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1.1 Introduction

It is certainly necessary to reflect on the terms statistics and stochastics. It
is the purpose of statistics to extract essential parameters, like the mean
value, the variance, etc., from data which contain a random component. In
contrast, stochastic means accidental or random. Thus, statistics extracts
regular patterns out of randomness while stochastics employs random-
ness deliberately, for instance when possible states of a model system are
to be ‘tested’.

One can consider random effects in model systems using different meth-
ods. For instance, in BOLTZMANN's kinetic gas theory as well as in the the-
ory of diffusion one doesn’t know about random forces. These are built in
statistically by making certain assumptions on the probability density in
phase space - e.g. detailed balance, molecular chaos, etc.
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On the other hand, it is possible to describe the diffusion of a single
particle using stochastics, i.e.: using an equation of motion which explic-
itly includes randomness. Such an equation was postulated by the math-
ematician P. LANGEWIN 1907 in an attempt to describe Brown’s motion:
the stochastic differential equation

mcg‘l—;r(t) = —yv(t) + S(t), (1.1)
v(t) = —pv(t) + S'(t). (1.2)

Here, —yv(t) describes the retardation due to the viscosity of the fluid the
particle experiences in his motion within the fluid. S(¢) is the stochastic force
which has its origin in random collisions of the particle with molecules the
fluid consists of. [Eq. (L) was derived rigorously in the 1970s.] It is the
main purpose of this chapter to develop methods which will allow to treat
such a stochastic force as a random variable and which will, ultimately,
yield solutions of Eq. (LT).

Of course, a solution of Eq. (LT) is only possible using numerics and,
obviously, the stochastic force has to be sampled. The mean value of each
component of S(¢) is zero and its variance is closely related to the viscosity
v and the temperature of the fluid. This results in the methods of stochastic
dynamics which, obviously, are based on the sampling of some random
variable. It is simply pragmatism when we identify stochastic procedures
as methods which involve the use of a random number generator.

GIBB’s formulation of statistical mechanics uses a big number of in-
accurate copies of one particular system instead of studying just this one
system. All these copies are members of an ensemble differ only little from
each other and the variance is well known. In this case randomness ap-
pears only indirectly via statistical assumptions. Nevertheless, there is a
stochastic method to calculate ensemble mean values: the Monte Carlo
Method. This method generates the ensemble step by step by generating
a series of random copies of the basic model system by sampling each time
type and size of the variation of the previous copy. One speaks of a ran-
dom walk in GIBB’s phase space. Such a procedure depends on the use
of a biased dice and it is an important task to develop random number
generators which provide a sequence of numbers which possesses certain
required statistical properties.

Physics has changed considerably since the development of quantum
mechanics which is naturally of stochastic nature. Today, one is convinced
that the fundamental processes elementary particles experience are of sto-
chastic nature and do not depend on unknown, hidden parameters. Thus,
stochastics is of elementary importance in modern physics.



1.2 Random Sampling Methods

The first component of a Monte Carlo calculation is the numerical sam-
pling of random variables with specified probability distribution functions
(PDFs). In this section we describe different techniques to generate ran-
dom values of a variable x distributed in the interval [z, Zmax] according
to a given PDF p(z). We concentrate on the simple case of single-variable
distributions, since random sampling from multivariate distributions can
always be reduced to single variable sampling.

1.2.1 Random Number Generator

In general, random sampling algorithms are based on the use of random
numbers r uniformly distributed in the interval [0, 1]. They are described

by the PDF:
[ 1 relo,1]
u(r) = { 0 otherwise. (1.3)

This results in the cumulative distribution function

" 0 r<o0
Ulr) = /dr'u(r') =<¢r 0<r<l1 (1.4)
0 1 r>1.

