
Chapter 3

Neural Networks

Literature

• W. KINZEL and G. REENTS, Physik per Computer, Spektrum akademis-
cher Verlag, 1996.

• J. HERTZ, A. KROGH, and R.G. PALMER, Introduction to the theory of
neural computers, Addison Wesley 1991.

• B. MÜLLER, J. REINHARDT, and M. STRICKLAND, Neural Networks:
An Introduction, Springer 1995.

• CH.M. BISHOP, Neural Networks for Pattern Recognition, Oxford Uni-
versity Press 1995.

Can computers simulate our brain? Everybody, considering this ques-
tion will readily realize that the answer is NO. Recent Computers are ex-
tremely powerful, but up to now, nobody knows how the information
processing between the 1011 nerve-cells (neurons) and the respective 1014

links (synapses) can lead to processes like: training, cognition, recognition,
thinking, emotions, self-reflection, etc.

We know little, but many scientists and engineers are trying hard to
develop computer programs that try to mimic the architecture and the be-
havior of the human brain. Such algorithms and the corresponding hard-
ware realizations are called neural networks or rather neural computers.
As a matter of fact, their features are significantly different from those of
conventional computers.

A neural net, or its emulation on a conventional computer, gathers in-
formation and stores it by modifying the strengths of the synaptic links.
There is no such thing as a program. At each stage of the training process
or thereafter, the neural computer is capable of generalizing the acquired

54

Figure 3.1: Illustration of two hypothetical images representing handwrit-
ten versions of the characters ‘a’ and ‘b’. Each image is described by an
array of pixel values xi which range from 0 to 1 according to the fraction
of the pixel square occupied by black ink.

knowledge. In other words, the neural net recognizes rules in examples
(training sets).

The information in neural nets is spread over the entire net of synapses,
in contrast to conventional computers, where information is stored locally.
Hence, if parts of the neural net are defect, the neural computer still works
and is still able to reason based on the remaining information. The logic is
not yes or no, but rather more or less.

Numerous impressive demonstrations of neural networks have been
presented: speaking English texts, recognition of digits and letters, play-
ing games (e.g. backgammon), analysis of spectra (such as: quantification
of the chemical composition of gases), detection of defective engines by
sound, prediction of stock prices. It appeared that neural nets are often
comparable or even better than complicated and elaborate conventional
computer codes.

3.1 Pattern Recognition

The term pattern recognition encompasses a wide range of information pro-
cessing problems, from speech recognition and identification of handwrit-
ten characters, to fault detection in machinery and medical diagnosis. The
most general, and most natural, framework in which to formulate solu-
tions to pattern recognition problems is a statistical one, which recognizes
the probabilistic nature both of the information we seek to process, and of
the form in which we should express the results.

We can introduce many of the fundamental concepts of statistical pat-
tern recognition by considering a simple, hypothetical, problem of distin-
guishing handwritten versions of the characters ‘a’ and ‘b’. Images of the
characters might be captured by a television camera and fed to a computer,
and we seek an algorithm which can distinguish as reliably as possible be-
tween the two characters. An image is represented by an array of pixels,

55

as illustrated in Fig. 3.1, each of which carries an associated value which
we shall denote by xi (where the index i labels the individual pixels). The
value of xi might, for instance, range from 0 for a completely white pixel
to 1 for a completely black pixel. It is convenient to gather the xi variables
together and denote them by a single vector x

T = (x1, . . . , xN)T , where N
is the total number of such variables.

The goal in this classification problem is to develop an algorithm which
will assign any image, represented by a vector x, to one of two classes
which we shall denote Ck, k = 1, 2, so that C1 corresponds to the character
‘a’ and C2 corresponds to ‘b’. We shall also suppose that we are provided
with a large number of examples of images corresponding to both ‘a’ and
‘b’ which have already been classified by a human. Such a collection is
called data set or sample.

