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Fully self-consistentGW self-energy of the electron gas

B. Holm and U. von Barth
Department of Theoretical Physics, University of Lund, S-22362 Lund, Sweden

~Received 28 January 1997!

We present fully self-consistent results for the self-energy of the electron gas within theGW approximation.
This means that the self-consistent Green’s functionG, as obtained from Dyson’s equation, is used not only for
obtaining the self-energy but also for constructing the screened interactionW within the random-phase ap-
proximation. Such a theory is particle and energy conserving in the sense of Kadanoff and Baym. We find an
increase in the weight of the quasiparticle as compared to ordinary non-self-consistent calculations but also to
calculations with partial self-consistency using a fixedW. The quasiparticle bandwidth is larger than that of
free electrons and the satellite structure is broad and featureless; both results clearly contradict the experimental
evidence. The total energy, though, is as accurate as that from quantum Monte Carlo calculations, and its
derivative with respect to particle number agrees with the Fermi energy as obtained directly from the pole of
the Green’s function at the Fermi level. Our results indicate that, unless vertex corrections are included,
non-self-consistent results are to be preferred for most properties except for the total energy.
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I. INTRODUCTION

The present paper represents the second in a serie
papers describing our investigations of the effects of s
consistency within theGW approximation for the electronic
self-energy. In our previous paper,1 we stressed that the e
ficiency of our present-day computers and our thorou
knowledge of the one-electron structure of real solids h
now enabled us to apply various approximations with
many-body perturbation theory~MBPT! to real solids. As a
result, the last decade has seen a wealth of calculations o
physical properties of real solids using MBPT. Most calc
lations employ the so-calledGW approximation2 ~GWA!
meaning that the electronic self-energy is obtained from
one-electron Green’s function in a Hartree-Fock-like fash
but with a screened interactionW in place of the bare Cou
lomb interactionv.

S5 iGW. ~1!

Such calculations can be carried out in a number of
ferent ways. The one-electron Green’s function is usua
and often as a matter of convenience, taken to be that (GLD)
obtained from a self-consistent density-functional~DF!
calculation3 based on the local-density approximatio
~LDA !.4 Another choice would be the Green’s function o
tained from Dyson’s equation:

G5GLD1GLD~S2vxc
LD!G, ~2!

where( is theGW self-energy andvxc
LD is the local energy-

independent exchange-correlation potential of the LD
Sometimes a hybrid scheme is used in which the Gree
function is almost that of the LDA. The constituent LD
eigenenergies are, however, replaced by quantities clos
true one-electron excitation energies. Such a scheme
proven to be valuable and necessary, e.g., in NiO.5 For the
screened interactionW, on the other hand, most calculation
570163-1829/98/57~4!/2108~10!/$15.00
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employ the random-phase approximation~RPA! using orbit-
als and eigenenergies from the LDA. Thus,

W5v1vP0W, ~3!

where the irreducible polarizabilityP0 , within the RPA, is
approximated by the non-interacting density-density
sponse functionx0 given by

iP05 ix052GLDGLD. ~4!

Sometimes, further approximations are introduced s
as, e.g., describing the energy dependence ofW as a sum of
plasmonlike poles. Other calculations have included partic
hole interactions in the polarizabilityP0 . Most often such
vertex corrections have been energy independent and
are usually constructed from the LDA. Since the early da
of MBPT, it has, however, been known to be inappropriate
include even static vertex corrections without simultaneou
dressing up the Green’s function. There are strong cance
tions between the self-energy effects on the Green’s func
and the effects of adding particle-hole interactions.

The point we wish to make here is that we have so far
a priori reason to prefer one or the other of all these differ
computational procedures. We simply try them out and jud
their merits by comparing to experiment. The problem
fundamental in nature and can only be rectified by findin
systematic way of going beyond the GW A. We then remi
the reader that we are dealing with a divergent or conditi
ally convergent perturbation expansion and an infinity
terms must always be summed in order to obtain reason
results. Thus, physical reason and intuition must be mad
bear when constructing approximations beyond the GW
Until we have found a systematic way of proceeding,
believe it to be worthwhile to investigate the consequen
of the different computational procedures proposed so fa

In the early 1960s, bearing in mind transport properti
Kadanoff and Baym6,7 proposed to judge the merits of dif
ferent approximations by their ability to conserve quantit
2108 © 1998 The American Physical Society



t
s
el
A
n

A
u

n
rs

la
ge
ita
ul
te

n
e

e
s
n.

e
e
a
n’
t
’s

at
nt

o
lc

t o
tio
it
lc

h
ns
t
s

es
m
er
g

o
ai
w

d

eo-
a

t of

ader
mi-
e as
ry
ver

of
p-
sen-

ain
of

the
of

y a

by
rge

cts
out
.
c-
n-
put
on
r to
rical

mu-

-
e-

e-
s

er,
rgy.
on-

.
tor
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such as particle number, energy, and momentum under
influence of external perturbations. Several such scheme
known, such as the Hartree-Fock approximation, the s
consistentT-matrix approach, and the self-consistent GW

The essence of the latter method is that the Green’s fu
tion should be obtained from Dyson’s equation@Eq. ~2!# and
the screened interactionW should be obtained from the RP
but again using the same interacting Green’s function. Th

iP052GG. ~5!