Among the simplest algorithms for pseudo random numbers are the
linear congruential generators (LCG) which are based on the recursion

X1 = (aX; + ¢)mod m,

where the integers a, ¢, and m are constants. These generators can further
be classified into mixed (¢ > 0) and multiplicative (¢ = 0) types, usually
denoted by LCG(a, ¢, m) and MLCG(a, m), respectively. An LCG generates
a sequence of pseudo random integers X;, X»,...between 0 and m — 1; for
a MLCG the lower bound is 1. Each Xj is then scaled into the interval [0, 1).
If the multiplier a is a primitive root modulo m and m is prime, the period
of this generator is m — 1

A commonly used choice of parameters for the MLCG is the ‘miracle
number’ a = 16807 = 7° and m = 2% — 1. This yields the GGL generator
(sometimes denoted by CONG or RANDO) which is given by:

R,

Rn = (75 Rn—l) mOd (231 - 1) s Tn = m

(1.5)
It produces a sequence of random numbers r,, uniformly distributed in
[0, 1) from a given seed Ry < 23! — 1 and odd. The generator (L5) is known
to have good random properties. However, the sequence is periodic, with
a period of the order of 2%! —2 ~ 2.15 x 10°. This not large enough for more
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complex simulations to prevent re-initialization in a single run. Neverthe-
less, for most purposes, the random number generator provided by the
operating system is good enough.

Another known problem of this generator is that D-dimensional vec-
tors (z1,2,...,2p), (Tp41,Zp+2,...,22p), ...formed by consecutive nor-
malized random numbers z; € [0, 1) lie on a relatively small number of
parallel hyperplanes.

1.2.2 Inverse Transformation Method

The cumulative distribution function (CDF) G(z) of the PDF g(x)

G = [wg) g z0. [arg@)-1 @)

Zmin Zmin

is a non-decreasing function of z and, therefore, it has an inverse function
G~1(€). The transformation ¢ = G(x) defines a new random variable that
takes values in the interval [0, 1]. Owing to the correspondence between
the x and ¢ values, the PDF of ¢, ¢¢(¢), and that of z, g(z), are related by
ge(§)d¢ = g(z)dx. Hence

0@ =0 (5) =g () @1 )

that is, ¢ is uniformly distributed in the interval [0,1], i.e.: g¢(§) = wu(r)
according to Eq. (L3).

Now, it is clear that if £ is a random number, the variable defined by
r = G71(&) is randomly distributed in the interval [zyin, Zmax] With PDF
g(x). This provides a practical method of generating random values of =
using a generator of random numbers uniformly distributed in [0, 1]. The
randomness of z is guaranteed by that of £. Note that x is the (unique) root
of equation

T

£E= /dx'g(x'), (1.8)

which will be referred to as the sampling equation of the variable z. This
procedure for random sampling is known as the inverse transform method,
it is particularly adequate for PDFs g(z) given by simple analytical expres-
sions such that the sampling equation (L&) can be solved analytically.
Consider, for instance the uniform distribution in the interval [a, b]:

1
b—a

9(x) = uap(r) =

The sampling equation (L.8) then reads

Tr—a

g_ b—a’
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Figure 1.1: The rejection method.

which leads to the sampling formula:
r=a+téb—a), £€01].

As another example consider the exponential distribution

g(s) = %exp{—i}, s> 0,

of the free path s of a particle between interaction events. The parameter A
represents the mean free path. In this case, the sampling equation (L8 is
easily solved to give the sampling formula

s=-AIn(1-¢)=—-AIn¢. (1.9)

The last step follows from the fact that 1 — £ is also a random number
distributed equally in (0, 1].

1.2.3 Rejection Methods

The inverse transform method for random sampling is based on a one-to-
one correspondence between z and ¢ values, which is expressed in terms
of a single-valued function. There is another kind of sampling method,
due to VON NEUMANN, that consists of sampling a random variable from
a certain distribution [different from g(z)] and subjecting it to a random
test to determine whether it will be accepted for use or rejected. These
rejection methods lead to very general techniques for sampling from any
PDF.
We want to generate random numbers following a PDF g(z)

0<g(x) <1, /d;z:g(x)zl, x € [a,b].