One problem we face stems from the high dimensionality of the data
which we are collecting. For a typical image size of 256 × 256 pixels each
image can be represented as a point in an N-dimensional space, where
N = 65536. The axes of this space represent the gray-level values of the
corresponding pixels which in this example might be presented by 8-bit
numbers. In principle we might think of storing every possible image to-
gether with its corresponding class label. In practice, of course, this is com-
pletely impractical due to the very large number of possible images: for a
256×256 image with 8-bit pixel values, there would be 28×256×256 ≃ 10158000

different images. By contrast, we might typically have a few thousand ex-
amples in our training set. Thus, the classifier system must be designed so
as to be able to classify correctly a previously unseen image vector. One
technique to help alleviate such problems is to combine input variables
together to make a smaller number of new variables called features. In the
present example, we could, for instance, evaluate the ratio of the height
of the character to its width (denoted x̃1) since we might expect that char-
acters from class C2 will typically have larger values of x̃1 than characters
from class C2.

We can now represent the outcome of the classification in terms of a
variable y which takes the value 1 if the image is classified as C1 and the
value 0 if it is classified as C2. Thus, the overall system can be viewed as
a mapping from a set of input variables x1, . . . , xN , representing the pixel
intensities, to an output variable y representing the class label. In more
complex problems there may be several output variables yk, k = 1, . . . , c.

In general it will not be possible to determine a suitable form for the re-
quired mapping, except with the help of a data set of examples. The map-
ping is therefore modeled in terms of some mathematical function which
contains a number of adjustable parameters whose values are determined
with the help of the data set. We can write such functions in the form

yk = yk(x;w), (3.1)

where w denotes the vector of parameters. A neural network model can

56

be regarded as a particular choice for the set of functions yk(x;w). In this
case, the parameters comprising w are often called weights. The process of
determining the values for these parameters on the basis of the data set is
called learning or training and for this reason the data set of examples is
generally referred to as a training set.

Polynomial Curve Fitting

Many of the important issues concerning the application of neural net-
works can be introduced in the simpler context of polynomial curve fit-
ting. Here, the problem is to fit a polynomial to a set of N data points
by the technique of minimizing an error function. We consider the M-the
order polynomial given by

y(x) = w0 + w1x + · · ·+ wMxM =
M∑

j=0

wjx
j . (3.2)

This can be regarded as a non-linear mapping which takes x as input and
produces y as output. The precise form of the function y(x) is determined
by the values of the parameters w0, . . . , wM which are analogous to the
weights in a neural network. We denote the set of parameters w0, . . . , wM

by a vector w and the polynomial can then be written as a functional map-
ping in the form y = y(x,w) as was done for more general non-linear
mappings in Eq. (3.1).

We shall label the data with the index 1, . . . , N , so that each data point
consists of a value x, denoted by x(n), and a corresponding desired value
for the output y, which we shall denote t(n) because these desired output
values are called target values. In oder to find suitable values for the coeffi-
cients in the polynomial, it is convenient to consider the error between the
desired output t(n) for a particular input x(n) and the corresponding value
predicted by the polynomial function given by y(x(n);w). Standard curve-
fitting procedures involve minimizing the square of this error, summed
over all data points, given by

E =
1

2

N∑

n=1

{
y(x(n);w) − t(n)

}2
. (3.3)

We can regard E as being a function of w, and so the polynomial can be
fitted to the data by choosing a value for w which minimizes E. Note that
the polynomial (3.2) is a linear function of the parameters w and so (3.3)
is a quadratic function of w. This means that the minimum of E can be
found in terms of the solution of a set of linear algebraic equations. Func-
tions which depend linearly on the adaptive parameters are called linear
models, even though they may be non-linear functions of the original input
variables.

57

Figure 3.2: Plots of the RMS error (3.4) as a function of the order of the
polynomial for both training and test sets. The error with respect to the
training set decreases monotonically with M , while the error in making
predictions for new data (as given by the test set) shows a minimum.