Until now, this approximation has not been applied to a
system with realistic screening properties. An interesting fi
attempt was made by de Grootet al.,8 who applied the
method to a semiconducting wire. We speculate that the
of an efficient computational procedure has discoura
people from undertaking this interesting task. Their hes
tion could, however, also have a deeper reason. The f
self-consistent procedure clearly violates the rule sta
above. Within this scheme, the polarizabilityP0 is con-
structed from dressed-up Green’s functions, i.e., Gree
functions with self-energy insertions, without including th
corresponding vertex corrections. As a consequence, th
sulting screened interactionW is unphysical and, e.g., it doe
not obey thef -sum rule like a normal response functio
Within the self-consistent GWA,W is thus merely an auxil-
iary quantity for obtaining a, hopefully, better self-energy(.

Because of the doubts raised above about the fully s
consistent procedure, our first paper dealt with a partial s
consistency in which the Green’s function entering the c
culation of the self-energy was that obtained from Dyso
equation. The screened interactionW0 was, however, kep
fixed at the level of the RPA with noninteracting Green
functions. Thus,W0 is a plausible screened interaction th
e.g., obeys thef -sum rule. The resulting self-consiste
Green’s function gave a smaller reduction of the strength
the quasiparticles as compared to non-self-consistent ca
lations and the bandwidth was 5–10% larger than tha
free electrons. Another undesirable feature of that calcula
was that it resulted in a total energy whose derivative w
respect to particle number did not correspond to the ca
lated Fermi energies.

The last deficiency mentioned in the previous paragrap
remedied in our present fully self-consistent calculatio
Furthermore, we obtain very accurate total energies, i.e.,
energies of these calculations are very close to those of
phisticated quantum Monte Carlo calculations.9 Otherwise,
we obtain a slightly inferior description of the quasiparticl
and the satellite part of the one-electron spectrum beco
much worse. Thus, the new results do not justify the v
large increase in the computational effort caused by goin
full self-consistency.

The outline of the paper is the following: In Sec. II we g
through the theory and mention a few computational det
and in Sec. III we present the results. Then, in Sec. IV
compute the total energy from the Galitskii-Migdal10 expres-
sion and make a few remarks of theoretical nature and
Sec. V we give our conclusions and speculate on future
velopments.
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II. THEORY AND BASIC PROCEDURES

In the present section, we will summarize the basic th
retical expressions needed in this work. We will also give
few details concerning the computational methods. Mos
the formulas have appeared in previous work1 with com-
ments and, in some cases, derivations. We remind the re
that the two features that change this project from a for
dable challenge into a reasonable computational task ar
follows: ~1! Working with the electron gas, the necessa
k-space integrations become much simpler integrations o
one polar angle and the length of thek vector, and~2! our
physical way of representing the Green’s function in terms
its real non-negative spectral function which, in turn, is re
resented as a sum of Gaussian functions. The latter repre
tation has many advantages.

~a! A true spectral function of the electron gas has a m
quasiparticle peak of weight less than unity and a series
successively smaller satellite peaks corresponding to
shakeup mainly of plasmons and, to a smaller extent,
particle-hole pairs. Such a structure is easily modeled b
series of Gaussians.

~b! Any real non-negative function can be represented
a sum of Gaussians, albeit, sometimes with a very la
number of terms.

~c! The necessary frequency integrals involving produ
of spectral functions at different momenta can be carried
analytically regardless of the sharpness of the structures

~d! Most importantly, the sensitivity of the spectral fun
tion that one obtains from the calculation is relatively inse
sitive to details of the spectral function that is used as in
to the calculation. This was the case in our previous work
partial self-consistency, a circumstance that carries ove
the present case and that greatly facilitates the nume
procedures.

As an assistance to the reader we list the relevant for
las below.

The Green’s functionG(k,v) is obtained from the spec
tral function A(k,v) according to the usual Lehman repr
sentation,

G~k,v!5E
C

A~k,v8!

v2v8
dv8, ~6!

whereC is the contour in the complex frequency plane d
fined as a straight line from2` to 0 just above the real axi
and another straight line from 0 tò just below the real axis.
At this point we mention that here and throughout this pap
the zero of energy is always chosen at the Fermi ene
Thus, all propagators, fermion or boson, interacting or n
interacting, always change their analytic structure atv50.