We choose another PDF
b
0 < h(zx)>1, /dx h(z) =1,

which is rather easy to sample in such a way that
g(z) <ch(x), Vzé€la,b)],

with ¢ a constant. Thus, ¢ h(z) is in the interval [a, b] the envelope of the PDF
g(z). (See also Fig.[[LTl) Random numbers distributed according to the PDF
g(x) are generated according to the following procedure:

Algorithm 1 Rejection Method
begin:
Generate random variable z7 from h(x)
Generate random number 7 from u(x), Eq. (L3).
if r > [g(z7)/(ch(2T)] then
go to begin
else

accept 7
EXIT

Proof:
If p(Ala™ B) = [g(z7)/(ch(2™)] is the probability of accepting a value z” we
get:

p(x(B) o plx = 2" |B)p(Al2"B)

g(z")
ch(zT)

x g(z?).

o h(z")

The accepted random numbers z” follow indeed the PDF g(z).
Probability of acceptance:

The probability of acceptance P(A|B) is determined by:

P(AIB) = [da" p(Ax"|B)




Thus, the bigger c the worse the probability of acceptance becomes. If we
apply rejection methods to d dimensions, we get:

P(A|B) = (%)d

1.2.4 Probability Mixing

This method has its application in cases in which the PDF f(z) is com-
posed of a number of PDFs in an interval [a, b]:

flz) = Z filz), (1.10)

with

Let us define:

a; = /dﬂffz'(@,

a

4 = ZO%
=1
N b

a = Zai:/dxf(x).
i=1

a

Thus, the interval [a, b] has been divided according to:

|
I
0 q1 q2 q3 q4 q5 q6 a

An equally distributed random number r € [a, b] can now be employed to
determine the index ¢ for which the condition

qi—1 <1 <g;

is fulfilled.

This procedure is quite plausible: The «; give the area under the PDF
fi(x) within the interval [a, b]. Thus «; is an indicator for the importance
of the PDF f;(z). This in turn gives us the probability that the random
variable X is to be sampled using the PDF f;(z).



1.3 Stochastic Processes

Stochastic processes are time dependent processes which depend on ran-
domness. Stochastic processes are used in classical thermodynamics to
compensate, for instance, the fact that the exact motion of particles in a
gas are unknown. Quantum processes, in contrast, are random by nature.
A. EINSTEIN studied in a seminal work (1905) Brown’s motion and thus
started the investigation of stochastic processes in physics. N. WIENER
proceeded 1922 with a systematic investigation of Brown’s motion. Fol-
lowing N. WIENER’s ideas A.N. KOLMOGOROV developed a general the-
ory of stochastic processes. Elementary events are, in this picture, possible
trajectories in phase space, i.e.: realizations of a process. The probability
of the existence of a number of such trajectories is then a measure in the
space spanned by the trajectories. Thus, the theory of stochastic processes
develops quite naturally into a measure theory and integrals over sub-
aggregates of a space spanned by functions. This was later on used par-
ticularly by FEYNMAN in his alternate access to quantum mechanics - the
FEYNMAN-Integral or path integral in which averages over possible trajec-
tories of quantum particles are calculated.

1.3.1 Time Series

We are interested in instances ¢t = 0, At, 2A¢t, ..., with At > 0. Each in-
stance ¢t = nAt is associated with a random variable X,,. z,, is the mea-
sured value of X,, at instance t = nAt. An important issue in the analysis
of time series is the detection of periodicities or the proof of aperiodicity.
For this purpose the method of the empirical autocorrelation coefficient or the
modern method of spectral analysis is employed.

The Empirical Autocorrelation Coefficient

We have a set of NV + 1 data points (time series) zy, 1, ..., y as the result
of an experiment. We set the number £ = 1, 2, ..., N/2 and investigate
the two subsets

Loy, L1y -y TN

and
Ty Tht1y - -5 TN-

We then define the empirical autocorrelation coefficient

3 (= (X)) (= (V)
ri = = ot (1.11)
(o~ (XS (- (1)



or more precisely, the k-th autocorrelation coefficient of our set of data
points. (Please see also Appendix[Al) Here we used y; = z;,, and

1 N—k
X) = —— .
(X0 N—k+1j§0%’

N—k

1

Obviously, —1 < r; < 1 and increasing values of r; indicate a growing
correlation between data points found by a time shift of kAt.