Generalization

In order to assess the capability of the polynomial to generalize to new
data, it is convenient to consider the root-mean-square (RMS) error

ERMS =

√
√
√
√ 1

N

N∑

n=1

{y(x(n);w∗) − t(n)}2
, (3.4)

where w
∗ represents the vector of coefficients corresponding to the min-

imum of the error function, so that y(x;w∗) represents the fitted polyno-
mial. For the purpose of evaluating the effectiveness of the polynomial
at predicting data, this is a more convenient quantity to consider than
the original sum-of-squares error (3.3) since the strong dependence on the
number of data points has been removed. Fig. 3.2 shows a plot of ERMS for
both the training data set and the test data set as a function of the order M
of the polynomial. We see that the training set error decreases steadily as
the order of the polynomial increases. The test set error, however, reaches a
minimum at some smaller value of M and thereafter increases as the order
of the polynomial is increased. The ability of the polynomial to generalize
to new data (i.e.: to the test set) therefore reaches an optimum value for a
polynomial of a particular degree of complexity. Generalization is a trade-
off between bias and variance. A model which has little flexibility, such as
the linear polynomial, has a high bias, while a model which has too much
flexibility, such as a high order polynomial, has a high variance. The point
of best generalization is determined by the trade-off between these two
competing properties and occurs when the number of degrees of freedom
in the model is relatively small compared to the size of the data set.

The common denominator of the two examples discussed here is the
basic concept of a simple neural net, the perceptron.

58

3.2 Perceptron

It was developed, applied and studied already in the 60-s. Here we will
study the perceptron guided by a simple example. Neurons are modeled
by binary variables Si ∈ {1,−1}, where +1 represents an active and −1 an
inactive state.

S
1

S
2

ω
1

ω
2

ω
N

 ° ° ° ° ° ° ° ° ° ° S
N

F(S)

S
0

Figure 3.3: Perceptron

The perceptron consists of an input layer of neurons

S = {S1, S2, . . . , SN},

and one output neuron S0, which is coupled to all input neurons via synap-
tic weights

ωi ; i = 1, . . . , N.

The synaptic weights ωi ∈ R model the strength with which the incoming
signals Si of the neurons are transformed into the output signal S0. The
synapses describe bio-chemical processes, with ωi > 0 (ω < 0) standing
for enhancement (suppression) of the respective incoming signal. Like in
real nerve cells, the output neuron reacts on the sum of the activities of
all neurons which are coupled via synaptic weights. There are M = 2N

different input sequences Sα ; (α = 1, 2, . . .M), to each of which the output
neuron can react with either +1 or −1. The output is determined by the
synaptic weights and is described by the boolean function F :

F : {+1,−1}N
 {+1,−1}.

The function is entirely described by the specification of the output value
for each of the M = 2N input sequences Sα. Hence, there are

L = 2M = 22N

different boolean functions. Already in 1943 complex and time-dependent
biochemical processes have been approximated by a simple mathematical

59

formula

S0 = sign

(
N∑

i=1

Si ωi

)

. (3.5)

If
N∑

i=1

Si ωi = ωT S > 0 (3.6)

the neuron fires, i.e.: S0 = +1, otherwise it rests, i.e.: S0 = −1. In (3.6)
we used vector-notation. (3.5) covers only a subset of all possible boolean
functions, the so-called linear separable boolean functions. It can be shown
that there are less than

L′ = 2N2

separable boolean functions. For N = 10 the numbers are L = 10308 and
L′ = 1030, respectively.

ω

Linear separable functions can be visual-
ized geometrically. The output neuron is
S0 = +1 if the point characterized by the
vector S lies above the hyper-plain that is
defined by the normal form

ωT S = 0,

as illustrated in the figure. The normal vector is given by the normalized
vector ω.