It follows directly from the approximation defined by Eq
~5! that the corresponding irreducible polarization propaga
P0(q,v) has a spectral representation of the usual form

P0~q,v!5E
C

S0~q,v8!

v2v8
dv8 ~7!

in terms of a spectral functionS0(q,v) given by

S0~q,v!52(
k
E

0

v

A~k,v82v!A~k1q,v8!dv8. ~8!
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Note that(k is short for*d3k(2p)23 and the factor of
two is associated with the spin degeneracy.

Also the screened interactionW(q,v) has a similar spec
tral representation,

W~q,v!5v~q!1E
C

B~q,v8!

v2v8
dv8. ~9!

It follows from Eq. ~3! that the spectral functionB(q,v),
in this case, is given by

B~q,v!5
v2~q!S0~q,v!

u12v~q!P0~q,v!u2
, ~10!

wherev(q)54p/q2 is the Fourier transform of the Coulom
interaction.

Finally, the spectral decomposition of the self-ener
(~k,v! follows directly from the GWA, i.e., from Eq.~1!,

S~k,v!5SHF~k)1E
C

G~k,v8!

v2v8
dv8 ~11!

in terms of the spectral functionG~k,v!, which, in the fully
self-consistent case has the form

G~k,v!5(
q
E

0

v

A~k1q,v2v8!B~q,v8!dv8. ~12!

As in previous work1, the Hartree-Fock self-energ
(HF(k) is given by

SHF~k!52(
q

v~q!nk1q ~13!

in terms of the momentum distribution functionnk ,

nk5E
2`

0

A~k,v!dv. ~14!

In our previous work1 we derived a few sum rules o
pertinence also to the present investigation. For instanc
follows from the fact that the spectral functionA(k,v) is
normalized to unity and from Eq.~12! that

E
2`

`

G~k,v!dv5(
q
E

0

`

B0~q,v!dv. ~15!

From Eq.~8! we similarly obtain

E
0

`

S0~q,v!vdv52(
k

nk~12nk1q!@Ek1q
p 2Ek

h#,

~16!

where we have defined the average particle (Ek
p) and hole

(Ek
h) energies through the integrals

E
0

`

A~k,v!vdv5~12nk!Ek
p ,

~17!

E
2`

0

A~k,v!vdv5nkEk
h .
y

it

It is clear that whenk is below the Fermi surface (k
,kF), there is very little spectral weight at positive energie
i.e., above the Fermi energy. This fact is accounted for by
factor 12nk in the first equation just above. Notice, how
ever, that due to the interactions, this factor never vanis
belowkF but it is close to zero at the bottom of the Fermi s
(k50). Similarly, there is very little spectral weight belo
the Fermi level at momenta above the Fermi surface. Thi
the motivation for the factornk in the second equation above
The momentum distribution functionnk approaches zero
rather slowly at large momentak but it never vanishes~see
Fig. 11!. In the free-electron case, both energiesEp andEh

are simplyk2/22kF
2/2, but in the present case, they are bo

closer to the Hartree-Fock energyEk
HF5ek1SHF(k).

Bearing these facts in mind we see from Eq.~16! that its
right-hand side is not proportional toq2 and it does not even
tend to zero withq. This demonstrates the breakdown of t
f -sum rule. We stress, however, that this breakdown does
preclude a reasonable description of the quasiparticle p
erties as we shall soon see.

Incidently, it follows from the similar analytic structur
and large frequency behavior ofP0(q,v) andW(q,v) @Eq.
~3!# that

E
0

`

B~q,v!vdv5v2~q!E
0

`

S0~q,v!vdv. ~18!

We have found this sum rule and the one given in E
~15! to be quite convenient as a check on our numeri
accuracy.

For the purpose of closing our self-consistency loop,
use Dyson’s equation

G~k,v!5
1

v2ek2S~k,v!
, ~19!

where the free-electron energyek has been shifted by the
chemical potentialm in order to stick to our convention o
having the pole of the Fermi-surface Green’s function
v50. Thus,

ek5 1
2 k22m, ~20!

with

m5 1
2 kF

21S~kF,0!. ~21!

Using the spectral representations given by the Eqs.~6!
and~11!, Eq. ~19! can more conveniently be written in term
of the spectral functionsA(k,v) andG~k,v!,

A~k,v!5
G~k,v!

uv2ek2S~k,v!u2
. ~22!

Our computational procedure should now be evident.
start from some reasonable spectral functionA(k,v), e.g.,
the one obtained from our older procedure with part
self-consistency.1 This A(k,v) is thus given as a sum o
Gaussians,

A~k,v!5(
n

Wn~k!