(i) Is, for instance, |ry| particularly large for & = m, 2m, 3m in com-
parison to other results for |ry| then there is a strong indication of a
period T' = 2mAt in the data set.

(ii) Small values of |r| are a strong indication that there is practically no
correlation between data points. We have most likely an aperiodic
behavior.

Spectral Analysis of Discrete Time Series

In a first step the notion stationary time series needs to be defined. For this

purpose we introduce a series of random variables X,, on a probability
field E as
X, EFE—R, n=0,=+1, £2, ...

with 0 < std(X() < co. We interpret X,, as a random variable assigned to
the instance ¢t = nAt and the series is stationary only if

(X)) = (Xo) (1.12)
cov(Xp, Xnak) = cov(Xo, Xi), Vn, k=0, +1, £2, ... (1.13)
Here,
cov(X,Y) = ((X — (X)) (Y = (Y))),

and, in particular,
cov(X, X) = var(X).

The autocorrelation coefficient r, is then defined as

~cov( X, Xogr)
©ostd(X,) std(Xyg)

k=1,2, ... (1.14)

Tk

and, thus, r, is the autocorrelation coefficient of the random variable X,, at
instance nAt with the random variable X, at instance (n+ k)At. The fact
that the series is stationary in time is expressed by the fact that the expec-
tation value (X,,) and the standard deviation std(X,) no longer depends
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on the instance t = nAt. Thus, the autocorrelation coefficient r;, depends
no longer on the chosen instance but only on the time interval kAt.
If we define R(k) = cov(Xy, Xj), with R(—k) = R(k), V k, we get

cov(Xy, Xnqx)  cov(Xo, Xi)
std(X,)std(X,1x)  std(Xy)std(Xy)
= [std(X}) = std(X,), stationary]
R(k)

R(0)’
with R(0) = std(X,) std(Xy) = var(Xy) = cov(Xg, Xo).

Tk

Theorem 1.1 Let ) |R(k)| < oc. Then, the function
k=0

_ 1 = —ik A
fO) =5 k:zoo R(k)e (1.15)
is continuous and we have
R(k) = /dA f(N)e*A Vik=0,=+1, +2, ... (1.16)

This is the so-called spectral theorem.

In particular, we find for the variance:

™

var(X,) = R(0) = /d)\ f(A), v n.

—Tr

The 27-periodic function f(\) is the spectral density of a stationary time
series. It contains information on the standard deviation std(X) and on
the autocorrelation coefficient 7.

Example 1: Let
R(£n) #0, R(k)=0, Vk#n

for a fixed number n > 1, € N. Then

nA inA) _ R.
5 (e7 4 &™) — cos(nA), A€

Example 2: Let

then
fA)=——= XeR

Such an uncorrelated time series is called white noise.
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Statistics with Discrete Time Series

(X,,) is a discrete time series which is stationary. We want to give estimates
for the most important quantities on the basis of a set of data

Loy L1y «- -y TN-1
under the assumption that /V is large enough.

(i) Estimate of the expectation value (X,,) for all n:

B i N-1
/"L_ N - x'l
1=0
(ii) Estimate for R(k):
| Nk
Ry(k) = N_k (2 — 1) (@540 — 1)

Rn(k)/Rn(0) is an estimate for the autocorrelation coefficient 7. Ry (0)
itself is an estimate for the variance var(X,,).

(iif) Estimate for the spectral density:

2

1 N-1
_ - —in\
T = 2Nm nz:%xne

1.3.2 MARKOV Chains - The Stochastic Matrix

J. BERNOULLI developed a scheme for experiments which was based on
the idea of independent experiments. 1906 A. MARKOV studied for the
first time chains of dependent events. This was the first and most simple
generalization of BERNOULLI’s scheme to interdependent experiments.

Basics

(i) We have a series of discrete instances

t =0, At, 2At, 3At, . ..

(ii) At each of these instances the system can be in the states
Zh 227 cey an

which span the state space S.
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(iii) We define the transition probability p;; from state Z; at instance ¢ =
nAt to state Z; at instance t = (n + 1)At. Obviously, p;; is the proba-
bility for the system to be in the state Z; at t = (n + 1)At if it was in
the state Z; at t = n/t.