3.3 Training and generalization

Like in real nerve cells, the neural net learns by adjusting the synaptic
weights. Given a set of input/output pairs

(
S(ν), S

(ν)
0

)
; ν = 1, 2, . . . , L,

the perceptron tries to determine the synaptic weights such that it yields
the correct output

sign (ωT S(ν)) = S
(ν)
0 (3.7)

for all examples, ν = 1, 2, . . . , L. Equation (3.7) can be simplified upon
multiplying both sides by S

(ν)
0

S
(ν)
0 sign (ωT S(ν)) = sign (S

(ν)
0 ωT S(ν)) =

(

S
(ν)
0

)2

= 1.

It is expedient to introduce modified training vectors

ξ(ν) = S(ν) S
(ν)
0 , (3.8)

60

and the correct response is now characterized by

ωT ξ(ν) > 0. (3.9)

The goal of the training phase is to adjust the synaptic weights such
that Equation (3.9) is fulfilled for all elements of the training set. One pos-
sible approach is to minimize the cost function C(ω) = Nm, which counts
the number Nm of wrong predictions. The minimization could be achieved
by stochastic optimization algorithms.

Another efficient approach is given by an iteration scheme, defined by
the update rule

PERCEPTRON RULE

∆ω =

{
1
N

ξ(ν) if ωT ξ(ν) ≤ 0

0 otherwise.
(3.10)

In other words the weights are only modified, if the prediction was in-
correct. In the latter case the new weight reads ω′ = ω+∆ω. ROSENBLUTH

proved in 1960 that it takes a finite number of steps to learn all examples,
provided they can be trained at all, i.e.: if there exists a vector ω satisfying
(3.9) for all ν = 1, 2, . . . , L.

Proof:

We assume that there is a vector ω∗ satisfying

(ω∗)T ξ(ν) > 0 ∀ν.

This implies that all ‘points’ ξ(ν) are on one side of the hyper-plain and the
point closest to it has finite distance C from the plain, i.e.:

(ω∗)T ξ(ν) ≥ C > 0 ∀ν. (3.11)

We start the training process with ω(t = 0) = 0 and increment the counter
t each time the prediction is wrong and the weight has to be modified
according to the perceptron rule. Let ν be the wrongly predicted example
at time t, i.e.:

ω(t)T ξ(ν) ≤ 0, (3.12)

then
ω(t + 1) = ω(t) +

1

N
ξ(ν). (3.13)

61

The next weight has the norm

‖ω(t + 1)‖2 = ‖ω(t)‖2 +
2

N
ω(t)T ξ(ν) +

1

N2
‖ξ(ν)‖2.

The norm of the input signal vector (ξ(ν) = S
(ν)S

(ν)
0) is given by

‖ξ(ν)‖2 =
∣
∣
∣S

(ν)
0

∣
∣
∣

2

︸ ︷︷ ︸

=1

‖S(ν)‖2

︸ ︷︷ ︸

N

= N,

and along with (3.12) we have

‖ω(t + 1)‖2 ≤ ‖ω(t)‖2 +
1

N
.

Starting from ‖ω(0)‖2 = 0 the sequence of norms reads

‖ω(1)‖2 ≤ 1

N

‖ω(2)‖2 ≤ ‖ω(1)‖2 +
1

N
≤ 2

N
,

which obeys the general formula

‖ω(t)‖2 ≤ t

N
. (3.14)

Next we derive a lower bound for (ω∗)T ω(t)

(ω∗)T ω(t + 1)
(3.13)

= (ω∗)T ω(t) +
1

N
(ω∗)T ξ(ν)

︸ ︷︷ ︸

≥C

≥ (ω∗)T ω(t) +
C

N
.