A2pGn~k!
expF2

@v2En~k!#2

2Gn
2~k! G . ~23!
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We then obtainS0(q,v) from Eq.~8!, which amounts to a
two-dimensional integral. Due to the Gaussians, the
quency integral can be done analytically and the integ
over azimuthal angle simply gives a factor of 2p. The real
part of the ‘‘polarizability’’ P0(q,v) is then taken from the
Hilbert transform defined by Eq.~7!, and the spectral func
tion B(q,v) is obtained from Eq.~10!. The most time con-
suming task of the project is the calculation of the spec
function G~k,v! from Eq. ~12!. This gives rise to a three
dimensional integral for eachk andv. Finally, the real part
of the self-energy(~k,v! is obtained from the Hilbert trans
form of G @Eq. ~11!# where after a new spectral functio
A(v) is given by Eq.~22!. ~If not nessecary for the contex
we will sometimes supress the momentum dependenc
spectral functions.! This newA(v) is then refitted to a sum
of Gaussians@Eq. ~23!# and the whole procedure is repeat
until no further changes occur in the outputA(v). We here
stress that the final, convergedA(v) is independent of the
startingA(v) and convergence is usually reached after re
tively few iterations. This is due to the fact that the outp
A(v) is rather insensitive to the inputA(v) as long as the
latter has the correct physical behavior. It should, e.g., ha
main quasiparticle peak of approximately the correct wei
and position and some kind of satellite or incoherent reg
carrying the remainder of the total weight~51!.

At this stage one could almost anticipate the outcome
full calculation. Suppose that we start from a spectral fu
tion A(v) from our partial self-consistency. Such anA(v)
had a main quasiparticle peak at approximately the fr
electron energy with a weight of;0.7 (r s54). In addition it
had a single plasmon satellite starting at the plasma
quency vp below the quasiparticle energy and having
maximum approximately half a plasma frequency furth
down and a weight of;0.3. ~According to experiment, the
satellite should have been smaller, more narrow, and p
tioned closer in energy to the quasiparticle. Also, th
should have been additional smaller plasmon satellites
ther down in energy.! The occurrence of the plasmon sate
lite in our previous results is simply understood in terms
the structure of the bare or unscreened polarizabilityP0 of
free electrons, a quantity used in all our older calculation1

For free electrons, the spectral functionS0(v) vanishes
around the plasma frequency where the denominator of
~10! has a root. Consequently, at the plasma frequency, t
is a larged-function contribution to the spectral functio
B(q,v). This contribution dominatesB(v), especially at
small q, and is strongly reflected inG~v! at vp below the
quasiparticle@Eq. ~12!#. It is this structure inG~v! that gives
the plasmon satellite inA(v) @Eq. ~22!#. Now, using instead
the partially self-consistent result forA(v) in computing
S0(v) from the convolution integral in Eq.~12! we obtain
three structures inS0(v). One strong feature near zero fr
quency corresponding to the overlap of the quasiparticle
the quasihole, one weaker feature at the plasma freque
corresponding to the overlap of a quasiparticle or hole wit
plasmon, and at twice the plasma frequency there is the
weak feature corresponding to the overlap of two plasmo
Thus, even though the real part of the dielectric funct
e(q,v)512v(q)P0(q,v) still might have a zero nearvp ,
there is now a peak in the imaginary partS0(q,v) and, there-
fore, no strong structure inB(q,v) @Eq. ~10!#. Neither is
-
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there a structure inG~v! at vp below the quasiparticle and
consequently, no plasmon satellite in the spectral funct
A(q,v). In the next iteration there will be no peak inS0(v)
at vp , but still a finite value giving a larger but broad stru
ture in B at vp and in G~v! at vp below the quasiparticle
Thus, the incoherent structure inA(v) will increase but there
will be no sharp structure. In the next iteration again,S0(v)
will thus increase somewhat at the plasma frequency ther
broadening the incoherent structure inA(v). After a few
further iterations things settle down to a situation with broa
featureless structures in bothS0(q,v) andA(k,v) as can be
seen from Figs. 2, 8~a!, and 8~b!.

III. RESULTS

The emphasis in the present work is on the qualitat
aspects of different ways of doingGW calculations. We are
thus mainly interested in trends and not in actual numb
Therefore, we believe it to be instructive to present our
sults in the form pictures. Most of the effects in which we a
interested increase with the effective strength of the C
lomb interaction, i.e., withr s giving the average distanc
between electrons@n53/(4pr s

3)#. Therefore, most figures
picture the situation atr s54 corresponding to the low elec
tron density of sodium.