It is typical for a MARKOV chain, that the transition probabili-
ties do not depend on a particular moment in time. We assume
homogeneity in time.

(iv) Transition probabilities are organized in the so-called transition ma-
trix:
Pun P12 --- Dik
P={p;}=|: + -~ . (1.17)
Dk1 Pk2 .- DPkk
P is a stochastic matrix, i.e.: all elements of P obey the inequality
0<py; <1,

and all row-sums of the £ x k£ matrix are equal to one:
k
j=1

The transition probabilities pgf) from state Z; at t = n/At to a state Z; at
t = (n + k)At can also be organized in a matrix

PO — {pP},

which, again, is a stochastic matrix. Using this definition we find the CHAPMAN-
KOLMOGOROV equation:

pltm) — pk) pm) Vim=1,2,... (1.18)
It results immediately in:
pP¥ = pk, (1.19)
Ergodicity
A MARKOV chain is called ergodic if the limits

p;j = lim pl(-?), 1=1,..., k (1.20)

n—oo
exist and are independent of i. Moreover,

k

J=0
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Thus, we get the significant result that the MARKOV chain completely “for-
gets’ its state at the beginning ¢ = 0. p; is interpreted as the probability of
the system to reach the state Z; after a long time independent of its starting
point. Thus, ergodic MARKOV chains can reach a stable end state indepen-
dently of their starting situation.

An example: Spread of a rumor

Z, and Z, are two versions of a report, namely, Z;: Mr. X is going to
resign, and Z,: Mr. X is not going to resign. Thus we have the following

transition matrix:
P:C—P P))
qg 1—gq

(i) Some person receives the report Z;. It will then pass this report on as
Zy with a probability p and as Z; with a probability (1 — p). Conse-
quently, the report will be modified with a probability p.

to the effect that:

(ii) In the same way, the report Z, will be modified with a probability g.

Realistically 0 < p < 1and 0 < ¢ < 1 and we find

1
lim P"z—(q p)

p1:L b2 = b
p+q p+q

Finally, we find under the assumption p = ¢

and, consequently

1

p1:p2=§,

with the result that after some time the public will be, with a probability of
p1 = 1/2, of the opinion that Mr. X will resign. This is certainly no longer
in any relation to the real intentions of Mr. X.

Recurrence

The system is in the state Z; at the time ¢t = 0. w, is the probability for the
system to return to the state Z; at the time ¢ = nAt for the first time. Thus,

w = iwn (1.21)
n=0

is the probability for the system to return into state Z; within a finite time
span.
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Theorem 1.2 The initial state Z; is recurrent if the probability w according to
Eq. (LZ1)) is equal to one. If this is not the case, the state Z; is called transient.

In terms of transition probabilities p;; the initial state Z; is recurrent if

the condition .
> opi =00
n=1

is fulfilled. Thus, if the system starts from the initial state Z; it will return
an infinite number of times to this state with probability one. On the other
hand, if the initial state Z; is transient then there will be a finite time span
after which the state Z; will never be reached again.

1.4 Random Series

1.4.1 Basics

In section [L2 we dealt with the generation of random numbers with the
particular property r, 11 = 0, i.e.: the random number generated in step
n should be uncorrelated to the random number generated in step n + 1.
In this section we will deal with the generation of a sequence of random
numbers which obeys a given statistical correlation. Within this context we
concentrate on random series, random processes on a discrete time scale. A
random series is a MARKOV process if

Pi( Xk | Xp—1... X1, B) = Py( Xy | Xy_1, B). (1.22)

This expresses that future values of a random variable X, are statistically
determined by present events and depend only on the event immediately
preceding, i.e.: Xj;_1. (This property is trivial for quantum systems.) The
same holds for the PDFs:

pk(ﬂfk ‘.T}kfl...lCl,B) :pz(ﬂfk |$Ck,1,[))>. (123)

This is also called the MARKOV-property. Finally, a MARKOV series, i.e.: a
random series with MARKOV-property, in which a random variable X can
only have NN discrete values is called a MARKOV chain as has already been
discussed in Sec.