Again starting with ω(0) = 0 we obtain

(ω∗)T ω(t) ≥ C t

N
. (3.15)

Combining the Schwarz inequality

‖ω(t)‖2‖ω∗‖2 ≥
∣
∣ω(t)T ω∗

∣
∣
2

with (3.14) and (3.15) yields

‖ω(t)‖2‖ω∗‖2 ≥
∣
∣ω(t)T ω∗

∣
∣
2

t

N
‖ω∗‖2

(3.14)

≥ ‖ω(t)‖2‖ω∗‖2 ≥
∣
∣ω(t)T ω∗

∣
∣
2 (3.15)

≥
(

Ct

N

)2

⇒

‖ω∗‖2

/
t

N
≥ C2

(
t

N

)
/
2

.

62

t ≤ N
‖ω∗‖2

C2
. (3.16)

This ends the proof that the number of steps, needed to learn all examples,
provided they can be memorized by the neural net, is finite. If we use a
normalized vector ω̂∗ for the hyper-plain then Eq. (3.11) reads

(ω̂∗)T ξ(ν) ≥ C

‖ω∗‖ =: C ′ > 0 ∀ν,

where C ′ now stands for the shortest distance of the points S(ν) from the
hyper-plain, and Eq. (3.16) becomes

MAXIMUM NUMBER OF TRAINING CYCLES

t ≤ N

C ′2
=: t∗. (3.17)

The number of steps increases linearly with the size of the neural net
and inversely with the shortest distance squared. The points closest to the
hyper-plain are the ones which are the most difficult to memorize since the
response of the output neuron depends on which side of the hyper-plain
the point lies.

The points S(ν) lie equally spaced on a hyper-sphere of radius
√

N . The
more examples there are, the closer the points approach the hyper-plain
and, hence, the longer it takes to learn.

A single application of the training rule (3.10) does not guarantee that
the example will be correctly predicted next time. It is therefore necessary
to repeat the training process several times, either by cycling through all
examples several times and/or by training each example repeatedly.

After the training phase is finished the neural net can be tested, how
well the neural computer predicts the signals of the output neuron S

(ν)
0 ,

given a set of M unknown (to the computer) input vectors

S(ν) , ν = 1, 2, . . . , M.

To this end we define the relative rate of success

r =
number of correct predictions

total number of predictions
=

1

M

M∑

ν=1

θ
[

S
(ν)
0 (ω∗)T S(ν)

]

. (3.18)

3.4 Analysis of time series

We consider a particularly simple application: time series of binary values
±1, e.g. the sequence

F =
(

+ 1, +1,−1,−1,−1,−1, +1, . . .
)
.

63

The perceptron reads a window of N bits

S(ν) =
(
Fν , Fν+1, . . . , Fν+N−1

)

and predicts the next bit
S

(ν)
0 = Fν+N .

If the sequence possesses a periodicity of length K then there are K differ-
ent examples and for K < N the perceptron should be able to learn this
pattern perfectly and make the correct predictions for the forthcoming bits.

If the predictions are made at random, the correct answer represents
a random variable obeying a binomial distribution. The probability for m
correct out of M predictions is

p(m|q, M) =

(
M

m

)

qm (1 − q)M−m,

with q = 1/2. The mean number of correct predictions is

〈m〉 = Mq = M/2

and the corresponding variance reads

〈(∆m)2〉 = Mq(1 − q) = M/4.

The upper limit for the 2-σ region is

M

2
+ 2

√
M

2
,

and the corresponding relative factor of success is

r2σ =
1

2

(
1 +

2√
M

)
.

The probability that by random predictions the relative factor of success is
greater or equal to r2σ is 2.3%. The following table contains r2σ for various
sample sizes M

M r2σ

9 0.83
16 0.75
25 0.70
100 0.60

10000 0.51

Even for a sample of size M = 100 it is not unreasonable to get 60% correct
answers if they are merely predicted at random.

Generalizations are obvious:

• Representation of numbers by their binary representation, which can
be used to predict time series s(t) of e.g. stock values.

• Recognition of patterns of a musical tune in a training phase and
playing it.

64

	Neural Networks
	Pattern Recognition
	Perceptron
	Training and generalization
	Analysis of time series

