
shows the desired band narrowing and @/ result is the worst.
Here,r;=4.

ance of the plasmon satellite and the larger bandwidth seen
in the fully self-consistent results.

Experiments show that the bandwidths of simple metals
are of the order of 10% more narrow as compared to the
results of band-structure calculations employing a local and
energy-independent potential, i.e., like that of the LDA.
Thus, there was originally some hope thab & calculation
would cure this problem—and a non-self-consistégiV,
calculation for the electron gas does indeed produce a more
narrow bandwidth although not narrow enough. One of the
conceptual deficiencies of a non-self-consistent procedure is,
of course, that the final results depend on the rather arbitrary
choice of zeroth-order Green’s functio®G{). Therefore, it
was disappointing to find that a partially self-consistem,
calculation gives a bandwidth larger than that of noninteract-
ing electrons. This unfortunate circumstance led to the hope
that a fully self-consistent calculatiorG@V) might rectify
the situation. It is therefore perhaps even more disappointing
to see that the fully self-consistent procedure actually makes
the problem even worse.

As seen in Fig. 9, at a density corresponding to that of
sodium {¢=4), the bandwidth is more than 20% larger than
that of noninteracting electrons and some 15% larger than
that predicted by a partially self-consistent calculation. This
result is somewhat difficult to understand. IisgW, calcu-
lation, the Hartree-Fock part of the self-energy is that of
noninteracting electrons, causing almost a doubling of the
bandwidth. This effect is more than compensated for by the
dynamic part of the self-energy, which is calculated frén
andWy—v. In aGW, calculation, the dominating quasipar-
ticle contribution to the dynamic part of the self-energy is
scaled down by the renormalization fac#yand that part of

(Ref. 1) (dashedl In (a), the comparison at made at the Fermi = IS o longer able to cancel the large Hartree-Fock contri-
Surface’|k|:kF’ and(b) shows the same comparison at the bottom bution. The fact that the latter is reduced somewhat by the
of the band|k|=0. In (a) the height of the quasiparticle peak cannot Use of interacting occupation numbers in E@) improves

be accommodated within the figure. Notice in both figures the loshe situation but does not cure the problem. In the fully self-

of plasmon satellites in the fultW calculation. Notice also ifib)
the markedly larger bandwidth in tH@W case. As before,;=4.

consistent case, the magnitude of the quasiparticle contribu-
tion to the Green'’s function and, therefore, to the dynamical
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‘ ' ‘ elastic collisions with plasmons. Consequently, in G&/
ermmm e case, the quasiparticles peaks are rather sharp at all mo-
. menta. TheGyW, and theGW, results clearly show a more
physical behavior with a large decrease of the lifetime at the
08 | I onset of decay through plasmon production.

The discontinuities in the momentum distribution func-
tions in Fig. 11 are equal to the weight of the quasiparticles
at the Fermi surface. Consequently, these distribution curves
j/’ again show an increase in quasiparticle weight with a larger
04 | 1 degree of self-consistency. Note that the area under each
1 curve gives the electron density of the system. As will be
discussed in Sec. IV, th&W calculation reproduces the
free-electron result and this can also be shown to be true in

e . the case of th& W, calculation'* As a matter of principle,
~0.0 10 2.0 3.0 4.0 the GoW, procedure is known to violatethis exact relation
k/ke but, as was discussed in Ref. 1, it is numerically true beyond
the accuracy of our numerical procedures.

T(k,E)/e:

FIG. 10. The inverse lifetime of the quasiparticles[Eq. (26)]
at full self-consistencyGW, solid) is compared to the correspond-
ing quantities fromGW, (dashedl and G,W, (dotted calculations.
The two latter results show a region with much shorter lifetimes . .
caused by inelastic collision with plasmons. This physically correct Perhaps on,e of the most mterestmg featgres Pf the present
feature is absent from the fuBW result. As beforer .= 4. fully self-consistent way of doin@ W calculations is the fact
that it represents a conserving approximation in the sense

part of the self-energy is larger and one would expect a bettef€fined by Kadanoff and Bayfi. Such approximations pre-
cancellation of the Hartree-Fock enlargement of the bandS€'ve particle number, energy, momentum, and angular mo-
width. Unfortunately, in this case, the effect on the occupaMentum under external perturbations. They also obey a num-
tion numbers and, therefore, on the Hartree-Fock contribuP€r Of additional consistency requirements that one might
tion appears to be even larger, resulting in an increaseflesire from a reasonable thedns an example we might

bandwidth. Consequently, a smaller bandwidth in better harconsider for a moment the total energy, which is a well-
mony with the experimental facts can only be achievedd€fined quantity in an exact theory. Within MBPT, however,

trough vertex corrections. That vertex corrections indeed arfliS uniqueness is easily lost. We ’often try to find approxi-
capable of giving the desired band narrowing was recentlyations to the one-electron Green's functi@nfrom which
the total energy can be calculated. The road towards the ap-

demonstrated by Mahan and Sernéffusnd by Shirley:® ( . ,
Finally, we say a few words about the momentum distri-Proximate G most often passes the two-particle Green's

bution functionn, [Eq. (14)] and the lifetime 1, of the function from which the total energy also can be calculated.
quasiparticles. The latter is displayed in Fig. 10 and thdn this way, we can obtain two total energies, which, in most
former in Fig. 11. With no well-defined plasmons, as in the@PProximations, do not agree. We are thus faced with the