The conditional probability

Pap = P(Xn = x,@‘anl = .I‘a,[)))

is the transition probability from state z,, to state x5 and the matrix {p,g} =
P is, again, a stochastic matrix. We introduce, furthermore, the single state
probability

Pa = P(X = z,|B)
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for the random variable X to have the value z,. One can collect these sin-
gle state probabilities into the vector p = (p,) and this vector together with
the matrix P describes completely the properties of the chain.

Thus, we find, for instance, the condition for the reversibility of a MAR-
KOV chain as

PaPap = PBPBa- (124)

This is the condition of detailed balance: p,, is the probability of realization
of a state z, and p,s is the probability to find in the next step the system
to be in state x5. Reversibility means that the identical states are equally
probable in reversed sequence, as it is expressed in Eq. (LZ24).

Theorem 1.3 In a stable, reversible MARKOV chain which is characterized by
p = (po) and P = {p,s} any value x,, will be realized with the relative occur-
rence p,. This is the Central Theorem of Monte Carlo Simulation.

A MARKOV chain is said to be irreducible if from each state it is possible
to get to each other state: that is, for each pair z,, 3 € S, there exists an
n > 0 for which pglﬁ) > 0. (This is just another way of defining ergodicity.)

For each state z, we define the period of x, (denoted d,,) to be the great-
est common divisor of the numbers n > 0 for which pg}x) >0.1Ifd, =1, the
state z,, is called aperiodic. It can be shown that, in an irreducible chain, all
states have the same period; so we can speak of the chain having the pe-
riod d. Moreover, the state space S can then be partitioned into subsets S;,
Sy,...,S4 around which the chain moves cyclically, i.e.: pg}}) = 0 whenever
zo € Si, vg € S; with j — i # n (mod d).

We now come to a fundamental topic of MARKOV chains which is the
convergence to equilibrium. A probability measure 7 = {7, }, cs is called
a stationary distribution (or invariant distribution or equilibrium distribution)
of the MARKOV chain in case

Z TaPga = Tg, V. (1.25)

A stationary probability distribution need not exist; but if it does, then a
lot more follows:

Theorem 1.4 Let P be the transition probability matrix of an irreducible MAR-
KOV chain of period d. If a stationary probability distribution m exists, then it is
unique, and m, > 0 for all x, € S. Moreover,

(n) dﬂ'ﬁ l:fl‘a GSZ', Zg GSJ‘ ZUlthj—Z:T(mOdd),
0 ifr, €S, x5 € S; with j —i # r (mod d),
forall x,, xg. In particular, if P is aperiodic, then

lim pg}; = 3.

n—~o0
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This theorem shows that the MARKOV chain converges as ¢t —
oo to the equilibrium distribution 7, irrespective of the initial
distribution p,,.

1.4.2 Brown’s Motion

The simplest way to generate a stable, Gaussian MARKOV process is the
iterative solution of the stochastic differential equation (I.T)). In one dimen-
sion it is of the form:
ox(t)
ot

With z(0) = x¢ we find the solution:

— —Bx(t) + S(¢). (1.26)

t
z(t) = zoe Pt + / dt' S(t')e P, (1.27)
0

We concentrate on the time slice At and calculate the next position of the
particle x(t,11) at t = t,,41 = t,, + At if the position of the particle at time
t = t,, x(t,), is known from Eq. (LZ2):

At
2(tnyr) = x(ty)e ™ + / dt' S(t, + t')e PO,
0

A solution of this problem is only possible if the properties of the stochas-
tic force S(t) are known. Let us assume, that S(¢) follows a Gaussian dis-
tribution around (S) = 0. Thus, the physics of the stochastic force, and,
therefore, of the Brown’s motion is determined by a PDF. The solution
of the problem will be feasible the moment a random series is available
which corresponds to a Gaussian distribution.