In Fig. 1 we present the spectral functionS0(q,v) of the
irreducible polarization propagatorP0(q,v) obtained from a
spectral functionA(k,v) with a proper plasmon structure
The quantity S0(v) is compared with the correspondin
quantity for free electrons, which produces the well-know
Lindhard function.11 The peaked structures at the plasma f
quencyvp and at 2vp are clearly discerned. It is the one
vp that is responsible for killing the plasmon structure in t

FIG. 1. The spectral functionS0(q,v) ~solid! of the irreducible
‘‘polarizability,’’ here obtained from a Green’s function from ou
previous partially self-consistent calculations~Ref. 1!, is compared
to the corresponding quantity for noninteracting electrons~dashed!.
Momenta and energies are measured in units of the Fermi mom
tum (kF) and the Fermi energy (kF

2/2), respectively. In these re
duced units the noninteracting result is independent ofr s . Notice
the peaks at the plasma frequencyvp and at 2vp . The first peak is
responsible for killing the plasmon satellite in the subsequent ite
tion. Here,r s54. anduqu50.25.
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subsequentA(v) as described in Sec. II. Thus, the ful
self-consistentS0(v) has a normal particle-hole structure
small frequencies supplemented by a very broad struc
extending to very large energies~see Fig. 2!.

In Fig. 2 we also see that the extent of this tail increa
with the effective strength of the Coulomb interaction, i.
with r s . The tail has the effect of wiping out structure in th
screened version ofS0(v) @essentiallyB(q,v) without the
v2(q)# as seen in Fig. 4. The long tail also causes so
problems concerning numerical convergence.

The unphysical nature ofS0(v) also causes the real pa
of the dielectric functione(q,v)512v(q)P0(q,v) to have

FIG. 2. The spectral functionS0(q,v) of the irreducible ‘‘po-
larizability’’ at full self-consistency@r s52 ~dashed! and r s54
~solid!# is compared to the corresponding quantity for nonintera
ing electrons~dotted!. The latter is independent ofr s in the reduced
units defined under Fig. 1 and used throughout. Notice the m
more extended tail in the more strongly interacting case (r s54).
Here, uqu50.25.

FIG. 3. The real part of the dielectric functione512vP0 at full
self-consistency~solid! is compared to the dielectric function o
Lindhard ~RPA! ~dashed!. The lattere has a zero at the plasm
frequencyvp where the noninteractingS0(v) vanishes, giving rise
to the well-known plasmon pole. At the zeros of the self-consist
e the self-consistentS0(v) has a reasonable magnitude~Fig. 2! and
the plasmon is killed. Here,r s54 anduqu50.25.
re

s
,

e

several zeros, none of which occur atvp ~see Fig. 3!. Fortu-
nately, these zeros do not have a large effect on the resu
spectral functionB(q,v), Fig. 4. The reason is thatS0(q,v)
is always finite at the zeros ofe(q,v). It should be noted
that these anomalies occur mainly at small momentum tra
fers ~small q! and their possible adverse effects are wash
out by the ensuing momentum integration involved in co
puting G~v! from Eq. ~12!.

In Figs. 5~a! and 5~b!, we compare the self-consisten
spectral functionG for the self-energy with the correspond
ing quantity obtained previously in partially self-consiste
calculations. Around the Fermi level the two results forG are
similar; i.e., both results show the well-known, correct qu
dratic energy dependence. At a distancevp and further away
from the Fermi level, however, the differences are strikin
The sharp structures produced by the Lindhard screen
function in the partially self-consistent case have almost v
ished in the fully self-consistent result. Instead, there is br
and rather structureless spectral weight of considerable m
nitude at large energies—positive and negative. Such we
is of little consequence to the spectral functionA as seen in
Eq. ~22!. Needless to say, the loss of the sharp structure
the plasma frequency in the self-consistent calculation is
reason for the disappearance of the plasmon satellite in
calculation.

In Fig. 6 we do the same comparison for the real part
the correlation contribution to the self-energy, i.e., the l
term in Eq.~11!. Again, we notice the loss of sharp structu
and the larger magnitudes far away from the Fermi leve
the fully self-consistent calculation. At the Fermi level, how
ever, the two curves have almost the same value, indica
that the correlation contribution to the chemical potential
similar in the two cases. As a matter of fact, the same
approximately true also for the Hartree-Fock part of the s
energies and the chemical potentials of theGW and theGW0
calculations are thus rather similar.

We also notice the smaller slope of theGW result at the

t-

h

t

FIG. 4. The spectral functionB(q,v) of the screened interaction
W(q,v) ~solid! is compared to the corresponding quantity with
normal RPA~dashed!. Notice the plasmon pole atvp in the case of
the RPA. The residue of this pole is essentially the same as
weight under the entireB(v) curve. Here,r s54, anduqu50.25.
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Fermi level. This slope determines the so-called quasipar
renormalization factorZk according to

Zk5F12
] ReS~k,v!

]v G
v5Ek

21

, ~24!

where the quasiparticle energyEk , as usual, is defined to b
the solution to the Dyson-like equation that determines
real part of the poles of the Green’s function@Eq. ~19!#.
Thus,

Ek5ek1S~k,Ek! . ~25!

The imaginary part,

Gk5
1

p
uImS~k,Ek!u5G~k,Ek! ~26!