GW case, there is no possibility of energy loss through inJProblem of deciding which is the most accurate total energy.
One of the virtues of conserving approximations is that dif-

ferent ways of calculating the total energy give identical re-

IV. THE TOTAL ENERGY

1.0 T T
e TEITIES sults. For instance, having some approximati#®fk) to the
Green’s functionk here represents the four-vectir,w)],
08 . we easily obtain the expectation vallieof the operator rep-
resenting the kinetic energy,
0.6 | 8
T=-2i03 f do 6k (27)
< K 27 K )
04 - .
Here,( is the total volume of the gas. Having also some
o2 L | approximation to the self-energy(k), we can calculate the
expectation valué) of the Coulomb interaction,
%0 05 1.0 == 15 2.0 : do
Wi u=—|Q; J 5— GZ(K). (29
FIG. 11. The momentum distribution function, [Eq. (14)] of ) .
Adding the piecesI andU to form the total energyE

the full GW calculation is compared to, from GW, (dasheg and - Jtotom
GoW, (dotted calculations. Again, we notice the increase in qua-=T+U), we obtain the Galitskii-Migddf formula after a

siparticle weight, represented by the size of the discontinuity, as wéew manipulations that require th& and X are coupled
increase the degree of self-consistency. As befare4. through Dyson’s equation, E¢19):
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_ TABLE II. The total energies from the fulGW calculation at  no immediate reason to believe that the particle density
different densitiesi(;) are compared to the results from the Monte calculated from the final self-consistent Green’s function

Carlo calculations by Ceperley and Ald@Ref. 9. through the formula
E/N (Ry) 0
re GW MC n=2; f Ak, w)dw (32)
2 0.005 0.004
4 —0.156 —0.155 should yieldn=k,3:’/(37r2) as for free electrons. As proven

by Baym! however, this is indeed true in conserving ap-
proximations and we have here verified the same thing nu-
merically to a high degree of accuracy.
E=QD, f(w—i—ek)A(k,w)dw. (29)
k
V. CONCLUSIONS
The total energy can also be obtained through the usual
Hellman-Feynman trick, i.e., by integrating the interaction
energyU(\) regarded as a function of the strengtlof the
Coulomb interaction with respect to that same

The purpose of the present work and our previous work
on self-consistenG W calculations is to elucidate the conse-
quences of different ways of performir@W calculations in
general. We were, however, also motivated by the desire to
1 dh see a truly conservi_ng approximatiqn atwork in a reql many-
E=E0+f —u). (30) body system. In_thl_s section we will try to summarize our
A most important findings.
During our investigations, we have found that allowing

Here, E, is the total energy of the same number of non-for a broadening of quasiparticles usually has a negligible
interacting electrons. The beauty of a conserving approximaeffect on the final one-electron Green’s function. We could,
tion is that these two ways of obtaining the total endf§gs. however, imagine cases when the quasiparticles are less well
(29) and (30)] produce the same result—something that wedefined broad structures. In such cases, the effect of quasi-
have verified to within our numerical accura¢gpproxi- particle decay could become important.
mately two significant figurgs In the present investigations on the translationally invari-

A third way of obtaining the total energy is through the ant electron gas, there is no substantial shift of quasiparticle
chemical potentiak defined by Eq(21). An alternative and energies. Thus, in simple metals we would anticipate only
perhaps more fundamental definition @fis the exact rela- small changes in the calculated one-electron spectrum from

tion using a starting Green’s function with reasonable shifts
(10%) in the one-electron energies.
JE In going from aGyW, to a GW, calculation and further
r=oN (3)  to a full GW calculation in the notation of this work, we find

a steady deterioration in the description of the bandwidth. A
whereN is the total number of electrons in the system. Alsofully self-consistentGW calculation in sodium could easily
this relation is obeyed to within two significant figures in our yield a bandwidth one-third larger than the experimental
numerical calculations, thus adding to the credibility of thewidth. This result clearly indicates the necessity of vertex
present work. corrections.

In Table Il we compare our total energies to those ob- The description of satellite structure is not satisfactory in
tained from the Green’s-function Monte Carlo calculationsany kind of GW approach. The description is reasonable at
by Ceperley and Aldet The latter energies are often consid- the levels 0fGoW, andGW, but it breaks down at the level
ered to be very close to the exact ones. It is striking to seef full self-consistency GW).
how close our total energies are to the Monte-Carlo results. In going from aGyW, to a GW, calculation and further

We did not anticipate such a close agreement. We find ito a full GW calculation, the total energy as obtained from
hard to believe that any theory, like the present one, whiclihe Galitskii-Migdal expression becomes systematically bet-
does not include some reasonable approximation to the inteter and the energy is very accurate in the fully self-consistent
particle interaction at close range, could ever yield an accutheory. It should be noted, however, that there are variational
rate energy. Such a theory must certainly involve higher orand other ways of obtaining total energies from less sophis-
ders of the screened interactigi As far as the total energy ticated GW calculations. This will be discussed in future
is concerned, it appears as if errors due to an improper treapublications
ment of the Coulomb interaction at short distances are com- Calculations for real solids based on MBPT at the level of
pensated by errors from a less than adequate treatment of tW, is quickly becoming routine. Partially self-consistent
screening effects at long distances. As will be described in aalculations for real solids are within reach, particularly if
future publicationt the total energy of the self-consistent there are not too many atoms per unit cell. We still have to
GWA is a variational quantity that might explain the accu-find a few proper shortcuts before fully self-consistent calcu-
rate energies obtained in the present work. lations become feasible. The present investigation, however,

We end this section with a remark about the particle num<learly demonstrates the futility of such huge efforts. In fully
ber. We note that the only input parameter of the presenself-consistent calculations a lot of computing power will be
theory is the Fermi momentukg in Eq. (21). There is thus  spent on producing quite inferior results. Instead, the present
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calculations demonstrate that we should now direct our ef- ACKNOWLEDGMENTS
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