In a one dimensional problem we study a particle which moves along,
say, the z-axis. x gives the position of the particle at the time ¢. We define
with P(z € J,t'|y,t,B) the conditional probability for finding the parti-
cle within the interval J of the z-axis at time ¢’ if it was in position y on
the z-axis at time ¢. Thus, P(x € J,t'|y,t, B) is a transition probability. In
particular, we find for Brown’s motion:

P(IL' S J, t/|y,t,B) = /dxp(x7t,ﬂy7t)a
J

1 2 o0y
r. — —(z=y)*/2(t' =) !
plz,ty,t) = o t)e , Vi >t

Here, p(x,t';y,t) is a Gaussian PDF.
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The solution of our problem is found by introducing

At

Z(t,) = / dt’ S(t,, + t")e A1),
0

which is due to the stochastic nature of S(¢) a random series which can
be derived from P(xz € J,t'|y,t, B). According to our assumption, S(t) is
Gaussian distributed around (S) = 0 and consequently, Z(¢,,) is Gaussian
distributed around the mean value 0. We find for finite time slices

(Z)=0, var(Z)= % (1—e22Y) (1.28)
with (S(¢)S(t')) = Ad(t —t'). A, B, and At are known and determine the
stochastic force, the viscosity of the fluid, and the time slice.

The random series Z(t,,) is generated from a Gaussian PDF and results
in a numerical solution of the stochastic differential equation to describe
Brown’s motion. Z(t,,) can be generated using the following algorithm:

Algorithm 2 Brown’s Motion in One Dimension

Start at point z(0). [x(0) can be sampled from a Gaussian PDEF ]
n =20
repeat:

n=n+1

Sample Z(n) from a Gaussian PDE.

The next position is given by:

z(n+1) = z(n)e A + Z(n)

go to repeat

The Diffusion Equation

There are n particles in the fluid. During the time interval 7 the x-coordi-
nates of the particles increase by an amount A, with A being different for
each particle. A can be positive or negative. There will be a certain ‘law’
for A: the number dn of particles with a displacement within A and A+dA
can be expressed by

dn =n f(A)dA.
As f(A) is a PDF we have
/dA f(A)=1. (1.29)
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f(A) is a Gaussian distribution and, thus, is significantly different from
zero only for small values of A. Moreover, f(A) is symmetric:

We are now in a position to study how the coefficient of diffusion de-
pends on f(A) if we assume the number of particles v in the unit volume
to depend only on z and ¢. Thus, v = v(x,t). We then calculate the distri-
bution of the particles at time ¢ 4 7 from their distribution at time ¢. Using
the definition of f(A) itis easy to determine the number of particles which
can be found at time ¢ 4 7 between two planes perpendicular to the z-axis
at positions z and z + dx:

v(z,t +7)dx = dx /dA f(A)w(x+ At). (1.30)

— 00

7 is small and we expand:

ov(z,t)

viz,t+71)=v(x,t)+ 71 5

We also expand v(z + A, t) in powers of A:

0 t A? §? t
v(a,t) | A Pu(ot)

viz+ At) =v(x,t)+ A e 5 9.

This is used in Eq. (L.30):

) I ) r
V(x,t)+7$ _ y(x,t)/dAf(AH%/dAM(A)
— =1 — =0
+822(;’t) / dA%Qf(A)+--- (1.31)

As f(A) is symmetric the second, forth, ...terms vanish on the right hand
side of Eq. (L31)). Thus, Eq. (L31)) transforms into the diffusion equation

0 0?
EV(SCJ) = D@”(ﬂf,t%

with the coefficient of diffusion

1

D:;/dA%Qf(A).

—00
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Figure 1.2: Classical random walk in one dimension.

Classical Random Walk in One Dimension

The z-axis is divided into equidistant lattice points
x =0, £Ax, £2Ax, ...
and we study the Brown’s motion of the particle at discrete instances
t=0, At, 2A¢, ...

At time ¢t = 0 the particle is assumed to be at position x = 0. The particle
is found at position x = mAx at some other instance ¢ = nAt. In the
next time slice, t = (n + 1)At, the particle will be found with probability
p = 1/2 at the right hand neighbor position = (m + 1)Az and with the
same probability at the left hand neighbor position © = (m — 1)Ax as is
shown in Fig.

Such a procedure is called classical random walk. It is also the most sim-
ple form of a WIENER-LEVY process.