FIG. 5. The spectral functionG~k,v! of the self-energy at full
self-consistency~solid! is compared to corresponding quanti
~dashed! from a partially self-consistentGW0 calculation~Ref. 1! at
the Fermi surface@k5kF (a)# and at the bottom of the band@k
50 (b)#. Notice the same parabolic shapes around the Fermi l
but also the transformation of the sharp structures in theGW0 case
to the very wide structures obtained in the fullGW calculation.
Here,r s54.
le

e

of the self-energy atEk is a measure of the width of th
quasiparticle peak. As we shall see below, the quasipar
peak below the Fermi level is so sharp thatEk really corre-
sponds to the maximum of the quasiparticle peak in the sp
tral functionA(v).

In Fig. 7 we display the quantityZk , which thus gives the
weight of the quasiparticle relative to all satellite structur
We see that the weight of the quasiparticle has increa
with respect not only to a normalG0W0 calculation but also
compared to a partially self-consistentGW0 calculation. This
is also evident from Table I, giving the renormalization fa
tor ZF5ZkF

at the Fermi surface at two different densities.
Fig. 7, we also see the loss of structure in the self-consis

el

FIG. 6. The real part of the correlation contributio
ReS(kF ,v)2(HF(kF), to the self-energy at full self-consistenc
~solid! is compared to the corresponding quantity~dashed! from a
GW0 calculation~Ref. 1!. Notice again the loss of sharp structure
the full GW result and the smaller slope at the Fermi level. He
r s54.

FIG. 7. The quasiparticle renormalization factorZk @Eq. ~24!# of
the full GW calculation~solid! is compared to the correspondin
quantity from aGW0 calculation~dashed! and from aG0W0 calcu-
lation ~dotted!. Notice the increase of quasiparticle weight with
larger degree of self-consistency. Notice also the loss of struc
due to plasmon decay in the fullGW result. Here,r s54.
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result. This is, of course, again associated with the repla
ment of the plasmon satellite with a broad and feature
structure.

The resulting self-consistent one-electron spectral fu
tions A(k,v) are displayed in the Figs. 8~a! and 8~b! and
compared with those of our previous partially self-consist
GW0 results. The most notable differences are the disapp

TABLE I. The quasiparticle renormalization factorZF from
three different calculations:G0W0 , GW0 , and GW. Results are
given for the densities corresponding tor s52 and 4.

ZF

r s G0W0 GW0 GW

2 0.764 0.804 0.846
4 0.645 0.702 0.793

FIG. 8. The resulting one-electron spectral functionA(k,v)
from the full GW calculation~solid! is compared to the correspond
ing quantity from the partially self-consistentGW0 calculation
~Ref. 1! ~dashed!. In ~a!, the comparison at made at the Ferm
surface,uku5kF , and~b! shows the same comparison at the botto
of the band,uku50. In ~a! the height of the quasiparticle peak cann
be accommodated within the figure. Notice in both figures the l
of plasmon satellites in the fullGW calculation. Notice also in~b!
the markedly larger bandwidth in theGW case. As before,r s54.
e-
s

-

t
r-

ance of the plasmon satellite and the larger bandwidth s
in the fully self-consistent results.

Experiments show that the bandwidths of simple met
are of the order of 10% more narrow as compared to
results of band-structure calculations employing a local a
energy-independent potential, i.e., like that of the LD
Thus, there was originally some hope that aGW calculation
would cure this problem—and a non-self-consistentG0W0
calculation for the electron gas does indeed produce a m
narrow bandwidth although not narrow enough. One of
conceptual deficiencies of a non-self-consistent procedur
of course, that the final results depend on the rather arbit
choice of zeroth-order Green’s function (G0). Therefore, it
was disappointing to find that a partially self-consistentGW0
calculation gives a bandwidth larger than that of nonintera
ing electrons.1 This unfortunate circumstance led to the ho
that a fully self-consistent calculation (GW) might rectify
the situation. It is therefore perhaps even more disappoin
to see that the fully self-consistent procedure actually ma
the problem even worse.

As seen in Fig. 9, at a density corresponding to that
sodium (r s54), the bandwidth is more than 20% larger th
that of noninteracting electrons and some 15% larger t
that predicted by a partially self-consistent calculation. T
result is somewhat difficult to understand. In aG0W0 calcu-
lation, the Hartree-Fock part of the self-energy is that
noninteracting electrons, causing almost a doubling of
bandwidth. This effect is more than compensated for by
dynamic part of the self-energy, which is calculated fromG0
andW02v. In a GW0 calculation, the dominating quasipa
ticle contribution to the dynamic part of the self-energy
scaled down by the renormalization factorZk and that part of
( is no longer able to cancel the large Hartree-Fock con
bution. The fact that the latter is reduced somewhat by
use of interacting occupation numbers in Eq.~13! improves
the situation but does not cure the problem. In the fully se
consistent case, the magnitude of the quasiparticle contr
tion to the Green’s function and, therefore, to the dynami