The WIENER-LEVY Process

The parameter 3 in Eq. (L2) is set equal to zero. This results in

) = 3 20)

e(n+1) = a(n)+Z(n),

with
At

Z(n) = /dt'S(tn + ).

0
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Z(n) is a random variable sampled from a Gaussian distribution with
(Z) = 0 and var(Z) = AAt according to Eq. (LZ8). Obviously, = and Z
are uncorrelated and we find

(z(n)) = > (ZWw)) =0,
varfz(n)] = > (Z(v)Z(V)) = nAAt.
A S PV’

Thus, the variance of z increases linearly with the number of steps. The
random process is no longer stable. This process is Brown’s random walk
or an unbiased random walk.

Algorithm 3 Unbiased Random Walk in One Dimension
Define values A and At.
n=0,z(0)=0
repeat:
n=n+1
Sample Z(n) from Gaussian PDF, Eq. (I.28)
z(n+1)=z(n)+ Z(n)
go to repeat

If we identify x with the Cartesian coordinate of a diffusing particle
then var[z(n)] is the mean displacement of the particle after n time slices.
The relation A = 2D can then be used to correlate the coefficient of diffu-
sion D to A.

The METROPOLIS Algorithm

The condition of detailed balance (L.Z4) does not uniquely determine the
stochastic matrix P. A given PDF f(zy, ..., xx) can result in numerous
transition matrices which obey detailed balance. Quite popular is the me-
thod discussed by N. METROPOLIS, the asymmetric proposition: All x g within
a certain neighborhood of z,, can be reached with the same a priori proba-
bility 1,3 = 1/Z, with Z the number of possible x4 (including z,). Thus,
we have

Ha,@ = 1/Z Y% > Pa
Pap = (1.32)
Haﬁi_zv DB < Pa;
or in reverse:
Hﬁazl/Z, paZpB
Dga = (1.33)
H,Balpj_;7 Da < Pg-

It becomes immediately apparent that detailed balance is obeyed:
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Algorithm 4 Biased Random Walk

Choose neighborhood Az
Step n
z(n) = x,
sample random number 7 from PDF (L.3)
Generate x4 from the neighborhood of z,:
g = To + (r—0.5)Az
This corresponds to a a priori probability of [1,5 = 1/7
if min[1, p(z3)/p(z,)] = 1 then
z(n+1) = x4
else
sample random number r from PDF (L.3)
if r < p(z3)/p(z,) then

z(n+1) =3
else
z(n+1) = z,.
(i) pa > pg:
I |
paZ—p'BZpg —paZ
(ii) pa < ps:
1p,8 . 1
paZpa —pBZ-

For o = 3 detailed balance is obeyed trivially.
Sometimes a symmetric proposition

Ps
Pap = 11, (1.34)
7 ﬁpa + Dbs

is used; it is also possible to apply a priori probabilities different from 1/Z.
The only requirement is that they are to be symmetric in o and g.

The central theorem of Monte Carlo Simulation together with METROPO-
LIS’ asymmetric proposition are the key to another algorithm which can be
used to generate random numbers according to a given probability vector
p. This will, again, be a random walk but in contrast to the WIENER-LEVY
process a biased random walk. Such random numbers will not be uncorre-
lated, the autocorrelation coefficient will always be different from zero.

p = {pa|a = 1,2,...} is the vector of probabilities for events X =
{zo|a = 1,2,...} and we want to generate a random series {z(n)} in
which the relative accumulation of the event X (n) = z, asymptotically
reaches p,. This results in algorithm Bl It is good practice to choose the
neighborhood Az around z, in such a way that the rate of acceptance for
new states z 3 is about 50%.
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One of the most important applications of the biased random walk is
the simulation of a system of V particles. In this case z(n) is interpreted
as a vector of 3N coordinates and the probability p(x,) is defined by the
thermodynamic probability, i.e.: a BOLTZMANN PDE. The central theorem
of Monte Carlo simulation establishes that under the condition of a correct
random walk all possible microscopic arrangements of those N particles
will be “visited” according to their relative accumulation.
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