s

FIG. 9. The dispersionEk of the quasiparticles is compared to
free-electron parabola~small dots! for the casesG0W0 ~dotted!,
GW0 ~dash-dotted!, and GW ~solid!. Only the simplestG0W0

shows the desired band narrowing and theGW result is the worst.
Here,r s54.
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part of the self-energy is larger and one would expect a be
cancellation of the Hartree-Fock enlargement of the ba
width. Unfortunately, in this case, the effect on the occu
tion numbers and, therefore, on the Hartree-Fock contr
tion appears to be even larger, resulting in an increa
bandwidth. Consequently, a smaller bandwidth in better h
mony with the experimental facts can only be achiev
trough vertex corrections. That vertex corrections indeed
capable of giving the desired band narrowing was rece
demonstrated by Mahan and Sernelius12 and by Shirley.13

Finally, we say a few words about the momentum dis
bution functionnk @Eq. ~14!# and the lifetime 1/Gk of the
quasiparticles. The latter is displayed in Fig. 10 and
former in Fig. 11. With no well-defined plasmons, as in t
GW case, there is no possibility of energy loss through

FIG. 10. The inverse lifetime of the quasiparticlesGk @Eq. ~26!#
at full self-consistency~GW, solid! is compared to the correspond
ing quantities fromGW0 ~dashed! andG0W0 ~dotted! calculations.
The two latter results show a region with much shorter lifetim
caused by inelastic collision with plasmons. This physically corr
feature is absent from the fullGW result. As before,r s54.

FIG. 11. The momentum distribution functionnk @Eq. ~14!# of
the full GW calculation is compared tonk from GW0 ~dashed! and
G0W0 ~dotted! calculations. Again, we notice the increase in qu
siparticle weight, represented by the size of the discontinuity, as
increase the degree of self-consistency. As before,r s54.
er
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elastic collisions with plasmons. Consequently, in theGW
case, the quasiparticles peaks are rather sharp at all
menta. TheG0W0 and theGW0 results clearly show a more
physical behavior with a large decrease of the lifetime at
onset of decay through plasmon production.

The discontinuities in the momentum distribution fun
tions in Fig. 11 are equal to the weight of the quasipartic
at the Fermi surface. Consequently, these distribution cu
again show an increase in quasiparticle weight with a lar
degree of self-consistency. Note that the area under e
curve gives the electron density of the system. As will
discussed in Sec. IV, theGW calculation reproduces th
free-electron result and this can also be shown to be tru
the case of theGW0 calculation.14 As a matter of principle,
theG0W0 procedure is known to violate15 this exact relation
but, as was discussed in Ref. 1, it is numerically true beyo
the accuracy of our numerical procedures.

IV. THE TOTAL ENERGY

Perhaps one of the most interesting features of the pre
fully self-consistent way of doingGW calculations is the fact
that it represents a conserving approximation in the se
defined by Kadanoff and Baym.6,7 Such approximations pre
serve particle number, energy, momentum, and angular
mentum under external perturbations. They also obey a n
ber of additional consistency requirements that one mi
desire from a reasonable theory.7 As an example we migh
consider for a moment the total energy, which is a we
defined quantity in an exact theory. Within MBPT, howeve
this uniqueness is easily lost. We often try to find appro
mations to the one-electron Green’s functionG from which
the total energy can be calculated. The road towards the
proximate G most often passes the two-particle Green
function from which the total energy also can be calculat
In this way, we can obtain two total energies, which, in mo
approximations, do not agree. We are thus faced with
problem of deciding which is the most accurate total ener
One of the virtues of conserving approximations is that d
ferent ways of calculating the total energy give identical
sults. For instance, having some approximationG(k) to the
Green’s function@k here represents the four-vector~k,v!#,
we easily obtain the expectation valueT of the operator rep-
resenting the kinetic energy,

T522iV(
k
E dv

2p
ekG~k!. ~27!

Here,V is the total volume of the gas. Having also som
approximation to the self-energy((k), we can calculate the
expectation valueU of the Coulomb interaction,

U52 iV(
k
E dv

2p
G~k!S~k!. ~28!

Adding the piecesT and U to form the total energy (E
5T1U), we obtain the Galitskii-Migdal10 formula after a
few manipulations that require thatG and ( are coupled
through Dyson’s equation, Eq.~19!:

s
t

-
e



su
on

n
m

w

e

so
ur
he

b
ns
d-
se
lt
d
ic
te
c
o

e
om
f
in
nt
u-

m
e

y
on

n
p-
nu-

ork
e-

e to
ny-
ur

g
ble
ld,
well
asi-

ri-
icle
nly
rom
ifts

d
. A

tal
ex

in
at

l

m
et-
ent
nal

his-
e

of
nt
if
to

cu-
ver,
lly
be
ent

te

2116 57B. HOLM AND U. von BARTH
E5V(
k
E ~v1ek!A~k,v!dv. ~29!

The total energy can also be obtained through the u
Hellman-Feynman trick, i.e., by integrating the interacti
energyU(l) regarded as a function of the strengthl of the
Coulomb interaction with respect to that samel,

E5E01E
0

1 dl

l
U~l!. ~30!

Here,E0 is the total energy of the same number of no
interacting electrons. The beauty of a conserving approxi
tion is that these two ways of obtaining the total energy@Eqs.
~29! and ~30!# produce the same result—something that
have verified to within our numerical accuracy~approxi-
mately two significant figures!.

A third way of obtaining the total energy is through th
chemical potentialm defined by Eq.~21!. An alternative and
perhaps more fundamental definition ofm is the exact rela-
tion

m5
]E

]N
, ~31!

whereN is the total number of electrons in the system. Al
this relation is obeyed to within two significant figures in o
numerical calculations, thus adding to the credibility of t
present work.

In Table II we compare our total energies to those o
tained from the Green’s-function Monte Carlo calculatio
by Ceperley and Alder.9 The latter energies are often consi
ered to be very close to the exact ones. It is striking to
how close our total energies are to the Monte-Carlo resu

We did not anticipate such a close agreement. We fin
hard to believe that any theory, like the present one, wh
does not include some reasonable approximation to the in
particle interaction at close range, could ever yield an ac
rate energy. Such a theory must certainly involve higher
ders of the screened interactionW. As far as the total energy
is concerned, it appears as if errors due to an improper tr
ment of the Coulomb interaction at short distances are c
pensated by errors from a less than adequate treatment o
screening effects at long distances. As will be described
future publication,14 the total energy of the self-consiste
GWA is a variational quantity that might explain the acc
rate energies obtained in the present work.

We end this section with a remark about the particle nu
ber. We note that the only input parameter of the pres
theory is the Fermi momentumkF in Eq. ~21!. There is thus

TABLE II. The total energies from the fullGW calculation at
different densities (r s) are compared to the results from the Mon
Carlo calculations by Ceperley and Alder~Ref. 9!.

E/N (Ry)
r s GW MC

2 0.005 0.004
4 20.156 20.155
al
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no immediate reason to believe that the particle densitn
calculated from the final self-consistent Green’s functi
through the formula

n52(
k
E

2`

0

A~k,v!dv ~32!

should yieldn5kF
3/(3p2) as for free electrons. As prove

by Baym,7 however, this is indeed true in conserving a
proximations and we have here verified the same thing
merically to a high degree of accuracy.

V. CONCLUSIONS

The purpose of the present work and our previous w
on self-consistentGW calculations is to elucidate the cons
quences of different ways of performingGW calculations in
general. We were, however, also motivated by the desir
see a truly conserving approximation at work in a real ma
body system. In this section we will try to summarize o
most important findings.

During our investigations, we have found that allowin
for a broadening of quasiparticles usually has a negligi
effect on the final one-electron Green’s function. We cou
however, imagine cases when the quasiparticles are less
defined broad structures. In such cases, the effect of qu
particle decay could become important.

In the present investigations on the translationally inva
ant electron gas, there is no substantial shift of quasipart
energies. Thus, in simple metals we would anticipate o
small changes in the calculated one-electron spectrum f
using a starting Green’s function with reasonable sh
~10%! in the one-electron energies.

In going from aG0W0 to a GW0 calculation and further
to a full GW calculation in the notation of this work, we fin
a steady deterioration in the description of the bandwidth
fully self-consistentGW calculation in sodium could easily
yield a bandwidth one-third larger than the experimen
width. This result clearly indicates the necessity of vert
corrections.

The description of satellite structure is not satisfactory
any kind ofGW approach. The description is reasonable
the levels ofG0W0 andGW0 but it breaks down at the leve
of full self-consistency (GW).

In going from aG0W0 to a GW0 calculation and further
to a full GW calculation, the total energy as obtained fro
the Galitskii-Migdal expression becomes systematically b
ter and the energy is very accurate in the fully self-consist
theory. It should be noted, however, that there are variatio
and other ways of obtaining total energies from less sop
ticated GW calculations. This will be discussed in futur
publications

Calculations for real solids based on MBPT at the level
G0W0 is quickly becoming routine. Partially self-consiste
calculations for real solids are within reach, particularly
there are not too many atoms per unit cell. We still have
find a few proper shortcuts before fully self-consistent cal
lations become feasible. The present investigation, howe
clearly demonstrates the futility of such huge efforts. In fu
self-consistent calculations a lot of computing power will
spent on producing quite inferior results. Instead, the pres
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calculations demonstrate that we should now direct our
forts towards constructing vertex corrections that prope
account for the cancellation between self-energy inserti
and particle-hole and hole-hole interactions.
e
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